Composites reinforced with cellulose based fibres

Progress in Polymer Science 24, 221-274

DOI: 10.1016/s0079-6700(98)00018-5

Citation Report

#	Article	IF	CITATIONS
1	Swirl mat- and long discontinuous fiber mat-reinforced polypropylene composites?status and future trends. Polymer Composites, 2000, 21, 514-522.	2.3	24
2	Title is missing!. Journal of Materials Science Letters, 2000, 19, 1155-1157.	0.5	11
3	Effect of silicone interphase on the mechanical properties of flax-polyurethane composites. Composite Interfaces, 2000, 7, 103-115.	1.3	17
4	Natural Cellulose Fibers:Â Heterogeneous Acetylation Kinetics and Biodegradation Behavior. Biomacromolecules, 2001, 2, 476-482.	2.6	122
5	The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Composites Part A: Applied Science and Manufacturing, 2001, 32, 119-127.	3.8	273
6	Cellulose Fibers/Polyethylene Hybrid Composites: Effect of Long Chain Organic Acid Cellulose Esters and Organic Peroxide on Rheology and Tensile Properties. Journal of Reinforced Plastics and Composites, 2001, 20, 697-717.	1.6	17
7	All-Plant Fibre Composites: Self Reinforced Composites Based on Sisal. Advanced Composites Letters, 2001, 10, 096369350101000.	1.3	13
8	Thermal Expansion Anisotropy in Injection-Moulded Natural-Fibre Composites. Advanced Composites Letters, 2001, 10, 096369350101000.	1.3	O
9	Poly(Butylene Succinate) Composites Reinforced with Short Sisal Fibres. Polymers and Polymer Composites, 2001, 9, 333-338.	1.0	14
10	Applications of Bio-Composites in Industrial Products. Materials Research Society Symposia Proceedings, 2001, 702, 1.	0.1	22
11	Influence of fiber length on the mechanical properties of wood-fiber/polypropylene prepreg sheets. Materials Research Innovations, 2001, 4, 97-103.	1.0	40
12	Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science, 2001, 24, 129-135.	0.8	340
13	The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology, 2001, 61, 1437-1447.	3.8	836
14	Natural-fibre-reinforced polyurethane microfoams. Composites Science and Technology, 2001, 61, 2405-2411.	3.8	112
15	Plasticized starch–cellulose interactions in polysaccharide composites. Polymer, 2001, 42, 6565-6572.	1.8	296
16	A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering and Science, 2001, 41, 1471-1485.	1.5	960
17	Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. Journal of Applied Polymer Science, 2001, 81, 742-753.	1.3	92
18	Impact behavior of sawdust/recycled-PP composites. Journal of Applied Polymer Science, 2001, 81, 1420-1428.	1.3	55

#	ARTICLE	IF	CITATIONS
19	Starch-Based Biodegradable Materials Suitable for Thermoforming Packaging. Starch/Staerke, 2001, 53, 368.	1.1	122
20	Review: Current international research into cellulosic fibres and composites. Journal of Materials Science, 2001, 36, 2107-2131.	1.7	777
21	Dynamic Mechanical Properties of Natural Fiber-Reinforced Epoxy Foams. Journal of Reinforced Plastics and Composites, 2001, 20, 1263-1274.	1.6	22
22	A FRACTURE MECHANICS STUDY OF POLYPROPYLENE–WOOD FLOURS BLENDS. Polymer-Plastics Technology and Engineering, 2001, 40, 1-21.	1.9	14
23	Natural bast fibre sturcture. International Journal of Materials and Product Technology, 2002, 17, 2.	0.1	24
24	Atomistic Modeling of the Adsorption of Benzophenone onto Cellulosic Surfaces. Langmuir, 2002, 18, 1919-1927.	1.6	51
25	Mechanochemical preparation and properties of a cellulose–polyethylene composite. Journal of Materials Chemistry, 2002, 12, 24-26.	6.7	55
26	Influence of fiber type, fiber mat orientation, and process time on the properties of a wood fiber/polymer composite. International Journal of Polymeric Materials and Polymeric Biomaterials, 2002, 51, 1005-1018.	1.8	5
27	Impact fatigue behaviour of vinylester resin matrix composites reinforced with alkali treated jute fibres. Composites Part A: Applied Science and Manufacturing, 2002, 33, 233-241.	3.8	122
28	Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites Part A: Applied Science and Manufacturing, 2002, 33, 939-948.	3.8	767
29	Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1083-1093.	3.8	290
30	Influence of chemical treatments on the electrokinetic properties of cellulose fibres. Journal of Adhesion Science and Technology, 2002, 16, 157-178.	1.4	51
31	Woodflour as Reinforcement of Polypropylene. Materials Research, 2002, 5, 405-409.	0.6	43
32	Resistência ao Impacto e Outras Propriedades de Compósitos Lignocelulósicos: Matrizes Termofixas Fenólicas Reforçadas com Fibras de Bagaço de Cana-de-açúcar. Polimeros, 2002, 12, 228-239.	0.2	30
33	Mechanical Properties of Sisal Reinforced Composites in Response to Water Absorption. Polymers and Polymer Composites, 2002, 10, 407-426.	1.0	19
34	Fibre quality of linseed (Linum usitatissimum L.) and the assessment of genotypes for use of fibres as a by-product. Industrial Crops and Products, 2002, 16, 201-215.	2.5	41
35	Morphology and mechanical properties of unidirectional sisal- epoxy composites. Journal of Applied Polymer Science, 2002, 84, 2358-2365.	1.3	205
36	Interface modification on the properties of sisal fiber-reinforced polypropylene composites. Journal of Applied Polymer Science, 2002, 85, 169-176.	1.3	85

#	ARTICLE	IF	Citations
37	Biodegradable polyester composites reinforced with short abaca fiber. Journal of Applied Polymer Science, 2002, 85, 129-138.	1.3	176
38	Kudzu fiber-reinforced polypropylene composite. Journal of Applied Polymer Science, 2002, 85, 1961-1969.	1.3	25
39	Eucalyptus Kraft pulp fibers as an alternative reinforcement of silicone composites. I. Characterization and chemical modification of Eucalyptus fibers with organosilane coupling agent. Journal of Applied Polymer Science, 2002, 85, 2573-2579.	1.3	13
40	Surface chemical modification of natural cellulose fibers. Journal of Applied Polymer Science, 2002, 83, 38-45.	1.3	188
41	The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Composites Science and Technology, 2002, 62, 339-353.	3.8	408
42	Thermoelastic anisotropy of a natural fiber. Composites Science and Technology, 2002, 62, 669-678.	3.8	131
43	Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 2002, 62, 1357-1372.	3.8	410
44	Interfacial interaction in sisal/epoxy composites and its influence on impact performance. Polymer Composites, 2002, 23, 182-192.	2.3	24
45	Structural properties and mechanical behavior of injection molded composites of polypropylene and sisal fiber. Polymer Composites, 2002, 23, 319-328.	2.3	41
46	Surface modification of fique fibers. Effect on their physico-mechanical properties. Polymer Composites, 2002, 23, 383-394.	2.3	70
47	All-Plant fiber composites. I: Unidirectional sisal fiber reinforced benzylated wood. Polymer Composites, 2002, 23, 624-633.	2.3	41
48	Structural and mechanical behavior of polypropylene/ maleated styrene-(ethylene-co-butylene)-styrene/sisal fiber composites prepared by injection molding. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1214-1222.	2.4	49
49	Title is missing!. Journal of Materials Science, 2003, 38, 3903-3914.	1.7	86
50	Title is missing!. Journal of Materials Science Letters, 2003, 22, 1495-1497.	0.5	37
51	Biocomposites Made from Short Abaca Fiber and Biodegradable Polyesters. Macromolecular Materials and Engineering, 2003, 288, 35-43.	1.7	209
52	Tensile Fracture and Failure Behavior of Thermoplastic Starch with Unidirectional and Cross-Ply Flax Fiber Reinforcements. Macromolecular Materials and Engineering, 2003, 288, 699-707.	1.7	98
53	Aspects of alkali treatment of sponge gourd (Luffa cylindrica) fibers on the flexural properties of polyester matrix composites. Journal of Applied Polymer Science, 2003, 87, 1927-1932.	1.3	100
54	Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites. Journal of Applied Polymer Science, 2003, 87, 1302-1315.	1.3	113

#	ARTICLE	IF	Citations
55	Ways of strengthening biodegradable soy-dreg plastics. Journal of Applied Polymer Science, 2003, 88, 422-427.	1.3	35
56	Effect of processing conditions on mechanical and viscoelastic properties of biocomposites. Journal of Applied Polymer Science, 2003, 88, 1637-1642.	1.3	54
57	Effect of compatibilization on the performance of biodegradable composites using cotton fiber waste as filler. Journal of Applied Polymer Science, 2003, 88, 1825-1835.	1.3	73
58	Reinforcement of polypropylene using sisal fibers grafted with poly(methyl methacrylate). Journal of Applied Polymer Science, 2003, 88, 1055-1064.	1.3	32
59	Thermal and thermomechanical properties of biocomposites made from modified recycled cellulose and recycled polypropylene. Journal of Applied Polymer Science, 2003, 89, 2353-2360.	1.3	90
60	Tire rubber-sisal composites: Effect of mercerization and acetylation on reinforcement. Journal of Applied Polymer Science, 2003, 89, 2507-2515.	1.3	45
61	Crystallization and melting behaviors of maleated polyethylene and its composite with fibrous cellulose. Journal of Applied Polymer Science, 2003, 89, 3292-3300.	1.3	12
62	Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. Journal of Applied Polymer Science, 2003, 90, 2170-2178.	1.3	96
63	Thermal and mechanical characterization of linear low-density polyethylene/wood flour composites. Journal of Applied Polymer Science, 2003, 90, 2775-2784.	1.3	148
64	New thermoplastic materials reinforced with cellulose based fibers. Journal of Applied Polymer Science, 2003, 90, 3466-3472.	1.3	36
65	Tensile fracture and failure behavior of technical flax fibers. Journal of Applied Polymer Science, 2003, 90, 3638-3645.	1.3	98
66	Curing characteristics of carboxyl functionalized glucose resin and epoxy resin. European Polymer Journal, 2003, 39, 1377-1384.	2.6	26
67	An experimental and finite element analysis of the static deformation of natural fiber-reinforced composite beam. Polymer Testing, 2003, 22, 169-177.	2.3	17
68	Pull-out and other evaluations in sisal-reinforced polyester biocomposites. Polymer Testing, 2003, 22, 375-380.	2.3	163
69	The unmasking of lignin structures in wheat straw by alkali. Phytochemistry, 2003, 63, 617-623.	1.4	45
70	Self-reinforced melt processable composites of sisal. Composites Science and Technology, 2003, 63, 177-186.	3.8	104
71	Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 2003, 63, 1377-1385.	3.8	724
72	Influence of processing and chemical treatment of flax fibres on their composites. Composites Science and Technology, 2003, 63, 1241-1246.	3.8	411

#	ARTICLE	IF	CITATIONS
73	Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology, 2003, 63, 1247-1254.	3.8	389
74	An investigation on the processing of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 2003, 63, 1255-1258.	3.8	145
75	Compounding and mechanical properties of biodegradable hemp fibre composites. Composites Science and Technology, 2003, 63, 1307-1316.	3.8	211
76	Effect of surface-grafted ionic groups on the performance of cellulose-fiber-reinforced thermoplastic composites. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2022-2032.	2.4	22
77	Effect of wood sawdust content on rheological and structural changes, and thermo-mechanical properties of PVC/sawdust composites. Polymer International, 2003, 52, 1847-1855.	1.6	87
78	Enzyme degradability of benzylated sisal and its self-reinforced composites. Polymers for Advanced Technologies, 2003, 14, 676-685.	1.6	5
79	Studies on bamboo polymer composites with polyester amide polyol as interfacial agent. Polymer Composites, 2003, 24, 428-436.	2.3	32
82	Influence of Mercerization Along with Ultraviolet (UV) and Gamma Radiation on Physical and Mechanical Properties of Jute Yarn by Grafting with 3â€(Trimethoxysilyl) Propylmethacrylate (Silane) and Acrylamide Under UV Radiation. Polymer-Plastics Technology and Engineering, 2003, 42, 515-531.	1.9	38
84	Strength and adhesion characteristics of elementary flax fibres with different surface treatments. Composites Part A: Applied Science and Manufacturing, 2003, 34, 603-612.	3.8	171
85	Cellulose fiber/poly(ethylene-co-methacrylic acid) composites with ionic interphase. Composites Part A: Applied Science and Manufacturing, 2003, 34, 1075-1084.	3.8	14
87	Processing and Properties of Low Cost Corn Gluten Meal/Wood Fiber Composite. Industrial & Engineering Chemistry Research, 2003, 42, 6765-6773.	1.8	51
88	Mechanical Behavior of Wood/Polypropylene Composites: Effects of Fibre Treatments and Ageing Processes. Journal of Reinforced Plastics and Composites, 2003, 22, 37-50.	1.6	93
89	Biodegradable Polymers: Past, Present, and Future. , 2003, , .		38
90	Interpenetrating Vinylester/Epoxy Resins Reinforced by Flax Fibre Mat. Advanced Composites Letters, 2003, 12, 096369350301200.	1.3	7
91	Mechanical properties of the extruded acetylated starch plastic filled cellulose acetate and evaluation of its biodegrade properties. , 2003, , .		1
92	Poly($\langle i \rangle \hat{a} \hat{S} \langle i \rangle$ -Caprolactone) Composites Reinforced with Short Abaca Fibres. Polymers and Polymer Composites, 2003, 11, 359-367.	1.0	15
93	Effect of a Two Step Fiber Treatment on the Flexural Mechanical Properties of Sisal-polyester Composites. Polymers and Polymer Composites, 2003, 11, 31-36.	1.0	8
94	PROPERTIES OF EXTRUDED ACETYLATED STARCH PLASTIC FILLED WITH CELLULOSE ACETATE. Transactions of the American Society of Agricultural Engineers, 2003, 46, .	0.9	1

#	Article	IF	CITATIONS
95	Natural fibre sources., 2004,, 49-80.		25
97	Indentation Responses and Damage in Kaolin/Cellulose Fibre Epoxy Nanocomposites. , 2004, , 482-487.		0
98	The Preparation of Self-Reinforced Sisal Fiber Composites. Polymers and Polymer Composites, 2004, 12, 297-308.	1.0	20
99	Morphological Characterisation of Natural Fibre Reinforced Thermoplastics (NFRTP) Processed by Extrusion, Compression and Rotational Moulding. Polymers and Polymer Composites, 2004, 12, 705-718.	1.0	38
100	Composites of Polypropylene with Cellulose Fibres. 1. Influence of Conditions of Extrusion and Injection Processes on the Structure of the Polypropylene Matrix. International Polymer Science and Technology, 2004, 31, 60-65.	0.1	2
101	Characterisation of a phenolic resin and sugar cane pulp composite. Brazilian Journal of Chemical Engineering, 2004, 21, 253-260.	0.7	17
102	The Effect of Surface Modification on the Mechanical Properties of Hemp Fiber/Polyester Composites. , 2004, , .		3
103	Tensile Properties of Unsaturated Polyester-Based Sisal Fiber–Glass Fiber Hybrid Composites. Journal of Reinforced Plastics and Composites, 2004, 23, 1815-1819.	1.6	75
104	Chemical reaction of maritime pine sapwood (Pinus pinaster Soland) with alkoxysilane molecules: A study of chemical pathways. Holzforschung, 2004, 58, 511-518.	0.9	35
105	Natural Fibers, Plastics and Composites. , 2004, , .		104
106	Alternative solutions: recyclable synthetic fibre–thermoplastic composites. , 2004, , 100-122.		1
107	Hemp Strands as Reinforcement of Polystyrene Composites. Chemical Engineering Research and Design, 2004, 82, 1425-1431.	2.7	37
108	Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. Journal of Materials Science, 2004, 39, 1051-1054.	1.7	200
109	Wood pulp fiber reinforced melamine-formaldehyde composites. Journal of Materials Science, 2004, 39, 3245-3247.	1.7	15
110	Composites of linear low density polyethylene and short sisal fibres: The effects of peroxide treatment. Journal of Materials Science, 2004, 39, 3403-3412.	1.7	36
111	Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2004, 44, 231-274.	2.2	620
112	Polarised ATR-FTIR Characterisation of Cellulosic Fibres in Relation to Historic Artefacts. Restaurator, 2004, 25, .	0.2	6
113	Improvement of the thermal stability of lignocellulosic materials by treatment with sulphuric acid and potassium hydroxide. Journal of Analytical and Applied Pyrolysis, 2004, 72, 131-139.	2.6	22

#	Article	IF	CITATIONS
114	Resin transfer molding of natural fiber reinforced composites: cure simulation. Composites Science and Technology, 2004, 64, 629-644.	3.8	164
115	Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Composites Science and Technology, 2004, 64, 2407-2413.	3.8	145
116	Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer, 2004, 45, 7589-7596.	1.8	138
117	Mechanical properties of spruce wood cell walls by nanoindentation. Applied Physics A: Materials Science and Processing, 2004, 79, 2069-2073.	1.1	205
118	All natural composite sandwich beams for structural applications. Composite Structures, 2004, 63, 147-157.	3.1	257
119	Lignocellulosic composite. Polymers for Advanced Technologies, 2004, 15, 738-745.	1.6	21
120	Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polymer Composites, 2004, 25, 102-110.	2.3	28
121	Improvement of the interfacial compatibility between sugar cane bagasse fibers and polystyrene for composites. Polymer Composites, 2004, 25, 134-145.	2.3	36
122	Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends. Polymer Composites, 2004, 25, 280-288.	2.3	55
123	A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polymer Composites, 2004, 25, 470-479.	2.3	115
124	Analysis of the creep behavior of polypropylene-woodflour composites. Polymer Engineering and Science, 2004, 44, 1594-1603.	1.5	79
125	Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polymer Engineering and Science, 2004, 44, 1907-1914.	1.5	47
126	Completely biodegradable composites of poly(propylene carbonate) and short, lignocellulose fiberHildegardia populifolia. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 666-675.	2.4	115
127	Composites based on jute fibers and phenolic matrices: Properties of fibers and composites. Journal of Applied Polymer Science, 2004, 91, 1077-1085.	1.3	101
128	Composition, tensile properties, and dispersion of polypropylene composites reinforced with viscose fibers. Journal of Applied Polymer Science, 2004, 91, 2676-2684.	1.3	47
129	Effects of a new compatibilizer system on the flexural properties of wood-polyethylene composites. Journal of Applied Polymer Science, 2004, 91, 3667-3672.	1.3	44
130	Alkali-methanol-anthraquinone pulping of Miscanthus x giganteus for the rmoplastic composite reinforcement. Journal of Applied Polymer Science, 2004, 92, 2132-2143.	1.3	9
131	Thermal and flow property-morphology relationship of sugarcane bagasse fiber-filled polyamide 6 blends. Journal of Applied Polymer Science, 2004, 92, 3744-3754.	1.3	27

#	Article	IF	Citations
132	Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. Journal of Applied Polymer Science, 2004, 92, 3857-3863.	1.3	131
133	Properties of thermoplastic composites based on wheat-straw lignocellulosic fillers. Journal of Applied Polymer Science, 2004, 93, 428-436.	1.3	114
134	Unidirectional hemp and flax EP- and PP-composites: Influence of defined fiber treatments. Journal of Applied Polymer Science, 2004, 93, 2150-2156.	1.3	177
135	Evaluation of the mechanical properties of sisal-polyester composites as a function of the polyester matrix formulation. Journal of Applied Polymer Science, 2004, 94, 1209-1217.	1.3	33
136	Interfacial interactions of a novel mechanochemical composite of cellulose with maleated polypropylene. Journal of Applied Polymer Science, 2004, 94, 1326-1335.	1.3	76
137	Scanning electron microscopy study of raw and chemically modified sisal fibers. Journal of Applied Polymer Science, 2004, 94, 2333-2340.	1.3	30
138	Cellulose Fibrils for Polymer Reinforcement. Advanced Engineering Materials, 2004, 6, 754-761.	1.6	527
139	Biodegradable Polyesters Reinforced with Surface-Modified Vegetable Fibers. Macromolecular Bioscience, 2004, 4, 286-295.	2.1	66
140	Lignocellulosic Flour from Cladodes of Opuntia ficus-indica Reinforced Poly(propylene) Composites. Macromolecular Materials and Engineering, 2004, 289, 855-863.	1.7	31
141	A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites. Macromolecular Materials and Engineering, 2004, 289, 955-974.	1.7	338
142	Novel Fibers Prepared from Cellulose in NaOH/Urea Aqueous Solution. Macromolecular Rapid Communications, 2004, 25, 1558-1562.	2.0	188
143	Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polymer Degradation and Stability, 2004, 86, 401-409.	2.7	159
144	Evaluation of pre-treatment, size and molding pressure on flexural mechanical behavior of chopped bagasse–polyester composites. Polymer Testing, 2004, 23, 253-258.	2.3	68
145	Composite micromechanics of hemp fibres and epoxy resin microdroplets. Composites Science and Technology, 2004, 64, 767-772.	3.8	126
146	Natural fiber composites with plant oil-based resin. Composites Science and Technology, 2004, 64, 1135-1145.	3.8	386
147	Environmental degradability of self-reinforced composites made from sisal. Composites Science and Technology, 2004, 64, 1301-1310.	3.8	55
148	Elucidating the graft copolymerization of methyl methacrylate onto wood-fiber. Carbohydrate Polymers, 2004, 55, 201-210.	5.1	40
149	Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 2004, 56, 111-122.	5.1	477

#	Article	IF	CITATIONS
150	Biodegradation of Chemically Modified Flax Fibers in Soil and in Vitro with Selected Bacteria. Biomacromolecules, 2004, 5, 596-602.	2.6	21
151	Polyester Coating of Cellulose Fiber Surfaces Catalyzed by a Cellulose-Binding Module-Candida AntarcticaLipase B Fusion Protein. Biomacromolecules, 2004, 5, 106-112.	2.6	26
152	Sisal Fiber/Glass Fiber Hybrid Composites: The Impact and Compressive Properties. Journal of Reinforced Plastics and Composites, 2004, 23, 1253-1258.	1.6	112
153	A Review on Natural Fibre-Based Composites-Part I. Journal of Natural Fibers, 2004, 1, 37-68.	1.7	298
154	Activation of Crystalline Cellulose Surfaces through the Chemoenzymatic Modification of Xyloglucan. Journal of the American Chemical Society, 2004, 126, 5715-5721.	6.6	117
155	INFLUENCE OF COMPATIBILIZATION TREATMENTS ON THE MECHANICAL PROPERTIES OF FIQUE FIBER REINFORCED POLYPROPYLENE COMPOSITES. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 997-1013.	1.8	14
156	Flax fibre–polyester composites. Composites Part A: Applied Science and Manufacturing, 2004, 35, 703-710.	3.8	253
157	The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1345-1349.	3.8	134
158	Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1267-1276.	3.8	702
159	Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1363-1374.	3.8	149
160	All-Cellulose Composite. Macromolecules, 2004, 37, 7683-7687.	2.2	717
161	All-Plant Fiber Composites. , 2004, , 3-8.		2
162	Houses Using Soy Oil and Natural Fibers Biocomposites. , 2005, , .		1
163	Natural Fiber–Rubber Composites and Their Applications. , 2005, , .		3
164	Plant Fibers as Reinforcement for Green Composites. , 2005, , .		95
165	Natural Fiber Composites in Automotive Applications. , 2005, , .		48
166	Thermoset Biocomposites., 2005,,.		18
167	Polylactide-Based Biocomposites. , 2005, , .		4

#	Article	IF	Citations
168	Fiber-Matrix Adhesion in Natural Fiber Composites., 2005,,.		9
169	Thermoplastic polymers reinforced with fibrous agricultural residues. Polymer Degradation and Stability, 2005, 90, 303-312.	2.7	207
170	Reducing water absorption in compostable starch-based plastics. Polymer Degradation and Stability, 2005, 90, 563-569.	2.7	176
171	Hygrothermal weathering of rice hull/HDPE composites under extreme climatic conditions. Polymer Degradation and Stability, 2005, 90, 540-545.	2.7	53
172	Composites of allyl glycidyl ether modified polyethylene and cellulose. Polymer, 2005, 46, 3289-3299.	1.8	11
173	All-cellulose nanocomposite. Polymer, 2005, 46, 10221-10225.	1.8	286
174	Thermal properties of hybrid lignocellulosic fabric-reinforced polyester matrix composites. Polymer Testing, 2005, 24, 81-85.	2.3	55
175	A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polymer Testing, 2005, 24, 474-482.	2.3	214
176	Study of the interfacial properties of natural fibre reinforced polyethylene. Polymer Testing, 2005, 24, 694-698.	2.3	226
177	Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cement and Concrete Composites, 2005, 27, 527-536.	4.6	255
178	Durability of slag mortar reinforced with coconut fibre. Cement and Concrete Composites, 2005, 27, 565-574.	4.6	108
179	Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement and Concrete Composites, 2005, 27, 554-564.	4.6	217
180	Composites of low-density polyethylene and short sisal fibres: the effect of wax addition and peroxide treatment on thermal properties. Thermochimica Acta, 2005, 426, 101-107.	1.2	36
181	Interfaces and interphases in multicomponent materials: past, present, future. European Polymer Journal, 2005, 41, 645-662.	2.6	274
182	Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Composites Science and Technology, 2005, 65, 563-569.	3.8	282
183	Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Composites Science and Technology, 2005, 65, 683-692.	3.8	123
184	Strength distribution of elementary flax fibres. Composites Science and Technology, 2005, 65, 693-702.	3.8	187
185	Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber under accelerated aging and biotic environments. Materials Chemistry and Physics, 2005, 92, 458-469.	2.0	72

#	Article	IF	CITATIONS
186	Average mixing torque, tensile and impact properties, and thermal stability of poly(vinyl) Tj ETQq0 0 0 rgBT /Over Science, 2005, 96, 213-221.	lock 10 Tf 1.3	50 747 Td (c 53
187	A study of the mechanical properties of randomly oriented short banana and sisal hybrid fiber reinforced polyester composites. Journal of Applied Polymer Science, 2005, 96, 1699-1709.	1.3	203
188	Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 2005, 97, 2014-2025.	1.3	712
189	Effect of guar-gum treatment on mechanical properties of vinylester resin matrix composites reinforced with jute yarns. Journal of Applied Polymer Science, 2005, 98, 557-563.	1.3	3
190	A new composite from cellulose industrial waste and elastomeric polyurethane. Journal of Applied Polymer Science, 2005, 98, 336-340.	1.3	19
191	Physical and mechanical characterization of jute fabric composites. Journal of Applied Polymer Science, 2005, 98, 639-650.	1.3	65
192	Static and dynamic mechanical properties of a kenaf fiber–wood flour/polypropylene hybrid composite. Journal of Applied Polymer Science, 2005, 98, 665-672.	1.3	47
193	Biocomposites of Plasticized Starch Reinforced with Cellulose Crystallites from Cottonseed Linter. Macromolecular Bioscience, 2005, 5, 1101-1107.	2.1	195
194	Improving Wood/Polypropylene fiberboards properties with an original MAPP coating process. European Journal of Wood and Wood Products, 2005, 63, 380-387.	1.3	10
195	Fully biodegradable natural fiber composites from renewable resources: All-plant fiber composites. Composites Science and Technology, 2005, 65, 2514-2525.	3.8	175
196	Possible mechanism of interaction among the components in MAPP modified layered silicate PP nanocomposites. Polymer, 2005, 46, 8001-8010.	1.8	52
197	Fabrication Mechanical Properties of Unidirectional Jute/PP Composites Using Jute Yarns by Film Stacking Method. Journal of Polymers and the Environment, 2005, 13, 115-126.	2.4	66
198	Isocyanate as a compatibilizing agent on the properties of highly crystalline cellulose/polypropylene composites. Journal of Materials Science, 2005, 40, 3607-3614.	1.7	50
199	The effect of fibre content on the mechanical properties of hemp and basalt fibre reinforced phenol formaldehyde composites. Journal of Materials Science, 2005, 40, 4585-4592.	1.7	72
200	"Green―composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science, 2005, 40, 4221-4229.	1.7	197
201	Organization of carbon black in laminates of cellulose and melamine-formaldehyde. Polymer Composites, 2005, 26, 144-151.	2.3	10
202	Flax fiber surface modifications: Effects on fiber physico mechanical and flax/polypropylene interface properties. Polymer Composites, 2005, 26, 324-332.	2.3	126
203	Fracture behavior of sisal fiber-reinforced starch-based composites. Polymer Composites, 2005, 26, 316-323.	2.3	41

#	Article	IF	Citations
204	Water absorption of hemp fiber/unsaturated polyester composites. Polymer Composites, 2005, 26, 509-525.	2.3	61
205	Date palm fibers as polymeric matrix reinforcement: Fiber characterization. Polymer Composites, 2005, 26, 486-497.	2.3	122
206	Effect of maleated polypropylene on the performance of polypropylene/cellulose composite. Polymer Composites, 2005, 26, 448-453.	2.3	69
207	Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties. Polymer Composites, 2005, 26, 604-613.	2.3	85
208	Kraft lignin as fiber treatment for natural fiber-reinforced composites. Polymer Composites, 2005, 26, 695-705.	2.3	41
209	Transport and Flame Properties of Natural Fibre Reinforced Polymers. Polymers and Polymer Composites, 2005, 13, 753-764.	1.0	10
210	Nonlinear Viscoelastic Creep Characterization of HDPE-Rice Husk Composites. Polymers and Polymer Composites, 2005, 13, 581-598.	1.0	7
211	Avaliação dos produtos de emissão a partir da pirólise de assentos automotivos feitos de fibra de coco e de espuma de poliuretano. Engenharia Sanitaria E Ambiental, 2005, 10, 162-166.	0.1	3
212	Durability of Natural Fiber-reinforced Composites of Ethylene–Propylene Copolymer under Accelerated Weathering and Composting Conditions. Journal of Thermoplastic Composite Materials, 2005, 18, 489-508.	2.6	14
213	Tensile, flexural and impact properties of jute fibre-based thermosetting composites. Plastics, Rubber and Composites, 2005, 34, 450-462.	0.9	22
214	Biodegradable polymer composites from natural fibres. , 2005, , 189-218.		7
215	Effect of Mercerization on Surface Modification of Henequen (Agave fourcroydes) Fiber by Photo-Curing with 2-Hydroxyethyl Methacrylate (HEMA). Polymer-Plastics Technology and Engineering, 2005, 44, 1079-1093.	1.9	10
216	A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. Composite Interfaces, 2005, 12, 95-124.	1.3	69
217	Lignocellulosic composites with grafted polystyrene interfaces. Composite Interfaces, 2005, 12, 25-39.	1.3	13
218	The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Composite Interfaces, 2005, 12, 581-600.	1.3	46
219	Lignocellulosic materials and unsaturated polyester matrix composites: Interfacial modifications. Composite Interfaces, 2005, 12, 3-24.	1.3	18
220	Cellulose Poly(Ethylene-co-vinyl Acetate) Nanocomposites Studied by Molecular Modeling and Mechanical Spectroscopy. Biomacromolecules, 2005, 6, 2025-2031.	2.6	84
221	A Study on Biocomposites from Recycled Newspaper Fiber and Poly(lactic acid). Industrial & Study Engineering Chemistry Research, 2005, 44, 5593-5601.	1.8	236

#	Article	IF	CITATIONS
222	Water Sorption Studies of Hybrid Biofiber-Reinforced Natural Rubber Biocomposites. Biomacromolecules, 2005, 6, 2969-2979.	2.6	92
223	Lignocellulose/pitch based composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 649-657.	3.8	14
224	Effect of sisal fibre orientation on electrical properties of sisal fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 594-602.	3.8	94
225	Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing, 2005, 36, 975-986.	3.8	134
226	Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Composites Part A: Applied Science and Manufacturing, 2005, 36, 965-974.	3.8	141
227	A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1110-1118.	3.8	483
228	Polyethylene/keratin fiber composites with varying polyethylene crystallinity. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1518-1524.	3.8	112
229	The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Composite Interfaces, 2005, 12, 41-75.	1.3	320
230	â€~Green' composites using cross-linked soy flour and flax yarns. Green Chemistry, 2005, 7, 576.	4.6	126
231	Characterization of Composites Based on Natural and Glass Fibers Obtained by Vacuum Infusion. Journal of Composite Materials, 2005, 39, 265-282.	1.2	98
232	HURRICANE-RESISTANT HOUSES FROM SOYBEAN OIL AND NATURAL FIBERS. , 2005, , 448-482.		1
233	Modification of Jute Fibers with Polystyrene via Atom Transfer Radical Polymerization. Biomacromolecules, 2005, 6, 2474-2484.	2.6	60
234	Use of Xyloglucan as a Molecular Anchor for the Elaboration of Polymers from Cellulose Surfaces:Â A General Route for the Design of Biocomposites. Macromolecules, 2005, 38, 3547-3549.	2.2	74
235	A Review on Natural Fibre-Based Composites—Part II. Journal of Natural Fibers, 2005, 1, 23-65.	1.7	301
236	Novel Biocomposites from Native Grass and Soy Based Bioplastic:  Processing and Properties Evaluation. Industrial & Ev	1.8	42
237	Polymeric materials for impact and energy dissipation. Plastics, Rubber and Composites, 2006, 35, 260-267.	0.9	45
238	Material Functionalization of Cellulose and Related Polysaccharides via Diverse Microcompositions. Advances in Polymer Science, 2006, , 97-151.	0.4	121
239	Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung, 2006, 60, 429-433.	0.9	91

#	Article	IF	CITATIONS
240	Thermal and Structural Analysis of Natural Fiber Reinforced Starch-Based Biocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2006, 55, 893-907.	1.8	23
241	Flexural and Shear Properties of Silica Particle Modified Glass Fiber Reinforced Epoxy Composite. Journal of Reinforced Plastics and Composites, 2006, 25, 347-359.	1.6	46
242	Property enhancement of optically transparent bionanofiber composites by acetylation. Applied Physics Letters, 2006, 89, 233123.	1.5	120
243	Influence of Mercerization on the Dynamic Mechanical Properties of Bamboo, a Natural Lignocellulosic Composite. Industrial & Engineering Chemistry Research, 2006, 45, 6489-6492.	1.8	27
244	Microcellular Injection Molded Wood Fiber-PP Composites: Part II - Effect of Wood Fiber Length and Content on Cell Morphology and Physico-mechanical Properties. Journal of Cellular Plastics, 2006, 42, 77-88.	1.2	29
245	Grafting of Cellulose Fibers with Poly($\hat{l}\mu$ -caprolactone) and Poly(l-lactic acid) via Ring-Opening Polymerization. Biomacromolecules, 2006, 7, 2178-2185.	2.6	199
246	Feruloyl Esterase Utilization for Simultaneous Processing of Nonwood Plants into Phenolic Compounds and Pulp Fibers. Journal of Agricultural and Food Chemistry, 2006, 54, 3697-3703.	2.4	36
247	Changes in the Molecular Orientation and Tensile Properties of Uniaxially Drawn Cellulose Films. Biomacromolecules, 2006, 7, 3146-3150.	2.6	57
248	Static and Dynamic Mechanical Properties of Vinylester Resin Matrix Composites Reinforced with Shellac-Treated Jute Yarns. Industrial & Engineering Chemistry Research, 2006, 45, 2722-2727.	1.8	21
249	Tensile Properties of <i> Arenga pinnata < /i > Fiber-Reinforced Epoxy Composites. Polymer-Plastics Technology and Engineering, 2006, 45, 149-155.</i>	1.9	84
250	Stiffness Contribution of Various Wood Fibers to Composite Materials. Journal of Composite Materials, 2006, 40, 663-699.	1.2	102
251	Hybrid Yarns and Textile Preforming for Thermoplastic Composites. Textile Progress, 2006, 38, 1-71.	1.3	82
252	Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1473-1479.	3.8	196
253	Mechanism of stress transfer in a single wood fibre-LDPE composite by means of electronic laser speckle interferometry. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1406-1412.	3.8	32
254	Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1368-1376.	3.8	367
255	Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1231-1238.	3.8	96
256	High-tenacity man-made cellulose fibre reinforced thermoplastics – Injection moulding compounds with polypropylene and alternative matrices. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1796-1804.	3.8	96
257	Mechanical, thermal and morphological properties of water-crosslinked wood flour reinforced linear low-density polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1696-1707.	3.8	59

#	Article	IF	CITATIONS
258	Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1626-1637.	3.8	202
259	Determination of Mechanical Strength Properties of Hemp Fibers Using Near-Infrared Fourier Transform Raman Microspectroscopy. Applied Spectroscopy, 2006, 60, 682-691.	1.2	46
260	Chemical Imaging of Wood—Polypropylene Composites. Applied Spectroscopy, 2006, 60, 898-905.	1.2	4
261	Comportamento mecânico e caracterÃsticas estruturais de compósitos poliméricos reforçados com fibras contÃnuas e alinhadas de curauá. Revista Materia, 2006, 11, 197-203.	0.1	30
262	Tenacidade ao entalhe por impacto Charpy de compósitos de poliéster reforçados com fibras de piaçava. Revista Materia, 2006, 11, 204-210.	0.1	36
263	Propriedades de compósitos de tecido de juta descartado reforçando matriz de polietileno reciclado. Revista Materia, 2006, 11, 403-411.	0.1	6
264	OVERVIEW OF FLAX FIBER REINFORCED THERMOPLASTIC COMPOSITES., 2006,,.		7
265	Propriedades mecânicas de tração de compósitos poliéster/tecidos hÃbridos sisal/vidro. Polimeros, 2006, 16, 33-37.	0.2	16
266	Performance of Injection Molded Natural Fiber - Hybrid Thermoplastic Composites for Automotive Structural Applications. , 0 , , .		3
267	Compression Molding of Flax Fiber-Polypropylene Composites: Factors Affecting Selected Properties. , 2006, , .		0
268	Application of the "Theory of Mixtures―to Temperature – Stress Equivalency in Nonlinear Creep of Thermoplastic/Agro-fibre Composites. Polymers and Polymer Composites, 2006, 14, 455-472.	1.0	2
269	Development of Structural Panels from Flax Shives, Fiber & Hpde. , 2006, , .		0
270	Flax Fibre Based Composite Profiles For Construction Industries. , 2006, , .		1
271	Ultrastructural features affecting mechanical properties of wood fibres. Wood Material Science and Engineering, 2006, 1, 146-170.	1.1	40
272	Tensile Testing of Single Regenerated Cellulose Fibres. Macromolecular Symposia, 2006, 244, 83-88.	0.4	21
273	Studies on the Properties of Sisal Fibre/Phenol Formaldehyde Resin In-situ Composites. Research Journal of Textile and Apparel, 2006, 10, 51-58.	0.6	5
274	Wood flour filled PP composites: adhesion, deformation, failure. Polymers for Advanced Technologies, 2006, 17, 967-974.	1.6	73
275	Properties of chemically treated natural amorphous silica fibers as polyurethane reinforcement. Polymer Composites, 2006, 27, 582-590.	2.3	12

#	ARTICLE	IF	CITATIONS
276	Surface characteristics of untreated and modified hemp fibers. Polymer Engineering and Science, 2006, 46, 269-273.	1.5	29
277	Surface tearing and wall slip phenomena in extrusion of highly filled HDPE/wood flour composites. Polymer Engineering and Science, 2006, 46, 1204-1214.	1.5	91
278	Wood–polyethylene composites using ethylene–vinyl alcohol copolymer as adhesion promoter. Bioresource Technology, 2006, 97, 494-499.	4.8	57
279	Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon, 2006, 44, 2569-2577.	5.4	232
280	A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers. Carbohydrate Polymers, 2006, 64, 127-133.	5.1	59
281	Mechanical properties of short flax fibre bundle/poly(ε-caprolactone) composites: Influence of matrix modification and fibre content. Carbohydrate Polymers, 2006, 64, 224-232.	5.1	106
282	Properties of biocomposites based on lignocellulosic fillers. Carbohydrate Polymers, 2006, 66, 480-493.	5.1	190
283	Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydrate Polymers, 2006, 66, 537-545.	5.1	97
284	Damage assessment in cellulose–cement composites using dynamic mechanical characteristics. Cement and Concrete Composites, 2006, 28, 658-667.	4.6	10
285	Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Composites Science and Technology, 2006, 66, 3210-3220.	3.8	191
286	Study of moisture absorption in natural fiber plastic composites. Composites Science and Technology, 2006, 66, 379-386.	3.8	272
287	Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Composites Science and Technology, 2006, 66, 895-906.	3.8	120
288	Fracture toughness of natural fibers/castor oil polyurethane composites. Composites Science and Technology, 2006, 66, 1328-1335.	3.8	183
289	Strain hardening in regenerated cellulose fibres. Composites Science and Technology, 2006, 66, 2049-2053.	3.8	32
290	Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission. Composites Science and Technology, 2006, 66, 2686-2699.	3.8	212
291	Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction. Composites Science and Technology, 2006, 66, 2639-2647.	3.8	52
292	Structure and properties of composites of highly crystalline cellulose with polypropylene: Effects of polypropylene molecular weight. European Polymer Journal, 2006, 42, 1059-1068.	2.6	47
293	Discoloration of celluloses treated with amino compounds. Polymer Degradation and Stability, 2006, 91, 886-893.	2.7	13

#	Article	IF	Citations
294	Effect of compatibilisers on mechanical and thermal properties of bentonite filled polypropylene composites. Polymer Degradation and Stability, 2006, 91, 1761-1774.	2.7	90
295	Polymer blends and composites from renewable resources. Progress in Polymer Science, 2006, 31, 576-602.	11.8	1,666
296	Surface esterification of cellulose fibers: Characterization by DRIFT and contact angle measurements. Journal of Colloid and Interface Science, 2006, 295, 79-83.	5.0	112
297	The Structure and Mechanical Properties of Cellulose Nanocomposites Prepared by Twin Screw Extrusion. ACS Symposium Series, 2006, , 114-131.	0.5	35
298	Cellulose Fibrils: Isolation, Characterization, and Capability for Technical Applications. ACS Symposium Series, 2006, , 33-47.	0.5	6
299	Injection Molded Wheat Straw and Corn Stem Filled Polypropylene Composites. Journal of Polymers and the Environment, 2006, 14, 265-272.	2.4	67
300	Novel cellulose fibre reinforced thermoplastic materials. Cellulose, 2006, 13, 271-280.	2.4	178
301	Orientation of cellulose crystallites in regenerated cellulose fibres under tensile and bending loads. Cellulose, 2006, 13, 621-627.	2.4	22
302	Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix. Applied Physics A: Materials Science and Processing, 2006, 83, 19-22.	1.1	54
303	Controlled grafting of cellulose diacetate. Polymer, 2006, 47, 2587-2595.	1.8	68
304	Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Composites Science and Technology, 2006, 66, 1813-1824.	3.8	432
305	Natural-fiber-reinforced polymer composites in automotive applications. Jom, 2006, 58, 80-86.	0.9	1,175
306	Green composites. I. physical properties of ramie fibers for environment-friendly green composites. Fibers and Polymers, 2006, 7, 372-379.	1.1	106
307	Swelling behaviour of isora/natural rubber composites in oils used in automobiles. Bulletin of Materials Science, 2006, 29, 91-99.	0.8	59
308	Long-term water uptake behavior of natural fiber/polypropylene composites. Journal of Applied Polymer Science, 2006, 99, 2199-2203.	1.3	78
309	High performance wood composites from highly filled polybenzoxazine. Journal of Applied Polymer Science, 2006, 99, 1240-1253.	1.3	46
310	Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. Journal of Applied Polymer Science, 2006, 99, 1055-1068.	1.3	131
311	Flour rice husk as filler in block copolymer polypropylene: Effect of different coupling agents. Journal of Applied Polymer Science, 2006, 99, 1823-1831.	1.3	81

#	Article	IF	CITATIONS
312	Fabrication and evaluation of some mechanical and electrical properties of jute-biomass based hybrid composites. Journal of Applied Polymer Science, 2006, 100, 1754-1758.	1.3	52
313	Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo–novolac composites. Journal of Applied Polymer Science, 2006, 100, 238-244.	1.3	65
314	Mechanical and electrical properties of composites based on thermoplastic matrices and conductive cellulose fibers. Journal of Applied Polymer Science, 2006, 101, 133-142.	1.3	29
315	Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites. Journal of Applied Polymer Science, 2006, 101, 4037-4043.	1.3	60
316	Effect of water absorption, freezing and thawing, and photo-aging on flexural properties of extruded HDPE/rice husk composites. Journal of Applied Polymer Science, 2006, 100, 3619-3625.	1.3	29
317	Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. Journal of Applied Polymer Science, 2006, 100, 4703-4710.	1.3	83
318	Environmental durability of banana-fiber-reinforced phenol formaldehyde composites. Journal of Applied Polymer Science, 2006, 100, 2521-2531.	1.3	33
319	Toughening of wood particle composites—Effects of sisal fibers. Journal of Applied Polymer Science, 2006, 101, 1982-1987.	1.3	9
320	Synthesis and characterization of polypropylene reinforced with cellulose I and II fibers. Journal of Applied Polymer Science, 2006, 101, 364-369.	1.3	28
321	Synthesis and physicochemical study of bisphenol-C-formaldehyde-toluene diisocyanate polyurethane–jute and jute–rice husk/wheat husk composites. Journal of Applied Polymer Science, 2006, 101, 2363-2370.	1.3	13
322	Stress relaxation of woodfiber–thermoplastic composites. Journal of Applied Polymer Science, 2006, 102, 401-407.	1.3	8
323	Effect of pretreatment with detergent on mechanical properties of photocured coir (Cocos nucifera) fiber with ethyleneglycol dimethacrylate. Journal of Applied Polymer Science, 2006, 101, 1630-1636.	1.3	15
324	A study on the moisture sorption characteristics in woven sisal fabric reinforced natural rubber biocomposites. Journal of Applied Polymer Science, 2006, 102, 416-423.	1.3	38
325	Mechanical and thermal properties of ABS and leather waste composites. Journal of Applied Polymer Science, 2006, 101, 3062-3066.	1.3	45
326	Long-term water uptake behavior of lignocellulosic-high density polyethylene composites. Journal of Applied Polymer Science, 2006, 102, 3907-3911.	1.3	43
327	Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. Journal of Applied Polymer Science, 2006, 101, 4341-4349.	1.3	193
328	Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. Journal of Applied Polymer Science, 2006, 102, 833-840.	1.3	98
329	Effects of compatibilizer type and rubber-wood sawdust content on the mechanical, morphological, and thermal properties of PVC/LDPE blend. Journal of Applied Polymer Science, 2006, 102, 598-606.	1.3	20

#	Article	IF	CITATIONS
330	Effects of hygrothermal ageing on mechanical properties of flax pulps and their polypropylene matrix composites. Journal of Applied Polymer Science, 2006, 102, 3438-3445.	1.3	24
331	Elastic properties of adhesive polymers. II. Polymer films and bond lines by means of nanoindentation. Journal of Applied Polymer Science, 2006, 102, 1234-1239.	1.3	62
332	Performance of pineapple leaf fiber–natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science, 2006, 102, 1974-1984.	1.3	181
333	Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. Journal of Applied Polymer Science, 2006, 102, 4856-4869.	1.3	299
334	Interfacial interaction, morphology, and tensile properties of a composite of highly crystalline cellulose and maleated polypropylene. Journal of Applied Polymer Science, 2006, 102, 3830-3841.	1.3	36
335	Dynamic crystallization of polypropylene and wood-based composites. Journal of Applied Polymer Science, 2006, 102, 6028-6036.	1.3	20
336	Dwarf Cavendish as a Source of Natural Fibers in Poly(propylene)-Based Composites. Macromolecular Materials and Engineering, 2006, 291, 16-26.	1.7	35
337	Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 2006, 291, 405-417.	1.7	142
338	Nonlinear Viscoelasticity and Viscoplasticity of Flax/Polypropylene Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2006, 128, 527-536.	0.8	38
339	Effect of curing temperature, fibre loading and bonding agent on the equilibrium swelling of isora-natural rubber composites. Composite Interfaces, 2006, 13, 391-401.	1.3	8
340	Fracture Properties and Characteristics of Sisal Textile Reinforced Epoxy Composites. Key Engineering Materials, 2006, 312, 167-172.	0.4	1
341	Hemp Fiber Reinforced Unsaturated Polyester Composites. Advanced Materials Research, 2006, 11-12, 521-524.	0.3	7
342	Thermal, Thermomechanical, and Morphological Properties of Spartium junceum Fiber Reinforced Polypropylene Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2006, 55, 837-853.	1.8	11
343	Comparison of the Mechanical Behavior of Plain Weave and Plain Weft Knit Jute Fabric-Polyester-Reinforced Composites. Polymer-Plastics Technology and Engineering, 2006, 45, 791-797.	1.9	12
344	Mechanical Properties of Regenerated Cellulose Fibres for Composites. Macromolecular Symposia, 2006, 244, 119-125.	0.4	106
345	Novel Thermoplastic Composites from Commodity Polymers and Man-Made Cellulose Fibers. Macromolecular Symposia, 2006, 244, 107-118.	0.4	29
346	Nonlinear Viscoelastic Creep Prediction of HDPE-Agro-fiber Composites. Journal of Composite Materials, 2006, 40, 417-431.	1.2	14
347	Influence of Fiber Orientation on the Mechanical Properties of Polyester/Jute Composites. Journal of Reinforced Plastics and Composites, 2006, 25, 1269-1278.	1.6	64

#	Article	IF	CITATIONS
348	MANUFACTURING FLAX FIBRE-REINFORCED POLYPROPYLENE COMPOSITES BY HOT-PRESSING. International Journal of Modern Physics B, 2006, 20, 4601-4606.	1.0	5
349	EFFECTS OF EXTRUSION ON FIBRE LENGTH IN SISAL FIBRE-REINFORCED POLYPROPYLENE COMPOSITES. International Journal of Modern Physics B, 2006, 20, 4607-4612.	1.0	7
350	Studies on short isora fibre-reinforced polyester composites. Composite Interfaces, 2006, 13, 377-390.	1.3	17
351	Tensile and Impact Properties of Thermoplastic Natural Rubber Reinforced Short Glass Fiber and Empty Fruit Bunch Hybrid Composites. Polymer-Plastics Technology and Engineering, 2006, 45, 1059-1063.	1.9	27
352	Studies on the Thermal and Mechanical Properties of Foamed Wood-Polymer Composites. Polymer-Plastics Technology and Engineering, 2006, 45, 1199-1205.	1.9	11
353	Alkaline Treatment of Black Spruce Bark for the Manufacture of Binderless Fiberboard. Journal of Wood Chemistry and Technology, 2006, 26, 313-324.	0.9	16
354	Evaluation of the Influence of Fibre Length and Concentration on Mechanical Performance of Hemp Fibre Reinforced Polypropylene Composite. Journal of Natural Fibers, 2006, 2, 67-84.	1.7	9
355	Hemp Strands: PP Composites by Injection Molding: Effect of Low Cost Physico-chemical Treatments. Journal of Reinforced Plastics and Composites, 2006, 25, 313-327.	1.6	37
356	Dynamic–Mechanical Properties of Wood–Fiber Reinforced Polylactide: Experimental Characterization and Micromechanical Modeling. Journal of Thermoplastic Composite Materials, 2006, 19, 613-637.	2.6	48
357	Preparation, Mechanical and Electrical Properties and Water Absorption Study of Novel Bisphenol-C-Formaldehyde-Acrylate Treated and Untreated Jute Composites. Polymer-Plastics Technology and Engineering, 2007, 47, 53-57.	1.9	2
358	Papyrus reinforced poly(L-lactic acid) composite. Advanced Composite Materials, 2007, 16, 259-267.	1.0	11
359	Biodegradable Composites Based on Polylactic Acid (PLA) and China Jute Fiber. Key Engineering Materials, 2007, 353-358, 1302-1305.	0.4	6
360	Hybrid jute/cotton fabric–polyester composites: effect of fabric architecture, lamina stacking sequence and weight fraction of jute fibres on tensile strength. Plastics, Rubber and Composites, 2007, 36, 155-161.	0.9	9
361	Chemically and Thermally Treated Vegetable Fibers for Reinforcement of Cement-Based Composites. Materials and Manufacturing Processes, 2007, 22, 214-227.	2.7	66
362	Injection Molded Solid and Microcellular Polylactide Compounded with Recycled Paper Shopping Bag Fibers. International Polymer Processing, 2007, 22, 436-445.	0.3	36
363	Processing and Mechanical Properties of Natural Fiber Reinforced Thermoplastic Starch Biocomposites. Journal of Thermoplastic Composite Materials, 2007, 20, 207-223.	2.6	79
364	Effect of Novel Coupling Agent on the Mechanical and Thermal Properties of Unidirectional Jute—Vinyl Ester Composites. Journal of Reinforced Plastics and Composites, 2007, 26, 617-627.	1.6	10
365	Mechanical Investigation of Hemp Fiber Reinforced Polypropylene with Different Types of MAPP Compatibilizer. Materials Science Forum, 2007, 537-538, 223-230.	0.3	1

#	Article	IF	CITATIONS
366	Natural Fibre-Reinforced Thermoplastics Processed by Rotational Moulding. Advanced Materials Research, 2007, 29-30, 307-310.	0.3	14
367	Loading Rate Sensitivity of Jute/Glass Hybrid Reinforced Epoxy Composites: Effect of Surface Modifications. Journal of Reinforced Plastics and Composites, 2007, 26, 851-860.	1.6	21
368	Tensile and Flexural Properties of Composites Made from Spinning Waste., 2007,, 136-144.		1
369	Surface analysis of groundwood paper treated by diffuse coplanar surface barrier discharge (DCSBD) type atmospheric plasma in air and in nitrogen. Holzforschung, 2007, 61, 528-531.	0.9	28
370	Effect of alkali treatment on properties of unidirectional isora fibre reinforced epoxy composites. Plastics, Rubber and Composites, 2007, 36, 259-266.	0.9	9
371	Research and Development of Fully Green Composites Reinforced with Natural Fibers. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 1073-1084.	0.5	83
372	Deformation and Fracture Behavior of Natural Fiber Reinforced Polypropylene., 0,, 178-203.		0
374	Developing Biodegradable Plastics from starch. , 2007, , .		6
375	Methods to determine surface energies of natural fibres: a review. Composite Interfaces, 2007, 14, 581-604.	1.3	71
376	Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC. Composites Part A: Applied Science and Manufacturing, 2007, 38, 20-25.	3.8	93
377	Vetiver–polypropylene composites: Physical and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2007, 38, 590-601.	3.8	57
378	Full exploitation of Cannabis sativa as reinforcement/filler of thermoplastic composite materials. Composites Part A: Applied Science and Manufacturing, 2007, 38, 369-377.	3.8	89
379	Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 2007, 38, 227-233.	3.8	353
380	Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates. Composites Part A: Applied Science and Manufacturing, 2007, 38, 963-974.	3.8	101
381	Transcrystallization kinetics at the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/hemp fibre interface. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1387-1394.	3.8	27
382	Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1569-1580.	3.8	383
383	Influence of dislocations and plasticity on the tensile behaviour of flax and hemp fibres. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1722-1728.	3.8	51
384	Preparation and properties of recycled HDPE/natural fiber composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1664-1674.	3.8	265

#	Article	IF	CITATIONS
385	Studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1710-1721.	3.8	164
386	Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1694-1709.	3.8	483
387	Surface modification of wood flour and its effect on the properties of PP/wood composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1893-1901.	3.8	115
388	Novel polypropylene–cellulose composites using polyethylenimine as coupling agent. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2005-2012.	3.8	26
389	Polyamide-6/vegetal fiber composite prepared by extrusion and injection molding. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2404-2411.	3.8	99
390	Fabrication and Mechanical Properties of Completely Biodegradable Hemp Fiber Reinforced Polylactic Acid Composites. Journal of Composite Materials, 2007, 41, 1655-1669.	1.2	271
391	Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1811-1820.	3.8	253
392	All-Cellulose Composite Prepared by Selective Dissolving of Fiber Surface. Biomacromolecules, 2007, 8, 2712-2716.	2.6	215
393	Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. Journal of Applied Polymer Science, 2007, 104, 2672-2682.	1.3	44
394	Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites:Â Dependence on Acetyl-Group DS. Biomacromolecules, 2007, 8, 1973-1978.	2.6	389
395	Effects of Fibers' Alkali Treatment on the Resin Transfer Molding Processing and Mechanical Properties of Juteâ€"Vinylester Composites. Journal of Composite Materials, 2007, 41, 1729-1741.	1.2	48
396	Studies on the Water Absorption Properties of Short Hempâ€"Glass Fiber Hybrid Polypropylene Composites. Journal of Composite Materials, 2007, 41, 1871-1883.	1.2	194
397	Polyester Composites Filled Carbon Black and Activated Carbon from Bamboo (Gigantochloa) Tj ETQq0 0 0 rgBT / 2007, 26, 305-320.	Overlock 1 1.6	10 Tf 50 267 38
398	Composites from Sawdust–Rice Husk Fibers. Polymer-Plastics Technology and Engineering, 2007, 46, 441-446.	1.9	3
399	Influence of fibre extraction method, alkali and silane treatment on the interface of Agave americana waste HDPE composites as possible roof ceilings in Lesotho. Composite Interfaces, 2007, 14, 821-836.	1.3	59
400	Immersion Temperature Effects on the Water Absorption Behavior of Hybrid Lignocellulosic Fiber Reinforced-Polyester Matrix Composites. Polymer-Plastics Technology and Engineering, 2007, 46, 515-520.	1.9	16
401	New Broom Fiber (Spartium junceum L.) Derivatives: Preparation and Characterization. Journal of Agricultural and Food Chemistry, 2007, 55, 9489-9495.	2.4	21
402	Bio-Based Composite Roof for Residential Construction. Journal of Architectural Engineering, 2007, 13, 136-143.	0.8	9

#	Article	IF	CITATIONS
403	Cellulose-based biocomposites: comparison of different multiphasic systems. Composite Interfaces, 2007, 14, 787-805.	1.3	16
404	Development and mechanical properties of bagasse fiber reinforced composites. Advanced Composite Materials, 2007, 16, 283-298.	1.0	36
405	Interfacial adhesion in fully and partially biodegradable polymer composites examined with microdroplet test and acoustic emission. Composite Interfaces, 2007, 14, 869-878.	1.3	21
406	The effect of fibre and coupling agent content on the mechanical properties of hemp/polypropylene composites. Composite Interfaces, 2007, 14, 837-848.	1.3	30
407	Morphological, Structural, Thermal and Mechanical Characterization of Piassava Fibers. Journal of Natural Fibers, 2007, 4, 13-31.	1.7	38
408	Green Composites: Development of Poly(Vinyl Alcohol)-Wood Dust Composites. Polymer-Plastics Technology and Engineering, 2007, 46, 821-829.	1.9	30
409	Poly (butyl acrylate)-Modified Cellulose Fibres for Toughening WPC., 0,,.		0
411	Utilization of Flax Fiber with Recycled Tire Rubber in Biocomposite Material. , 2007, , .		0
412	Use of Natural Fibres as Fillers for Polymer Composites. International Polymer Science and Technology, 2007, 34, 45-50.	0.1	10
414	Synthesis, fabrication, mechanical, electrical, and moisture absorption study of epoxy polyurethane–jute and epoxy polyurethane–jute–rice/wheat husk composites. Journal of Applied Polymer Science, 2007, 106, 1228-1233.	1.3	10
415	Structure and properties of composites of polyethylene or maleated polyethylene and cellulose or cellulose esters. Journal of Applied Polymer Science, 2007, 103, 402-411.	1.3	25
416	\hat{l}^2 -Polypropylene/wood flour composites: Effects of specific \hat{l}^2 -nucleation and coupling agent on mechanical behavior. Journal of Applied Polymer Science, 2007, 103, 506-511.	1.3	16
417	Mechanical and thermal properties of polypropylene/sugarcane Bagasse composites. Journal of Applied Polymer Science, 2007, 103, 3827-3832.	1.3	39
418	Blends of polypropylene with solid silicone additive. Journal of Applied Polymer Science, 2007, 104, 226-233.	1.3	6
419	Effect of fiber surface modification on the mechanical properties of sisal fiberâ€reinforced benzoxazine/epoxy composites based on aliphatic diamine benzoxazine. Journal of Applied Polymer Science, 2007, 106, 2925-2935.	1.3	42
420	Transesterification reaction between acetylated wood and trialkoxysilane coupling agents. Journal of Applied Polymer Science, 2007, 105, 570-575.	1.3	15
421	Mechanical properties of HDPE/bark flour composites. Journal of Applied Polymer Science, 2007, 105, 2598-2604.	1.3	23
422	Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber. Journal of Applied Polymer Science, 2007, 105, 1511-1520.	1.3	109

#	Article	IF	CITATIONS
423	Evaluation of the reinforcing effect of ground wood pulp in the preparation of polypropylene-based composites coupled with maleic anhydride grafted polypropylene. Journal of Applied Polymer Science, 2007, 105, 3588-3596.	1.3	61
424	Recycled milk pouch and virgin low-density polyethylene/linear low-density polyethylene based coir fiber composites. Journal of Applied Polymer Science, 2007, 106, 775-785.	1.3	34
425	Quiescent crystallization of natural fibers–polypropylene composites. Journal of Applied Polymer Science, 2007, 106, 2997-3006.	1.3	25
426	Influence of nanoclay on properties of HDPE/wood composites. Journal of Applied Polymer Science, 2007, 106, 3958-3966.	1.3	153
427	Influence of Coupling Agents on Melt Flow Behavior of Natural Fiber Composites. Macromolecular Materials and Engineering, 2007, 292, 608-619.	1.7	44
428	Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Composites Part B: Engineering, 2007, 38, 352-359.	5.9	169
429	Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Composites Science and Technology, 2007, 67, 685-697.	3.8	213
430	Bio-composite of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with vegetable fibers. Composites Science and Technology, 2007, 67, 2085-2094.	3.8	91
431	Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Composites Science and Technology, 2007, 67, 2005-2014.	3.8	161
432	Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers' physico-mechanical properties. Composites Science and Technology, 2007, 67, 2369-2376.	3.8	191
433	Hygromechanical properties of composites of crosslinked allylglycidyl-ether modified starch reinforced by wood fibres. Composites Science and Technology, 2007, 67, 3090-3097.	3.8	38
434	The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites. Composite Structures, 2007, 81, 559-567.	3.1	136
435	Study of banana and coconut fibersBotanical composition, thermal degradation and textural observations. Bioresource Technology, 2007, 98, 58-68.	4.8	197
436	Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohydrate Polymers, 2007, 67, 245-255.	5.1	86
437	Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. International Journal of Adhesion and Adhesives, 2007, 27, 422-428.	1.4	17
438	Kinetics of water sorption in flax and PET fibers. European Polymer Journal, 2007, 43, 586-598.	2.6	91
439	Poly(propylene)/aspen/liquid polybutadiene composites: maximization of impact strength, tensile and modulus by statistical experimental design. Polymers for Advanced Technologies, 2007, 18, 106-111.	1.6	5
440	Grass fiber reinforced phenol formaldehyde resin composite: preparation, characterization and evaluation of properties of composite. Polymers for Advanced Technologies, 2007, 18, 72-81.	1.6	29

#	ARTICLE	IF	CITATIONS
441	Studies on polymers and composites from lignin and fiber derived from sugar cane. Polymers for Advanced Technologies, 2007, 18, 673-678.	1.6	57
442	Influence of fiber orientation on high stress wear behavior of sisal fiberâ€reinforced epoxy composites. Polymer Composites, 2007, 28, 437-441.	2.3	45
443	Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips–novolac composites. Polymer Composites, 2007, 28, 57-60.	2.3	22
444	Surface modification of bagasse fibers by silane coupling agents through microwave oven and its effects on physical, mechanical, and rheological properties of PP bagasse fiber composite. Polymer Composites, 2007, 28, 713-721.	2.3	25
445	Development of wood-substituted composites from highly filled polybenzoxazine–phenolic novolac alloys. Polymer Engineering and Science, 2007, 47, 140-149.	1.5	33
446	Wood flour filled polypropylene composites: Interfacial adhesion and micromechanical deformations. Polymer Engineering and Science, 2007, 47, 1246-1255.	1.5	88
447	Controlled grafting of ethyl cellulose with azobenzene-containing polymethacrylates via atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 1653-1660.	2.5	48
448	External and internal plasticization of cellulose acetate with caprolactone: Structure and properties. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 873-883.	2.4	45
449	Surface and In-Depth Modification of Cellulose Fibers. ACS Symposium Series, 2007, , 93-106.	0.5	1
450	Comparative Life Cycle Studies on Poly(3-hydroxybutyrate)-Based Composites as Potential Replacement for Conventional Petrochemical Plastics. Biomacromolecules, 2007, 8, 2210-2218.	2.6	106
451	Structure and properties of fibres from sea-grass (ZosteraÂmarina). Journal of Materials Science, 2007, 42, 4850-4857.	1.7	73
452	Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres. Journal of Materials Science, 2007, 42, 9336-9342.	1.7	68
453	Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment, 2007, 15, 25-33.	2.4	2,186
454	Cellulose Fiber/Bentonite Clay/Biodegradable Thermoplastic Composites. Journal of Polymers and the Environment, 2007, 15, 251-257.	2.4	47
455	Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose, 2007, 14, 115-127.	2.4	79
456	Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose, 2007, 14, 311-320.	2.4	72
457	Sugar beet cellulose nanofibril-reinforced composites. Cellulose, 2007, 14, 419-425.	2.4	210
458	Local morphological and dimensional changes of enzyme-degraded cellulose materials measured by atomic force microscopy. Cellulose, 2007, 14, 643-653.	2.4	13

#	Article	IF	Citations
459	A study of viscoelasticity and extrudate distortions of wood polymer composites. Rheologica Acta, 2007, 46, 773-783.	1.1	27
460	Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science, 2007, 53, 108-113.	0.9	195
461	On adhesion mechanisms and interfacial strength in acrylonitrile–butadiene–styrene/wood sawdust composites. International Journal of Adhesion and Adhesives, 2007, 27, 669-678.	1.4	57
462	Modification of the dynamic damping behaviour of jute/vinylester composites with latex interlayer. Composites Part B: Engineering, 2007, 38, 380-385.	5.9	11
463	Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 2007, 67, 1674-1683.	3.8	1,204
464	Moisture absorption studies of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 2007, 67, 306-313.	3.8	176
465	Wood flour filled PP composites: Compatibilization and adhesion. Composites Science and Technology, 2007, 67, 2838-2846.	3.8	192
466	Impact and fatigue behaviour of hemp fibre composites. Composites Science and Technology, 2007, 67, 3300-3307.	3.8	116
467	A green route to prepare cellulose acetate particle from ramie fiber. Reactive and Functional Polymers, 2007, 67, 104-112.	2.0	22
468	Composites based on sintering rice husk–waste tire rubber mixtures. Materials & Design, 2007, 28, 2234-2238.	5.1	57
469	Recovered and recycled Kraft fibers as reinforcement of PP composites. Chemical Engineering Journal, 2008, 138, 586-595.	6.6	30
470	Interfacial evaluation and durability of modified Jute fibers/polypropylene (PP) composites using micromechanical test and acoustic emission. Composites Part B: Engineering, 2008, 39, 1042-1061.	5.9	95
471	Treating bast fibres with pectinase improves mechanical characteristics of reinforced thermoplastic composites. Composites Science and Technology, 2008, 68, 471-476.	3.8	66
472	Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 2008, 93, 90-98.	2.7	677
473	Effect of sol–gel derived nano-silica and organic peroxide on the thermal and mechanical properties of low-density polyethylene/wood flour composites. Polymer Degradation and Stability, 2008, 93, 1-8.	2.7	27
474	Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer, 2008, 49, 792-799.	1.8	70
475	Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 2008, 15, 149-159.	2,4	1,157
476	Thermal analysis of cellulose acetate modified with caprolactone. Journal of Thermal Analysis and Calorimetry, 2008, 91, 715-722.	2.0	19

#	Article	IF	CITATIONS
477	Analysis of the isothermal crystallization of polypropylene/wood flour composites. Journal of Thermal Analysis and Calorimetry, 2008, 94, 119-127.	2.0	21
478	The Effect of Fiber Pretreatment and Compatibilizer on Mechanical and Physical Properties of Flax Fiber-Polypropylene Composites. Journal of Polymers and the Environment, 2008, 16, 74-82.	2.4	79
479	Natural Fiber Reinforced Poly(vinyl chloride) Composites: Effect of Fiber Type and Impact Modifier. Journal of Polymers and the Environment, 2008, 16, 250-257.	2.4	49
480	Performance of curaua fibers in pullout tests. Journal of Materials Science, 2008, 43, 489-493.	1.7	41
481	Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. Journal of Materials Science, 2008, 43, 33-37.	1.7	198
482	Thermal and mechanical properties of the açaÃ-fiber/natural rubber composites. Journal of Materials Science, 2008, 43, 6531-6538.	1.7	32
483	Dynamic mechanical properties of natural fiber/polymer biocomposites: The effect of fiber treatment with electron beam. Macromolecular Research, 2008, 16, 253-260.	1.0	40
484	Biodegradable Composites: Ramie Fibre Reinforced PLLA-PCL Composite Prepared by in Situ Polymerization Process. Polymer Bulletin, 2008, 61, 663-670.	1.7	45
485	Study of the structural and thermal properties of plasma treated jute fibre. Applied Physics A: Materials Science and Processing, 2008, 92, 283-290.	1.1	11
486	Microscopic structure and properties of wood-based foaming composites. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3, 375-379.	0.2	0
487	Effect of processing route on the composition and properties of hemp fibre. Fibers and Polymers, 2008, 9, 593-603.	1.1	20
488	Impregnation of thermoplastic resin in jute fiber mat. Frontiers of Chemical Engineering in China, 2008, 2, 145-149.	0.6	7
489	Mechanical properties of natural fibre reinforced polymer composites. Bulletin of Materials Science, 2008, 31, 791-799.	0.8	136
490	Sliding wear and friction characteristics of sisal fibre reinforced polyester composites: Effect of silane coupling agent and applied load. Polymer Composites, 2008, 29, 280-284.	2.3	64
491	Statistical analysis of the mechanical properties of natural fibers and their composite materials. II. Composite materials. Polymer Composites, 2008, 29, 321-325.	2.3	10
492	Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polymer Composites, 2008, 29, 655-663.	2.3	88
493	Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polymer Composites, 2008, 29, 831-839.	2.3	54
494	Recent developments in chemical modification and characterization of natural fiberâ€reinforced composites. Polymer Composites, 2008, 29, 187-207.	2.3	940

#	Article	IF	CITATIONS
495	Compatibilization of Natural Fibers with Synthetic Polymers Using Triblock Copolymers as Coupling Agents. Macromolecular Chemistry and Physics, 2008, 209, 832-845.	1.1	1
496	Short Palm Tree Fibers Polyolefin Composites: Effect of Filler Content and Coupling Agent on Physical Properties. Macromolecular Materials and Engineering, 2008, 293, 140-148.	1.7	61
497	Effect of the Fiber Size on the Physicochemical and Mechanical Properties of Composites of Epoxy and Date Palm Tree Fibers. Macromolecular Materials and Engineering, 2008, 293, 684-691.	1.7	18
498	Cellulose Aerogels from Aqueous Alkali Hydroxide–Urea Solution. ChemSusChem, 2008, 1, 149-154.	3.6	327
499	Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. Journal of Applied Polymer Science, 2008, 107, 522-527.	1.3	85
500	Mechanical properties and water sorption behavior of phenol–formaldehyde hybrid composites reinforced with banana fiber and glass fiber. Journal of Applied Polymer Science, 2008, 109, 1439-1446.	1.3	35
501	Electrical properties of banana fiberâ€reinforced phenol formaldehyde composites. Journal of Applied Polymer Science, 2008, 109, 256-263.	1.3	69
502	Kenaf fiber/poly(εâ€caprolactone) biocomposite with enhanced crystallization rate and mechanical properties. Journal of Applied Polymer Science, 2008, 107, 3512-3519.	1.3	30
503	Green and selfâ€lubricating polyoxymethylene composites filled with lowâ€density polyethylene and rice husk flour. Journal of Applied Polymer Science, 2008, 108, 2778-2786.	1.3	14
504	Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiberâ€reinforced phenol formaldehyde composites. Journal of Applied Polymer Science, 2008, 110, 2305-2314.	1.3	33
505	Effect of Li ⁺ ions on structure, properties, and actuation of cellulose electroâ€active paper actuator. Journal of Applied Polymer Science, 2008, 108, 2260-2265.	1.3	12
506	Biocomposites composed of epoxidized soybean oil cured with terpeneâ€based acid anhydride and cellulose fibers. Journal of Applied Polymer Science, 2008, 108, 1596-1602.	1.3	81
507	Effects of silane and MAPE coupling agents on the properties and interfacial adhesion of woodâ€filled PVC/LDPE blend. Journal of Applied Polymer Science, 2008, 108, 3523-3530.	1.3	27
508	Dynamic mechanical and thermal properties of PEâ€EPDM based jute fiber composites. Journal of Applied Polymer Science, 2008, 108, 3442-3453.	1.3	47
509	Strengthening and stiffening of ramie yarns by applying cyclic load treatment. Journal of Applied Polymer Science, 2008, 109, 889-896.	1.3	10
510	Mechanical and water sorption studies of ecofriendly banana fiberâ€reinforced polyester composites fabricated by RTM. Journal of Applied Polymer Science, 2008, 109, 1547-1555.	1.3	63
511	Influence of some additives on the performance of wood flour/polyolefin composites. Journal of Applied Polymer Science, 2008, 109, 2243-2249.	1.3	14
512	Inverse gas chromatography for the determination of the dispersive surface free energy and acid–base interactions of a sheet molding compound. I. Matrix material and glass. Journal of Applied Polymer Science, 2008, 109, 3519-3524.	1.3	19

#	Article	IF	CITATIONS
513	Wettability investigations on the cellulosic surface of alfa fibers. Journal of Applied Polymer Science, 2008, 110, 3322-3327.	1.3	3
514	The effect of alumina surface activity on the properties of lignocellulose/pitch-Al2O3 composites. Journal of Analytical and Applied Pyrolysis, 2008, 82, 151-157.	2.6	6
515	Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008, 53, 1-206.	16.0	2,042
516	Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 2008, 93, 561-584.	2.7	1,067
517	Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polymer Degradation and Stability, 2008, 93, 1571-1576.	2.7	92
518	Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polymer Testing, 2008, 27, 801-806.	2.3	202
519	Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science, 2008, 320, 248-258.	4.1	326
520	The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design, 2008, 29, 1285-1290.	5.1	242
521	Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. Journal of the European Ceramic Society, 2008, 28, 183-192.	2.8	278
522	Effects of spelt and wheat bran on the performances of wheat gluten films. Journal of Food Engineering, 2008, 88, 202-212.	2.7	25
523	Mechanical properties of silanized jute–polypropylene composites. Journal of Industrial and Engineering Chemistry, 2008, 14, 71-76.	2.9	159
524	Polymer micro and nanocomposites: Structure, interactions, properties. Journal of Industrial and Engineering Chemistry, 2008, 14, 535-563.	2.9	262
525	Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Composites Science and Technology, 2008, 68, 193-201.	3.8	119
526	Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Composites Science and Technology, 2008, 68, 424-432.	3.8	603
527	Sustainable biocomposites based on autohydrolysis of lignocellulosic substrates. Composites Science and Technology, 2008, 68, 944-952.	3.8	30
528	Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology, 2008, 68, 908-914.	3.8	267
529	Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Composites Science and Technology, 2008, 68, 1877-1885.	3.8	225
530	Nonlinear viscoelastic viscoplastic material model including stiffness degradation for hemp/lignin composites. Composites Science and Technology, 2008, 68, 2156-2162.	3.8	53

#	Article	IF	CITATIONS
531	Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Composites Science and Technology, 2008, 68, 3193-3201.	3.8	95
532	Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking. Bioresource Technology, 2008, 99, 8803-8809.	4.8	132
533	The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydrate Polymers, 2008, 71, 458-467.	5.1	186
534	Blocked diisocyanates as reactive coupling agents: Application to pine fiber–polypropylene composites. Carbohydrate Polymers, 2008, 74, 106-113.	5.1	52
535	A study on the potential of sugarcane fibers/polyester composite for tribological applications. Wear, 2008, 265, 223-235.	1.5	246
536	Surface morphological, mechanical and thermal characterization of electron beam irradiated fibers. Applied Surface Science, 2008, 255, 2466-2473.	3.1	27
537	Molecular structure and properties of cellulose acetate chemically modified with caprolactone. European Polymer Journal, 2008, 44, 357-365.	2.6	39
538	Characterization of henequen natural fiber by using two-dimensional correlation spectroscopy. Journal of Molecular Structure, 2008, 883-884, 142-148.	1.8	11
539	Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of cellulose fibres. Industrial Crops and Products, 2008, 27, 288-295.	2.5	58
540	Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Industrial Crops and Products, 2008, 28, 63-72.	2.5	207
541	Interfacial effects in short sisal fiber/maleated castor oil foam composites. Composite Interfaces, 2008, 15, 95-110.	1.3	14
542	Surface Modification of Cellulose Fibres. , 2008, , 385-400.		29
543	Cellulose-Based Composites and Nanocomposites. , 2008, , 401-418.		62
544	Chemical Modification of Wood. , 2008, , 419-431.		8
545	Influence of Fiber Surface Modification on the Mechanical Performance of Isora-Polyester Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 58, 2-20.	1.8	22
546	Properties of Banana and Pandanus Woven Fabric Reinforced Unsaturated Polyester Composites. Journal of Composite Materials, 2008, 42, 931-941.	1.2	79
547	Thermal and Mechanical Properties of Blends and Composites from HDPE and Date Pits Particles. Journal of Composite Materials, 2008, 42, 77-89.	1.2	31
548	Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Composite Interfaces, 2008, 15, 169-191.	1.3	161

#	ARTICLE	IF	CITATIONS
549	Curaua Fiber: A New Alternative to Polymeric Composites. Journal of Reinforced Plastics and Composites, 2008, 27, 103-112.	1.6	63
550	Cellulose Nanopaper Structures of High Toughness. Biomacromolecules, 2008, 9, 1579-1585.	2.6	1,096
551	Effect of mercerization of flax fibers on wheat flour/flax fiber biocomposite with respect to thermal and tensile properties. Composite Interfaces, 2008, 15, 759-770.	1.3	12
552	Modelling the application of wood fibre reinforcements within liquid composite moulding processes. Composites Part A: Applied Science and Manufacturing, 2008, 39, 624-639.	3.8	21
553	Physico-chemical and microstructural characterization of "Rhectophyllum camerunense―plant fiber. Composites Part A: Applied Science and Manufacturing, 2008, 39, 67-74.	3.8	101
554	Influence of chemical modifications on water-sorption and mechanical properties of Agave fibres. Composites Part A: Applied Science and Manufacturing, 2008, 39, 29-45.	3.8	110
555	Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites Part A: Applied Science and Manufacturing, 2008, 39, 655-661.	3.8	151
556	Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 2008, 39, 514-522.	3.8	473
557	Mechanical properties of wetlaid lyocell and hybrid fiber-reinforced composites with polypropylene. Composites Part A: Applied Science and Manufacturing, 2008, 39, 470-477.	3.8	39
558	Improved wood–plastic composites through better processing. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1694-1699.	3.8	58
559	Study of impact properties and morphology of unidirectional bamboo strips–polyester composites: effect of mercerization. Composite Interfaces, 2008, 15, 829-839.	1.3	2
560	Environmentally Friendly Green Materials from Plant-Based Resources: Modification of Soy Protein using Gellan and Micro/Nano-Fibrillated Cellulose. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 899-906.	1.2	22
561	A Preliminary Study on Ultraviolet Radiation–Cured Biofiber Composites from Oil Palm Empty Fruit Bunch. Polymer-Plastics Technology and Engineering, 2008, 47, 358-362.	1.9	9
562	Effect of MAPP and TMPTA as compatibilizer on the mechanical properties of cellulose and oil palm fiber empty fruit bunch–polypropylene biocomposites. Composite Interfaces, 2008, 15, 251-262.	1.3	21
563	Micromechanical Simulations on Hygro-Mechanical Properties of Bio-fiber Plastic Composites. Materials Research Society Symposia Proceedings, 2008, 1097, 1.	0.1	1
564	Studies of Sisal Fiber-Containing Composites. Journal of Natural Fibers, 2008, 5, 36-46.	1.7	16
565	Mechanical properties of maleic anhydride treated jute fibre/polypropylene composites. Plastics, Rubber and Composites, 2008, 37, 325-330.	0.9	62
566	Plant Fiber — Industrial Waste Reinforced Polymer Composites as a Potential Wood Substitute Material. Journal of Composite Materials, 2008, 42, 367-384.	1.2	84

#	Article	IF	CITATIONS
567	A Continuum Formulation for Fiber-Reinforced Viscoelastic Composite Materials with Microstructure PART - II: ISOTROPIC MATRIX MATERIAL. Science and Engineering of Composite Materials, 2008, 15, .	0.6	0
568	Mechanical Properties of Lignocellulosic/Polypropylene Composites. Molecular Crystals and Liquid Crystals, 2008, 484, 13/[379]-22/[388].	0.4	14
569	Wood Filler(WF)-recycled Polypropylene (RPP) Composite Pallet: Study of Static Deformation using FEA and Shadow Moire. Journal of Reinforced Plastics and Composites, 2008, 27, 1733-1744.	1.6	9
570	Composites from Brazilian natural fibers with polypropylene: mechanical and thermal properties. Composite Interfaces, 2008, 15, 841-850.	1.3	14
571	Natural-fibre composites in structural applications. , 2008, , 269-300.		32
572	Creep behaviour of biopolymers and modified flax fibre composites. Composite Interfaces, 2008, 15, 131-145.	1.3	19
573	Investigations into structural aspects of Borassus flabellifer (palmyrah palm) fruit fibres. Journal of the Textile Institute, 2008, 99, 133-140.	1.0	13
574	A study on sisal fiber-reinforced benzoxazine/epoxy copolymer based on diamine-based benzoxazine. Composite Interfaces, 2008, 15, 321-334.	1.3	22
575	Cotton reinforced polymer composites. , 2008, , 129-161.		13
576	Engineering the fibre $\hat{a} \in \hat{a}$ matrix interface in natural-fibre composites. , 2008, , 127-162.		11
577	Jute reinforced polymer composites. , 2008, , 108-128.		4
578	Natural-fibre–biodegradable polymer composites for packaging. , 2008, , 301-329.		4
579	Mechanical Properties of an Extruded Wood Plastic Composite: Analytical Modeling. Journal of Wood Chemistry and Technology, 2008, 28, 283-295.	0.9	10
580	Hemp Fiber-Reinforced 1-Pentene/Polypropylene Copolymer: The Effect of Fiber Loading on the Mechanical and Thermal Characteristics of the Composites. Journal of Reinforced Plastics and Composites, 2008, 27, 1533-1544.	1.6	82
581	The effects of acetylation on properties of flax fibre and its polypropylene composites. EXPRESS Polymer Letters, 2008, 2, 413-422.	1.1	385
582	Oil Palm Empty Fruit Bunches (OPEFB) Reinforced in New Unsaturated Polyester Composites. Journal of Reinforced Plastics and Composites, 2008, 27, 1817-1826.	1.6	24
583	Stiffness of Aligned Wood Fiber Composites: Effect of Microstructure and Phase Properties. Journal of Composite Materials, 2008, 42, 2377-2405.	1.2	23
584	Effects of Fillers on Polyurethane Resin-based Polyurethane Elastomeric Bearing Materials for Passive Isolation. Journal of Composite Materials, 2008, 42, 2673-2685.	1.2	26

#	Article	IF	Citations
585	Effects of Moisture on Dynamic Mechanical Properties of Wood Fiber Composites Studied by Dynamic FT-IR Spectroscopy. Journal of Reinforced Plastics and Composites, 2008, 27, 1709-1721.	1.6	14
586	Mechanical performance of thermoplastic matrix natural-fibre composites. , 2008, , 402-459.		1
587	Natural fibers and their composites. , 2008, , 1-58.		32
588	Effects of alkaline and silane treatments on the waterâ€resistance properties of woodâ€fiberâ€reinforced recycled plastic composites. Journal of Vinyl and Additive Technology, 2008, 14, 211-220.	1.8	17
589	Mechanical, Morphological and Thermal Properties of Pine Needle-Reinforced Polymer Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 58, 21-31.	1.8	61
590	Effect of Alkali treatment on the Mechanical Properties of Short Randomly Oriented Isora Fibre-Polyester Composites. Progress in Rubber, Plastics and Recycling Technology, 2008, 24, 255-272.	0.8	1
592	Innovative Process for Manufacturing Laminates with Recycled Thermoplastic Reinforced by Natural Fibres. Advanced Composites Letters, 2008, 17, 096369350801700.	1.3	0
593	Aditivos de secagem para concretos refratários: pó de alumÃnio e fibras poliméricas. Ceramica, 2008, 54, 259-267.	0.3	9
594	Development of Rubber and Agricultural Fiber based Biocomposite for Industrial Application. SAE International Journal of Commercial Vehicles, 2008, 1, 284-292.	0.4	2
595	Biodegradable Green Composite Boards for Industrial Application. , 2008, , .		2
596	Saccaharum Cilliare Fiber Reinforced Polymer Composites. E-Journal of Chemistry, 2008, 5, 782-791.	0.4	51
597	Synthesis and Characterization of Pine Needles Reinforced RF Matrix Based Biocomposites. E-Journal of Chemistry, 2008, 5, 1055-1062.	0.4	66
598	Ldpe/Agave Fibre Composites: Effect of Coupling Agent and Weld Line on Mechanical and Morphological Properties. Polymers and Polymer Composites, 2008, 16, 115-123.	1.0	34
599	Tenacidade ao impacto de compósitos de tecido de juta reforçando matriz de polietileno reciclado. Revista Materia, 2008, 13, 180-185.	0.1	3
600	Cellulose fiber-reinforced keratin composites. , 2008, , .		0
601	Hydrophobicity Enhancement of Cellulose-Based Material via Heterogeneous Surface Acetylation. Polymers and Polymer Composites, 2009, 17, 397-402.	1.0	8
602	Caracterização quÃmica e estrutural de fibra de sisal da variedade Agave sisalana. Polimeros, 2009, 19, 40-46.	0.2	54
603	Comportamento térmico e caracterização morfológica das fibras de mesocarpo e caroço do açaÃ-(Euterpe oleracea Mart.). Revista Brasileira De Fruticultura, 2009, 31, 1150-1157.	0.2	26

#	Article	IF	CITATIONS
604	Physical Properties of Short Pineapple Leaf Fibre (PALF) Reinforced High Impact Polystyrene (HIPS) Composites. Advanced Composites Letters, 2009, 18, 096369350901800.	1.3	5
605	Determinaci \tilde{A}^3 n de propiedades mec \tilde{A}_i nicas de las fibras de Bambusa Vulgaris a utilizar en tableros prensados. Revista Ingenieria De Construccion, 2009, 24, .	0.4	0
606	Synthesis and Characterization of Short <i>Saccaharum Cilliare</i> Fibre Reinforced Polymer Composites. E-Journal of Chemistry, 2009, 6, 34-38.	0.4	9
607	Development of Flax Fibre Reinforced Biocomposites for Potential Application for Automotive Industries. SAE International Journal of Commercial Vehicles, 0, 2, 107-114.	0.4	3
608	A Study on Flax Fiber-Reinforced Polyethylene Biocomposites. Applied Engineering in Agriculture, 2009, 25, 525-531.	0.3	83
609	Wood Polymer Composites Technology Supporting the Recovery and Protection of Tropical Forests: The Amazonian Phoenix Project. Sustainability, 2009, 1, 1431-1443.	1.6	9
610	The Effect of Compatibilising Agent and Surface Modification on the Physical Properties of Short Pineapple Leaf Fibre (Palf) Reinforced High Impact Polystyrene (Hips) Composites. Polymers and Polymer Composites, 2009, 17, 379-384.	1.0	6
611	Curaua/Glass Hybrid Composite: The Effect of Water Aging on the Mechanical Properties. Journal of Reinforced Plastics and Composites, 2009, 28, 1857-1868.	1.6	56
612	Fabrication and Characterization of (i>H. sabdariffa (i>Fiber-Reinforced Green Polymer Composites. Polymer-Plastics Technology and Engineering, 2009, 48, 482-487.	1.9	79
614	Modification of Wood Flour Surfaces by Esterification with Acid Chlorides: Use in HDPE/Wood Flour Composites. Composite Interfaces, 2009, 16, 671-686.	1.3	14
615	Chemical Resistance, Mechanical and Physical Properties of <i>Biofibers </i> Polymer-Plastics Technology and Engineering, 2009, 48, 736-744.	1.9	89
616	Mechanical, Thermal and Morphological Properties of Grewia Optiva Fiber/Polymer Matrix Composites. Polymer-Plastics Technology and Engineering, 2009, 48, 201-208.	1.9	74
617	Thermal and Dynamic Mechanical Behavior of Cellulose- and Oil Palm Empty Fruit Bunch (OPEFB)-Filled Polypropylene Biocomposites. Polymer-Plastics Technology and Engineering, 2009, 48, 1244-1251.	1.9	28
618	Resin–Sisal and Wood Flour Composites Made from Unsaturated Polyester Thermosets. Composite Interfaces, 2009, 16, 639-657.	1.3	16
619	Evaluation of Calotropis gigantea as a Promising Raw Material for Fiber-reinforced Composite. Journal of Composite Materials, 2009, 43, 1297-1304.	1.2	82
620	The Effect of Wood Species on the Mechanical and Thermal Properties of Woodâ€"LLDPE Composites. Journal of Composite Materials, 2009, 43, 1305-1318.	1.2	61
621	Rice Husk/High Density Polyethylene Bio-Composite: Effect of Rice Husk Filler Size and Composition on Injection Molding Processability with Respect to Impact Property. Advanced Materials Research, 0, 83-86, 367-374.	0.3	12
622	Physico-Mechanical and Degradation Properties of Gamma-Irradiated Biocomposites of Jute Fabric-Reinforced Poly(caprolactone). Polymer-Plastics Technology and Engineering, 2009, 48, 1198-1205.	1.9	31

#	Article	IF	Citations
623	Effect of Variables on the Mechanical Properties and Maximization of Polyethylene—Aspen Composites by Statistical Experimental Design. Journal of Thermoplastic Composite Materials, 2009, 22, 633-649.	2.6	13
624	Processing of the Uni-directional Powdered Phenolic Resin—Bamboo Fiber Composites and Resulting Dynamic Mechanical Properties. Journal of Reinforced Plastics and Composites, 2009, 28, 1339-1348.	1.6	36
625	Preparation and Physico-Chemical Study of Juteâ€"Carbon Hybrid Composites of Bisphenol-C based Mixed Epoxyâ€"Phenolic Resins. Journal of Reinforced Plastics and Composites, 2009, 28, 2025-2033.	1.6	0
626	Interface and mechanical properties of Natural Fibres reinforced composites: a review. International Journal of Materials and Product Technology, 2009, 36, 278.	0.1	27
627	The role of fibre identification in textile conservation. , 2009, , 335-365.		4
628	Effect of Compatibilisers on Mechanical Properties of Feldspar/Polypropylene Composites. Polymer-Plastics Technology and Engineering, 2009, 48, 1295-1303.	1.9	12
629	Comparison of Interaction of Aromatic Solvents in Hybrid and Textile Biocomposites. Journal of Elastomers and Plastics, 2009, 41, 523-541.	0.7	0
630	Effect of Water on Mechanical Properties of Unsaturated Polyester—Acetylated Hydroxypropyl Guar Gum Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 2561-2576.	1.6	5
631	Mechanical Characterization of Carpet Waste Natural Fiber-reinforced Polymer Composites. Journal of Composite Materials, 2009, 43, 1751-1768.	1.2	38
632	Influence of Water Absorption and Pre-drying Conditions on the Tensile Mechanical Properties of Hybrid Lignocellulosic Fiber/Polyester Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 1921-1932.	1.6	13
633	The Effect of Different Laminations on Mechanical and Physical Properties of Hybrid Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 1123-1137.	1.6	73
634	Effectiveness of Maleated- and Silanized-PP for Coir Fiber-Filled Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 2119-2129.	1.6	39
635	Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Industrial Crops and Products, 2009, 30, 407-415.	2.5	296
636	Polylactideâ€recycled wood fiber composites. Journal of Applied Polymer Science, 2009, 111, 37-47.	1.3	111
637	Polypropylene celluloseâ€based composites: The effect of bagasse reinforcement and polybutadiene isocyanate treatment on the mechanical properties. Journal of Applied Polymer Science, 2009, 111, 1684-1689.	1.3	37
638	Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix. Journal of Applied Polymer Science, 2009, 112, 447-453.	1.3	22
639	Comparison of the thermal degradation of natural, alkaliâ€treated and silaneâ€treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science, 2009, 112, 226-234.	1.3	117
640	Benefits of low kenaf loading in biobased composites of poly(<scp>L</scp> â€lactide) and kenaf fiber. Journal of Applied Polymer Science, 2009, 112, 1294-1301.	1.3	22

#	ARTICLE	IF	Citations
641	Recycled polypropylene reinforced with curaua fibers by extrusion. Journal of Applied Polymer Science, 2009, 112, 3686-3694.	1.3	49
642	Mechanical properties of teak wood flourâ€reinforced HDPE composites. Journal of Applied Polymer Science, 2009, 112, 1826-1834.	1.3	24
643	Treatment of Harakeke fiber for biocomposites. Journal of Applied Polymer Science, 2009, 112, 2710-2715.	1.3	20
644	Influence of Fibre Orientation on Friction and Sliding Wear Behaviour of Jute Fibre Reinforced Polyester Composite. Applied Composite Materials, 2009, 16, 93-100.	1.3	44
645	Poly(ethyl acrylate) surface-initiated ATRP grafting from wood pulp cellulose fibers. Carbohydrate Polymers, 2009, 75, 22-31.	5.1	53
646	Effects of acetylation in vapor phase and mercerization on the properties of sugarcane fibers. Carbohydrate Polymers, 2009, 77, 20-24.	5.1	48
647	Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers, 2009, 77, 47-53.	5.1	236
648	Mechanical properties and flammability of sisal/PP composites: Effect of flame retardant type and content. Composites Part B: Engineering, 2009, 40, 613-618.	5.9	120
649	Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Composites Part B: Engineering, 2009, 40, 628-632.	5.9	185
650	Computer-assisted scanning electron microscopy of wood pulp fibres: Dimensions and spatial distributions in a polypropylene composite. Micron, 2009, 40, 761-768.	1.1	18
651	Development and morphological characterization of wood pulp reinforced biocomposite fibers. Journal of Materials Science, 2009, 44, 2876-2881.	1.7	30
652	Determination of the fibre volume content in natural fibre-reinforced composites by ultimate analysis. Journal of Materials Science, 2009, 44, 4379-4382.	1.7	2
653	All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose, 2009, 16, 435-444.	2.4	161
654	Comparison of molecular orientation and mechanical properties of lyocell fibre tow and staple fibres. Cellulose, 2009, 16, 765-772.	2.4	24
655	Lignocellulosic Fiber-Reinforced Keratin Polymer Composites. Journal of Polymers and the Environment, 2009, 17, 143-151.	2.4	31
656	Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bulletin of Materials Science, 2009, 32, 49-58.	0.8	80
657	Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly. Jom, 2009, 61, 17-22.	0.9	342
658	Characterization of castor oil/polycaprolactone polyurethane biocomposites reinforced with hemp fibers. Fibers and Polymers, 2009, 10, 154-160.	1.1	16

#	Article	IF	CITATIONS
659	Biocomposites based on <i>Alfa</i> fibers and starchâ€based biopolymer. Polymers for Advanced Technologies, 2009, 20, 1068-1075.	1.6	68
660	Rheological properties of polypropylene/hemp fiber composites. Polymer Composites, 2009, 30, 1401-1407.	2.3	44
661	Maleated polypropylene film and wood fiber handsheet laminates. Polymer Composites, 2009, 30, 1864-1872.	2.3	2
662	Naturally compatible: Starch acetate/cellulosic fiber composites. I. Processing and properties. Polymer Composites, 2010, 31, 524-535.	2.3	9
663	Influence of alkaliâ€treated fibers on the mechanical properties and machinability of roselle and sisal fiber hybrid polyester composite. Polymer Composites, 2010, 31, 723-731.	2.3	27
664	Influence of interfacial adhesion on the structural and mechanical behavior of PPâ€banana/glass hybrid composites. Polymer Composites, 2010, 31, 1247-1257.	2.3	22
665	Effects of vinyltrimethoxy silane on mechanical properties and morphology of polypropyleneâ€woodflour composites. Polymer Engineering and Science, 2009, 49, 324-332.	1.5	13
666	Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering and Science, 2009, 49, 1253-1272.	1.5	1,097
667	Bioâ€based nanocomposites composed of photoâ€cured epoxidized soybean oil and supramolecular hydroxystearic acid nanofibers. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 669-673.	2.4	30
668	Progress in nano-biocomposites based on polysaccharides and nanoclays. Materials Science and Engineering Reports, 2009, 67, 1-17.	14.8	267
669	The effect of biodegradation on surface and bulk property changes of polypropylene, recycled polypropylene and polylactide biocomposites. International Biodeterioration and Biodegradation, 2009, 63, 1045-1053.	1.9	31
670	Influence of various chemical treatments on the interactions between hemp fibres and a lime matrix. Journal of the European Ceramic Society, 2009, 29, 1861-1868.	2.8	7 5
671	Spectroscopic characterization of genetically modified flax fibres enhanced with poly-3-hydroxybutyric acid. Journal of Molecular Structure, 2009, 920, 214-219.	1.8	7
672	Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 2009, 50, 4552-4563.	1.8	477
673	Properties and performances of various hybrid glass/natural fibre composites for curved pipes. Materials & Design, 2009, 30, 2538-2542.	5.1	138
674	Biodegradable composites based on lignocellulosic fibers—An overview. Progress in Polymer Science, 2009, 34, 982-1021.	11.8	1,098
675	Nanoscale particles for polymer degradation and stabilizationâ€"Trends and future perspectives. Progress in Polymer Science, 2009, 34, 479-515.	11.8	560
676	Behavior of biocomposite materials from flax strands and starch-based biopolymer. Chemical Engineering Science, 2009, 64, 2651-2658.	1.9	61

#	Article	IF	CITATIONS
677	Probing cellulose/polylactic acid interactions in model biocomposite by colloidal force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352, 47-55.	2.3	23
678	Harakeke (phormium tenax) fibre–waste plastics blend composites processed by screwless extrusion. Composites Part B: Engineering, 2009, 40, 645-649.	5.9	28
679	Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 2009, 40, 601-606.	5.9	394
680	Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Composites Science and Technology, 2009, 69, 1212-1217.	3.8	291
681	Structure–property relationship of all-cellulose composites. Composites Science and Technology, 2009, 69, 1225-1230.	3.8	105
682	Deformation and failure of PP composites reinforced with lignocellulosic fibers: Effect of inherent strength of the particles. Composites Science and Technology, 2009, 69, 1653-1659.	3.8	63
683	Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresource Technology, 2009, 100, 4742-4749.	4.8	200
684	Study of water sorption on modified Agave fibres. Carbohydrate Polymers, 2009, 76, 74-85.	5.1	92
685	Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules, 2009, 10, 425-432.	2.6	720
686	Permeability of Hybrid Reinforcements and Mechanical Properties of their Composites Molded by Resin Transfer Molding. Journal of Reinforced Plastics and Composites, 2009, 28, 2839-2850.	1.6	33
687	The Influence of Alkaline Surface Fibre Treatment on the Impact Properties of Sugar Palm Fibre-Reinforced Epoxy Composites. Polymer-Plastics Technology and Engineering, 2009, 48, 379-383.	1.9	60
688	Effect of Cold Plasma Treatment on Macromolecular Structure, Thermal and Mechanical Behavior of Jute Fiber. Journal of Industrial Textiles, 2009, 38, 317-339.	1.1	28
689	Development of advanced textile materials: Natural fibre composites, anti-microbial, and flame-retardant fabrics. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223, 91-102.	0.7	12
690	Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing, 2009, 40, 184-195.	3.8	112
691	On the microstructure and physical properties of untreated raffia textilis fiber. Composites Part A: Applied Science and Manufacturing, 2009, 40, 418-422.	3.8	97
692	Poly(vinyl chloride)–wood flour press mould composites: The influence of raw materials on performance properties. Composites Part A: Applied Science and Manufacturing, 2009, 40, 653-661.	3.8	36
693	Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Composites Part A: Applied Science and Manufacturing, 2009, 40, 791-799.	3.8	162
694	Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 800-809.	3.8	173

#	Article	IF	CITATIONS
695	Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1111-1118.	3.8	151
696	Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 2013-2019.	3.8	203
697	Controlled release of thymol from zein based film. Innovative Food Science and Emerging Technologies, 2009, 10, 222-227.	2.7	132
698	Banana/Glass Fiber-Reinforced Polypropylene Hybrid Composites: Fabrication and Performance Evaluation. Polymer-Plastics Technology and Engineering, 2009, 48, 397-414.	1.9	113
699	Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes. Nanotechnology, 2009, 20, 415604.	1.3	94
700	Effect of Plasma Treatment on Structure, Wettability of Jute Fiber and Flexural Strength of its Composite. Journal of Composite Materials, 2009, 43, 1791-1802.	1.2	144
701	Mechanical and Electrical Properties of Jute Fabrics Reinforced Polyethylene/Polypropylene Composites: Role of Gamma Radiation. Polymer-Plastics Technology and Engineering, 2009, 48, 760-766.	1.9	76
702	Cellulose/Soy Protein Isolate Blend Films Prepared via Room-Temperature Ionic Liquid. Industrial & Engineering Chemistry Research, 2009, 48, 7132-7136.	1.8	79
703	Adhesion Dynamics for Cellulose Nanocomposites. ACS Applied Materials & Dynamics for Cellulose Nanocomposites (Cellulose Nanocomposites) & Dynamics for Cellulose Nanocomposites (Cellulose Nanocomposites) & Dynamics for Cellulose Nanocomposites (Cellulose Nanocomposites) & Dynamics for Cellulose (Cellulose Nanocomposites	4.0	30
704	Water Desorption Kinetics of Polymer Composites with Cellulose Fibers as Filler. Journal of Macromolecular Science - Physics, 2009, 48, 68-76.	0.4	5
705	Fabrication and Properties of Recycled Cellulose Fibre-Reinforced Epoxy Composites. Composite Interfaces, 2009, 16, 659-669.	1.3	57
706	Effect of Multi-walled Carbon Nanotubes on Mechanical Properties of Feldspar Filled Polypropylene Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 2473-2485.	1.6	19
707	Recent Development in Natural Fiber Reinforced Polypropylene Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 1169-1189.	1.6	639
708	Rheology of poly(sodium acrylate) hydrogels during cross-linking with and without cellulose microfibrils. Journal of Rheology, 2009, 53, 31-47.	1.3	29
709	Development and characterisation of jute reinforced natural matrix composites. International Journal of Materials and Product Technology, 2009, 36, 155.	0.1	2
711	Effect of surface treatment on the mechanical properties of rice straw fibre. International Journal of Materials and Product Technology, 2009, 36, 125.	0.1	1
713	Mechanical properties of an extruded wood plastic composite. Mecanique Et Industries, 2009, 10, 519-524.	0.2	3
714	Surface Modification of Cotton Fabric by Wet Chemical Treatments to Impart Hydrophobicity. Research Journal of Textile and Apparel, 2010, 14, 65-74.	0.6	2

#	Article	IF	CITATIONS
715	Effect of different types of aramid fibres on mechanical and thermal properties of nano-cellulose composites for vehicle applications. International Journal of Vehicle Noise and Vibration, 2010, 6, 118.	0.0	7
716	Effect of Pretreated Secondary Fiber on Fibre-Reinforced Biodegradable Composites. , 2010, , .		0
718	Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean Journal of Chemical Engineering, 2010, 27, 651-657.	1.2	51
719	Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2010, 2, 728-765.	2.0	1,080
720	Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate Polymers, 2010, 81, 811-819.	5.1	153
721	Yield behaviour of renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres. Composites Science and Technology, 2010, 70, 525-529.	3.8	23
722	Micromechanical deformations in PP/lignocellulosic filler composites: Effect of matrix properties. Composites Science and Technology, 2010, 70, 1141-1147.	3.8	30
723	Hydrophilic/hydrophobic character of grafted cellulose. Radiation Physics and Chemistry, 2010, 79, 467-470.	1.4	22
724	Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7944-7949.	2.6	181
725	Mechanical properties of denim fabric reinforced poly(lactic acid). Fibers and Polymers, 2010, 11, 60-66.	1.1	51
726	Characterization of plant and animal based natural fibers reinforced polypropylene composites and their comparative study. Fibers and Polymers, 2010, 11, 725-731.	1.1	74
727	Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, 2010, 14, 57-75.	2.9	60
728	Natural fibres-based polymers: Part Iâ€"Mechanical analysis of Pine needles reinforced biocomposites. Bulletin of Materials Science, 2010, 33, 257-264.	0.8	80
729	Preliminary study of viscoelastic properties of MAPP-modified wood flour/polypropylene composites. Forestry Studies in China, 2010, 12, 85-89.	0.4	9
730	Synthesis of Polyurethane and Characterization of its Composites Based on Alfa Cellulose Fibers. Journal of Polymers and the Environment, 2010, 18, 638-646.	2.4	44
731	Influence of Fiber Treatment on the Mechanical and Morphological Properties of Sawdust Reinforced Polypropylene Composites. Journal of Polymers and the Environment, 2010, 18, 443-450.	2.4	34
732	Maleated natural rubber prepared through mechanochemistry and its coupling effects on natural rubber/cotton fiber composites. Journal of Polymer Research, 2010, 17, 213-219.	1.2	28
733	Effect of surface treatment in cork reinforced composites. Journal of Polymer Research, 2010, 17, 519-528.	1.2	46

#	Article	IF	CITATIONS
734	Elastic coils: deformation micromechanics of coir and celery fibres. Cellulose, 2010, 17, 1-11.	2.4	33
735	Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 2010, 17, 459-494.	2.4	2,454
736	Properties of cellulosic fibre reinforced plaster: influence of hemp or flax fibres on the properties of set gypsum. Journal of Materials Science, 2010, 45, 793-803.	1.7	103
737	Silicone-modified cellulose. Crosslinking of cellulose acetate with poly[dimethyl(methyl-H)siloxane] by Pt-catalyzed dehydrogenative coupling. Journal of Materials Science, 2010, 45, 4141-4150.	1.7	19
738	Dielectric and impedance spectroscopy studies on sisal fibre-reinforced polyester composite. Journal of Materials Science, 2010, 45, 5742-5748.	1.7	41
739	Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. Journal of Thermal Analysis and Calorimetry, 2010, 99, 695-701.	2.0	63
740	Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. Journal of Thermal Analysis and Calorimetry, 2010, 102, 751-761.	2.0	49
741	Scattering of morphological and mechanical properties of flax fibres. Industrial Crops and Products, 2010, 32, 220-224.	2.5	84
742	Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. Journal of Applied Polymer Science, 2010, 115, 3559-3567.	1.3	79
743	Crystallization and melting behavior of HDPE in HDPE/teak wood flour composites and their correlation with mechanical properties. Journal of Applied Polymer Science, 2010, 118, 2264-2275.	1.3	20
744	Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic matrix. Journal of Applied Polymer Science, 2010, 115, 269-276.	1.3	17
745	Chemical and mechanical characterization of two Southâ€American plant fibers for polymer reinforcement: Caranday Palm and Phormium. Journal of Applied Polymer Science, 2010, 115, 2236-2245.	1.3	11
746	Morphology and thermal properties of maleic anhydride grafted polypropylene/ethylene–vinyl acetate copolymer/wood powder blend composites. Journal of Applied Polymer Science, 2010, 116, 3193-3201.	1.3	12
747	Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a naturalâ€fiber reinforcement. Journal of Applied Polymer Science, 2010, 116, 1759-1765.	1.3	42
748	Mechanical properties of polypropylene composite reinforced with oil palm empty fruit bunch pulp. Journal of Applied Polymer Science, 2010, 116, 1867-1872.	1.3	3
749	Flammability and mechanical properties of wood flourâ€filled polypropylene composites. Journal of Applied Polymer Science, 2010, 116, 2714-2722.	1.3	35
750	The effects of clay dispersion on the mechanical, physical, and flameâ€retarding properties of wood fiber/polyethylene/clay nanocomposites. Journal of Applied Polymer Science, 2010, 118, 452-461.	1.3	50
751	Waste pine cones as a source of reinforcing fillers for thermoplastic composites. Journal of Applied Polymer Science, 2010, 117, 2324-2330.	1.3	47

#	Article	IF	CITATIONS
752	Tensile and lignocellulosic properties of <i>Prosopis chilensis</i> natural fabric. Journal of Applied Polymer Science, 2010, 117, 2907-2914.	1.3	1
7 53	Development of environmentally friendly highâ€density polyethylene and turmeric spent composites: Physicomechanical, thermal, and morphological studies. Journal of Applied Polymer Science, 2010, 118, 1204-1210.	1.3	2
754	Improvement of tensile properties of ramie yarns by applying a winding machine with heat treatment. Journal of Applied Polymer Science, 2010, 118, 685-692.	1.3	0
755	Structure and properties of phase change materials based on HDPE, soft Fischerâ€∓ropsch paraffin wax, and wood flour. Journal of Applied Polymer Science, 2010, 118, 1541-1551.	1.3	20
756	Preparation and properties of biocomposites composed of glycerolâ€based epoxy resins, tannic acid, and wood flour. Journal of Applied Polymer Science, 2010, 118, 2998-3004.	1.3	21
757	Recent Advances in the Application of Natural Fiber Based Composites. Macromolecular Materials and Engineering, 2010, 295, 975-989.	1.7	343
758	Beneficial Effect of Compatibilization on the Aging of Celluloseâ€Reinforced Biopolymer Blends. Macromolecular Materials and Engineering, 2010, 295, 774-781.	1.7	2
7 59	Compatibilization and Properties of EVA Copolymers Containing Surfaceâ€Functionalized Cellulose Microfibers. Macromolecular Materials and Engineering, 2010, 295, 949-957.	1.7	20
760	A comparative study on erosion characteristics of red mud filled bamboo–epoxy and glass–epoxy composites. Materials & Design, 2010, 31, 1752-1767.	5.1	168
761	Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Materials & Design, 2010, 31, 2397-2405.	5.1	160
762	Dynamic properties of pultruded natural fibre reinforced composites using Split Hopkinson Pressure Bar technique. Materials & Design, 2010, 31, 4209-4218.	5.1	63
763	Effect of areal weight and chemical treatment on the mechanical properties of bidirectional flax fabrics reinforced composites. Materials & Design, 2010, 31, 4098-4103.	5.1	55
764	Effect of different coupling agents on the browning of cellulose–polypropylene composites during melt processing. Polymer Degradation and Stability, 2010, 95, 201-206.	2.7	25
765	Studies on the thermal properties of sisal fiber and its constituents. Thermochimica Acta, 2010, 506, 14-19.	1.2	122
766	Micromechanics and ultrastructure of pyrolysed softwood cell walls. Acta Biomaterialia, 2010, 6, 4345-4351.	4.1	26
767	Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: Thermal, physical and mechanical properties. Composites Science and Technology, 2010, 70, 504-509.	3.8	58
768	Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology, 2010, 70, 840-846.	3.8	229
769	Polypropylene composites with enzyme modified abaca fibre. Composites Science and Technology, 2010, 70, 854-860.	3.8	176

#	ARTICLE	IF	Citations
770	Novel bacterial cellulose–acrylic resin nanocomposites. Composites Science and Technology, 2010, 70, 1148-1153.	3.8	96
771	Preparation and characterization of polypropylene–wheat straw–clay composites. Composites Science and Technology, 2010, 70, 1674-1680.	3.8	79
772	Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, interfacial and morphological properties. Composites Science and Technology, 2010, 70, 1637-1644.	3.8	59
773	Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydrate Polymers, 2010, 79, 614-619.	5.1	74
774	Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate. Carbohydrate Polymers, 2010, 79, 1150-1156.	5.1	58
775	The effect of different treatment methods of multiwalled carbon nanotubes on thermal and flexural properties of their epoxy nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1175-1184.	2.4	15
776	Process and recyclability analyses of innovative bioâ€composite for tray. Packaging Technology and Science, 2010, 23, 177-188.	1.3	4
777	Synthesis and characterization of short <i>Grewia optiva</i> fiberâ€based polymer composites. Polymer Composites, 2010, 31, 459-470.	2.3	87
778	Dependence of interfacial strength on the anisotropic fiber properties of jute reinforced composites. Polymer Composites, 2010, 31, 1525-1534.	2.3	48
779	Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability, and mechanical properties. Polymer Composites, 2010, 31, 1928-1937.	2.3	47
780	An improved method for single fiber tensile test of natural fibers. Polymer Engineering and Science, 2010, 50, 819-825.	1.5	53
781	Mechanical, Thermal and Rheological Properties of Polypropylene/Wheat Straw Composites and Study of the Effect of Nanoclay on Their Mechanical Properties. Polymers and Polymer Composites, 2010, 18, 67-73.	1.0	7
783	The impact damage response of plain woven natural silk/epoxy laminated composite plates. International Journal of Engineering, Science and Technology, 2010, 2, .	0.3	3
784	The dynamic-mechanical behavior of epoxy matrix composites reinforced with ramie fibers. Revista Materia, 2010, 15, 164-171.	0.1	47
785	Utilization of Agricultural By-Products as Fillers and Reinforcements in ABS. SAE International Journal of Materials and Manufacturing, 0, 3, 221-229.	0.3	9
786	The Influence of Fiber Length and Concentration on the Physical Properties of Wheat Husk Fibers Rubber Composites. International Journal of Polymer Science, 2010, 2010, 1-8.	1.2	18
787	The Effect of Fiber Loading and Chemical Treatment on Mechanical and Thermal Properties of Jute Biocomposites. , 2010, , .		1
788	Composites Based on Natural Fibre Fabrics. , 0, , .		50

#	Article	IF	CITATIONS
789	Estudo da influência de tratamentos quÃmicos da fibra de sisal nas propriedades de compósitos com borracha nitrÃłica. Polimeros, 2010, 20, 25-32.	0.2	14
790	Characterization of açaÃ-(E. oleracea) fruits and its processing residues. Brazilian Archives of Biology and Technology, 2010, 53, 1451-1460.	0.5	27
791	Photo- and Thermo-Oxidation of Polypropylene, Recycled Polypropylene and Polylactide Biocomposites in a Microenvironment Chamber. Polymers From Renewable Resources, 2010, 1, 1-15.	0.8	5
792	Compósito de resina de poliéster insaturado com bagaço de cana-de-açúcar: influência do tratamento das fibras nas propriedades. Polimeros, 2010, 20, 194-200.	0.2	27
793	Selection of high strength natural fibers. Revista Materia, 2010, 15, 488-505.	0.1	34
794	Diameter dependence of tensile strength by Weibull analysis: Part II jute fiber. Revista Materia, 2010, 15, 117-123.	0.1	14
795	Vegetable fibers as multifunctional materials. Revista Materia, 2010, 15, 355-363.	0.1	5
796	Charpy impact resistance of alkali treated curaua reinforced polyester composites. Revista Materia, 2010, 15, 131-137.	0.1	4
797	Water Absorption Study on Pultruded E-Glass Fibre Reinforced Unsaturated Polyester Composites. Advanced Composites Letters, 2010, 19, 096369351001900.	1.3	4
798	Studies on Mechanical Performance and Water Absorption of Recycled Newspaper/Glass Fiber-reinforced Polypropylene Hybrid Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 994-1005.	1.6	13
799	High Strength Natural Fibers for Improved Polymer Matrix Composites. Materials Science Forum, 0, 638-642, 961-966.	0.3	51
800	The Effect of Glass Fiber Aspect Ratio on Mechanical and Thermal Properties of PU/GF Foam Composites. Advanced Materials Research, 2010, 93-94, 210-213.	0.3	0
801	The Improvement of Mechanical Properties of Jute Fiber/LDPE Composites by Fiber Surface Treatment. Journal of Reinforced Plastics and Composites, 2010, 29, 1921-1929.	1.6	47
802	Flammability and Mechanical Properties of Sisal Fiber/Polypropylene Composites: Effect of Combination of Flame Retardants. Advanced Materials Research, 2010, 123-125, 85-88.	0.3	7
803	Preparation and Mechanical Characterization of a Polymer-Matrix Composite Reinforced with PET. Materials Research Society Symposia Proceedings, 2010, 1276, 1.	0.1	0
804	Effects of Chemical Treatment on Oil Palm Empty Fruit Bunch Reinforced High Density Polyethylene Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 2105-2118.	1.6	26
805	The Studies on Performance of Epoxy and Polyester-based Composites Reinforced with Bamboo and Glass Fibers. Journal of Reinforced Plastics and Composites, 2010, 29, 1952-1962.	1.6	51
806	Thermal, Mechanical, and Hygroscopic Behavior of Sisal Fiber/Polyurethane Resin-based Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 1399-1417.	1.6	28

#	Article	IF	Citations
807	Maximization of the Mechanical Properties of Birch-Polypropylene Composites with Additives by Statistical Experimental Design. Journal of Thermoplastic Composite Materials, 2010, 23, 239-263.	2.6	10
809	Hybrid yarns for thermoplastic composites. , 2010, , 387-428.		4
810	Production of Particleboard from Wheat Straw. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
811	Physico-mechanical properties of rubber seed shell carbon: Filled natural rubber compounds. Chemical Industry and Chemical Engineering Quarterly, 2010, 16, 149-156.	0.4	5
812	Influence of Particle Concentration and Type on Flow, Thermal, and Mechanical Properties of Wood-Polypropylene Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 1940-1951.	1.6	14
814	Effect of Fiber Treatment on Fiber Strength and Fiber/Matrix Interface of Hemp Reinforced Polypropylene Composites. Advanced Materials Research, 2010, 112, 1-8.	0.3	7
815	Effects of alkali and silane treatment on the mechanical properties of juteâ€fiberâ€reinforced recycled polypropylene composites. Journal of Vinyl and Additive Technology, 2010, 16, 183-188.	1.8	21
816	Mechanical Properties of Injection-molded Natural Fiber-reinforced Polypropylene Composites: Formulation and Compounding Processes. Journal of Reinforced Plastics and Composites, 2010, 29, 637-650.	1.6	52
817	The Mechanical Properties of \hat{I}^3 -Methacryloxypropyltrimethoxy silane-treated Jute/Polyester Composites. Journal of Composite Materials, 2010, 44, 1913-1924.	1.2	86
819	Mechanical Properties of PP Composites Reinforced with BCTMP Aspen Fiber. Journal of Thermoplastic Composite Materials, 2010, 23, 513-542.	2.6	16
820	Mechanical, Degradation, and Interfacial Properties of Synthetic Degradable Fiber Reinforced Polypropylene Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 466-476.	1.6	34
821	The Preparation and Characterization of Esterified Banana Trunk Fibers/Poly(vinyl alcohol) Blend Film. Polymer-Plastics Technology and Engineering, 2010, 49, 1378-1384.	1.9	22
823	Properties of Regenerated Cellulose Lyocell Fiber-Reinforced Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 359-371.	1.6	30
824	DSC Analysis and Mechanical Properties of Woodâ€"Plastic Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 278-289.	1.6	40
825	Mechanical Properties of Flax Fibers and of the Derived Unidirectional Composites. Journal of Composite Materials, 2010, 44, 2887-2896.	1.2	91
826	Short Bamboo Fiber-reinforced HDPE Composites: Influence of Fiber Content and Modification on Strength of the Composite. Journal of Reinforced Plastics and Composites, 2010, 29, 2199-2210.	1.6	103
827	DMA analysis on Bamboo fiber/Polylactic Acid composites. , 2010, , .		1
828	The Effects of Recycled Acrylonitrile Butadiene Rubber Content and Maleic Anhydride Modified Polypropylene (PPMAH) on the Mixing, Tensile Properties, Swelling Percentage and Morphology of Polypropylene/Recycled Acrylonitrile Butadiene Rubber/Rice Husk Powder (PP/NBRr/RHP) Composites. Polymer-Plastics Technology and Engineering, 2010, 49, 1323-1328.	1.9	24

#	Article	IF	CITATIONS
829	Characteristic Studies of Ligno-Cellulosic Fabric <i>Grewia tenax</i> . Journal of Natural Fibers, 2010, 7, 194-215.	1.7	11
830	Effect of Protein Content in Soy Protein Resins on Their Interfacial Shear Strength with Ramie Fibers. Journal of Adhesion Science and Technology, 2010, 24, 203-215.	1.4	24
831	Tensile Properties of Polycarbonate-coated Natural Fabric <i>Grewia tilifolia </i> Is Journal of Reinforced Plastics and Composites, 2010, 29, 1006-1008.	1.6	8
832	Hemp fibre as alternative to glass fibre in sheet moulding compound Part 1 – influence of fibre content and surface treatment on mechanical properties. Plastics, Rubber and Composites, 2010, 39, 268-276.	0.9	19
833	Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. EXPRESS Polymer Letters, 2010, 4, 729-741.	1.1	56
834	Effect of Moisture Absorption on Mechanical Properties of Chopped Natural Fiber Reinforced Epoxy Composite. Journal of Reinforced Plastics and Composites, 2010, 29, 2513-2521.	1.6	93
835	Surface Modification of Cellulose Fiber via Supramolecular Assembly of Biodegradable Polyesters by the Aid of Hostâ^'Guest Inclusion Complexation. Biomacromolecules, 2010, 11, 1364-1369.	2.6	52
837	Atomic Force Microscopy Characterization of Cellulose Nanocrystals. Langmuir, 2010, 26, 4480-4488.	1.6	295
839	Effect of Compatibilizers in WPC Composites. Engineering Materials, 2010, , 103-127.	0.3	1
840	Development of Recycled Polypropylene Matrix Composites Reinforced with Waste Jute Caddies. Journal of Reinforced Plastics and Composites, 2010, 29, 201-208.	1.6	13
841	Atomic Layer Deposition and Abrupt Wetting Transitions on Nonwoven Polypropylene and Woven Cotton Fabrics. Langmuir, 2010, 26, 2550-2558.	1.6	143
842	Synthesis, Characterization and Study of Pine Needles Reinforced Polymer Matrix Based Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 700-709.	1.6	92
843	Effects of Particle Size and Coupling Agent Concentration on Mechanical Properties of Particulate-filled Polymer Composites. Journal of Thermoplastic Composite Materials, 2010, 23, 169-174.	2.6	85
844	A Review on the Natural Fiber-Reinforced Polymer Composites for the Development of Roselle Fiber-Reinforced Polyester Composite. Journal of Natural Fibers, 2010, 7, 307-323.	1.7	110
845	Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. IOP Conference Series: Materials Science and Engineering, 2010, 11, 012015.	0.3	46
846	Mechanical, Thermal, and Interfacial Properties of Green Composites with Ramie Fiber and Soy Resins. Journal of Agricultural and Food Chemistry, 2010, 58, 5400-5407.	2.4	80
847	Effect of Teak Wood Flour on Melt Rheological Behaviour of High Density Polyethylene. Polymer-Plastics Technology and Engineering, 2010, 49, 418-425.	1.9	7
848	Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 192-198.	3.8	157

#	Article	IF	CITATIONS
849	Effect of various surface modifications of wood flour on the properties of PP/wood composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 199-206.	3.8	161
850	Assessment of the tensile properties of coir, bamboo and jute fibre. Composites Part A: Applied Science and Manufacturing, 2010, 41, 588-595.	3.8	211
851	Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2010, 41, 806-819.	3.8	1,677
852	Cardanol–formaldehyde thermoset composites reinforced with buriti fibers: Preparation and characterization. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1123-1129.	3.8	58
853	Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1245-1252.	3.8	200
854	A study on mechanical properties of bacterial cellulose/epoxy reinforced by plain woven carbon fiber modified with liquid rubber. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1263-1271.	3.8	38
855	A review of bast fibres and their composites. Part 1 $\hat{a} \in$ Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1329-1335.	3.8	509
856	Reactive compatibilization of composites of ethylene–vinyl acetate copolymers with cellulose fibres. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1545-1550.	3.8	30
857	Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1612-1619.	3.8	68
858	Laccase and alkali treatments of cellulose fibre: Surface lignin and its influences on fibre surface properties and interfacial behaviour of sisal fibre/phenolic resin composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1848-1856.	3.8	51
859	Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater. Water Research, 2010, 44, 1785-1796.	5. 3	46
860	A review of bast fibres and their composites. Part 2 – Composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1336-1344.	3.8	223
861	Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid) and Acetylated Microfibrillated Cellulose. Biomacromolecules, 2010, 11, 454-464.	2.6	284
862	High Performance Polysodium Acrylate Superabsorbents Utilizing Microfibrillated Cellulose to Augment Gel Properties. Soft Materials, 2010, 8, 207-225.	0.8	15
863	New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate. Langmuir, 2010, 26, 402-411.	1.6	342
864	Banana Fiber Reinforced Polymer Composites - A Review. Journal of Reinforced Plastics and Composites, 2010, 29, 2387-2396.	1.6	225
866	Modification of PLA. , 2010, , 38-141.		7
867	Novel Materials from Sesame Husks and Unsaturated Polyester Resin. Industrial & Engineering Chemistry Research, 2010, 49, 6069-6074.	1.8	8

#	Article	IF	CITATIONS
868	Mechanical Properties of Polypropylene Composites Reinforced with Chemically Treated Coir and Abaca Fiber. Journal of Reinforced Plastics and Composites, 2010, 29, 2253-2261.	1.6	72
869	Study of water sorption properties for esparto grass ultimate fibre (ALFA fibre). Journal of the Textile Institute, 2010, 101, 19-27.	1.0	4
870	The Processing and Characterization of Polyester/Natural Fiber Composites. Polymer-Plastics Technology and Engineering, 2010, 49, 1022-1029.	1.9	24
871	Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems. MRS Bulletin, 2010, 35, 201-207.	1.7	168
872	Brillouin Light Scattering Investigation of the Mechanical Properties of Layer-by-Layer Assembled Cellulose Nanocrystal Films. Macromolecules, 2010, 43, 9541-9548.	2.2	34
875	Mechanical Performance of Short Banana/Sisal Hybrid Fiber Reinforced Polyester Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 12-29.	1.6	158
876	The Effect of Waste Office White Paper Content and Size on the Mechanical and Thermal Properties of Low-Density Polyethylene (LDPE) Composites. Polymer-Plastics Technology and Engineering, 2010, 49, 672-677.	1.9	12
877	Thermomechanical and spectroscopic characterization of natural fibre composites., 2011,, 241-274.		39
878	Testing the effect of processing and surface treatment on the interfacial adhesion of single fibres in natural fibre composites., 2011,, 146-185.		6
879	Dielectric properties of polycarbonate coated natural fabric Grewia tilifolia. , 2011, , .		1
880	Castor Oil and Microcrystalline Cellulose Based Polymer Composites with High Tensile Strength. Advanced Materials Research, 0, 399-401, 1531-1535.	0.3	3
881	Tensile Properties and Micromorphologies of Sawdust and Chipwood Filled Epoxy Composites. Key Engineering Materials, 0, 471-472, 1070-1074.	0.4	3
882	Flexural Mechanical Characteristic of Sawdust and Chipwood Filled Epoxy Composites. Key Engineering Materials, 0, 471-472, 1064-1069.	0.4	4
883	Characterization of fiber surface treatments in natural fiber composites by infrared and Raman spectroscopy., 2011,, 117-145.		12
884	Effect of Iron Phosphate Glass on the Physico-mechanical Properties of Jute Fabric-reinforced Polypropylene-based Composites. Journal of Thermoplastic Composite Materials, 2011, 24, 695-711.	2.6	21
885	Mechanical, Water Absorption and Dimensional Stability Studies of Kenaf Bast Fibre-Filled Poly(butylene succinate) Composites. Polymer-Plastics Technology and Engineering, 2011, 50, 339-348.	1.9	33
886	Effect of \hat{I}^3 -Radiation on the Mechanical Performance of Hybrid Rice Straw/Seaweed-Polypropylene Composites. Journal of Adhesion Science and Technology, 2011, 25, 1961-1971.	1.4	10
888	The Effects of Thermal History on Tensile Properties of Poly(vinyl chloride) and its Composite with Sugarcane Bagasse. Journal of Thermoplastic Composite Materials, 2011, 24, 567-579.	2.6	9

#	Article	IF	CITATIONS
890	Electron beam cross-linking of hybridized kenaf/pineapple leaf fiber-reinforced high-density polyethylene composite with and without cross-linking agents. Journal of Reinforced Plastics and Composites, 2011, 30, 1827-1838.	1.6	5
891	Natural Fibres: Structure, Properties and Applications. , 2011, , 3-42.		68
892	Mechanical and Thermal Analysis of Poly (Vinyl-Alcohol) and Modified Wood Dust Composites. Journal of Wood Chemistry and Technology, 2011, 31, 218-232.	0.9	11
893	Natural Fibre-Reinforced Polymer Composites and Nanocomposites for Automotive Applications. , 2011, , 661-700.		37
894	Dimensional Analysis and Surface Morphology as Selective Criteria of Lignocellulosic Fibers as Reinforcement in Polymeric Matrices., 2011,, 215-240.		3
895	Sisal Fiber Based Polymer Composites and Their Applications. , 2011, , 589-659.		34
897	All-Cellulosic Based Composites. , 2011, , 399-421.		4
898	Interfacial Shear Strength in Lignocellulosic Fibers Incorporated Polymeric Composites., 2011,, 241-262.		5
899	Micromechanical Property Investigations of Poly(lactic acid)–Kenaf Fiber Biocomposites. Journal of Natural Fibers, 2011, 8, 14-26.	1.7	14
900	Amphiphilic Amylose <i>-g-</i> poly(meth)acrylate Copolymers through "Click―onto Grafting Method. Biomacromolecules, 2011, 12, 388-398.	2.6	31
901	Synthesis of Polycaprolactone-Grafted Microfibrillated Cellulose for Use in Novel Bionanocomposites–Influence of the Graft Length on the Mechanical Properties. ACS Applied Materials & Diterfaces, 2011, 3, 1426-1433.	4.0	134
902	Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. Journal of Materials Chemistry, 2011, 21, 16066.	6.7	130
903	Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers. Biomacromolecules, 2011, 12, 831-836.	2.6	284
905	Mechanical Properties of Chemically Treated Sawdust-Reinforced Recycled Polyethylene Composites. Industrial & December 1988 19	1.8	22
906	Study on Effect of Incorporation of Gelatin Fiber in Jute Fabrics-Reinforced Linear Low Density Polyethylene Composite. Polymer-Plastics Technology and Engineering, 2011, 50, 1344-1350.	1.9	4
907	Cellulose Fibers: Bio- and Nano-Polymer Composites. , 2011, , .		223
908	Recent Advances in the Processing of Wood-Plastic Composites. Engineering Materials, 2011, , .	0.3	43
910	Chemical and Physicochemical Investigation of an Aminoalkylalkoxysilane As Strengthening Agent for Cellulosic Materials. Biomacromolecules, 2011, 12, 2082-2091.	2.6	29

#	Article	IF	CITATIONS
911	Mechanical properties of hemp-lime reinforced mortars: influence of the chemical treatment of fibers. Journal of Composite Materials, 2011, 45, 2347-2357.	1.2	44
913	Biodegradable and Biobased Polymers. , 2011, , 145-158.		7
914	A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale, 2011, 3, 3563.	2.8	80
915	A Study of the Physical and Mechanical Properties of Paper Made from <i>Agave americana </i> L. Fibers. Materials and Manufacturing Processes, 2011, 26, 567-572.	2.7	9
916	Effect of Mercerized Banana Fiber on the Mechanical and Morphological Characteristics of Organically Modified Fiber-Reinforced Polypropylene Nanocomposites. Polymer-Plastics Technology and Engineering, 2011, 50, 1458-1469.	1.9	21
917	Nanocomposite-based lignocellulosic fibers 2: Layer-by-layer modification of wood fibers for reinforcement in thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 84-91.	3.8	24
918	Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Composites Part A: Applied Science and Manufacturing, 2011, 42, 189-195.	3.8	52
919	Effect of surface microfibrillation of sisal fibre on the mechanical properties of sisal/aramid fibre hybrid composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 244-252.	3.8	73
920	The effect of yarn length and diameter on permeability and compaction response of flax fibre mats. Composites Part A: Applied Science and Manufacturing, 2011, 42, 723-732.	3.8	41
921	A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1542-1550.	3.8	83
922	Processing, compatibilization and properties of ternary composites of Mater-Bi with polyolefins and hemp fibres. Composites Part A: Applied Science and Manufacturing, 2011, 42, 2060-2069.	3.8	23
923	Biocomposites Based on Biodegradable Thermoplastic Polyester and Lignocellulose Fibers. , 2011, , 453-478.		3
924	Biodegradable Soy Protein Isolate-Based Materials: A Review. Biomacromolecules, 2011, 12, 3369-3380.	2.6	287
925	Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40, 3941.	18.7	5,132
927	Biopolymer as Reinforcement into Natural Matrices: a New Route to Bio-Composite Materials., 0,,.		0
928	Functional Polymer Nanocomposite Materials from Microfibrillated Cellulose., 0,,.		10
929	Obtenção e caracterização de compósitos utilizando poliestireno como matriz e resÃduos de fibras de algodão da indústria têxtil como reforço. Polimeros, 2011, 21, 271-279.	0.2	17
930	Poliolefinas reforçadas com fibras vegetais curtas: sisal × curauá. Polimeros, 2011, 21, 168-174.	0.2	17

#	Article	IF	CITATIONS
931	Sawdust and digestive bran as cheap alternate substrates for xylanase production. African Journal of Microbiology Research, 2011, 5, 742-752.	0.4	9
932	Natural Fibre-Reinforced Biofoams. International Journal of Polymer Science, 2011, 2011, 1-14.	1.2	32
933	Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 2011, 1-35.	1.2	499
934	Composite Materials from Natural Resources: Recent Trends and Future Potentials. , 0, , .		39
935	ResÃduos de sisal como reforço em compósitos de polipropileno virgem e reciclado. Polimeros, 2011, 21, 90-97.	0.2	19
936	Mechanical Properties of Sandwich Injection Molded Jute/Glass Fiber Hybrid Composites. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 945-955.	0.5	2
939	Treated Tropical Wood Sawdust-Polypropylene Polymer Composite: Mechanical and Morphological Study. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 435-444.	1.0	41
940	Polypropylene matrix composites reinforced with coconut fibers. Materials Research, 2011, 14, 360-365.	0.6	28
943	Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing, 2011, 30, 833-840.	2.3	173
944	Composite materials of thermoplastic starch and fibers from the ethanol–water fractionation of bagasse. Industrial Crops and Products, 2011, 33, 739-746.	2.5	59
945	Development of thermal insulating and sound absorbing agro-sourced materials from auto linked flax-tows. Industrial Crops and Products, 2011, 34, 921-928.	2.5	51
946	Could oleaginous flax fibers be used as reinforcement for polymers?. Industrial Crops and Products, 2011, 34, 1556-1563.	2.5	70
947	A preliminary evaluation of matricaria maritimum fibres for polymer reinforcement. Industrial Crops and Products, 2011, 34, 1652-1654.	2.5	5
948	Use of lignin as a compatibiliser in hemp/epoxy composites. Composites Science and Technology, 2011, 71, 1804-1810.	3.8	88
949	New lignocellulosic fibres-reinforced composite materials: A stepforward in the valorisation of the Posidonia oceanica balls. Composites Science and Technology, 2011, 71, 1867-1872.	3.8	68
950	TEMPO-mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydrate Polymers, 2011, 86, 1445-1450.	5.1	44
951	Structure and properties of new natural cellulose fabrics from Cordia dichotoma. Carbohydrate Polymers, 2011, 86, 1623-1629.	5.1	94
952	Biofibers. ACS Symposium Series, 2011, , 323-365.	0.5	9

#	Article	IF	Citations
953	Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter, 2011, 7, 303-315.	1.2	732
954	Study on the Performance of Hybrid Jute/Betel Nut Fiber Reinforced Polypropylene Composites. Journal of Adhesion Science and Technology, 2011, 25, 615-626.	1.4	34
955	Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bulletin of Materials Science, 2011, 34, 1575-1581.	0.8	79
956	Influence of acetylation on the tensile properties, water absorption, and thermal stability of (Highâ€density polyethylene)/(soya powder)/(kenaf core) composites. Journal of Vinyl and Additive Technology, 2011, 17, 132-137.	1.8	28
957	Properties and morphology of poly(vinyl alcohol) blends with sago pith bioâ€filler as biodegradable composites. Journal of Vinyl and Additive Technology, 2011, 17, 184-189.	1.8	17
958	Effect of maleicâ€anhydrideâ€grafted polypropylene as a compatibilizer on the properties of polypropylene/(modified carbon black) composites. Journal of Vinyl and Additive Technology, 2011, 17, 260-264.	1.8	5
959	An improved microtensile technique for mechanical characterization of short plant fibers: a case study on bamboo fibers. Journal of Materials Science, 2011, 46, 739-746.	1.7	69
960	Studies of dielectric relaxation in natural fibres reinforced unsaturated polyester. Journal of Materials Science, 2011, 46, 3698-3707.	1.7	33
961	Impedance-spectroscopy analysis of oriented and mercerized bamboo fiber-reinforced epoxy composite. Journal of Materials Science, 2011, 46, 3445-3451.	1.7	27
962	Flame retardant diglycidylphenylphosphate and diglycidyl ether of bisphenol-A resins containing Borassus fruit fiber composites. Journal of Materials Science, 2011, 46, 5176-5183.	1.7	13
963	Preparation and characterisation of cellulose nanofibres. Journal of Materials Science, 2011, 46, 6029-6045.	1.7	158
964	A fibre diameter distribution factor (FDDF) for natural fibre composites. Journal of Materials Science, 2011, 46, 5876-5880.	1.7	35
965	Strength variability of single flax fibres. Journal of Materials Science, 2011, 46, 6344-6354.	1.7	87
966	Effect of Lignocellulosic Type on Long-Term Hygroscopic Behavior of Natural Filler/HDPE Composites. Journal of Polymers and the Environment, 2011, 19, 133-136.	2.4	6
967	A Two-Step Chemical Process for the Extraction of Cellulose Fiber and Pectin from Mulberry Branch Bark Efficiently. Journal of Polymers and the Environment, 2011, 19, 568-573.	2.4	18
968	Recycled Polyethylene Composites Reinforced with Jute Fabric from Sackcloth: Part II-Impact Strength Evaluation. Journal of Polymers and the Environment, 2011, 19, 957-965.	2.4	4
969	Polylactic Acid Composites Utilising Sequential Surface Treatments of Lignocellulose: Chemistry, Morphology and Properties. Journal of Polymers and the Environment, 2011, 19, 849-862.	2.4	10
970	Effects of Incorporating Polycaprolactone and Flax Fiber into Glycerol-Plasticized Pea Starch. Journal of Polymers and the Environment, 2011, 19, 841-848.	2.4	12

#	Article	IF	Citations
971	Effects of gamma irradiation with and without compatibilizer on the mechanical properties of polypropylene/wood flour composites. Journal of Polymer Research, 2011, 18, 801-809.	1.2	25
972	Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose, 2011, 18, 1391-1406.	2.4	137
973	Effect of surface treatments on the dynamic mechanical behavior of piassava fiber–polyester matrix composites. Journal of Thermal Analysis and Calorimetry, 2011, 103, 179-184.	2.0	12
974	Elastic and viscoelastic properties of sugarcane bagasse-filled poly(vinyl chloride) composites. Journal of Thermal Analysis and Calorimetry, 2011, 103, 1047-1053.	2.0	18
975	Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite. Journal of Thermal Analysis and Calorimetry, 2011, 104, 1083-1090.	2.0	35
976	Thermal and microstructural characterization of biodegradable films prepared by extrusion–calendering process. Carbohydrate Polymers, 2011, 83, 354-361.	5.1	25
977	Potential of structural pozzolanic matrix–hemp fiber grid composites. Construction and Building Materials, 2011, 25, 2867-2874.	3.2	55
978	Hydrophobic surface modification of ramie fibers with ethanol pretreatment and atmospheric pressure plasma treatment. Surface and Coatings Technology, 2011, 205, 4205-4210.	2.2	60
979	Dynamic mechanical analysis of randomly oriented short bagasse/coir hybrid fibre-reinforced epoxy novolac composites. Fibers and Polymers, 2011, 12, 506-513.	1.1	58
980	Effect of chemical modifications on the performance of biodegradable photocured coir fiber. Fibers and Polymers, 2011, 12, 727-733.	1.1	10
981	Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers and Polymers, 2011, 12, 919-926.	1.1	191
982	Effects of LENR addition on mechanical properties of kenaf fibre reinforced epoxy composites. International Journal of Plastics Technology, 2011, 15, 33-42.	2.9	6
983	Electrical and electromechanical properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide-blended cellulose. Ionics, 2011, 17, 41-47.	1.2	16
984	Natural Lignocellulosic Fibers as Engineering Materials—An Overview. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2963-2974.	1.1	245
985	Surfaceâ€modified sisal fiberâ€reinforced ecoâ€friendly composites: Mechanical, thermal, and diffusion studies. Polymer Composites, 2011, 32, 131-138.	2.3	19
986	Mechanical and thermal properties of compatibilized composites of LDPE and esterified unbleached wood pulp. Polymer Composites, 2011, 32, 199-209.	2.3	12
987	Structure and properties of phaseâ€change materials based on highâ€density polyethylene, hard Fischer–Tropsch paraffin wax, and wood flour. Polymer Composites, 2011, 32, 1155-1163.	2.3	15
988	Mechanical properties of sisal natural fiber composites according to strain rate and absorption ratio. Polymer Composites, 2011, 32, 1174-1180.	2.3	17

#	Article	IF	Citations
989	A comparative study on the mechanical and degradation properties of plant fibers reinforced polyethylene composites. Polymer Composites, 2011, 32, 1552-1560.	2.3	12
990	<i>Agave lechuguilla</i> Torrey fiber as reinforcement of polyester resin. Polymer Composites, 2011, 32, 1601-1606.	2.3	5
991	Green composites: An overview. Polymer Composites, 2011, 32, 1905-1915.	2.3	405
992	An experimental study of water absorption in polyester composites reinforced with macambira natural fiber. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 979-984.	0.5	20
993	Mechanical, moisture absorption, and photodegradation behaviors of bacterial cellulose nanofiber― reinforced unsaturated polyester composites. Advances in Polymer Technology, 2011, 30, 249-256.	0.8	30
994	Effect of flyash content, particle size of flyash, and type of silane coupling agents on the properties of recycled poly(ethylene terephthalate)/flyash composites. Journal of Applied Polymer Science, 2011, 119, 201-208.	1.3	20
995	Polyester biocomposites from recycled natural fibers: Characterization and biodegradability. Journal of Applied Polymer Science, 2011, 119, 1211-1219.	1.3	15
996	Studies on the physicoâ€mechanical, thermal, and morphological behaviors of high density polyethylene/coleus spent green composites. Journal of Applied Polymer Science, 2011, 119, 1889-1895.	1.3	22
997	Efficacy of hindered amines in woodflourâ€polypropylene composites compatibilized with vinyltrimethoxysilane after accelerated weathering and moisture absorption. Journal of Applied Polymer Science, 2011, 120, 2017-2026.	1.3	8
998	Mechanical performance of hybrid rice straw/sea weed polypropylene composites. Journal of Applied Polymer Science, 2011, 120, 1843-1849.	1.3	22
999	Preparation and mechanical properties of highâ€performance short ramie fiberâ€reinforced polypropylene composites. Journal of Applied Polymer Science, 2011, 122, 1564-1571.	1.3	41
1000	Improvement in impactâ€, tensileâ€, and dynamic properties of injection molded wheatâ€pulpâ€polypropylene composites through fiber finishing. Journal of Applied Polymer Science, 2011, 122, 2697-2707.	1.3	4
1001	Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chemical Engineering Journal, 2011, 166, 772-778.	6.6	178
1002	Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chemical Engineering Journal, $2011, 166, 1170-1178$.	6.6	95
1003	Multi-functional multi-walled carbon nanotube-jute fibres and composites. Carbon, 2011, 49, 2683-2692.	5 . 4	52
1004	Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydrate Polymers, 2011, 84, 975-983.	5.1	368
1005	Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 2011, 86, 1-18.	5.1	1,103
1006	Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(Îμ-caprolactone) bilayer laminate. Composites Science and Technology, 2011, 71, 9-12.	3 . 8	41

#	Article	IF	CITATIONS
1007	Biocomposites from Musa textilis and polypropylene: Evaluation of flexural properties and impact strength. Composites Science and Technology, 2011, 71, 122-128.	3.8	70
1008	Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Composites Science and Technology, 2011, 71, 382-387.	3.8	152
1009	Study of water behaviour of chemically treated flax fibres-based composites: A way to approach the hydric interface. Composites Science and Technology, 2011, 71, 893-899.	3.8	54
1010	Fibre cross-section determination and variability in sisal and flax and its effects on fibre performance characterisation. Composites Science and Technology, 2011, 71, 1008-1015.	3.8	96
1011	Modified cellulose microfibrils as benzene adsorbent. Desalination, 2011, 270, 143-150.	4.0	24
1012	Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation. Materials & Design, 2011, 32, 453-461.	5.1	273
1013	Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Materials & Design, 2011, 32, 1014-1019.	5.1	228
1014	Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates. Materials & Design, 2011, 32, 1399-1406.	5.1	52
1015	The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Materials & Design, 2011, 32, 3076-3084.	5.1	116
1016	Kenaf fiber reinforced composites: A review. Materials & Design, 2011, 32, 4107-4121.	5.1	953
1017	Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Materials & Design, 2011, 32, 4629-4640.	5.1	114
1018	Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5190-5195.	2.6	218
1019	Influence of chemical treatments on adhesion properties of hemp fibres. Journal of Colloid and Interface Science, 2011, 356, 303-310.	5.0	72
1020	Effect of Chemical treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite. Procedia Engineering, 2011, 10, 2092-2097.	1.2	255
1021	Reducing end-group of cellulose as a reactive site for thermal discoloration. Polymer Degradation and Stability, 2011, 96, 1242-1247.	2.7	28
1022	Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural wood fiber: Grafting of polymer as non leaching preservative. Polymer, 2011, 52, 606-616.	1.8	35
1023	Poly(É)-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties. Polymer, 2011, 52, 1532-1538.	1.8	200
1024	Assessing the moisture uptake behavior of natural fibres. , 2011, , 275-288.		5

#	Article	IF	CITATIONS
1025	Adhesion and Wettability Characteristics of Chemically Modified Banana Fibre for Composite Manufacturing. Journal of Adhesion Science and Technology, 2011, 25, 1515-1538.	1.4	5
1026	Influence of wet chemistry treatment on the mechanical performance of natural fibres. Polish Journal of Chemical Technology, 2011, 13, 21-27.	0.3	9
1027	Kenaf Nanofiber/Polylactic Acid (PLA) Nanocomposite. Key Engineering Materials, 0, 471-472, 1095-1100.	0.4	3
1029	Cure Characteristics and Mechanical Properties of Carboxylated Nitrile Butadiene Rubber (XNBR) Vulcanizate Reinforced by Organic Filler. Polymer-Plastics Technology and Engineering, 2011, 50, 1388-1392.	1.9	20
1030	Mechanical and Dynamic Analysis of Poly (Vinyl Alcohol)-Modified Wood Dust Nanocomposite. Polymer-Plastics Technology and Engineering, 2011, 50, 667-673.	1.9	5
1032	Poly(vinyl Alcohol)/Cellulose Nanocomposite Pervaporation Membranes for Ethanol Dehydration. Materials Science Forum, 0, 675-677, 383-386.	0.3	2
1034	Effect of Carbon Nanotubes on the Mechanical Properties of Polypropylene/Wood Flour Composites: Reinforcement Mechanism. Journal of Macromolecular Science - Physics, 2011, 50, 907-921.	0.4	18
1035	Quality of Measurement Methods for Mechanical Testing of PP-Biocomposites. Polymer-Plastics Technology and Engineering, 2011, 50, 239-244.	1.9	0
1036	Development of Environment Friendly Hybrid Layered Sisal–Glass–Epoxy Composites. Composite Interfaces, 2011, 18, 671-683.	1.3	22
1037	Effect of Span Length on the Tensile Properties of Natural Fibers. Advanced Materials Research, 2011, 264-265, 445-450.	0.3	15
1038	Properties and interactions of poly(vinyl alcohol)-sago pith waste biocomposites. Journal of Composite Materials, 2011, 45, 2199-2209.	1.2	10
1039	Study on the Modified Effect of Wood Fiber by Silane Coupling Agent. Applied Mechanics and Materials, 0, 55-57, 388-391.	0.2	0
1040	Mechanical Properties and Life-Cycle Sustainability Aspects of Natural Fibre. Advanced Materials Research, 0, 347-353, 1887-1893.	0.3	4
1041	Composites of Poly(lactic Acid) with Rice Straw Fibers Modified by Poly(butyl Acrylate). Materials Science Forum, 2011, 675-677, 357-360.	0.3	1
1043	Stress corrosion cracking (SCC) in polymer composites. , 2011, , 485-536.		2
1045	Interface engineering through matrix modification in natural fibre composites. , 2011, , 43-81.		3
1046	Friction and Wear Behavior of POM Composites Filled with LDPE and Wood Fibers. Advanced Materials Research, 0, 415-417, 293-296.	0.3	3
1047	Studies on the Influence of Silane Treatment on Mechanical Properties of Coconut Sheath-Reinforced Polyester Composite. Polymer-Plastics Technology and Engineering, 2011, 50, 1600-1605.	1.9	24

#	Article	IF	Citations
1048	The Influence of Amount of Wood Fiber on New Flame-Retardant Melamine-Urea-Formaldehyde (MUF) Composite Foam. Advanced Materials Research, 0, 393-395, 1012-1017.	0.3	1
1050	Natural fibers for biocomposites. MRS Bulletin, 2011, 36, 711-715.	1.7	6
1052	Characterization of polypropylene composites reinforced with flax fibers treated by mechanical and alkali methods. Science and Engineering of Composite Materials, 2011, 18, 79-85.	0.6	6
1054	Effect of Plasma-Induced Polymerization on Contact Angle of Paper. Advanced Materials Research, 0, 396-398, 1619-1623.	0.3	0
1055	Mechanical, Degradation and Interfacial Properties of Chitosan Fiber-Reinforced Polypropylene Composites. Polymer-Plastics Technology and Engineering, 2011, 50, 141-146.	1.9	13
1056	Coir Fiber for Heat Insulation. Journal of Natural Fibers, 2011, 8, 48-58.	1.7	8
1057	Properties of Jute Fibers Reinforced Friction Materials. Advanced Materials Research, 2011, 399-401, 474-477.	0.3	0
1058	Effect of Fibre Size and Fibre Loading on Tensile Properties of Hybridized Kenaf/PALF Reinforced HDPE Composite. Key Engineering Materials, 0, 471-472, 680-685.	0.4	3
1061	Development of Green Insulation Boards from Kenaf Fibres and Polyurethane. Polymer-Plastics Technology and Engineering, 2011, 50, 613-621.	1.9	21
1064	Physico-Mechanical and Degradation Properties of Banana Fiber/LDPE Composites: Effect of Acrylic Monomer and Starch. Composite Interfaces, 2011, 18, 685-700.	1.3	29
1065	Acoustic, tomographic, and morphological properties of bismaleimide-modified PLA green composites. Journal of Reinforced Plastics and Composites, 2011, 30, 1329-1340.	1.6	9
1066	Properties of compression moulded new fully biobased thermoset composites with aligned flax fibre textiles. Plastics, Rubber and Composites, 2011, 40, 294-299.	0.9	15
1067	Influencia del Recubrimiento de las Fibras de Vidrio sobre la Efectividad de la Reacción de Copolimerización Propileno-Vidrio. Informacion Tecnologica (discontinued), 2011, 22, 77-82.	0.1	1
1068	Evaluation of the cross-section of lignocellulosic fibers using digital microscopy and image analysis. Journal of Composite Materials, 2012, 46, 3057-3065.	1.2	15
1069	Non-linear behaviour of PLA based flax composites. Plastics, Rubber and Composites, 2012, 41, 49-60.	0.9	17
1070	A Review on the Mechanical and Physical Properties of Natural Fiber Composites. Applied Mechanics and Materials, 0, 229-231, 276-281.	0.2	10
1071	Study on Modified Wood Fiber/Recycled Plastic HDPE Composites. Applied Mechanics and Materials, 0, 253-255, 326-329.	0.2	0
1072	Study on the mechanical, degradation, and interfacial properties of calcium alginate fiber-reinforced polyethylene oxide composites. Journal of Thermoplastic Composite Materials, 2012, 25, 807-819.	2.6	7

#	Article	IF	CITATIONS
1073	Research on Carbon-Free Al-Al ₂ O ₃ Composite Sliding Gate Performance. Advanced Materials Research, 2012, 466-467, 8-12.	0.3	0
1074	Starch/SBR Biocomposites Prepared by Solid Blend Method: Effect of Surface Modification and Coupling Agent. Advanced Materials Research, 0, 430-432, 1076-1080.	0.3	1
1075	Effect of the Interface Control Process of Wood Fiber/PLA on Properties of Composites. Advanced Materials Research, 2012, 557-559, 281-285.	0.3	1
1076	Effect of Coupling Agent on Mechanical Properties of Composite from Microcrystalline Cellulose and Recycled Polypropylene. Advanced Materials Research, 0, 576, 390-393.	0.3	7
1077	1 Cellulose and potential reinforcement., 2012,, 1-42.		5
1078	Nanoscale Structural and Mechanical Characterization of MWCNT-Reinforced Polymer Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2012, 134, .	0.8	6
1079	Effect of potassium permanganate on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composite. Journal of Reinforced Plastics and Composites, 2012, 31, 1725-1736.	1.6	15
1080	Natural Fibres as Reinforcement Strategy on Cork-Polymer Composites. Materials Science Forum, 2012, 730-732, 373-378.	0.3	2
1081	Effects of Methane Cold Plasma in Sisal Fibers. Key Engineering Materials, 0, 517, 458-468.	0.4	28
1082	Effect of accelerated environmental aging on mechanical behavior of curaua/glass hybrid composite. Journal of Composite Materials, 2012, 46, 2055-2064.	1.2	19
1083	Dielectric and mechanical properties of alkali- and silane-treated bamboo-epoxy nanocomposites. Journal of Composite Materials, 2012, 46, 3089-3101.	1.2	26
1084	Thermal Stability of the Hemp Fibers and Fabrics. Advanced Materials Research, 0, 466-467, 152-156.	0.3	0
1085	Frictional and heat resistance characteristics of coconut husk particle filled automotive brake pad., 2012,,.		2
1086	Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre. , 2012,		6
1087	Investigation on hardness and impact resistance of automotive brake pad composed with rice husk dust. AIP Conference Proceedings, 2012, , .	0.3	10
1088	Optimization of Alkaline Treatment Conditions of Flax Fiber Using Box–Behnken Method. Journal of Natural Fibers, 2012, 9, 256-276.	1.7	37
1089	Preparation of EPR/silica filler by a co-irradiation method forming PP/EPR/silica nanocomposites. Radiation Effects and Defects in Solids, 2012, 167, 69-78.	0.4	1
1090	Cellulose nanoparticles as reinforcement in polymer nanocomposites. , 2012, , 131-163.		6

#	Article	IF	CITATIONS
1091	Physical and mechanical properties of Pandanus amaryllifolius fiber reinforced low density polyethylene composite for packaging application. , 2012, , .		4
1092	Influence of Atmospheric Helium Plasma on the Surface Energy of Jute Fibres and the Performance of Resulting Composites. Journal of Adhesion Science and Technology, 2012, 26, 151-162.	1.4	8
1093	Microstructure, mechanical behaviour, damage mechanisms of polypropylene/short hemp fibre composites: Experimental investigations. Journal of Reinforced Plastics and Composites, 2012, 31, 1576-1585.	1.6	9
1094	Influence of surface treatment on the wetting process of jute fibres with thermosetting polyester resin. Polish Journal of Chemical Technology, 2012, 14, 21-27.	0.3	10
1095	Effect of water glass treatment on the mechanical and thermooxidative properties of kenaf and sisal fibres. Journal of Reinforced Plastics and Composites, 2012, 31, 1261-1269.	1.6	12
1096	The effect of woven and non-woven fiber structure on mechanical properties polyester composite reinforced kenaf. AIP Conference Proceedings, 2012, , .	0.3	12
1097	Mechanical characterization of sisal fiber reinforced polymer mortars: Compressive and flexural properties. Journal of Reinforced Plastics and Composites, 2012, 31, 1662-1669.	1.6	12
1098	Properties of natural fiber composites made by pultrusion process. Journal of Composite Materials, 2012, 46, 237-246.	1.2	78
1099	Studies on the Tribological Behavior of Natural Fiber Reinforced Polymer Composite. Green Energy and Technology, 2012, , 329-345.	0.4	26
1100	Oil Palm Biomass Fibres and Recent Advancement in Oil Palm Biomass Fibres Based Hybrid Biocomposites. , 0, , .		30
1101	Fabrication and Characterization of Jute Fabric-Reinforced PVC-based Composite. Journal of Thermoplastic Composite Materials, 2012, 25, 45-58.	2.6	26
1102	Effect of injection molding parameters on nanofillers dispersion in masterbatch based PP-clay nanocomposites. EXPRESS Polymer Letters, 2012, 6, 237-248.	1.1	28
1103	Dimensional and hygroexpansive behaviors of cellulose microfibrils (MFs) from kraft pulp-based fibers as a function of relative humidity. Holzforschung, 2012, 66, 1001-1008.	0.9	6
1104	Tensile and impact properties of three-component PP/wood/elastomer composites. EXPRESS Polymer Letters, 2012, 6, 224-236.	1.1	56
1105	Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials, 2012, 5, 1084-1113.	1.3	157
1106	Experimental Research on the Flax/PP Thermoplastic Composite Material Hot Pressing Process. Advanced Materials Research, 0, 573-574, 1216-1219.	0.3	1
1107	Mechanical Properties of Screw Pine (Pandanus Odoratissimus) Fibers—Unsaturated Polyester Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 500-506.	1.9	25
1108	Dissolution of Cellulose and Synthesis of Cellulose-Graft-Poly (L-Lactide) via Ring-Opening Polymerization in an Ionic Liquid. Advanced Materials Research, 0, 476-478, 1897-1900.	0.3	2

#	Article	IF	CITATIONS
1109	Mechanical and Morphological Properties of Flax Fiber Reinforced High Density Polyethylene/Recycled Rubber Composites. International Polymer Processing, 2012, 27, 196-204.	0.3	20
1110	Influence of Flax Fibers on Properties of Starch-Based Composites. , 2012, , .		7
1111	Effect of silica on the thermal properties of LDPE-WF-silica composites. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012036.	0.3	0
1112	Noise Control of Home Appliances — The Green Way. Noise and Vibration Worldwide, 2012, 43, 26-34.	0.4	17
1113	Effect of the Fiber Equivalent Diameter on the Elastic Modulus and Density of Sisal Fibers. , 0, , 357-364.		2
1114	Correlation between the Density and the Diameter of Buriti Fibers. , 2012, , 365-371.		1
1115	DEVELOPMENT OF MANILA HEMP FIBER EPOXY COMPOSITE WITH HIGH TENSILE PROPERTIES THROUGH HANDPICKING FIBER FRAGMENTS. International Journal of Modern Physics Conference Series, 2012, 06, 191-196.	0.7	0
1117	Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. Journal of Materials Chemistry, 2012, 22, 20105.	6.7	245
1118	Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 2012, 43, 2883-2892.	5.9	1,192
1119	Surface-initiated ring-opening polymerization from cellulose model surfaces monitored by a Quartz Crystal Microbalance. Soft Matter, 2012, 8, 512-517.	1.2	28
1121	Chemical Modification of Hemp Shives and their Characterization. Procedia Engineering, 2012, 42, 931-941.	1.2	65
1122	Silane-treated lignocellulosic fibers as reinforcement material in polylactic acid biocomposites. Journal of Thermoplastic Composite Materials, 2012, 25, 1005-1022.	2.6	29
1123	Study of morphology, mechanical properties, and thermal behavior of green aliphatic–aromatic copolyester/bamboo flour composites. Polymer Engineering and Science, 2012, 52, 2296-2303.	1.5	11
1124	Influence of wood mercerization on the crystallization of polypropylene in wood/PP composites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 595-603.	2.0	29
1125	Crystallisation of polypropylene matrix in composites filled with wooden parts of rapeseed straw. Journal of Thermal Analysis and Calorimetry, 2012, 109, 611-618.	2.0	10
1126	Grafting of cellulose by ring-opening polymerisation – A review. European Polymer Journal, 2012, 48, 1646-1659.	2.6	229
1127	Fabrication-Modelling and Analysis on Tribological Performance of Natural Composites Using Taguchi Approach. Procedia Engineering, 2012, 38, 2635-2644.	1.2	10
1128	Effect of Hemp Shive Sizes on Mechanical Properties of Lightweight Fibrous Composites. Procedia Engineering, 2012, 42, 496-500.	1.2	33

#	Article	IF	Citations
1129	Chemically Treated Hemp Shives as a Suitable Organic Filler for Lightweight Composites Preparing. Procedia Engineering, 2012, 42, 948-954.	1.2	22
1130	Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012, 37, 1552-1596.	11.8	2,982
1131	Reactive compatibilization of ethylene-co-vinyl acetate/starch blends. Macromolecular Research, 2012, 20, 1054-1062.	1.0	11
1132	Thermogravimetric Stability of Polymer Composites Reinforced with Less Common Lignocellulosic Fibers – an Overview. Journal of Materials Research and Technology, 2012, 1, 117-126.	2.6	106
1133	Materials and design issues for military helmets. , 2012, , 103-138.		10
1134	Fractography Analysis of Naturally Woven Coconut Sheath Reinforced Polyester Composite: A Novel Reinforcement. Polymer-Plastics Technology and Engineering, 2012, 51, 419-424.	1.9	21
1135	Structural Characterisation of Cellulose and Nanocellulose Extracted from Mengkuang Leaves. Advanced Materials Research, 0, 545, 119-123.	0.3	7
1136	Maleated Natural Rubber as a Coupling Agent for Recycled High Density Polyethylene/Natural Rubber/Kenaf Powder Biocomposites. Polymer-Plastics Technology and Engineering, 2012, 51, 904-910.	1.9	30
1137	Natural fibres for automotive applications. , 2012, , 219-253.		10
1138	Polyester/kenaf composite; effect of matrix modification. , 2012, , .		4
1139	The Applied Research of Fiber Reinforced Composites Materials in Sports Equipments. Advanced Materials Research, 0, 485, 506-509.	0.3	5
1140	Effect of Gamma Radiation on the Mechanical Properties of Urea-Treated Rice Straw Polypropylene Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 977-982.	1.9	9
1141	Strengthening of degraded cellulosic material using a diamine alkylalkoxysilane. RSC Advances, 2012, 2, 7470.	1.7	25
1142	Effect of water absorption on mechanical properties of soybean oil thermosets reinforced with natural fibers. Journal of Reinforced Plastics and Composites, 2012, 31, 1191-1200.	1.6	50
1143	Effect of water absorption on pultruded jute/glass fiber-reinforced unsaturated polyester hybrid composites. Journal of Composite Materials, 2012, 46, 51-61.	1.2	110
1144	Synthesis, adsorption and adhesive properties of a cationic amphiphilic block copolymer for use as compatibilizer in composites. European Polymer Journal, 2012, 48, 1195-1204.	2.6	20
1145	Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydrate Polymers, 2012, 89, 1189-1197.	5.1	178
1146	Preparation and properties of sisal microfibril/gelatin biomass composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 45-52.	3.8	17

#	Article	IF	CITATIONS
1147	Woven hybrid biocomposites: Dynamic mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 2012, 43, 288-293.	3.8	172
1148	Studies on the characterization of piassava fibers and their epoxy composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 353-362.	3.8	77
1149	Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 703-710.	3.8	52
1150	Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1234-1241.	3.8	82
1151	All-cellulose composites prepared from flax and lyocell fibres compared to epoxy–matrix composites. Composites Science and Technology, 2012, 72, 1304-1309.	3.8	60
1152	Preforms and composites manufactured by novel flax/polypropylene cowrap spinning method. Journal of Composite Materials, 2012, 46, 2097-2109.	1.2	17
1153	The tensile behavior of offâ€axis loaded plant fiber composites: An insight on the nonlinear stress–strain response. Polymer Composites, 2012, 33, 1494-1504.	2.3	60
1154	Transport studies of peanut shell powder reinforced natural rubber composites in aromatic solvents. Polymer Composites, 2012, 33, 1678-1692.	2.3	17
1155	Preparation and properties of biocomposites composed of sorbitolâ€based epoxy resin, pyrogallolâ€'vanillin calixarene, and wood flour. Polymer Composites, 2012, 33, 1840-1847.	2.3	28
1156	Preparation of silica nanospheres and porous polymer membranes with controlled morphologies via nanophase separation. Nanoscale Research Letters, 2012, 7, 440.	3.1	9
1158	Biocomposites., 2012,, 295-315.		5
1159	Natural Fiber Reinforced Composites. Polymer Reviews, 2012, 52, 259-320.	5.3	348
1160	Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1921-1929.	3.8	85
1161	PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study. Composites Part B: Engineering, 2012, 43, 3453-3461.	5.9	53
1162	Influence of fibre treatment and glass fibre hybridisation on thermal degradation and surface energy characteristics of hemp/unsaturated polyester composites. Composites Part B: Engineering, 2012, 43, 2757-2761.	5.9	71
1163	Electron-beam-irradiated rice husk powder as reinforcing filler in natural rubber/high-density polyethylene (NR/HDPE) composites. Composites Part B: Engineering, 2012, 43, 3069-3075.	5.9	33
1164	Mechanical and interfacial properties of wood and bio-based thermoplastic composite. Composites Science and Technology, 2012, 72, 1733-1740.	3.8	43
1165	Thermal and Mechanical Properties of Zeolite Filled Ethylene Vinyl Acetate Composites. Procedia Chemistry, 2012, 4, 95-100.	0.7	12

#	Article	IF	CITATIONS
1166	Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 557, 17-28.	2.6	199
1168	Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers Based on PCL and Quaternized PDMAEMA. ACS Applied Materials & Interfaces, 2012, 4, 6796-6807.	4.0	29
1170	Alkali Treatment of Screw Pine (<i>Pandanus Odoratissimus</i>) Fibers and Its Effect on Unsaturated Polyester Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 12-18.	1.9	32
1171	Effect of mercerization on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites. Fibers and Polymers, 2012, 13, 1300-1309.	1.1	32
1172	Sisal fiber (SF) reinforced recycled polypropylene (RPP) composites. International Journal of Plastics Technology, 2012, 16, 150-165.	2.9	17
1174	Thermogravimetric Stability Behavior of Less Common Lignocellulosic Fibers - a Review. Journal of Materials Research and Technology, 2012, 1, 189-199.	2.6	52
1175	Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. Journal of Forestry Research, 2012, 23, 667-674.	1.7	57
1176	Preparation and Characterization of Modified Cellulose Fiber-Reinforced Polyvinyl Alcohol/Polypyrrolidone Hybrid Film Composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 639-647.	1.2	9
1177	Effect of surface modification and hybridization on dynamic mechanical properties of Roystonea regia/glass–epoxy composites. Bulletin of Materials Science, 2012, 35, 1143-1149.	0.8	4
1179	Mechanical and Thermal Properties of Compatibilized Waste Office White Paper-Filled Low-Density Polyethylene Composites. Journal of Thermoplastic Composite Materials, 2012, 25, 193-207.	2.6	10
1180	Preparation and structural evaluation of nano reinforced composites from cellulose whiskers of grass and biodegradable polymer matrix. Journal of Composite Materials, 2012, 46, 653-663.	1.2	12
1181	Utilization of coconut shell powder as a novel filler in natural rubber. Journal of Reinforced Plastics and Composites, 2012, 31, 533-547.	1.6	57
1182	Effect of PEG on impact strength of PLA hybrid biocomposite. , 2012, , .		2
1183	Hemp fiber and its composites – a review. Journal of Composite Materials, 2012, 46, 973-986.	1.2	449
1184	EFFECT OF MALEIC ANHYDRIDE ON KENAF DUST FILLED POLYCAPROLACTONE/THERMOPLASTIC SAGO STARCH COMPOSITES. BioResources, 2012, 7, .	0.5	7
1185	RENEWABLE FIBERS AND BIO-BASED MATERIALS FOR PACKAGING APPLICATIONS – A REVIEW OF RECENT DEVELOPMENTS. BioResources, 2012, 7, 2506-2552.	0.5	216
1186	MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES. BioResources, 2012, 7, .	0.5	36
1187	EVALUATION OF HIGH DENSITY POLYETHYLENE COMPOSITE FILLED WITH BAGASSE AFTER ACCELERATED WEATHERING FOLLOWED BY BIODEGRADATION. BioResources, 2012, 7, .	0.5	14

#	Article	IF	CITATIONS
1188	DEGRADATION OF OIL PALM EMPTY FRUIT BUNCHES (OPEFB) FIBRE DURING COMPOSTING PROCESS USING IN-VESSEL COMPOSTER. BioResources, 2012, 7 , .	0.5	28
1189	Investigating and Optimizing the Process Variables Related to the Tensile Properties of Short Jute Fiber Reinforced with Polypropylene Composite Board. Journal of Engineered Fibers and Fabrics, 2012, 7, 155892501200700.	0.5	3
1190	Mechanical Properties of Recycled Polypropylene/SBR Rubber Crumbs Blends Reinforced by Birch Wood Flour. Polymers and Polymer Composites, 2012, 20, 439-444.	1.0	17
1191	Cleaning and Chemical Treatment of Flax Fibre for Development of Biocomposite. , 2012, , .		0
1192	Impact of fibre diameter on mechanical properties of flax based composite., 2012,,.		0
1193	The Effect of Surface Modifications on the Mechanical and Thermal Properties of Empty Fruit Bunch Oil Palm Fibre PP Biocomposites. Polymers From Renewable Resources, 2012, 3, 79-100.	0.8	5
1194	Thermoplastic Matrix Reinforced with Natural Fibers: A Study on Interfacial Behavior. , 0, , .		20
1195	Nanoparticles Based on Modified Polysaccharides. , 0, , .		17
1196	Efeito do tratamento alcalino de fibras de juta no comportamento mecânico de compósitos de matriz epóxi. Polimeros, 2012, 22, 339-344.	0.2	17
1197	Experimental Study on Mechanical and Thermal Properties of Epoxy Composites Filled with Agricultural Residue. Polymers From Renewable Resources, 2012, 3, 117-138.	0.8	22
1198	SYNTHESIS AND CHARACTERIZATION OF CELLULOSE-GRAFT-POLY (L-LACTIDE) VIA RING-OPENING POLYMERIZATION. BioResources, 2012, 7, .	0.5	10
1199	RESEARCH ON THE SUITABILITY OF ORGANOSOLV SEMI-CHEMICAL TRITICALE FIBERS AS REINFORCEMENT FOR RECYCLED HDPE COMPOSITES. BioResources, 2012, 7, .	0.5	8
1200	TEMPO-Mediated Oxidation of Lignocellulosic Fibers from Date Palm Leaves: Effect of the Oxidation on the Processing by RTM Process and Properties of Epoxy Based Composites. , 0, , .		3
1201	Comparison between dewâ€retted and enzymeâ€retted flax fibers as reinforcing material for composites. Polymer Engineering and Science, 2012, 52, 165-171.	1.5	8
1202	Controlled grafting of cellulose fibres – an outlook beyond paper and cardboard. Polymer Chemistry, 2012, 3, 1702-1713.	1.9	123
1203	Plant Fiber Formation: State of the Art, Recent and Expected Progress, and Open Questions. Critical Reviews in Plant Sciences, 2012, 31, 201-228.	2.7	132
1204	Functionalization and Compatibilization of Poly(<i>ε</i> â€caprolactone) Composites with Cellulose Microfibres: Morphology, Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 2012, 297, 985-993.	1.7	25
1205	Improved mechanical and thermal properties of bamboo–epoxy nanocomposites. Polymer Composites, 2012, 33, 362-370.	2.3	22

#	Article	IF	CITATIONS
1206	Comparative experimental measurements of jute fiber/polypropylene and coir fiber/polypropylene composites as ionizing radiation. Polymer Composites, 2012, 33, 1077-1084.	2.3	29
1207	Isolation and characterization of betel nut leaf fiber: Its potential application in making composites. Polymer Composites, 2012, 33, 764-772.	2.3	21
1208	Polyester composites of short pineapple fiber and glass fiber: Tensile and impact properties. Polymer Composites, 2012, 33, 1064-1070.	2.3	25
1209	Morphology, thermal, and dynamic mechanical properties of poly(lactic acid)/sisal whisker nanocomposites. Polymer Composites, 2012, 33, 1025-1032.	2.3	52
1210	Effects of alkalization on tensile, impact, and fatigue properties of hemp fiber composites. Polymer Composites, 2012, 33, 1129-1140.	2.3	47
1211	Effect of graft copolymerization on mechanical, thermal, and chemical properties of <i>grewia optiva</i> /unsaturated polyester biocomposites. Polymer Composites, 2012, 33, 1403-1414.	2.3	14
1212	Processing and mechanical properties of thermoplastic composites based on cellulose fibers and ethylene—acrylic acid copolymer. Polymer Engineering and Science, 2012, 52, 1951-1957.	1.5	17
1213	Novel Biodegradable and Biocompatible Poly(3â€hydroxyoctanoate)/Bacterial Cellulose Composites. Advanced Engineering Materials, 2012, 14, B330.	1.6	24
1214	Preparation and properties of celluloseâ€based nano composites of clay and polypropylene. Journal of Applied Polymer Science, 2012, 125, E651.	1.3	18
1215	Thermal stability and flammability of bananaâ€fiberâ€reinforced polypropylene nanocomposites. Journal of Applied Polymer Science, 2012, 125, E432.	1.3	36
1216	Isolation of cellulose nanofibers from para rubberwood and their reinforcing effect in poly(vinyl) Tj ETQq0 0 0 rgE	T /Overloo	:k 10 Tf 50 3
1217	Effects of organic peroxide and polymer chain structure on mechanical and dynamic mechanical properties of sisal fiber reinforced polyethylene composites. Journal of Applied Polymer Science, 2012, 125, 2216-2222.	1.3	10
1218	Interfacial compatibility of wood flour/polypropylene composites by stress relaxation method. Journal of Applied Polymer Science, 2012, 126, E89.	1.3	26
1219	Easy alignment and effective nucleation activity of ramie fibers in injectionâ€molded poly(lactic acid) biocomposites. Biopolymers, 2012, 97, 825-839.	1.2	60
1220	Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 2012, 19, 855-866.	2.4	674
1221	Morphological evolution of curauá fibers under acid hydrolysis. Cellulose, 2012, 19, 1199-1207.	2.4	18
1222	Solid biopolymer electrolytes based on all-cellulose composites prepared by partially dissolving cellulosic fibers in the ionic liquid 1-butyl-3-methylimidazolium chloride. Journal of Materials Science, 2012, 47, 5978-5986.	1.7	34
1223	Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene. Journal of Polymer Research, 2012, 19, 1.	1.2	58

#	Article	IF	CITATIONS
1224	Some of the mechanical and thermal properties of wheat straw filled-PP composites. Fibers and Polymers, 2012, 13, 515-521.	1.1	9
1225	Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 2012, 13, 632-640.	1.1	28
1226	Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. International Journal of Precision Engineering and Manufacturing, 2012, 13, 1199-1206.	1.1	111
1227	Compressive and Tensile Behaviours of PLLA Matrix Composites Reinforced with Randomly Dispersed Flax Fibres. Applied Composite Materials, 2012, 19, 171-188.	1.3	26
1228	Pectinase treatments on technical fibres of flax: Effects on water sorption and mechanical properties. Carbohydrate Polymers, 2012, 87, 177-185.	5.1	80
1229	Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydrate Polymers, 2012, 87, 411-421.	5.1	131
1230	Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 2012, 88, 772-779.	5.1	402
1231	Energy absorption and failure response of silk/epoxy composite square tubes: Experimental. Composites Part B: Engineering, 2012, 43, 542-548.	5.9	77
1232	Effects of extruder parameters and silica on physico-mechanical and foaming properties of PP/wood-fiber composites. Composites Part B: Engineering, 2012, 43, 2047-2057.	5.9	45
1233	Low density polyethylene composites containing cellulose pulp fibers. Composites Part B: Engineering, 2012, 43, 1873-1880.	5.9	67
1234	Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Composites Science and Technology, 2012, 72, 858-863.	3.8	155
1235	Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites: Influence of impactor geometry and impact velocity. Composite Structures, 2012, 94, 2756-2763.	3.1	80
1236	Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood–polypropylene composites. Construction and Building Materials, 2012, 33, 63-69.	3.2	78
1237	Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Industrial Crops and Products, 2012, 36, 257-266.	2.5	108
1238	Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Products, 2012, 40, 55-61.	2.5	148
1239	Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresource Technology, 2012, 107, 222-228.	4.8	204
1240	Mechanical and self-healing properties of cementitious composites reinforced with flax and cottonised flax, and compared with polyvinyl alcohol fibres. Biosystems Engineering, 2012, 111, 325-335.	1.9	86
1241	Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites. Materials & Design, 2012, 33, 322-327.	5.1	58

#	Article	IF	CITATIONS
1242	Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Materials & Design, 2012, 35, 318-322.	5.1	148
1243	Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica/polyester composites. Materials & Design, 2012, 37, 111-121.	5.1	105
1244	Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Materials & Design, 2012, 37, 379-383.	5.1	158
1245	Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Materials & Design, 2012, 40, 528-535.	5.1	114
1246	A new generation of wood polymer composite with improved thermal stability. Polymer Degradation and Stability, 2012, 97, 496-503.	2.7	24
1247	A comparative study of the stressâ€relaxation behavior of untreated and alkaliâ€treated jute fibers. Journal of Applied Polymer Science, 2012, 123, 1348-1358.	1.3	8
1248	Chemical modification of hemp fibers by silane coupling agents. Journal of Applied Polymer Science, 2012, 123, 601-610.	1.3	82
1249	Effect of bismaleimide reactive extrusion on the crystallinity and mechanical performance of poly(lactic acid) green composites. Journal of Applied Polymer Science, 2012, 124, 3013-3023.	1.3	15
1250	A critical review of all-cellulose composites. Journal of Materials Science, 2012, 47, 1171-1186.	1.7	344
1251	Hydroxyethylcellulose surface treatment of natural fibres: the new †twist†in yarn preparation and optimization for composites applicability. Journal of Materials Science, 2012, 47, 2700-2711.	1.7	47
1252	Adhesive surface interactions of cellulose nanocrystals from different sources. Journal of Materials Science, 2012, 47, 3961-3970.	1.7	15
1253	Processing and characterization of nanofibrillated cellulose/layered silicate systems. Journal of Materials Science, 2012, 47, 4370-4382.	1.7	28
1254	The influence of wood flour and compatibilizer (m-TMI-g-PP) on crystallization and melting behavior of polypropylene. Journal of Thermal Analysis and Calorimetry, 2012, 107, 717-723.	2.0	4
1255	Synergistic effect of coupling agents on polypropyleneâ€based wood–plastic composites. Journal of Applied Polymer Science, 2013, 127, 1047-1053.	1.3	34
1256	Deinked and acetylated fiber of newspapers. Journal of Applied Polymer Science, 2013, 127, 4795-4801.	1.3	15
1257	Mechanical modeling of a threeâ€phase nanocomposite polymeric material. Journal of Applied Polymer Science, 2013, 127, 4644-4652.	1.3	1
1258	Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/lowâ€density polyethylene composites. Journal of Applied Polymer Science, 2013, 128, 1020-1029.	1.3	74
1259	Effects of vinyl isocyanate coupling agent on the tensile properties of Kraft fiberâ€unsaturated polyester composites. Journal of Applied Polymer Science, 2013, 128, 1036-1043.	1.3	12

#	Article	IF	CITATIONS
1260	Renewable resource based "all green composites―from kenaf biofiber and poly(furfuryl alcohol) bioresin. Industrial Crops and Products, 2013, 41, 94-101.	2.5	93
1261	Investigation of acrylamideâ€modified melamineâ€formaldehyde resins as a compatibilizer for kenafâ€unsaturated polyester composites. Polymer Engineering and Science, 2013, 53, 1605-1613.	1.5	9
1262	Behavior of Cellulose Reinforced Cross-Linked Starch Composite Films Made with Tartaric Acid Modified Starch Microparticles. Journal of Polymers and the Environment, 2013, 21, 431-440.	2.4	17
1263	TPS/PCL Composite Reinforced with Treated Sisal Fibers: Property, Biodegradation and Water-Absorption. Journal of Polymers and the Environment, 2013, 21, 1-7.	2.4	46
1264	Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres. Journal of Polymers and the Environment, 2013, 21, 54-70.	2.4	50
1265	Biocomposites containing cellulose fibers treated with nanosized elastomeric latex for enhancing impact strength. Composites Science and Technology, 2013, 77, 81-86.	3.8	22
1266	Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition. Composites Science and Technology, 2013, 78, 56-62.	3.8	86
1267	Advances in Elastomers II. Advanced Structured Materials, 2013, , .	0.3	15
1268	An Analysis of the Nonlinear Behavior of Lignin-Based Flax Composites. Mechanics of Composite Materials, 2013, 49, 139-154.	0.9	19
1269	Mechanical and thermal properties of compatibilized polypropylene reinforced by woven doum. Journal of Applied Polymer Science, 2013, 130, 4347-4356.	1.3	15
1270	Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Composites Part B: Engineering, 2013, 51, 337-344.	5.9	100
1271	Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 2013, 38, 1415-1441.	11.8	224
1272	Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene) Tj ETQq0 0 0 rgBT /C	Overlock 10 5.1	0 Tf 50 262 1
1273	Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 2013, 49, 2839-2858.	2.6	332
1274	Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment. Cellulose, 2013, 20, 1477-1490.	2.4	67
1275	Multicomponents adsorption of modified cellulose microfibrils. Desalination and Water Treatment, 2013, 51, 2153-2161.	1.0	2
1276	Effective mechanical properties of polyvinylalcohol biocomposites with reinforcement of date palm leaf fibers. Polymer Composites, 2013, 34, 959-966.	2.3	33
1277	Kinetic analysis of thermal and thermo-oxidative decomposition of recycled PE/PALF bio-based composites. International Journal of Plastics Technology, 2013, 17, 94-110.	2.9	8

#	Article	IF	CITATIONS
1278	Impact of clay nanoparticles on glutaraldehyde crosslinked fiber composites. Journal of Materials Science, 2013, 48, 5983-5989.	1.7	4
1279	Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites. Composite Structures, 2013, 103, 151-160.	3.1	67
1280	All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid. Carbohydrate Polymers, 2013, 98, 1532-1539.	5.1	69
1282	Effect of fiber extraction methods on some properties of kenaf bast fiber. Industrial Crops and Products, 2013, 46, 117-123.	2.5	87
1284	Kinetics of atom transfer radical polymerization of methyl methacrylate initiated by cellulose chloroacetate in BMIMCl. Chemical Research in Chinese Universities, 2013, 29, 159-165.	1.3	3
1285	Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products, 2013, 49, 357-365.	2.5	86
1286	Effect of Alkali Treatment on the Morphology and Tensile Properties of <i>Cordia Dichotoma</i> Fabric/Polycarbonate Composites. Advances in Polymer Technology, 2013, 32, .	0.8	11
1287	Effect of different crosslinkers on properties of melamine formaldehydeâ€furfuryl alcohol copolymer/montmorillonite impregnated softwood (<i>Ficus hispida</i>). Polymer Engineering and Science, 2013, 53, 1394-1404.	1.5	33
1288	Hybrid clay functionalized biofibres for composite applications. Composites Part B: Engineering, 2013, 47, 260-266.	5.9	9
1289	Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering, 2013, 53, 362-368.	5.9	123
1290	Characterization and modeling of process parameters on tensile strength of short and randomly oriented Borassus Flabellifer (Asian Palmyra) fiber reinforced composite. Composites Part B: Engineering, 2013, 55, 479-485.	5.9	29
1291	Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17). Industrial Crops and Products, 2013, 51, 317-327.	2.5	108
1292	Mechanical performance and durability of treated palm fiber reinforced mortars. International Journal of Sustainable Built Environment, 2013, 2, 131-142.	3.2	102
1293	Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Industrial Crops and Products, 2013, 49, 755-767.	2.5	124
1294	Fabrication of Borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers. Carbohydrate Polymers, 2013, 98, 1002-1010.	5.1	86
1295	Reinforcement of denture base resin with short vegetable fiber. Dental Materials, 2013, 29, 1273-1279.	1.6	32
1296	Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. Journal of Hazardous Materials, 2013, 262, 212-217.	6.5	87
1297	Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 2013, 53, 627-694.	5.3	74

#	Article	IF	CITATIONS
1298	Contact angle and surface energy analysis of soy materials subjected to potassium permanganate and autoclave treatment. Industrial Crops and Products, 2013, 50, 219-226.	2.5	23
1299	Effect of jute fibre loading on the mechanical and thermal properties of oil palm–epoxy composites. Journal of Composite Materials, 2013, 47, 1633-1641.	1.2	57
1301	Design and characterization of cellulose fibers with hierarchical structure for polymer reinforcement. Cellulose, 2013, 20, 2765-2778.	2.4	15
1302	Plasma-induced polymerization for enhancing paper hydrophobicity. Carbohydrate Polymers, 2013, 92, 928-933.	5.1	26
1303	Preparation, processing and properties of lignosulfonate–flax composite boards. Carbohydrate Polymers, 2013, 93, 300-306.	5.1	17
1304	Effects of gamma radiation on the mechanical properties of and susceptibility to biodegradation of natural fibers. Textile Reseach Journal, 2013, 83, 44-55.	1.1	36
1305	Effect of enzymatic pretreatment on the mechanical properties of jute fiber-reinforced polyester composites. Journal of Composite Materials, 2013, 47, 1293-1302.	1.2	70
1306	Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose, 2013, 20, 2221-2262.	2.4	510
1310	The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 2013, 20, 1603-1612.	2.4	28
1311	Influence of cotton variety on compression and destructuration abilities under elevated pressure. Cellulose, 2013, 20, 1013-1022.	2.4	0
1312	Cellulose nanobiocomposites with reinforcement of boron nitride: Study of thermal, oxygen barrier and chemical resistant properties. Carbohydrate Polymers, 2013, 95, 728-732.	5.1	51
1313	Jute fiber-reinforced chemically functionalized high density polyethylene (JF/CF-HDPE) composites with <i>in situ</i> fiber/matrix interfacial adhesion by <i>Palsule</i> Process. Composite Interfaces, 2013, 20, 553-573.	1.3	24
1314	Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites. Advanced Composite Materials, 2013, 22, 389-399.	1.0	71
1315	Morphological, structural and thermal characterization of acetic acid modified and unmodified napier grass fiber strands. , 2013, , .		3
1316	Green composites based on wheat gluten matrix and <i>posidonia oceanica </i> waste fibers as reinforcements. Polymer Composites, 2013, 34, 1663-1669.	2.3	59
1317	Characterization of laser beam interaction with carbon materials. Laser Physics, 2013, 23, 056002.	0.6	6
1318	Physico-chemical study of chalcone moiety containing epoxy resin and its fiber reinforced composites. Designed Monomers and Polymers, 2013, 16, 503-508.	0.7	8
1319	Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science, 2013, 48, 6083-6107.	1.7	391

#	Article	IF	CITATIONS
1320	Natural fiber reinforced poly(vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 2013, 32, 330-356.	1.6	78
1321	Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung, 2013, 67, 603-612.	0.9	31
1322	Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Industrial Crops and Products, 2013, 44, 343-351.	2.5	163
1323	Cellulose nanocomposites based on silane reinforced 3-butynoate-substituted zirconium-oxocluster copolymers: Mechanical, thermal and hydrophobic properties. Progress in Organic Coatings, 2013, 76, 173-180.	1.9	5
1324	Cellulose-Based Composites and Nanocomposites. , 2013, , 153-169.		16
1325	Biodegradable Polymers and Polymer Blends. , 2013, , 109-128.		27
1326	Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydrate Polymers, 2013, 91, 699-710.	5.1	191
1327	In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design, 2013, 48, 14-24.	5.1	436
1328	Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydrate Polymers, 2013, 93, 307-315.	5.1	45
1329	Lubricated Abrasion Study of Bio-fibre (Paddy Straw) and Cockle- Shell Using Pin-on-disk Method. Procedia Engineering, 2013, 68, 116-122.	1.2	1
1330	Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polymer Testing, 2013, 32, 1603-1611.	2.3	93
1331	Impact damage characteristics in reinforced woven natural silk/epoxy composite face-sheet and sandwich foam, coremat and honeycomb materials. International Journal of Impact Engineering, 2013, 58, 31-38.	2.4	59
1332	Surfactant effects on poly(ethylene-co-vinyl acetate)/cellulose composites. Composites Part B: Engineering, 2013, 47, 137-144.	5 . 9	11
1334	Effects of some PVCâ€grafted maleic anhydrides (PVCâ€ <i>g</i> â€MAs) on the morphology, and the mechanical and thermal properties of (alfa fiber)â€reinforced PVC composites. Journal of Vinyl and Additive Technology, 2013, 19, 225-232.	1.8	14
1335	Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design, 2013, 51, 847-853.	5.1	92
1336	Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Composites Part A: Applied Science and Manufacturing, 2013, 45, 14-22.	3.8	36
1337	Bagasse filled recycled polyethylene bio-composites: Morphological and mechanical properties study. Results in Physics, 2013, 3, 187-194.	2.0	107
1338	Processing and properties of continuous and aligned curaua fibers incorporated polyester composites. Journal of Materials Research and Technology, 2013, 2, 2-9.	2.6	31

#	Article	IF	Citations
1339	Improvement of mechanical properties of ramie/poly (lactic acid) (PLA) laminated composites using a cyclic load pre-treatment method. Industrial Crops and Products, 2013, 45, 94-99.	2.5	24
1340	Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. Journal of Industrial and Engineering Chemistry, 2013, 19, 908-914.	2.9	105
1341	Impact Property of Flexible Epoxy Treated Natural Fiber Reinforced PLA Composites. Energy Procedia, 2013, 34, 839-847.	1.8	68
1342	An experimental investigation on the response of woven natural silk fiber/epoxy sandwich composite panels under low velocity impact. Fibers and Polymers, 2013, 14, 127-132.	1.1	31
1343	A method for estimating the fibre length in fibreâ€PLA composites. Journal of Microscopy, 2013, 250, 15-20.	0.8	10
1344	Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites Part B: Engineering, 2013, 47, 35-41.	5.9	125
1345	Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Materials & Design, 2013, 49, 203-208.	5.1	118
1346	"Smart―Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. Materials, 2013, 6, 738-781.	1.3	412
1347	Fabrication of nanocelluloses from hemp fibers and their application for the reinforcement of hemp fibers. Industrial Crops and Products, 2013, 44, 192-199.	2.5	71
1348	Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydrate Polymers, 2013, 96, 1-8.	5.1	245
1349	Biobased thermosetting resins composed of terpene and bismaleimide. Journal of Applied Polymer Science, 2013, 129, 301-309.	1.3	19
1350	Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber. Macromolecular Research, 2013, 21, 519-528.	1.0	60
1351	Nanobiocomposite Adhesion: Role of Graft Length and Temperature in a Hybrid Biomimetic Approach. Biomacromolecules, 2013, 14, 1003-1009.	2.6	11
1353	Can flax replace E-glass in structural composites? A small wind turbine blade case study. Composites Part B: Engineering, 2013, 52, 172-181.	5.9	209
1354	Characterization and Localization of Insoluble Organic Matrices Associated with Diatom Cell Walls: Insight into Their Roles during Cell Wall Formation. PLoS ONE, 2013, 8, e61675.	1.1	79
1355	Fully Green Elastomer Composites. Advanced Structured Materials, 2013, , 155-181.	0.3	1
1356	Chemical modification of cellulosic fibers for better convertibility in packaging applications. Carbohydrate Polymers, 2013, 96, 549-559.	5.1	46
1357	Tailoring Cellulose Surfaces by Controlled Polymerization Methods. Macromolecular Chemistry and Physics, 2013, 214, 1539-1544.	1.1	37

#	Article	IF	CITATIONS
1358	Unsaturated Polyester Resins. , 2013, , 1-48.		7
1359	Green Jute-Based Cross-Linked Soy Flour Nanocomposites Reinforced with Cellulose Whiskers and Nanoclay. Industrial & Engineering Chemistry Research, 2013, 52, 6969-6983.	1.8	50
1360	Green modification of natural fibres with nanocellulose. RSC Advances, 2013, 3, 4659.	1.7	39
1361	Preparation and characterization of the bacterial cellulose/polyurethane nanocomposites. Journal of Thermal Analysis and Calorimetry, 2013, 114, 549-555.	2.0	26
1362	Evaluation of the interfacial compatibility in wood flour/polypropylene composites with the dielectric approach. Journal of Applied Polymer Science, 2013, 129, 1520-1526.	1.3	10
1363	Characterization and modeling of the moisture diffusion behavior of natural fibers. Journal of Applied Polymer Science, 2013, 130, 297-306.	1.3	93
1364	Effects of hydrophobation treatments of wood particles with an amino alkylsiloxane co-oligomer on properties of the ensuing polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2013, 44, 32-39.	3.8	20
1365	Influence of natural fillers on the properties of starch-based biocomposite films. Composites Part B: Engineering, 2013, 44, 575-583.	5.9	117
1366	Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Composites Part B: Engineering, 2013, 44, 517-523.	5.9	187
1367	Effectiveness of coupling agents in the poly (methyl methacrylate)-modified starch/styrene-butadiene rubber interfaces. Materials Letters, 2013, 92, 132-135.	1.3	54
1368	Overcoming Interfacial Affinity Issues in Natural Fiber Reinforced Polylactide Biocomposites by Surface Adsorption of Amphiphilic Block Copolymers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 276-283.	4.0	24
1369	Characterization and Analysis of Silane Treatment on the Morphological and Absorption Properties of Banana Fibers. Advanced Materials Research, 2013, 821-822, 144-148.	0.3	0
1370	Transport studies of peanut shell powder reinforced natural rubber composites in chlorinated solvents. Fibers and Polymers, 2013, 14, 1674-1687.	1.1	16
1371	Physical and mechanical properties of jute, bamboo and coir natural fiber. Fibers and Polymers, 2013, 14, 1762-1767.	1.1	84
1372	Chemistry of lignin-based materials. Green Materials, 2013, 1, 137-160.	1.1	134
1373	Influence of textile treatment on mechanical and sorption properties of flax/epoxy composites. Polymer Composites, 2013, 34, 1761-1773.	2.3	34
1374	Effect on modified nanoclay on dynamic mechanical and thermomechanical properties of natural fiber/polypropylene biocomposites. Journal of Adhesion Science and Technology, 2013, 27, 1313-1323.	1.4	10
1375	Properties of low-density polyethylene/palm kernel shell composites: Effect of polyethylene co-acrylic acid. Journal of Thermoplastic Composite Materials, 2013, 26, 3-15.	2.6	49

#	Article	IF	CITATIONS
1376	Improving interfacial adhesion in pla/wood biocomposites. Composites Science and Technology, 2013, 89, 77-82.	3.8	62
1378	Effect of Alkalization on Mechanical Properties of Water Hyacinth Fibers-Unsaturated Polyester Composites. Polymer-Plastics Technology and Engineering, 2013, 52, 446-451.	1.9	34
1379	Chemical and Mechanical Properties of Diss (Ampelodesmos mauritanicus) Fibers. Journal of Natural Fibers, 2013, 10, 219-232.	1.7	23
1380	Surface Modification of Wood. Reviews of Adhesion and Adhesives, 2013, 1, 216-247.	3.3	65
1381	Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polymer Bulletin, 2013, 70, 2657-2674.	1.7	76
1382	Effect of silver coating on electrical properties of sisal fibre-epoxy composites. Polymer Bulletin, 2013, 70, 3501-3517.	1.7	19
1383	Effects of surface modifications on the interfacial bonding of flax/ \hat{l}^2 -polypropylene composites. Composite Interfaces, 2013, 20, 483-496.	1.3	20
1384	Thermal and mechanical properties of sorbitolâ€based epoxy resin cured with quercetin and the biocomposites with wood flour. Journal of Applied Polymer Science, 2013, 128, 2753-2758.	1.3	23
1385	The potential of using date palm fibres as reinforcement for polymeric composites. Materials & Design, 2013, 43, 177-184.	5.1	134
1386	Tensile Strength and Water Absorption Behavior of Recycled Jute-Epoxy Composites. Journal of Renewable Materials, 2013, 1, 279-288.	1.1	14
1387	Cellulose Nanofibrils. Journal of Renewable Materials, 2013, 1, 195-211.	1.1	152
1388	Dimensional stability of natural fibers. , 2013, , .		2
1389	Application of Composite Materials in Modern Constructions. Key Engineering Materials, 0, 542, 119-129.	0.4	25
1390	Evaluation of jute fiber preforms absorbability using optical profilographometer. Journal of Composite Materials, 2013, 47, 2309-2319.	1.2	9
1391	A study on the mechanical properties of urea-treated coir reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 2013, 26, 139-155.	2.6	10
1392	Water Absorption and Tensile Strength of Coconut Filter Fibers/Polypropylene Composites. Advanced Materials Research, 0, 702, 207-212.	0.3	2
1393	Effect of Velocity on the Impact Resistance of Woven Jute Fiber Reinforced Composites. Applied Mechanics and Materials, 0, 465-466, 1277-1281.	0.2	14
1394	The Influence of Processing and the Polymorphism of Lignocellulosic Fillers on the Structure and Properties of Composite Materials—A Review. Materials, 2013, 6, 2747-2767.	1.3	47

#	Article	IF	CITATIONS
1395	Properties of Raphia Palm Interspersed Fibre Filled High Density Polyethylene. Advances in Materials Science and Engineering, 2013, 2013, 1-5.	1.0	7
1396	Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers, 2013, 5, 128-141.	2.0	103
1397	Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure. Advances in Materials Science and Engineering, 2013, 2013, 1-15.	1.0	11
1398	Dynamic and capillary shear rheology of natural fiberâ€reinforced composites. Polymer Engineering and Science, 2013, 53, 2582-2593.	1.5	34
1399	Characterization and Evaluation of Thermal, Morphological, and Physicochemical Properties of Chemically Modified Lignocellulosic Biomass. International Journal of Polymer Analysis and Characterization, 2013, 18, 377-389.	0.9	6
1400	Simultaneous effects of coupling agent and flame retardant on empty fruit bunch fiber/polypropylene composites. Journal of Reinforced Plastics and Composites, 2013, 32, 1268-1284.	1.6	10
1401	Elaboration, characterization, and degradation of composite material: Lignocellulosic/unsaturated polyester. Journal of Composite Materials, 2013, 47, 2965-2972.	1,2	3
1402	Biocomposites from dwarf-green Brazilian coconut impregnated with cashew nut shell liquid resin. Journal of Composite Materials, 2013, 47, 459-466.	1.2	15
1403	Alkali treatment of viscose cellulosic fibers from eucalyptus wood: Structural, morphological, and thermal analysis. Journal of Applied Polymer Science, 2013, 130, 2198-2204.	1.3	33
1404	Physical and mechanical characterization of jute reinforced soy composites. Journal of Reinforced Plastics and Composites, 2013, 32, 1380-1390.	1.6	10
1405	Comparison of Mechanical Properties of Polypropylene/Acrylonitrile Butadiene Rubber/Rice Husk Powder Composites Modified with Silane and Acetic Anhydride Compound. Advanced Materials Research, 0, 795, 441-445.	0.3	1
1406	Analysis of Mechanical Properties and Exploration of Failure Mechanism for Nonwoven Reinforced Composites. Advanced Materials Research, 0, 791-793, 480-485.	0.3	1
1407	Tensile and Morphology Properties of Polylactic Acid/Treated <i>Typha latifolia</i> Composites. Key Engineering Materials, 2013, 594-595, 775-779.	0.4	4
1408	Effect of PE-g-MAH as Compatibilizer on Properties of LDPE/NR/WHF Composites. Applied Mechanics and Materials, 0, 284-287, 87-93.	0.2	6
1409	Characterization and Properties of Alkali Treated Flax. Applied Mechanics and Materials, 2013, 448-453, 1128-1132.	0.2	2
1410	Properties of Jute Blended Yarns Spun on Ring Spinning System. Advanced Materials Research, 0, 779-780, 290-293.	0.3	2
1411	Mercerization Treatment Conditions Effects on Kenaf Fiber Bundles Mean Diameter Variability. Applied Mechanics and Materials, 0, 315, 670-674.	0.2	6
1412	The Effect of Surface Treatment on Composites of Water Hyacinth Natural Fiber Reinforced Epoxy Resin. Advanced Materials Research, 0, 651, 480-485.	0.3	2

#	Article	IF	CITATIONS
1413	Mechanical properties of polypropylene composites filled with the straw of oilseed rape infested by the fungal pathogen <i>Sclerotinia sclerotiorum</i> . Journal of Composite Materials, 2013, 47, 1461-1470.	1.2	4
1414	Polypropylene (PP) Composites Reinforced with Stinging Nettle (<i>Utrica dioica</i> L.) Fiber. Journal of Natural Fibers, 2013, 10, 147-158.	1.7	20
1415	A Study in Physical and Mechanical Properties of Hemp Fibres. Advances in Materials Science and Engineering, 2013, 2013, 1-9.	1.0	76
1416	Effect of Chemical Treatment on Physical, Mechanical and Thermal Properties of Ladies Finger Natural Fiber. Advances in Materials Science and Engineering, 2013, 2013, 1-6.	1.0	38
1417	Development of Ecoâ€Friendly Cotton Fabric Reinforced Polypropylene Composites: Mechanical, Thermal, and Morphological Properties. Advances in Polymer Technology, 2013, 32, .	0.8	18
1418	Mechanical, thermal and degradation properties of jute fabric – reinforced polypropylene composites: Effect of potassium permanganate as oxidizing agent. Polymer Composites, 2013, 34, 671-680.	2.3	23
1419	Characterization of microstructures in sisal fiber composites by Voronoi diagram. Journal of Reinforced Plastics and Composites, 2013, 32, 16-22.	1.6	11
1420	Nonlinear behavior of PLA and lignin-based flax composites subjected to tensile loading. Journal of Thermoplastic Composite Materials, 2013, 26, 476-496.	2.6	40
1421	<i>In-situ</i> observation of fracture mechanism of wood–plastic composites in tension. Composite Interfaces, 2013, 20, 211-220.	1.3	7
1422	Chemical treatment of wood fiber and its reinforced unsaturated polyester composites. Journal of Vinyl and Additive Technology, 2013, 19, 18-24.	1.8	26
1423	Functional Finishing of Jute Textilesâ€"An Overview in India. Journal of Natural Fibers, 2013, 10, 390-413.	1.7	30
1424	Gray optimization of process parameters of surface modification of coconut sheath reinforced polymer composites. Journal of Polymer Engineering, 2013, 33, 665-672.	0.6	3
1425	Thermal and structural characterization of biodegradable blends filled with halloysite nanotubes. Polymer Composites, 2013, 34, 1460-1470.	2.3	15
1426	Modified Corn Cob Filled Chitosan Biocomposite Films. Polymer-Plastics Technology and Engineering, 2013, 52, 1496-1502.	1.9	41
1427	Effect of water exposure on dimensional stability and mechanical properties of unpurified and purified maleated poly(butylene succinate) compatibilised poly(butylene succinate)/kenaf bast fibre composites. Composite Interfaces, 2013, 20, 469-482.	1.3	5
1428	Thermal and mechanical behavior of cotton/vinyl ester composites: Effects of some flame retardants and fiber treatment. Journal of Reinforced Plastics and Composites, 2013, 32, 681-688.	1.6	31
1429	Influence of Surface Flour Treatment on the Thermal, Structural and Morphological Properties of Polypropylene/ Spartium Junceum Flour Composites. Polymer-Plastics Technology and Engineering, 2013, 52, 175-181.	1.9	5
1430	Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. Journal of Composite Materials, 2013, 47, 979-990.	1.2	116

#	Article	IF	CITATIONS
1431	Effect of coupling agents on the properties of bamboo fiber-reinforced unsaturated polyester resin composites. Composite Interfaces, 2013, 20, 343-353.	1.3	35
1432	Mechanical properties of polypropylene composites. Journal of Thermoplastic Composite Materials, 2013, 26, 362-391.	2.6	333
1433	Dynamic mechanical and thermal properties of enzyme-treated jute/polyester composites. Journal of Composite Materials, 2013, 47, 2361-2370.	1.2	23
1434	Surface Functionalization of Sisal Fibers Using Peroxide Treatment Followed by Grafting of Poly(ethyl acrylate) and Copolymers. International Journal of Polymer Analysis and Characterization, 2013, 18, 596-607.	0.9	9
1435	Polypropylene-Based Biocomposites Reinforced by Tailor-Modified Cellulose Fibers and Microfibrils. Advanced Materials Research, 0, 671-674, 1826-1829.	0.3	0
1436	Mechanical properties and crack propagation of soyâ€polypropylene composites. Journal of Applied Polymer Science, 2013, 130, 175-185.	1.3	15
1437	Functionalisation of bamboo and sisal fibres cellulose in ionic liquids. Materials Research Innovations, 2013, 17, 250-256.	1.0	7
1438	Production, Characterization and Treatment of Textile Effluents: A Critical Review. Journal of Chemical Engineering & Process Technology, 2013, 05, .	0.1	202
1439	Use of date palm fibers as reinforcement for thermoplastic-based composites. Mechanics and Industry, 2013, 14, 71-77.	0.5	12
1440	Modification of Cellulose by Polymethyl Methacrylate Grafting for Membrane Applications. Jurnal Teknologi (Sciences and Engineering), 2013, 65, .	0.3	2
1441	Effects of Alkali Treatment on the Microstructure, Composition, and Properties of the Raffia textilis Fiber. BioResources, 2013, 8, .	0.5	48
1442	Biocomposites: Influence of Matrix Nature and Additives on the Properties and Biodegradation Behaviour., 0,,.		9
1443	Properties of Kenaf Bast Powder-Filled High Density Polyethylene/Ethylene Propylene Diene Monomer Composites. BioResources, 2013, 8, .	0.5	4
1444	Research onto use of New Textile Friction Composites in the Reduction of Non-exhaust Emissions. Journal of Textile Science & Engineering, 2013, 04, .	0.2	0
1445	Influence of Banana Fibre Chemical Modification on the Mechanical and Morphological Properties of Woven Banana Fabric/Unsaturated Polyester Resin Composites. Polymers From Renewable Resources, 2013, 4, 61-84.	0.8	21
1447	Weibull analysis for the diameter dependence of the elastic modulus of curaua fibers. Revista Materia, 2013, 18, 46-54.	0.1	4
1448	Mechanical Properties and Water Absorption of Hemp Fibersâ€"Reinforced Unsaturated Polyester Composites: Effect of Fiber Surface Treatment with a Heterofunctional Monomer. BioResources, 2013, 8, .	0.5	27
1449	Characterization and Thermal Decomposition Kinetics of Kapok (Ceiba pentandra L.)–Based Cellulose. BioResources, 2013, 9, .	0.5	24

#	Article	IF	CITATIONS
1450	Comparison of Water Uptake as Function of Surface Modification of Empty Fruit Bunch Oil Palm Fibres in PP Biocomposites. BioResources, 2013, 8 , .	0.5	11
1451	Glycerol-derived polyurethane nanocomposites containing cellulose nanowhiskers - doi: 10.4025/actascitechnol.v35i4.20276. Acta Scientiarum - Technology, 2013, 35, .	0.4	7
1452	Isolation and Characterization of Cellulose Nanocrystals from Agave angustifolia Fibre. BioResources, 2013, 8, .	0.5	126
1453	Influence of Compatibilizer on Mechanical Properties of PP/Cellulose Composites. Journal of the Adhesion Society of Japan, 2013, 49, 120-127.	0.0	2
1454	Influence of Hydroxyethyl Cellulose Treatment on the Mechanical Properties of Jute Fibres, Yarns, and Composites. Conference Papers in Materials Science, 2013, 2013, 1-6.	0.1	1
1455	Structural Characteristics and Thermal Properties of Native Cellulose., 0, , .		70
1456	Treatments of non-wood plant fibres used as reinforcement in composite materials. Materials Research, 2013, 16, 903-923.	0.6	66
1457	Natural Fibers Contribution to Sustainability in Inovar-Auto Program. , 0, , .		0
1458	Cellulosic Fibers: Role of Matrix Polysaccharides in Structure and Function. , 0, , .		21
1459	Chemical and Mechanical Properties Studies of Chinese Linen Flax and Its Composites. Polymers and Polymer Composites, 2013, 21, 275-286.	1.0	8
1461	Analysis of Morphological and Mechanical Behaviors of Bamboo Flour Reinforced Polypropylene Composites. Nepal Journal of Science and Technology, 2013, 13, 95-100.	0.1	6
1462	Cold ceramics. , 2014, , 249-276.		0
1463	Brazilian natural fiber (jute) as raw material for activated carbon production. Anais Da Academia Brasileira De Ciencias, 2014, 86, 2137-2144.	0.3	16
1464	Enhanced Rigidity of Natural Polymer Composite Developed from Oil Palm Decanter Cake. BioResources, 2014, 10, .	0.5	2
1465	The hygroscopic behavior of plant fibers: a review. Frontiers in Chemistry, 2013, 1, 43.	1.8	233
1466	Rubber Wood Fibre Based Flexible Composites: Their Preparation, Physical Strength Reinforcing and Stab Resistance Behaviour. Polymers and Polymer Composites, 2014, 22, 375-380.	1.0	4
1467	The Development of a Composite Based on Cellulose Fibres and Polyvinyl Alcohol in the Presence of Boric Acid. BioResources, 2014, 9, .	0.5	17
1468	Behavior in simulated soil of recycled expanded polystyrene/waste cotton composites. Materials Research, 2014, 17, 275-283.	0.6	10

#	Article	IF	CITATIONS
1470	Investigation of physico-mechanical properties of natural palm fiber reinforced polyvinyl chloride composites. Journal of the Bangladesh Academy of Sciences, 2014, 38, 83-92.	0.1	1
1471	The Effects of Modifying Peanut Shell Powder with Polyvinyl Alcohol on the Properties of Recycled Polypropylene and Peanut Shell Powder Composites. BioResources, 2014, 9, .	0.5	21
1472	Physicochemical properties of lignocellulosic biofibres from South Eastern Nigeria: Their suitability for biocomposite technology. African Journal of Biotechnology, 2014, 13, 2050-2057.	0.3	19
1473	Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nordic Pulp and Paper Research Journal, 2014, 29, 167-175.	0.3	108
1476	Crystallization Kinetics of Recycled High Density Polyethylene and Coffee Dregs Composites. Polymers and Polymer Composites, 2014, 22, 541-550.	1.0	9
1477	Biocomposites based on chitosan and carnauba straw powder. Polimeros, 2014, 24, 446-452.	0.2	4
1480	Xylanase Production by Bacillus subtilis in Cost-Effective Medium Using Soybean Hull as Part of Medium Compostion under Submerged Fermentation (Smf) and Solid State Fermentation (SsF). Journal of Biodiversity Bioprospecting and Development, 2014, 02, .	0.4	3
1481	Comparison of the Mechanical Properties between 2D and 3D Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites. Polymers and Polymer Composites, 2014, 22, 187-192.	1.0	5
1484	Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments. Applied Surface Science, 2014, 314, 603-609.	3.1	8
1485	Tensile and Thermal Degradation Properties of Vetiver Fiber Composites. , 2014, 5, 605-611.		13
1486	Surface roughness and wettability of polypropylene composites filled with fast-growing biomass: Paulownia elongata wood. Journal of Composite Materials, 2014, 48, 951-957.	1,2	12
1487	Enhancement of compatibility based on vapor-phase-assisted surface polymerization (VASP) method for polymer composites with agricultural wastes. Composite Interfaces, 2014, 21, 773-785.	1.3	4
1488	Mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites: Effect of potassium dichromate as oxidizing agent. Fibers and Polymers, 2014, 15, 2386-2394.	1.1	8
1491	Finite Element Analysis of Jute and Banana Fibre Reinforced Hybrid Polymer Matrix Composite and Optimization of Design Parameters Using ANOVA Technique. Procedia Engineering, 2014, 97, 1116-1125.	1.2	56
1492	CHAPTER 16. Waste Materials Cured and Modified by Irradiating and their Use in Concrete. RSC Smart Materials, 2014, , 347-359.	0.1	0
1493	Mechanical, Thermal, and Morphological Properties of Nanocomposites Based on Polyvinyl Alcohol and Cellulose Nanofiber from <i>Aloe vera </i> Rind. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	70
1494	The utilization of biochemically modified microfibers from grain by-products as reinforcement for polypropylene biocomposite. EXPRESS Polymer Letters, 2014, 8, 767-778.	1.1	20
1495	Native Cellulose: Structure, Characterization and Thermal Properties. Materials, 2014, 7, 6105-6119.	1.3	691

#	Article	IF	CITATIONS
1496	Thermal Degradation of Flax Fibres as Potential Reinforcement in Thermoplastic Composites. Advanced Materials Research, 0, 894, 32-36.	0.3	10
1497	On an Original Approach to Model Hemp Fibers Reinforced Thermoplastics. Advanced Materials Research, 2014, 875-877, 801-806.	0.3	0
1498	Solid Particle Erosion of Date Palm Leaf Fiber Reinforced Polyvinyl Alcohol Composites. Advances in Tribology, 2014, 2014, 1-8.	2.1	11
1499	Revalorisation of Posidonia Oceanica as Reinforcement in Polyethylene/Maleic Anhydride Grafted Polyethylene Composites. Journal of Renewable Materials, 2014, 2, 66-76.	1.1	27
1500	Injection Molding of Beverage Container Caps Made of a Composite Consisting of Wood Cellulose Fiber and an Ethylene-Acrylic Acid Copolymer. International Polymer Processing, 2014, 29, 507-514.	0.3	1
1501	The effect of sodium hydroxide treatment and fiber length on the tensile property of coir fiber-reinforced epoxy composites. Science and Engineering of Composite Materials, 2014, 21, .	0.6	19
1502	The Effect of Additives on Bending Strenght of Pultruded Hybrid Reinforced Resol Type Phenolic Composite. Applied Mechanics and Materials, 0, 564, 418-421.	0.2	6
1503	Natural Resources and Residues for Production of Bionanomaterials. Materials and Energy, 2014, , 19-33.	2.5	4
1504	Chemical Functionalization as a Powerful Tool to Broaden the Scope of Applications of Cellulose Nanofibers. Materials and Energy, 2014, , 123-138.	2.5	0
1505	Digital Holographic Projection Tomography for Micrometric Vegetal Fibers: Limiting Factors. , 2014, , .		0
1506	Investigation of Physico-Chemical Properties of Alkali-Treated < i>Prosopis juliflora < /i>International Journal of Polymer Analysis and Characterization, 2014, 19, 309-317.	0.9	130
1507	Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). Journal of the Indian Academy of Wood Science, 2014, 11, 116-121.	0.3	42
1508	Effect of Chemical Surface Modifications on the Properties of Alfa Fiber-Polyester Composites. Polymer-Plastics Technology and Engineering, 2014, 53, 403-410.	1.9	18
1509	Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polymer Composites, 2014, 35, 1418-1425.	2.3	79
1510	Improvement of the fire behavior of poly(1,4â€butanediol succinate)/flax biocomposites by fiber surface modification with phosphorus compounds: molecular <i>versus</i> macromolecular strategy. Polymer International, 2014, 63, 1665-1673.	1.6	14
1511	Antiweathering effects of vitamin E on wood flour/polypropylene composites. Polymer Composites, 2014, 35, 2085-2093.	2.3	12
1512	Bio-Based Fillers. , 2014, , 1-4.		1
1513	Comparison of processing and mechanical properties of polypropylene/recycled acrylonitrile butadiene rubber/rice husk powder composites modified with silane and acetic anhydride compound. Journal of Thermoplastic Composite Materials, 2014, 27, 1651-1666.	2.6	19

#	Article	IF	CITATIONS
1514	Tensile Properties of Bamboo, Jute and Kenaf Mat-reinforced Composite. Energy Procedia, 2014, 56, 72-79.	1.8	82
1515	Material and Technological Development of Natural Fiber Reinforced Cellulose Acetate Butyrate. Advanced Engineering Materials, 2014, 16, 1202-1207.	1.6	3
1516	Preparation and properties of cellulose nanocrystals reinforced collagen composite films. Journal of Biomedical Materials Research - Part A, 2014, 102, 1131-1139.	2.1	74
1523	Residual Tensile Stress of Kenaf Polyester and Kenaf Hybrid under Post Impact and Open Hole Tensile. Procedia Technology, 2014, 15, 856-861.	1.1	14
1524	Characterization for industrial purposes of the fibre anatomy of perennial ryegrass and tall fescue stem and leaf at three stages in the primary growth. Grass and Forage Science, 2014, 69, 64-73.	1.2	6
1526	Hybridization effect of basalt and carbon fibers on impact and flexural properties of phenolic composites. Iranian Polymer Journal (English Edition), 2014, 23, 767-773.	1.3	40
1527	Thermal Characterization of Polyester Composites Reinforced with Ramie Fibers. Materials Science Forum, 0, 775-776, 272-277.	0.3	2
1528	Bending Mechanical Behavior of Epoxy Matrix Reinforced with Jute Fiber. Materials Science Forum, 0, 775-776, 314-318.	0.3	1
1529	Tensile Properties of Hybrid Sugar Palm/Kenaf Fibre Reinforced Polypropylene Composites. Applied Mechanics and Materials, 0, 695, 155-158.	0.2	15
1530	Weibull Analysis to Characterize the Diameter Dependence of Tensile Strength in Sugarcane Bagasse Fibers. Materials Science Forum, 2014, 775-776, 80-85.	0.3	5
1531	Preparation, structure, and properties of the coir fiber/polypropylene composites. Journal of Composite Materials, 2014, 48, 3293-3301.	1.2	54
1532	Characterization of Banana Fibers Functional Groups by Infrared Spectroscopy. Materials Science Forum, 0, 775-776, 250-254.	0.3	11
1533	Effect of peroxide and softness modification on properties of ramie fiber. Fibers and Polymers, 2014, 15, 2105-2111.	1.1	40
1534	Chacterization of Tensile Strength Dependence with Diameter of Sponge Gourd Fibers by Weibull Statistical Analysis. Materials Science Forum, 0, 775-776, 86-91.	0.3	3
1535	Mechanism of toughening polyphenylene sulphide by Al particles. Materials Research Innovations, 2014, 18, S4-479-S4-482.	1.0	1
1536	Investigation of Tensile Behavior of Sisal and Coir Reinforced Hybrid Composites Using Vinyl Ester Resin. Applied Mechanics and Materials, 0, 591, 146-149.	0.2	4
1537	Effects of Alkaline Treatments on the Tensile Strength of Napier Grass Fibres. Applied Mechanics and Materials, 0, 695, 340-343.	0.2	8
1538	Characterization of Epoxy Matrix Composites Incorporated with Sugarcane Bagasse Fibers. Materials Science Forum, 0, 775-776, 102-106.	0.3	6

#	Article	IF	CITATIONS
1539	Formulation and Characterization of Polypropylene Composites Alkali Treated Bagasse Fiber. Materials Science Forum, 2014, 775-776, 319-324.	0.3	7
1540	Infra-Red Spectroscopy Analysis of Malva Fibers. Materials Science Forum, 0, 775-776, 255-260.	0.3	5
1541	Recycled Cigarette Filter as Reinforcing Filler for Natural Rubber. Applied Mechanics and Materials, 0, 705, 39-43.	0.2	2
1542	Tensile Properties of Linear Low Density Polyethylene/Rambutan Peels (<i>Nephelium</i>) Tj ETQq1 1 0.784314 r	gBT/Over	lock 10 Tf 5
1543	Tensile Strength of Polyester Matrix Composites Reinforced with Giant Bamboo (<i>Dendrocalmus) Tj ETQq0 0 0</i>	rgBT /Ove	rlgck 10 Tf 5
1544	Charpy Impact Test of Epoxy Matrix Composites Reinforced with Buriti Fibers. Materials Science Forum, 0, 775-776, 296-301.	0.3	8
1545	Effect of Chemical Extraction on Physicochemical and Mechanical Properties of Doum Palm Fibres. Advances in Materials Physics and Chemistry, 2014, 04, 203-216.	0.3	34
1546	Izod Impact Tests in Polyester Matrix Composites Reinforced with Banana Fibers. Materials Science Forum, 0, 775-776, 261-265.	0.3	8
1547	3D Printing of Fractal Deterministic Shapes into Polymer Matrix with Respect to Final Composite Mechanical Properties. Applied Mechanics and Materials, 2014, 693, 207-212.	0.2	1
1548	Bio-Based Polymers for Technical Applications: A Review â€" Part 2. Open Journal of Polymer Chemistry, 2014, 04, 95-101.	1.8	6
1549	Studies on Okra Bast Fibre-Reinforced Phenol Formaldehyde Resin Composites. , 2014, , 157-174.		6
1550	Interaction of cellulose and lignocellulosic polymers with water and aqueous systems. Russian Chemical Bulletin, 2014, 63, 1926-1945.	0.4	7
1551	Friction Properties of Sisal Fiber Reinforced Nano-SiO ₂ Phenol Formaldehyde Resin Brake Composites. Applied Mechanics and Materials, 2014, 490-491, 64-68.	0.2	2
1552	Effect of Heat Treatment on Properties of Kenaf Fiber Mat/Unsaturated Polyester Composite Produced by Resin Transfer Molding. Applied Mechanics and Materials, 0, 699, 118-123.	0.2	12
1553	The Possibilities of Application of Cellulose Fibers in Cement Composites, Monitoring the Properties. Advanced Materials Research, 0, 1054, 85-89.	0.3	3
1554	Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering, 2014, 57, 180-186.	5.9	130
1555	Tailoring the structure and properties of jute blended nonwoven geotextiles via alkali treatment of jute fibers. Materials & Design, 2014, 53, 701-705.	5.1	22
1556	Significant improvement in performance of recycled polyethylene/wood flour composites by synergistic compatibilization at multi-scale interfaces. Composites Part A: Applied Science and Manufacturing, 2014, 64, 90-98.	3.8	34

#	Article	IF	CITATIONS
1557	Natural fibre composites: Comprehensive Ashby-type materials selection charts. Materials & Design, 2014, 62, 21-31.	5.1	182
1558	Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. Journal of Thermal Analysis and Calorimetry, 2014, 115, 153-160.	2.0	43
1559	Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 2014, 56, 249-253.	5.9	148
1560	Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties. Carbohydrate Polymers, 2014, 99, 306-310.	5.1	22
1561	Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. Journal of Materials Science, 2014, 49, 2035-2044.	1.7	29
1562	Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 2014, 109, 102-117.	5.1	784
1563	Energy filtered low voltage "in lens detector―SEM and XPS of natural fiber surfaces. Journal of Applied Polymer Science, 2014, 131, .	1.3	14
1564	High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers. Materials & Design, 2014, 58, 1-11.	5.1	129
1565	Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition. Journal of Materials Science, 2014, 49, 3225-3233.	1.7	63
1566	Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: amidation and esterification process. Journal of Materials Science, 2014, 49, 2832-2843.	1.7	44
1567	Multiscale modeling of the elastic properties of natural fibers based on a generalized method of cells and laminate analogy approach. Cellulose, 2014, 21, 1135-1141.	2.4	10
1568	Flame-retardant coating by alternate assembly of poly(vinylphosphonic acid) and polyethylenimine for ramie fabrics. Chinese Journal of Polymer Science (English Edition), 2014, 32, 305-314.	2.0	13
1569	Ultra-lightweight paper foams: processing and properties. Cellulose, 2014, 21, 2023-2031.	2.4	56
1570	Viscoelastic behaviour of untreated and chemically treated banana Fiber/PF composites. Fibers and Polymers, 2014, 15, 91-100.	1.1	29
1571	Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 2014, 109, 171-179.	5.1	305
1572	AFM-based model of percolation in graphene-based polymer nanocomposites. Composites Science and Technology, 2014, 95, 38-43.	3.8	13
1573	Impact modification of polypropyleneâ€based composites using surfaceâ€coated waste rubber crumbs. Polymer Composites, 2014, 35, 2280-2289.	2.3	21
1575	A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer, 2014, 55, 995-1003.	1.8	157

#	Article	IF	CITATIONS
1577	Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy. Carbohydrate Polymers, 2014, 101, 163-170.	5.1	164
1579	Study of mechanical properties of a composite-based plant fibre of the palm and thermoplastic matrices (PP). Journal of Composite Materials, 2014, 48, 291-299.	1.2	19
1580	Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose, 2014, 21, 367-382.	2.4	128
1581	Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water. Chemistry of Materials, 2014, 26, 2659-2668.	3.2	511
1582	Biodegradability of all-cellulose composite laminates. Composites Part A: Applied Science and Manufacturing, 2014, 59, 37-44.	3.8	64
1583	Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications., 2014,, 3-65.		58
1584	Recycled polymers in natural fibre-reinforced polymer composites. , 2014, , 103-114.		22
1585	Damping of thermoset and thermoplastic flax fibre composites. Composites Part A: Applied Science and Manufacturing, 2014, 64, 115-123.	3.8	160
1586	Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Composites Part A: Applied Science and Manufacturing, 2014, 64, 159-166.	3.8	60
1587	Green Composite of Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) Reinforced with Porous Cellulose. ACS Sustainable Chemistry and Engineering, 2014, 2, 248-253.	3.2	47
1588	Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Materials & Design, 2014, 56, 379-386.	5.1	146
1589	Utilisation of natural fibre as modifier in bituminous mixes: A review. Construction and Building Materials, 2014, 54, 305-312.	3.2	119
1590	High strain rate testing of natural fiber composites. , 2014, , 303-322.		1
1591	Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Industrial Crops and Products, 2014, 58, 78-90.	2.5	72
1592	Evolution of lignocellulosic fibre lengths along the screw profile during twin screw compounding with polycaprolactone. Composites Part A: Applied Science and Manufacturing, 2014, 59, 30-36.	3.8	46
1593	Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation. Carbohydrate Polymers, 2014, 111, 514-523.	5.1	18
1594	Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Industrial Crops and Products, 2014, 52, 481-494.	2.5	112
1595	Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres. Carbohydrate Polymers, 2014, 102, 21-29.	5.1	31

#	ARTICLE	IF	CITATIONS
1596	Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chemistry, 2014, 16, 1700-1715.	4.6	92
1597	Improved mechanical properties of recycled linear low-density polyethylene composites filled with date palm wood powder. Materials & Design, 2014, 58, 209-216.	5.1	27
1598	Development of composite films based on thermoplastic starch and cellulose microfibrils from Colombian agroindustrial wastes. Journal of Thermoplastic Composite Materials, 2014, 27, 413-426.	2.6	16
1599	Reinforcement of maleated polyethylene/ground tire rubber thermoplastic elastomers using talc and wood flour. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
1600	Mechanical and interfacial properties of phenolic composites reinforced with treated cellulose fibers. Polymer Engineering and Science, 2014, 54, 2228-2238.	1.5	12
1601	Hybrid MPI-OpenMP Parallelism in the ONETEP Linear-Scaling Electronic Structure Code: Application to the Delamination of Cellulose Nanofibrils. Journal of Chemical Theory and Computation, 2014, 10, 4782-4794.	2.3	50
1602	Biomass and Bioenergy. , 2014, , .		20
1603	Wood fiber reinforced multicomponent, multiphase PP composites: Structure, properties, failure mechanism. Composites Science and Technology, 2014, 103, 106-112.	3.8	22
1604	Effect of Compatibilizer Content on the Mechanical Properties of Bioplastic Composites via Hot Melt Extrusion. Polymer-Plastics Technology and Engineering, 2014, 53, 1223-1235.	1.9	11
1605	Enhancing the Adhesion of a Biomimetic Polymer Yields Performance Rivaling Commercial Glues. Advanced Functional Materials, 2014, 24, 3259-3267.	7.8	160
1606	Thermal property analysis of boron nitride-filled glass-fiber reinforced polymer composites. , 2014, , .		1
1607	Current Research in Biodegradable Plastics. Applied Mechanics and Materials, 0, 679, 273-280.	0.2	15
1608	Research progress in wood-plastic nanocomposites. Journal of Thermoplastic Composite Materials, 2014, 27, 180-204.	2.6	36
1609	Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL. RSC Advances, 2014, 4, 25809.	1.7	19
1611	Preparation and characterization of zinc oxide and nanoclay reinforced crosslinked starch/jute green nanocomposites. RSC Advances, 2014, 4, 33826.	1.7	12
1612	Effects of water immersion ageing on the mechanical properties of flax and jute fibre biocomposites evaluated by nanoindentation and flexural testing. Journal of Composite Materials, 2014, 48, 1399-1406.	1.2	58
1613	Mechanical properties of sisal fiber reinforced high density polyethylene composites: Effect of fiber content, interfacial compatibilization, and manufacturing process. Composites Part A: Applied Science and Manufacturing, 2014, 65, 169-174.	3.8	76
1614	Mechanical properties of soy protein based "green―composites reinforced with surface modified cornhusk fiber. Industrial Crops and Products, 2014, 60, 144-150.	2.5	67

#	Article	IF	CITATIONS
1615	Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers and Polymers, 2014, 15, 1278-1287.	1.1	55
1616	Biomass and Bioenergy., 2014, , .		19
1617	Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications. Materials & Design, 2014, 64, 116-126.	5.1	98
1618	Polyvinyl chloride composites filled with olive stone flour: Mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	23
1619	Processing and characterization of 100% hemp-based biocomposites obtained by vacuum infusion. Journal of Composite Materials, 2014, 48, 1323-1335.	1.2	10
1620	Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites. Composites Part B: Engineering, 2014, 67, 111-118.	5.9	68
1621	Cold ceramics: low-temperature processing of ceramics for applications in composites. , 2014, , 235-263.		0
1622	Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Composites Science and Technology, 2014, 103, 1-7.	3.8	107
1623	Thermo-mechanical and morphological properties of short natural fiber reinforced poly (lactic acid) biocomposite: Effect of fiber treatment. Fibers and Polymers, 2014, 15, 1303-1309.	1.1	24
1624	Preparation and properties of pineapple leaf fiber reinforced poly(lactic acid) green composites. Fibers and Polymers, 2014, 15, 1469-1477.	1.1	69
1625	A comparison of flax shive and extracted flax shive reinforced PP composites. Fibers and Polymers, 2014, 15, 1722-1728.	1.1	11
1626	Characterization of crystalline cellulose of jute reinforced poly (vinyl alcohol) (PVA) biocomposite film for potential biomedical applications. Progress in Biomaterials, 2014, 3, 23.	1.8	40
1627	Predicting the mechanical properties of date palm wood fibre-recycled low density polyethylene composite using artificial neural network. International Journal of Mechanical and Materials Engineering, 2014, 9, .	1.1	20
1628	High strength modified nanofibrillated cellulose-polyvinyl alcohol films. Cellulose, 2014, 21, 3561-3571.	2.4	21
1629	Rheological, morphological and mechanical properties of flax fiber polypropylene composites: influence of compatibilizers. Cellulose, 2014, 21, 3797-3812.	2.4	32
1630	Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Industrial Crops and Products, 2014, 62, 552-559.	2.5	125
1631	Effects of benzoyl peroxide on some properties of composites based on hemp and natural rubber. Polymer Bulletin, 2014, 71, 2001-2022.	1.7	36
1632	Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose, 2014, 21, 177-188.	2.4	99

#	Article	IF	CITATIONS
1633	Radial crystalline texture in a lyocell fibre revealed by synchrotron nanofocus wide-angle X-ray scattering. Cellulose, 2014, 21, 845-851.	2.4	7
1634	Microfibrillated cellulose and cellulose nanopaper from Miscanthus biogas production residue. Cellulose, 2014, 21, 1601-1610.	2.4	16
1635	Permeability of natural fiber reinforcement for liquid composite molding processes. Journal of Materials Science, 2014, 49, 6449-6458.	1.7	26
1636	Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Materials & Design, 2014, 59, 63-69.	5.1	152
1637	Potentiality of utilising natural textile materials for engineering composites applications. Materials & Design, 2014, 59, 359-368.	5.1	107
1638	Effect of filler surface treatment on the properties of recycled high-density polyethylene/(natural) Tj ETQq1 1 0.78	4314 rgBT 1.8	ŢQverlock
1639	Development of wood-crete from treated sawdust. Construction and Building Materials, 2014, 52, 353-360.	3.2	22
1640	Waste chestnut shell as a source of reinforcing fillers for polypropylene composites. Journal of Thermoplastic Composite Materials, 2014, 27, 1054-1064.	2.6	12
1641	Effect of coir fiber content and compatibilizer on the properties of unidirectional coir fiber/polypropylene composites. Fibers and Polymers, 2014, 15, 831-838.	1,1	16
1642	Mechanical and thermal degradation behavior of sisal fiber (SF) reinforced recycled polypropylene (RPP) composites. Fibers and Polymers, 2014, 15, 994-1003.	1.1	22
1643	Durability study of a ramie-fiber reinforced phenolic composite subjected to water immersion. Fibers and Polymers, 2014, 15, 1029-1034.	1,1	26
1644	Effect of chemically modified date palm leaf fiber on mechanical, thermal and rheological properties of polyvinylpyrrolidone. Fibers and Polymers, 2014, 15, 1062-1070.	1.1	33
1645	Citric acid modified potato starch films containing microcrystalline cellulose reinforcement - properties and application. Starch/Staerke, 2014, 66, 660-667.	1.1	33
1646	Spectroscopic characterization of genetically modified flax fibers. Journal of Molecular Structure, 2014, 1074, 321-329.	1.8	9
1647	Newly Developed Poly(Allyl Glycidyl Ether/Divinyl Benzene) Polymer for Phosphopeptides Enrichment and Desalting of Biofluids. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3536-3545.	4.0	18
1648	Changes of structure and property of alkali soluble hydroxyethyl celluloses (HECs) and their regenerated films with the molar substitution. Carbohydrate Polymers, 2014, 114, 206-212.	5.1	15
1649	Use of residual agricultural plastics and cellulose fibers for obtaining sustainable eco-composites prevents waste generation. Journal of Cleaner Production, 2014, 83, 228-237.	4.6	39
1650	Natural fibre composites in a marine environment. , 2014, , 365-374.		15

#	Article	IF	CITATIONS
1651	Date palm wood flour as filler of linear low-density polyethylene. Composites Part B: Engineering, 2014, 56, 137-141.	5.9	86
1652	Failure mechanism of woven natural silk/epoxy rectangular composite tubes under axial quasi-static crushing test using trigger mechanism. International Journal of Impact Engineering, 2014, 64, 53-61.	2.4	51
1653	Chemical modification of cellulose acetate by N-(phenyl amino) maleimides: Characterization and properties. International Journal of Biological Macromolecules, 2014, 68, 21-27.	3.6	18
1654	Falling weight impact response of jute/methacrylated soybean oil bio-composites under low velocity impact loading. Composites Science and Technology, 2014, 92, 134-141.	3.8	48
1655	Bombyx mori silk fibre and its composite: A review of contemporary developments. Materials & Design, 2014, 57, 298-305.	5.1	109
1656	Influence of temperature and impact velocity on the impact response of jute/UP composites. Polymer Testing, 2014, 35, 10-19.	2.3	45
1657	Polymer reinforced by flax fibres as a viscoelastoplastic material. Composite Structures, 2014, 112, 100-112.	3.1	85
1658	Ternary polymer electrolyte with enhanced ionic conductivity and thermo-mechanical properties for lithium-ion batteries. International Journal of Hydrogen Energy, 2014, 39, 2964-2970.	3.8	15
1659	Mechanical properties of surface modified jute fiber/polypropylene nonwoven composites. Polymer Composites, 2014, 35, 1044-1050.	2.3	27
1660	Modification and Characterization of Hemp and Sisal Fibers. Journal of Natural Fibers, 2014, 11, 144-168.	1.7	111
1661	Mechanical properties of woven jute–glass hybrid-reinforced epoxy composite. Journal of Composite Materials, 2014, 48, 3445-3455.	1.2	126
1662	A multiscale approach and microstructure design of the elastic composite behavior reinforced with natural particles. Composites Part B: Engineering, 2014, 66, 247-254.	5.9	32
1663	Nanocellulose-Based Composites and Bioactive Agents for Food Packaging. Critical Reviews in Food Science and Nutrition, 2014, 54, 163-174.	5.4	160
1664	Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder. Materials & Design, 2014, 53, 29-37.	5.1	73
1665	Extraction of Continuous Fiber from Mengkuang Leaves: The Influence of Process Parameters during Alkaline Treatment. MATEC Web of Conferences, 2014, 13, 04005.	0.1	0
1666	Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder. Journal of Visualized Experiments, 2014, , .	0.2	11
1667	Study of the alkali treatment effect on the mechanical behavior of the composite unsaturated polyester-Alfa fibers. Mechanics and Industry, 2014, 15, 69-73.	0.5	53
1668	Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curau \tilde{A}_i fiber composites. Materials Research, 2014, 17, 412-419.	0.6	55

#	ARTICLE	IF	CITATIONS
1673	Nanoindentation of bleached and refined pulp fibres. International Journal of Materials Engineering Innovation, $2014, 5, 138$.	0.2	4
1675	Synergy in epoxy nanocomposites with cellulose nanocrystals and Boehmite. Green Materials, 2014, 2, 222-231.	1.1	4
1676	Preparation of Polyimide–Cellulose Composite Using Oligoimide with Ethynyl Terminals. Chemistry Letters, 2014, 43, 787-789.	0.7	3
1677	Effects of Reinforcing Fillers and Coupling Agents on Performances of Wood–Polymer Composites. , 2014, , 126-145.		0
1678	Bio-Based Strategy: Food and Non-Food Markets. , 2014, , 20-35.		2
1679	Bio-Inspired Materials. , 2014, , 56-71.		0
1682	Natural fibre-reinforced composite parts for automotive applications. International Journal of Automotive Composites, 2014, 1, 18.	0.1	35
1683	Strategy of Bio-Based Resources: Material versus Energy and Klanarong Sriroth. , 2014, , 36-55.		4
1684	Effect of fibre length and weight percentage on mechanical properties of short sisal/polyester composite. International Journal of Computer Aided Engineering and Technology, 2015, 7, 60.	0.1	11
1686	Use of Oxidized Regenerated Cellulose in Controlling Bleeding during Neurosurgical Procedures. , 2015, , 308-321.		1
1688	Machining Performance Study of a New Palm Oil Based Bio-Product Industrial Wax. Applied Mechanics and Materials, 2015, 754-755, 935-938.	0.2	0
1689	Role of Key Factors of Particulate Components in Biocomposites. Solid State Phenomena, 0, 244, 153-160.	0.3	0
1690	A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste. Scientific Reports, 2015, 5, 7837.	1.6	40
1691	Graft Copolymerization of Vinyl Monomers onto Cellulosic Cannabis indica Fibers., 2015, , 166-185.		3
1692	Biocomposites Composed of Bio-Based Epoxy Resins, Bio-Based Polyphenols and Lignocellulosic Fibers. , 2015, , 111-160.		0
1694	Assessment of particulate cellulose epoxy composites manufactured by JMFIL under impact load. AIP Conference Proceedings, 2015, , .	0.3	1
1697	Preparation and tensile properties of linear low density polyethylene/rambutan peels (Nephelium) Tj ETQq0 0 0 rg	gBT/Overlo	ock 10 Tf 50
1698	Role of Co-Vapors in Vapor Deposition Polymerization. Scientific Reports, 2015, 5, 8420.	1.6	23

#	Article	IF	CITATIONS
1699	Polymer matrix influence on stability of wood polymer composites. Polymers for Advanced Technologies, 2015, 26, 1076-1082.	1.6	25
1700	Thermal pretreatment of kudzu biomass (<i>pueraria lobata</i>) as filler in cost-effective pla biocomposite fabrication process. Polymer Engineering and Science, 2015, 55, 340-348.	1.5	15
1702	Optimization of the silane treatment of cellulosic fibers from eucalyptus wood using response surface methodology. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
1703	Electrical conductivity and electromagnetic interference shielding effectiveness of carbon black/sisal fiber/polyamide/polypropylene composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
1704	Strong, Thermally Superinsulating Biopolymer–Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin. Angewandte Chemie - International Edition, 2015, 54, 14282-14286.	7.2	132
1705	Mechanical and wear behaviors of untreated and alkali treated Roselle fiber-reinforced vinyl ester composite. Journal of Engineering Research, 2015, 3, .	0.4	11
1707	Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplateletâ€Bioâ€Based Composites. Advanced Electronic Materials, 2015, 1, 1500224.	2.6	54
1708	Effect of stacking sequence on mechanical properties of hybrid flax/jute fibers reinforced thermoplastic composites. Polymer Composites, 2015, 36, 2167-2173.	2.3	41
1709	Effect of Fibre Surface Treatment on the Properties of Eco-Core Sandwich Structures. Advanced Materials Research, 0, 1115, 321-324.	0.3	0
1710	Extraction and characterization of Retama monosperma fibers. African Journal of Biotechnology, 2015, 14, 2644-2651.	0.3	4
1711	Flexural Behavior of Epoxy Matrix Composites Reinforced with Malva Fiber. Materials Research, 2015, 18, 114-120.	0.6	16
1712	Fique Fiber Tensile Elastic Modulus Dependence with Diameter Using the Weibull Statistical Analysis. Materials Research, 2015, 18, 193-199.	0.6	27
1713	Preparation and Characterization of Cassava Leaves/ Cassava Starch Acetate Biocomposite Sheets. BioResources, 2015, 10, .	0.5	0
1714	Ballistic Test of Multilayered Armor with Intermediate Epoxy Composite Reinforced with Jute Fabric. Materials Research, 2015, 18, 170-177.	0.6	102
1715	Blossom Morphology and Correlative Performance Improvement of Recycled Polyethylene/Wood Flour Composites with Steam-Activated Interfaces. BioResources, 2015, 10, .	0.5	3
1716	Optimal Performance Characteristics and Reinforcement Combinations of Coconut Fibre Reinforced High Density Polyethylene (HDPE) Polymer Matrixes. SSRN Electronic Journal, 2015, , .	0.4	0
1717	TENSILE STRENGTH OF SINGLE CONTINUOUS FIBER EXTRACTED FROM MENGKUANG LEAVES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.3	3
1718	Charpy Impact Tests of Epoxy Composites Reinforced with Giant Bamboo Fibers. Materials Research, 2015, 18, 178-184.	0.6	26

#	Article	IF	CITATIONS
1719	Effect of Chemical Treatment of Flax Fiber and Resin Manipulation on Service Life of Their Composites Using Time-Temperature Superposition. Polymers, 2015, 7, 1965-1978.	2.0	60
1720	Characterization of Fibers from Pineapple's Crown, Rice Husks and Cotton Textile Residues. Materials Research, 2015, 18, 530-537.	0.6	22
1721	Giant Bamboo Fiber Reinforced Epoxy Composite in Multilayered Ballistic Armor. Materials Research, 2015, 18, 70-75.	0.6	65
1722	Kenaf/Synthetic and Kevlar $\hat{A}^{@}$ /Cellulosic Fiber-Reinforced Hybrid Composites: A Review. BioResources, 2015, 10, 8580-8603.	0.5	51
1723	Characterization on the Properties of Jute Fiber at Different Portions. International Journal of Polymer Science, 2015, 2015, 1-6.	1.2	36
1724	Response Surface Methodology for the Optimization of Preparation of Biocomposites Based on Poly(lactic acid) and Durian Peel Cellulose. Scientific World Journal, The, 2015, 2015, 1-12.	0.8	26
1725	Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers. International Journal of Polymer Science, 2015, 2015, 1-8.	1.2	25
1726	Effect of Fiber Treatment and Fiber Loading on Mechanical Properties of <i>Luffa</i> -Resorcinol Composites. Indian Journal of Materials Science, 2015, 2015, 1-6.	0.6	25
1727	Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete. Advances in Materials Science and Engineering, 2015, 2015, 1-6.	1.0	14
1728	A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science, 2015, 2015, 1-16.	1.2	359
1729	Interfacial Compatibility and Adhesion in Natural Fiber Composites., 2015,, 127-156.		3
1730	Wood-Like Material from Thermoplastic Polymer and Landfill Bio-Materials: Dma, Tga and Solvent Resistance Properties. Polymers From Renewable Resources, 2015, 6, 25-41.	0.8	0
1732	Preparation and Characterization of Polyester Composites Reinforced with Bleached, Diospyros perigrina (Indian persimmon) Treated and Unbleached Jute Mat. Journal of Advanced Chemical Engineering, 2015, 4, .	0.1	2
1733	From Cellulose Dissolution and Regeneration to Added Value Applications — Synergism Between Molecular Understanding and Material Development. , 0, , .		7
1734	Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13022-13028.	4.0	105
1735	Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP. International Journal of Sustainable Built Environment, 2015, 4, 248-264.	3.2	48
1737	Degradation and stability of green composites fabricated from oil palm empty fruit bunch fiber and polylactic acid: Effect of fiber length. Journal of Composite Materials, 2015, 49, 3103-3114.	1.2	14
1738	Economical carbon and cellulosic sheet moulding compounds for semi- and non-structural applications. Journal of Reinforced Plastics and Composites, 2015, 34, 437-453.	1.6	6

#	Article	IF	CITATIONS
1739	Potential utilization of date palm wood as composite reinforcement. Journal of Reinforced Plastics and Composites, 2015, 34, 1231-1240.	1.6	34
1740	Effects of vitamin E combined with antioxidants on wood flour/polypropylene composites during accelerated weathering. Holzforschung, 2015, 69, 113-120.	0.9	13
1741	Agricultural Biomass Based Potential Materials. , 2015, , .		32
1742	Characterization and Processing of Nanocellulose Thermosetting Composites. , 2015, , 265-295.		7
1743	Performance of biocomposites from surface modified regenerated cellulose fibers and lactic acid thermoset bioresin. Cellulose, 2015, 22, 2507-2528.	2.4	31
1744	Strain distribution and load transfer in the polymer-wood particle bond in wood plastic composites. Holzforschung, 2015, 69, 53-60.	0.9	14
1745	Tension–tension fatigue behaviour of woven flax/epoxy composites. Journal of Reinforced Plastics and Composites, 2015, 34, 857-867.	1.6	51
1746	Natural fibers. , 2015, , 102-143.		41
1747	Synthesis and characterization of poly(lactic acid) based graft copolymers. Reactive and Functional Polymers, 2015, 93, 47-67.	2.0	101
1748	Evaluation of the mechanical properties of recycled low-density polyethylene/bean pod particulate bio-composites. Journal of the Chinese Advanced Materials Society, 2015, 3, 345-358.	0.7	2
1749	The Property and Applicability to Auto Industry of Natural Fiber Reinforced Composites. Applied Mechanics and Materials, 2015, 776, 179-185.	0.2	0
1750	A Study of Fire Retardant Effect in Natural Fiber Composite Panels with Magnesium Hydroxide and Zinc Borate as Additives. Applied Mechanics and Materials, 0, 815, 148-152.	0.2	4
1751	Hybrid laminated composites molded by spray lay-up process. Fibers and Polymers, 2015, 16, 1759-1765.	1.1	22
1752	Thermal Study of Earth Bricks Reinforced by Date palm Fibers. Energy Procedia, 2015, 74, 919-925.	1.8	29
1753	Chemical investigation of potassium methyl siliconate as deacidification and strengthening agent for preservation of aged papers. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1672-1682.	2.0	7
1754	Hemp fibre as alternative to glass fibre in sheet moulding compound. Part 2—impact properties. Plastics, Rubber and Composites, 2015, 44, 291-298.	0.9	7
1755	A comparison between micro- and nanocellulose-filled composite adhesives for oil paintings restoration. Nanocomposites, 2015, 1, 195-203.	2.2	29
1756	An elastocapillary model of wood-fibre collapse. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150184.	1.0	8

#	Article	IF	CITATIONS
1757	Improved interfacial properties between glass fibers and tetra-functional epoxy resins modified with silica nanoparticles. Fibers and Polymers, 2015, 16, 2056-2065.	1.1	24
1758	Assessing of Mechanical Properties of Natural Fiber Reinforced Polymer Matrix Hybrid Composites. Applied Mechanics and Materials, 0, 766-767, 199-204.	0.2	1
1759	Research into the specifications of woven composites obtained from raffia fibers pretreated using the ecological method. Textile Reseach Journal, 2015, 85, 302-315.	1.1	12
1760	Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering. Applied Surface Science, 2015, 332, 253-259.	3.1	91
1761	A review on structural analysis and experimental investigation of fiber reinforced composite leaf spring. Journal of Reinforced Plastics and Composites, 2015, 34, 95-100.	1.6	29
1762	Effect of Common Chemical Treatments on the Process Kinetics and Mechanical Properties of Flax/Epoxy Composites Manufactured by Resin Infusion. Journal of Polymers and the Environment, 2015, 23, 143-155.	2.4	5
1763	A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polymer Reviews, 2015, 55, 107-162.	5.3	515
1764	Development and characterization of flax fiber reinforced biocomposite using flaxseed oilâ€based bioâ€resin. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
1765	Effect of kenaf particulate fillers in polymeric composite for tribological applications. Textile Reseach Journal, 2015, 85, 1602-1619.	1,1	17
1766	Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B: Engineering, 2015, 74, 66-73.	5.9	103
1767	Preparation and properties of unmodified ramie fiber reinforced polypropylene composites. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 198-202.	0.4	14
1768	Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 2015, 22, 935-969.	2.4	624
1769	Cellulose Nanofiber-Protein Composite. , 2015, , 449-464.		2
1770	Surface properties studies of bivalve shell waste by the IGC technique: Probing its significant potential application in the polymer industry. Journal of Alloys and Compounds, 2015, 621, 389-395.	2.8	22
1771	Tailor-made copolymers for the adsorption to cellulosic surfaces. European Polymer Journal, 2015, 65, 325-339.	2.6	42
1772	Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials, 2015, 79, 115-128.	3.2	476
1773	A simple and effective method to ameliorate the interfacial properties of cellulosic fibre based bio-composites using poly (ethylene glycol) based amphiphiles. European Polymer Journal, 2015, 64, 70-78.	2.6	8
1774	Effects of crystallinity of polypropylene (PP) on the mechanical properties of PP/styrene-ethylene-butylene-styrene-g-maleic anhydride (SEBS-g-MA)/teak wood flour (TWF) composites. Polymer Bulletin, 2015, 72, 627-643.	1.7	20

#	Article	IF	Citations
1775	Mechanical and Morphology Properties of Cellulose Nanocomposites., 2015,, 249-263.		1
1776	Effect of different lignocellulosic fibres on poly($\hat{l}\mu$ -caprolactone)-based composites for potential applications in orthotics. RSC Advances, 2015, 5, 23798-23809.	1.7	31
1777	Microstructure, Mechanical, and Thermogravimetric Characterization of Cellulosic By-Products Obtained from Biomass Seeds. International Journal of Food Properties, 2015, 18, 1211-1222.	1.3	24
1778	Friction properties of sisal fiber/nanoâ€silica reinforced phenol formaldehyde composites. Polymer Composites, 2015, 36, 433-438.	2.3	39
1779	Adaptive Neutron Radiography Correlation for Simultaneous Imaging of Moisture Transport and Deformation in Hygroscopic Materials. Experimental Mechanics, 2015, 55, 403-415.	1,1	10
1780	Effect of Cross-linking Agent on Tensile Properties of Chitosan/Corn Cob Biocomposite Films. Polymer-Plastics Technology and Engineering, 2015, 54, 270-275.	1.9	18
1781	A chemical, morphological and mineralogical study on the interaction between hemp hurds and aerial and natural hydraulic lime particles: Implications for mortar manufacturing. Construction and Building Materials, 2015, 75, 375-384.	3.2	37
1782	Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	1.3	41
1783	Thermally flexible epoxy/cellulose blends mediated by an ionic liquid. RSC Advances, 2015, 5, 52832-52836.	1.7	10
1784	How to decrease the hydrophilicity of wood flour to process efficient composite materials. Applied Surface Science, 2015, 353, 1234-1241.	3.1	18
1785	Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Carbohydrate Polymers, 2015, 134, 20-29.	5.1	99
1786	Effect of alkali treatment on Alfa fibre as reinforcement for polypropylene based eco-composites: Mechanical behaviour and water ageing. Composite Structures, 2015, 133, 451-457.	3.1	68
1787	Microstructure and mechanical performance of modified hemp fibre and shiv mortars: Discovering the optimal formulation. Materials and Design, 2015, 84, 359-371.	3.3	38
1788	Effect of fiber loading on the mechanical and physical properties of â€ægreen―bagasse–polyester composite. Journal of Radiation Research and Applied Sciences, 2015, 8, 544-548.	0.7	45
1789	Synthesis and characterization of cellulose-microfibril reinforced epoxy composite., 2015,,.		1
1790	Polypropylene/Wood Flour Composites Prepared by Solid State Shear Milling. Advanced Materials Research, 2015, 1094, 96-99.	0.3	0
1791	Dielectric analysis of the interfacial polarization of alkali treated woven flax fibers reinforced epoxy composites. Journal of Electrostatics, 2015, 76, 67-72.	1.0	18
1792	Influence of alkali treatment on the mechanical properties of new cane fibre/polyester composites. Journal of Reinforced Plastics and Composites, 2015, 34, 1329-1339.	1.6	38

#	Article	IF	CITATIONS
1793	Isotherm moisture absorption kinetics in natural-fiber-reinforced polymer under immersion conditions. Journal of Composite Materials, 2015, 49, 1301-1314.	1.2	8
1794	Aramid nanofiber-reinforced transparent nanocomposites. Journal of Composite Materials, 2015, 49, 1873-1879.	1.2	74
1795	Structure, morphology and mechanical behaviour of novel bio-based polyurethane composites with microcrystalline cellulose. Cellulose, 2015, 22, 2471-2481.	2.4	35
1796	Triticale straw and its thermoplastic biocomposites. Science and Engineering of Composite Materials, 2015, 22, .	0.6	2
1797	Chemical treatments of rice husk filler and jute fiber for the use in green composites. Fibers and Polymers, 2015, 16, 902-910.	1.1	14
1798	A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 2015, 77, 1-25.	3.8	950
1799	Modification of nano-kenaf surface with maleic anhydride grafted polypropylene upon improved mechanical properties of polypropylene composite. Composite Interfaces, 2015, 22, 433-445.	1.3	13
1800	High performance hybrid PP and PLA biocomposites reinforced with short man-made cellulose fibres and softwood flour. Composites Part A: Applied Science and Manufacturing, 2015, 74, 132-139.	3.8	52
1801	Energy absorption and load carrying capability of woven natural silk epoxy–triggered composite tubes. Composites Part B: Engineering, 2015, 77, 10-18.	5.9	46
1802	Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Composites Part B: Engineering, 2015, 78, 153-161.	5.9	126
1803	Sisal nanofibril reinforced polypropylene/polystyrene blends: Morphology, mechanical, dynamic mechanical and water transmission studies. Industrial Crops and Products, 2015, 71, 173-184.	2.5	44
1804	Transport properties of coconut shell powder (CSP)-reinforced natural rubber composites in aromatic solvents. Polymer Bulletin, 2015, 72, 1683-1702.	1.7	15
1805	Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. Journal of Thermal Analysis and Calorimetry, 2015, 121, 93-105.	2.0	51
1806	Investigating the influence of mercerization treatment of sisal fiber on the mechanical properties of reinforced polypropylene composites and modeling of the properties. Fibers and Polymers, 2015, 16, 650-656.	1.1	26
1807	Characterization and Treatments of Oil Palm Frond Fibers and Its Suitability for Technical Applications. Journal of Natural Fibers, 2015, 12, 84-95.	1.7	5
1808	Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Industrial Crops and Products, 2015, 70, 91-99.	2.5	130
1809	Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 2015, 73, 1-16.	4.6	253
1810	Wear resistance and friction behavior of thermoset matrix reinforced with Musaceae fiber bundles. Tribology International, 2015, 87, 57-64.	3.0	51

#	Article	IF	CITATIONS
1811	Preparation of carbon nanoweb from cellulose nanowhisker. Fibers and Polymers, 2015, 16, 271-275.	1.1	10
1812	The use of hemp fibres as reinforcements in composites. , 2015, , 86-103.		43
1813	The thermo-oxidative stability and flammability of wood/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1955-1962.	2.0	34
1814	Cornstarch/Poly(vinyl alcohol) Biocomposite Blend Films: Mechanical Properties, Thermal Behavior, Fire Retardancy, and Antibacterial Activity. International Journal of Polymer Analysis and Characterization, 2015, 20, 357-366.	0.9	33
1815	Potential Utilization of Kenaf Biomass in Different Applications. , 2015, , 1-34.		15
1816	The Surface and In-Depth Modification of Cellulose Fibers. Advances in Polymer Science, 2015, , 169-206.	0.4	16
1822	Sustainable Resource based Hyperbranched Epoxy Nanocomposite as an Infection Resistant, Biodegradable, Implantable Muscle Scaffold. ACS Sustainable Chemistry and Engineering, 2015, 3, 1136-1144.	3.2	20
1823	Click chemistry route to covalently link cellulose and clay. Cellulose, 2015, 22, 1615-1624.	2.4	19
1824	Modification of interfacial adhesion with a functionalized polymer in PLA/wood composites. European Polymer Journal, 2015, 68, 592-600.	2.6	88
1825	Revalorization of rice husk waste as a source of cellulose and silica. Fibers and Polymers, 2015, 16, 285-293.	1.1	22
1826	Utilization of olive tree branch cellulose in synthesis of hydroxypropyl carboxymethyl cellulose. Carbohydrate Polymers, 2015, 127, 124-134.	5.1	29
1827	Poly(vinyl alcohol)/Cellulose Nanofibril Hybrid Aerogels with an Aligned Microtubular Porous Structure and Their Composites with Polydimethylsiloxane. ACS Applied Materials & Interfaces, 2015, 7, 7436-7444.	4.0	93
1828	The effect of elementary fibre variability on bamboo fibre strength. Materials & Design, 2015, 75, 136-142.	5.1	50
1829	Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing - Green Technology, 2015, 2, 197-213.	2.7	373
1830	Preparation and characteristics of polypropylene- <i>graft</i> micro-fibriled cellulose: its composites with polypropylene. Journal of Adhesion Science and Technology, 2015, 29, 185-194.	1.4	11
1831	Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Industrial Crops and Products, 2015, 71, 1-6.	2.5	55
1832	Mechanical performance of polyethylene (PE)-based biocomposites., 2015,, 237-256.		5
1833	Processing rigid wheat gluten biocomposites for high mechanical performance. Composites Part A: Applied Science and Manufacturing, 2015, 79, 74-81.	3.8	14

#	Article	IF	Citations
1834	Environmental Effects on the Static and Fatigue Behaviours of Hemp Fibre under Tensile Loading. Applied Mechanics and Materials, 2015, 798, 410-418.	0.2	0
1835	Study of the Mechanical Properties of Fibers Extracted from Tunisian <i>Agave americana</i> L Journal of Natural Fibers, 2015, 12, 552-560.	1.7	24
1836	Analysis of oxidized cellulose introduced into ramie fiber by oxidation degumming. Textile Reseach Journal, 2015, 85, 2125-2135.	1.1	34
1837	Residual sisal fibers treated by methane cold plasma discharge for potential application in cement based material. Industrial Crops and Products, 2015, 77, 691-702.	2.5	32
1838	Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications, 2015, 4, 69-76.	0.9	73
1839	Uniaxial tensile behaviour modelling of natural-fiber-reinforced viscoplastic polymer using normalized stress–strain curves. Journal of Composite Materials, 2015, 49, 2389-2402.	1.2	3
1840	Manufacturing and mechanical response optimization of epoxy resin/Luffa Cylindrica composite. Journal of Applied Polymer Science, 2015, 132, .	1.3	27
1841	Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical-crosslinking: exploiting polymer synergies for biomedical nanocomposites. RSC Advances, 2015, 5, 90742-90749.	1.7	22
1842	Chitin-Based Nanocomposites: Biomedical Applications. Advanced Structured Materials, 2015, , 439-457.	0.3	6
1843	Three-Phase Coexistence in Colloidal Rod–Plate Mixtures. Langmuir, 2015, 31, 9290-9295.	1.6	19
1844	Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers. Green Chemistry, 2015, 17, 4800-4814.	4.6	101
1845	Impact of fibre moisture content on the structure/mechanical properties relationships of PHBV/wheat straw fibres biocomposites. Composites Science and Technology, 2015, 117, 386-391.	3.8	49
1846	Investigation of mechanical/dynamic properties of carbon fiber reinforced polymer concrete for low noise railway slab. Composite Structures, 2015, 134, 27-35.	3.1	45
1847	Influence of Montmorillonite Treated with Cetyl Trimethyl Ammonium Bromide Addition in Epoxy-Kenaf Composites. Applied Mechanics and Materials, 0, 754-755, 235-239.	0.2	1
1848	Improved multiple cracking and autogenous healing in cementitious materials by means of chemically-treated natural fibres. Biosystems Engineering, 2015, 139, 87-99.	1.9	67
1849	A cellulosic liquid crystal pool for cellulose nanocrystals: Structure and molecular dynamics at high shear rates. European Polymer Journal, 2015, 72, 72-81.	2.6	26
1850	Improving the performances of polyethylene/sisal fiber composites by infiltratively compatibilizing the multi-scale interfaces. Composite Interfaces, 2015, 22, 489-502.	1.3	7
1851	Study of Mechanical and Flammability Properties of Polypropylene/Microcrystalline Cellulose Composites Filled with Nano-sized Aluminium Hydroxide (ATH) Particles. Advanced Materials Research, 2015, 1115, 402-405.	0.3	1

#	ARTICLE	IF	CITATIONS
1852	Performance of biomass filled polyolefin composites. , 2015, , 257-301.		1
1853	Scenarios of crack propagation in bast fibers: Combining experimental and finite element approaches. Composite Structures, 2015, 133, 667-678.	3.1	15
1854	Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Composites Part B: Engineering, 2015, 82, 23-29.	5.9	57
1855	Manufacturing of Natural Fibre Reinforced Polymer Composites. , 2015, , .		44
1856	Processability of Wood Fibre-Filled Thermoplastic Composite Thin-Walled Parts Using Injection Moulding., 2015,, 351-367.		2
1857	Characterization and properties of organo-montmorillonite modified lignocellulosic fibers and their interaction mechanisms. RSC Advances, 2015, 5, 76708-76717.	1.7	13
1858	Review on the Application of Natural Fiber Composite via Filament Winding Using Different Resin. Key Engineering Materials, 2015, 660, 120-124.	0.4	1
1859	Inhibitory effects of <i>Cymodocea nodosa</i> sulphated polysaccharide on <i>α</i> -amylase activity, liver-kidney toxicities and lipid profile disorders in diabetic rats. Archives of Physiology and Biochemistry, 2015, 121, 218-227.	1.0	9
1860	Bacterial Cellulose Reinforced Flax Fibre Composites: Effect of Nanocellulose Loading on Composite Properties. Materials Science Forum, 2015, 825-826, 1063-1067.	0.3	0
1861	The effect of oxidation–reduction potential on the degumming of ramie fibers with hydrogen peroxide. Journal of the Textile Institute, 2015, 106, 1251-1261.	1.0	14
1862	Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Materials Chemistry and Physics, 2015, 152, 26-33.	2.0	106
1863	Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products, 2015, 65, 27-35.	2.5	177
1864	Microstructural Study, Tensile Properties, and Scanning Electron Microscopy Fractography Failure Analysis of Various Agricultural Residue Fibers. Journal of Natural Fibers, 2015, 12, 154-168.	1.7	21
1865	Value-added industrial products from bast fiber crops. Industrial Crops and Products, 2015, 68, 116-125.	2.5	38
1866	Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. Journal of Applied Polymer Science, 2015, 132, .	1.3	44
1867	Alkylation of mixed micro- and nanocellulose to improve dispersion in polylactide. Polymer International, 2015, 64, 821-827.	1.6	30
1869	Compatibility between Cellulose and Hydrophobic Polymer Provided by Microfibrillated Lignocellulose. ChemSusChem, 2015, 8, 87-91.	3.6	44
1870	Thermal and biodegradation properties of poly(lactic acid)/fertilizer/oil palm fibers blends biocomposites. Polymer Composites, 2015, 36, 576-583.	2.3	46

#	Article	IF	CITATIONS
1871	The role of soil properties and it's interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews, 2015, 43, 1006-1015.	8.2	73
1872	Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products, 2015, 64, 68-78.	2.5	88
1873	Investigation of microstructure and tensile properties of porous natural coir fibre for use in composite materials. Industrial Crops and Products, 2015, 65, 437-445.	2.5	76
1874	A review of aspects affecting performance and modeling of shortâ€naturalâ€fiberâ€reinforced polymers under monotonic and cyclic loading conditions. Polymer Composites, 2015, 36, 397-409.	2.3	5
1875	Physical, mechanical, and thermal properties of micronized organo-montmorillonite suspension modified wood flour/poly(lactic acid) composites. Polymer Composites, 2015, 36, 731-738.	2.3	14
1876	Mechanical and water absorption properties of municipal solid waste and banana fiberâ€reinforced urea formaldehyde composites. Environmental Progress and Sustainable Energy, 2015, 34, 211-221.	1.3	8
1877	The use of biobased nanofibres in composites. , 2015, , 571-647.		21
1878	Green composites prepared from aliphatic polyesters and bast fibers. Industrial Crops and Products, 2015, 68, 60-79.	2.5	92
1879	Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylene–rice husk composites and their foam. Composites Part A: Applied Science and Manufacturing, 2015, 68, 313-322.	3.8	60
1880	A review on tribological performance of natural fibre polymeric composites. Tribology International, 2015, 83, 77-104.	3.0	227
1881	Mechanical Properties of Sugarcane Bagasse Fiber-Reinforced Soy Based Biocomposites. Journal of Polymers and the Environment, 2015, 23, 97-106.	2.4	28
1882	Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry. International Journal of Biological Macromolecules, 2015, 72, 855-861.	3.6	39
1883	The use of oil palm biomass (OPB) fibers as reinforcements in composites. , 2015, , 342-382.		5
1884	The use of banana and abaca fibres as reinforcements in composites. , 2015, , 236-272.		20
1885	The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering, 2015, 68, 14-21.	5.9	389
1886	A potential bio-filler: The substitution effect of furfural modified clam shell for carbonate calcium in polypropylene. Journal of Composite Materials, 2015, 49, 807-816.	1.2	38
1887	Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites. Materials & Design, 2015, 66, 473-485.	5.1	83
1888	Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Composites Part B: Engineering, 2015, 68, 185-192.	5.9	74

#	ARTICLE	IF	CITATIONS
1889	The use of rice straw and husk fibers as reinforcements in composites. , 2015, , 385-422.		35
1890	Characterization of composite materials based on LDPE loaded with agricultural tunisian waste. Polymer Composites, 2015, 36, 817-824.	2.3	10
1891	The use of jute fibers as reinforcements in composites. , 2015, , 3-34.		32
1892	A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties. Macromolecular Materials and Engineering, 2015, 300, 10-24.	1.7	438
1893	Maleated high oleic sunflower oilâ€treated cellulose fiberâ€based styrene butadiene rubber composites. Polymer Composites, 2016, 37, 1113-1121.	2.3	6
1894	Effect of the Ecological Methods on the Surface Modification of the Kenaf Fibers. Medziagotyra, 2016, 22, .	0.1	O
1895	Pejibaye Fiber-Reinforced Polypropylene Matrix Composites. Polymers From Renewable Resources, 2016, 7, 67-79.	0.8	1
1896	Natural Fiber-Polypropylene Composites Made from Caranday Palm. Journal of Renewable Materials, 2016, 4, 101-112.	1.1	2
1897	Sugar Palm Fibre and its Composites: A Review of Recent Developments. BioResources, 2016, 11, .	0.5	34
1898	CRUSHING MECHANISMS OF CYLINDRICAL WINDING KENAF FIBER REINFORCED COMPOSITES. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	3
1899	Effects of Fungicides on Mold Resistance and Mechanical Properties of Wood and Bamboo Flour/High-Density Polyethylene Composites. BioResources, 2016, 11, .	0.5	7
1900	Effects of Surface Modification on the Mechanical Properties of Flax/ \hat{l}^2 -Polypropylene Composites. Materials, 2016, 9, 314.	1.3	50
1901	Mechanical and Thermal Properties of Short Arecanut Leaf Sheath Fiber Reinforced Polypropyline Composites: TGA, DSC and SEM Analysis. Journal of Material Science & Engineering, 2016, 5, .	0.2	14
1902	Thermal Analysis and Morphological Characterization of Thermoplastic Composites Filled with Almond Shell Flour/Montmorillonite. BioResources, 2016, 11, .	0.5	6
1903	Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading. Polimeros, 2016, 26, 115-122.	0.2	25
1904	Cellulosic Pulp Fiber as Reinforcement Materials in Seaweed-Based Film. BioResources, 2016, 12, .	0.5	8
1905	Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites. Polymers, 2016, 8, 129.	2.0	26
1906	Tensile Strength Assessment of Injection-Molded High Yield Sugarcane Bagasse-Reinforced Polypropylene. BioResources, 2016, 11, .	0.5	10

#	Article	IF	Citations
1907	Potential Use of Hazelnut Husk in Recycled High-Density Polyethylene Composites. BioResources, 2016, 11, .	0.5	6
1909	Irradiated Jute Reinforced Polypropylene Composites: Effect of Mercerization and SEM Analysis. Journal of Material Science & Engineering, 2016, 5, .	0.2	2
1910	Extraction and Hydrophobic Modification of Cotton Stalk Bark Fiber. International Journal of Polymer Science, 2016, 2016, 1-6.	1.2	3
1911	Thermal, Morphological, and Biodegradability Properties of Bioplastic Fertilizer Composites Made of Oil Palm Biomass, Fertilizer, and Poly(hydroxybutyrate-co-valerate). International Journal of Polymer Science, 2016, 2016, 1-8.	1.2	27
1912	Plasma Treatment of <i> Agave < /i > Fiber Powder and Its Effect on the Mechanical and Thermal Properties of Composites Based on Polyethylene. International Journal of Polymer Science, 2016, 2016, 1-7.</i>	1.2	10
1913	Influence of Cellulose on the Mechanical and Thermal Stability of ABS Plastic Composites. International Journal of Polymer Science, 2016, 2016, 1-10.	1.2	13
1914	Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nanocomposites. Journal of Nanotechnology, 2016, 2016, 1-9.	1.5	43
1915	Damage and Degradability Study of Pretreated Natural Fiber-Reinforced Polymers Composites and Its Comparative Analysis with Artificial Fiber-Reinforced Polymers Composites. , 2016, , .		4
1916	Improving the Properties of Soda Bagasse Pulp by Using Cellulose Nanofibers in the Presence of Cationic Polyacrylamide. BioResources, 2016, 11, .	0.5	5
1917	Silica Treatments: A Fire Retardant Strategy for Hemp Fabric/Epoxy Composites. Polymers, 2016, 8, 313.	2.0	45
1918	Shear Strengthening of Reinforced Concrete Beams with Various Natural and Artificial Fabric Reinforced Composite Systems. , 2016, , .		1
1919	Biopolymers for superhydrophobic photocatalytic coatings. , 2016, , 421-447.		3
1920	Injection Molding of Bio-Based Plastics, Polymers, and Composites. , 2016, , 211-237.		5
1921	Dirty Money: A Matter of Bacterial Survival, Adherence, and Toxicity. Microorganisms, 2016, 4, 42.	1.6	12
1922	Novel nanoparticle materials for drug/food delivery-polysaccharides. ChemistrySelect, 2016, 1, .	0.7	5
1923	A Review on Grafting of Biofibers for Biocomposites. Materials, 2016, 9, 303.	1.3	119
1924	Soil Burial Study of Palm Kernel Shell-Filled Natural Rubber Composites: The Effect of Filler Loading and Presence of Silane Coupling Agent. BioResources, 2016, 11, .	0.5	4
1925	Biodegradation Study of a Novel Poly-Caprolactone-Coffee Husk Composite Film. Materials Research, 2016, 19, 752-758.	0.6	21

#	Article	IF	CITATIONS
1926	Thermal Properties of Hemp Fiber Reinforced Plant-Derived Polyamide Biomass Composites and their Dynamic Viscoelastic Properties in Molten State. , 2016 , , .		6
1927	Study of the morphological characteristics and physical properties of Himalayan giant nettle (Girardinia diversifolia L.) fibre in comparison with European nettle (Urtica dioica L.) fibre. Materials Letters, 2016, 181, 200-203.	1.3	21
1928	An approach for the reuse of Dacryodes edulis leaf: Characterization, acetylation and crude oil sorption studies. Journal of Environmental Chemical Engineering, 2016, 4, 3205-3216.	3.3	13
1929	The chemistry, morphology, crystal structure and hydrophilicity properties of wood fibers treated by a magnetic immobilized laccase–mediator system. RSC Advances, 2016, 6, 32572-32579.	1.7	4
1930	Ein einfacher Zugang zu funktionalen Mustern auf Cellulosepapier durch Kombination von Laserdruck und materialspezifischer Peptidadsorption. Angewandte Chemie, 2016, 128, 11435-11440.	1.6	7
1931	Easy Access to Functional Patterns on Cellulose Paper by Combining Laser Printing and Materialâ€ s pecific Peptide Adsorption. Angewandte Chemie - International Edition, 2016, 55, 11266-11270.	7.2	41
1932	Effect of the dissolution time on the structure and properties of lyocellâ€fabricâ€based allâ€cellulose composite laminates. Journal of Applied Polymer Science, 2016, 133, .	1.3	21
1933	Integration of biobased functionalized feedstock and plastisol in epoxy resin matrix toward developing structural jute biocomposites with enhanced impact strength and moisture resistance properties. Polymer Composites, 2016, 37, 391-397.	2.3	8
1934	Recent advances in experimental studies of the mechanical behaviour of natural fibreâ€reinforced cementitious composites. Structural Concrete, 2016, 17, 564-575.	1.5	20
1935	Effect of cloisite 30B clay and sisal fiber on dynamic mechanical and fracture behavior of unsaturated polyester toughened epoxy network. Polymer Composites, 2016, 37, 2832-2846.	2.3	11
1936	The effect of red phosphorus on the fire properties of intumescent pine wood flour – LDPE composites. Fire and Materials, 2016, 40, 697-703.	0.9	18
1937	Mechanical and Thermal Properties of PALF Reinforced Epoxy Composites. Macromolecular Symposia, 2016, 361, 57-63.	0.4	12
1938	Influence of the coupling agent and graphene oxide on the thermal and mechanical behavior of tea dust–polypropylene composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	18
1939	Effective reinforcement of epoxy composites with hyperbranched liquid crystals grafted on microcrystalline cellulose fibers. Journal of Materials Science, 2016, 51, 8888-8899.	1.7	14
1940	Mechanical properties of composites with chicken feather and glass fibers. Journal of Applied Polymer Science, 2016, 133, .	1.3	24
1941	Effect of alkaline treatment on the characterization of zalacca midrib wastes fibers. AIP Conference Proceedings, 2016, , .	0.3	0
1942	Chemical modifications on linen for unsaturated polyester composites. Chemical Research in Chinese Universities, 2016, 32, 1057-1062.	1.3	3
1944	Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber. AIP Conference Proceedings, 2016, , .	0.3	13

#	Article	IF	CITATIONS
1945	8. Novel nanoparticle materials for drug/food delivery-polysaccharides., 2016,, 159-190.		0
1946	Sugarcane Straw Reinforced Castor Oil Polyurethane Composites: Fiber Characterization and Analysis of Composite Properties. Journal of Natural Fibers, 0, , 1-12.	1.7	8
1947	Physico-chemical characteristics of a seed fiber arised from Pergularia Tomentosa L Fibers and Polymers, 2016, 17, 2095-2104.	1.1	26
1948	Thermal and chemical characterization of sugarcane bagasse cellulose/lignin-reinforced composites. Polymer Bulletin, 2016, 73, 3163-3174.	1.7	15
1949	Advantages of regenerated cellulose fibres as compared to flax fibres in the processability and mechanical performance of thermoset composites. Composites Part A: Applied Science and Manufacturing, 2016, 84, 377-385.	3.8	31
1950	Utilization of Polyvinyl Alcohol on Properties of Recycled Polypropylene/Peanut Shell Powder Composites. Procedia Chemistry, 2016, 19, 763-769.	0.7	15
1951	Preparation and adsorption behaviour of cationic nanoparticles for sugarcane fibre modification. RSC Advances, 2016, 6, 33554-33560.	1.7	6
1952	Effect of Acrylic Acid Content on Modified NypaFruticans Regenerated Cellulose Biocomposite Films. Procedia Chemistry, 2016, 19, 340-345.	0.7	0
1953	Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 2016, 54, 62-73.	3.7	360
1954	Developing rigid gliadin based biocomposites with high mechanical performance. Composites Part A: Applied Science and Manufacturing, 2016, 85, 76-83.	3.8	6
1955	Nanoclay and Natural Fibers Based Hybrid Composites: Mechanical, Morphological, Thermal and Rheological Properties. Engineering Materials, 2016, , 29-49.	0.3	16
1956	Mechanical characterization and optimization of a new unidirectional flax/paper/epoxy composite. Composites Part B: Engineering, 2016, 97, 282-291.	5.9	16
1957	Effects of APS Silane on Tensile Properties of Polypropylene (PP)/Recycled Acrylonitrile Butadiene Rubber (NBRr)/Banana Skin Powder (BSP) Composites. Advanced Materials Research, 0, 1133, 180-184.	0.3	1
1958	Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Composites Part B: Engineering, 2016, 92, 19-27.	5.9	77
1959	In-plane permeability characterization of a unidirectional flax/paper reinforcement for liquid composite molding processes. Composites Part A: Applied Science and Manufacturing, 2016, 85, 52-64.	3.8	18
1960	Hybridized carbon and flax fiber composites for tailored performance. Materials and Design, 2016, 102, 21-29.	3.3	150
1961	Compressive properties of Napier (<i>Pennisetum Purpureum</i>) filled polyester composites. Plastics, Rubber and Composites, 2016, 45, 136-146.	0.9	27
1962	Spectroscopy analyses of hybrid unsaturated polyester composite reinforced by Alfa, wool, and thermo-binder fibres. Polymer Science - Series A, 2016, 58, 255-264.	0.4	15

#	Article	IF	CITATIONS
1963	Effect of thermal expansion at low temperature on mechanical properties of Birch wood. Cold Regions Science and Technology, 2016, 126, 61-65.	1.6	16
1964	Improving the properties of epoxy/melon shell bio-composites: effect weight percentage and form of melon shell particles. Polymer Bulletin, 2016, 73, 3305-3317.	1.7	15
1966	Milkweedâ€"A Potential Sustainable Natural Fibre Crop. Environmental Footprints and Eco-design of Products and Processes, 2016, , 111-146.	0.7	8
1967	Positive size and scale effects of all-cellulose composite laminates. Composites Part A: Applied Science and Manufacturing, 2016, 85, 65-75.	3.8	12
1968	Mechanical and thermal properties of <i> Acacia leucophloea < /i > fiber/epoxy composites: Influence of fiber loading and alkali treatment. International Journal of Polymer Analysis and Characterization, 2016, 21, 571-583.</i>	0.9	59
1969	Effect of silicon carbide and pulping processes on physical and mechanical properties of pulp plastic composites (PPCs). Journal of Asian Ceramic Societies, 2016, 4, 112-119.	1.0	4
1970	Biodegradable polymer nanocomposites: An overview. Polymer Reviews, 2016, 56, 287-328.	5.3	98
1971	Adsorption of Emerging Munitions Contaminants on Cellulose Surface: A Combined Theoretical and Experimental Investigation. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 784-790.	1.3	5
1972	Lignocellulose Nanofiber-Reinforced Polystyrene Produced from Composite Microspheres Obtained in Suspension Polymerization Shows Superior Mechanical Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13520-13525.	4.0	54
1973	Effect of Length of False Banana Fibre (<i>Ensete ventricosum</i>) on Mechanical Behaviour under Tensile Loading. Scientia Agriculturae Bohemica, 2016, 47, 90-96.	0.3	11
1974	Novel cellulose-collagen blend biofibers prepared from an amine/salt solvent system. International Journal of Biological Macromolecules, 2016, 92, 1197-1204.	3.6	16
1975	Effects of poly(styrene-co-maleic anhydride) on the performance of LGF/TPU/ABS composites. Science and Engineering of Composite Materials, 2016, 23, 475-480.	0.6	1
1976	Composites of Polycaprolactone with Cellulose Fibers: Morphological and Mechanical Evaluation. Macromolecular Symposia, 2016, 367, 101-112.	0.4	10
1977	Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Construction and Building Materials, 2016, 126, 476-483.	3.2	59
1978	Stiffness of bio-based polyamide 11 reinforced with softwood stone ground-wood fibres as an alternative to polypropylene-glass fibre composites. European Polymer Journal, 2016, 84, 481-489.	2.6	35
1979	Cellulosic Graphene Biocomposites for Versatile Highâ€Performance Flexible Electronic Applications. Advanced Electronic Materials, 2016, 2, 1600245.	2.6	39
1980	On the relationship between fibre composition and material properties following periodate oxidation and borohydride reduction of lignocellulosic fibres. Cellulose, 2016, 23, 3495-3510.	2.4	20
1984	Structure–property relationships of elementary bamboo fibers. Cellulose, 2016, 23, 3521-3534.	2.4	12

#	Article	IF	CITATIONS
1985	Membrane stress analysis of collapsible tanks and bioreactors. Biochemical Engineering Journal, 2016, 114, 62-69.	1.8	3
1987	Effect of surface treatments of jute fibers on the microstructural and mechanical responses of poly(lactic acid)/jute fiber biocomposites. RSC Advances, 2016, 6, 73373-73382.	1.7	51
1989	Effect of fiber loading on the mechanical properties of bagasse fiber–reinforced polypropylene composites. Advances in Mechanical Engineering, 2016, 8, 168781401666425.	0.8	33
1990	A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure. RSC Advances, 2016, 6, 71999-72007.	1.7	51
1991	Bleached extruder chemiâ€mechanical pulp fiberâ€PLA composites: Comparison of mechanical, thermal, and rheological properties with those of wood flourâ€PLA bioâ€composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	23
1992	Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products, 2016, 94, 562-573.	2.5	254
1993	Extensional rheology of cellulose/NaOH/urea/H2O solutions. Cellulose, 2016, 23, 2877-2885.	2.4	6
1994	Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamidell composites. Composites Science and Technology, 2016, 132, 123-130.	3.8	46
1995	Characterization of Linear Low Density Polyethylene/Rambutan Peels Flour Blends: Effect of Loading Content. Key Engineering Materials, 2016, 673, 171-179.	0.4	3
1996	Flexible Photonic Cellulose Nanocrystal Films. Advanced Materials, 2016, 28, 10042-10047.	11.1	202
1997	Morphological, thermal and optical studies of jute-reinforced PbSrCaCuO–polypropylene composite. Modern Physics Letters B, 2016, 30, 1650379.	1.0	1
1998	Surface Modification of Natural Fibers for Reinforced Polymer Composites: A Critical Review. Reviews of Adhesion and Adhesives, 2016, 4, 1-46.	3.3	25
1999	Strong and Stiff: High-Performance Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Fibers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31500-31504.	4.0	101
2000	Biodegradable polymer scaffolds. Journal of Materials Chemistry B, 2016, 4, 7493-7505.	2.9	64
2001	Biocomposites Composed of Bio-Based Epoxy Resins, Bio-Based Polyphenols and Lignocellulosic Fibers. , 2016, , 131-180.		1
2002	Study on preparation and mechanical performance of TPU/nonwoven composites. IOP Conference Series: Materials Science and Engineering, 2016, 137, 012063.	0.3	1
2003	Innovative core material produced by infusion process using hemp fibres. AIP Conference Proceedings, 2016, , .	0.3	5
2004	Influence of types of alkali treatment on the mechanical properties of hemp fiber reinforced polyamide 1010 composites. AIP Conference Proceedings, 2016, , .	0.3	11

#	Article	IF	CITATIONS
2005	Effect of the environmental conditions on the ultimate load of damaged unidirectional of natural hemp fiber/epoxy composite. Mechanics and Industry, 2016, 17, 108.	0.5	0
2006	Synthesis and characterization of cellulose acetate extracted from paper waste., 2016,,.		2
2007	Mechanical Properties of Metal-Plastic Composite with Internal Fractal Shape Reinforcing Structure. Defect and Diffusion Forum, 2016, 368, 170-173.	0.4	0
2008	Micro-cellulose sponge from waste cotton as controlled-release Polyphenol carriers. MRS Advances, 2016, 1, 2545-2550.	0.5	2
2009	Effect of natural flours on crystallization behaviors of poly(3â€hydroxybutyrateâ€∢i>coàâ€ââ€hydroxyhexanoate). Journal of Applied Polymer Science, 2016, 133, .	1.3	13
2010	Damage analysis of composites reinforced with Alfa fibers: Viscoelastic behavior and debonding at the fiber/matrix interface. Journal of Applied Polymer Science, 2016, 133, .	1.3	21
2011	Nanocellulose and Nanocomposites. , 2016, , 103-125.		4
2012	Elastic anisotropy of kenaf fibre and micromechanical modeling of nonwoven kenaf fibre/epoxy composites. Journal of Reinforced Plastics and Composites, 2016, 35, 1424-1433.	1.6	22
2013	Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. , 2016, , .		10
2014	All-Cellulose Nanocomposites Reinforced with <i>in Situ</i> Retained Cellulose Nanocrystals during Selective Dissolution of Cellulose in an Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2016, 4, 4417-4423.	3.2	87
2015	Re-Emerging Field of Lignocellulosic Fiber – Polymer Composites and Ionizing Radiation Technology in their Formulation. Polymer Reviews, 2016, 56, 702-736.	5.3	113
2016	Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering, 2016, 101, 31-45.	5.9	304
2017	Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohydrate Polymers, 2016, 151, 926-938.	5.1	97
2018	Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices: An exploratory study. Construction and Building Materials, 2016, 116, 93-97.	3.2	17
2019	Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters. Carbohydrate Polymers, 2016, 150, 48-56.	5.1	66
2020	Separation of cellulose fibres from pulp suspension by froth flotation fractionation. Separation and Purification Technology, 2016, 169, 304-313.	3.9	17
2021	Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing. International Journal of Biological Macromolecules, 2016, 91, 85-91.	3.6	74
2022	Polyvinyl alcoholâ€modified <scp>P</scp> ithecellobium <scp>C</scp> lypearia <scp>B</scp> enth herbal residue fiber/polypropylene composites. Polymer Composites, 2016, 37, 915-924.	2.3	61

#	ARTICLE	IF	Citations
2023	Mechanism of fiber/matrix bond and properties of wood polymer composites produced from alkaline-treated <i>Daniella oliveri</i> wood flour. Polymer Composites, 2016, 37, 2657-2672.	2.3	19
2024	Thermomechanical improvement of glycerol plasticized maize starch with high loading of cellulose, flax and talc fillers. Polymer International, 2016, 65, 955-962.	1.6	11
2025	Effect of thermal annealing on the mechanical and thermal properties of polylactic acid–cellulosic fiber biocomposites. Journal of Applied Polymer Science, 2016, 133, .	1.3	45
2026	Biocomposites based on chemically modified cellulose fibers with renewable fattyâ€acidâ€based thermoplastic systems: Effect of different fiber treatments. Journal of Applied Polymer Science, 2016, 133, .	1.3	17
2027	Three-dimensional braiding of continuous regenerated cellulose fibres. Journal of Industrial Textiles, 2016, 45, 707-715.	1.1	7
2028	Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polymer Composites, 2016, 37, 782-793.	2.3	58
2029	Effect of \hat{I}^3 radiation on the performance of jute fabrics-reinforced urethane-based thermoset composites. Journal of Thermoplastic Composite Materials, 2016, 29, 508-518.	2.6	4
2030	Preparation and properties of <scp>L</scp> â€lactideâ€grafted sisal fiberâ€"reinforced poly(lactic acid) composites. Polymer Composites, 2016, 37, 802-809.	2.3	17
2031	The effect of argon and air plasma treatment of flax fiber on mechanical properties of reinforced polyester composite. Journal of Industrial Textiles, 2016, 45, 1252-1267.	1.1	35
2032	Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology, 2016, , .	0.4	30
2033	Effects of fiber surface modification on the friction coefficient of luffa fiber/polyester composites under dry sliding condition. Journal of Polymer Engineering, 2016, 36, 837-846.	0.6	10
2034	Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs). Materials Chemistry and Physics, 2016, 171, 290-302.	2.0	50
2035	Fatigue and Izod impact performance of carbon plain weave textile reinforced epoxy modified with cellulose microfibrils and rubber nanoparticles. Composites Part A: Applied Science and Manufacturing, 2016, 84, 26-35.	3.8	27
2036	Recycled HDPE reinforced with sol–gel silica modified wood sawdust. European Polymer Journal, 2016, 76, 28-39.	2.6	53
2037	Lignin-Reinforced Rubber Composites. , 2016, , 195-206.		5
2038	Chemical Reaction and Morphology of Polypropylene (PP)/Recycled Acrylonitrile Butadiene Rubber (NBRr)/Banana Skin Powder (BSP) Composites with γ-APS. Advanced Materials Research, 2016, 1133, 175-179.	0.3	1
2039	The effectiveness of m-TMI-grafted-PP as a coupling agent for wood polymer composites. Journal of Composite Materials, 2016, 50, 3515-3524.	1.2	15
2040	Fracture resistance of hybrid PP/elastomer/wood composites. Composite Structures, 2016, 141, 146-154.	3.1	40

#	Article	IF	CITATIONS
2041	New lab-scale device for nonwoven production: optimization of setting parameters. Journal of the Textile Institute, 2016, 107, 1636-1643.	1.0	5
2042	Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres. Composites Part A: Applied Science and Manufacturing, 2016, 83, 38-46.	3.8	59
2043	Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 2016, 54, 533-549.	8.2	157
2044	Wear behavior of Palmyra palm leaf stalk fiber (PPLSF) reinforced polyester composites. Composite Interfaces, 2016, 23, 89-103.	1.3	15
2045	Preparation and properties of graphene nanosheets/carbon foam composites. Journal of Analytical and Applied Pyrolysis, 2016, 117, 290-295.	2.6	19
2046	A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO 2. Renewable and Sustainable Energy Reviews, 2016, 56, 116-132.	8.2	147
2047	Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iranian Polymer Journal (English Edition), 2016, 25, 25-35.	1.3	53
2048	Fiber surface treatment: Its effect on structural, thermal, and mechanical properties of <i>Luffa cylindrica</i> fiber and its composite. Journal of Composite Materials, 2016, 50, 3117-3131.	1.2	58
2049	Banana fiber strands–reinforced polymer matrix composites. Composite Interfaces, 2016, 23, 281-295.	1.3	16
2050	Correlation between hydration of cement and durability of natural fiber-reinforced cement composites. Corrosion Science, 2016, 106, 1-15.	3.0	75
2051	Heat distortion temperature and mechanical properties of agricultural wastes-reinforced phenolic composites. Journal of Polymer Engineering, 2016, 36, 641-647.	0.6	2
2052	Effect of chain length on the wetting properties of alkyltrichlorosilane coated cellulose-based paper. Cellulose, 2016, 23, 1401-1413.	2.4	43
2053	Properties of low-density polyethylene/natural rubber/water hyacinth fiber composites: the effect of alkaline treatment. Polymer Bulletin, 2016, 73, 539-557.	1.7	24
2054	Semichemical fibres of Leucaena collinsii reinforced polypropylene: Macromechanical and micromechanical analysis. Composites Part B: Engineering, 2016, 91, 384-391.	5.9	44
2055	Introduction to Composite Materials. Textile Science and Clothing Technology, 2016, , 1-38.	0.4	2
2056	Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 2016, 68, 96-108.	4.6	400
2057	Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites. Journal of Advanced Research, 2016, 7, 373-380.	4.4	16
2058	Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Progress in Materials Science, 2016, 78-79, 1-92.	16.0	238

#	ARTICLE	IF	Citations
2059	Correlations Between the Physiochemical Characteristics of Plant Fibres and Their Mechanical Properties. RILEM Bookseries, 2016, , 35-47.	0.2	3
2060	Investigation on mechanical behaviour of twisted natural fiber hybrid composite fabricated by vacuum assisted compression molding technique. Fibers and Polymers, 2016, 17, 80-87.	1.1	45
2061	Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposite. Materials and Design, 2016, 92, 223-232.	3.3	41
2062	Natural Fibers for Composite Applications. Textile Science and Clothing Technology, 2016, , 171-204.	0.4	12
2063	Polyolefin Composites and Nanocomposites. Springer Series on Polymer and Composite Materials, 2016, , 157-179.	0.5	1
2064	Surface Preparation of Fibres for Composite Applications. Textile Science and Clothing Technology, 2016, , 301-315.	0.4	1
2065	Effect of mesostructure on the tensile properties of sisal fiber-reinforced polypropylene composites. Journal of Composite Materials, 2016, 50, 3809-3816.	1.2	0
2066	Natural Fibres: Advances in Science and Technology Towards Industrial Applications. RILEM Bookseries, 2016, , .	0.2	26
2067	Postharvest Management Approaches for Maintaining Quality of Fresh Produce. , 2016, , .		5
2068	Green Biocomposites from Nanoengineered Hybrid Natural Fiber and Biopolymer. ACS Sustainable Chemistry and Engineering, 2016, 4, 1785-1793.	3.2	38
2069	Dielectric relaxation phenomena in flax fibers composite. Fibers and Polymers, 2016, 17, 88-96.	1.1	6
2070	Low-Cost and Effective Fabrication of Biocompatible Nanofibers from Silk and Cellulose-Rich Materials. ACS Biomaterials Science and Engineering, 2016, 2, 526-534.	2.6	34
2071	Remediation of spent alkaline solutions in the production of cellulose fibers from Spanish broom by membrane operations. Journal of Water Process Engineering, 2016, 10, 48-55.	2.6	2
2072	Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Advances in Polymer Science, 2016, , .	0.4	72
2073	Active Carbohydrates. , 2016, , 141-156.		0
2074	Effect of humidity during manufacturing on the interfacial strength of non-pre-dried flax fibre/unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing, 2016, 84, 209-215.	3.8	40
2075	Flexural behavior of commingled jute/polypropylene nonwoven fabric reinforced sandwich composites. Composites Part B: Engineering, 2016, 93, 12-25.	5.9	38
2076	Role of flax cell wall components on the microstructure and transverse mechanical behaviour of flax fabrics reinforced epoxy biocomposites. Industrial Crops and Products, 2016, 85, 93-108.	2.5	53

#	Article	IF	CITATIONS
2077	Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose. Biomacromolecules, 2016, 17, 1414-1424.	2.6	43
2078	Polyurethane foams synthesized from cellulose-based wastes: Kinetics studies of dye adsorption. Industrial Crops and Products, 2016, 85, 149-158.	2.5	46
2079	Surface properties and fibre-matrix adhesion of man-made cellulose epoxy composites – Influence on impact properties. Composites Science and Technology, 2016, 123, 163-170.	3.8	35
2080	Effect of formulation parameters on adhesive properties of ANSI 118-15 and 118-11 compliant tile adhesive mortars. International Journal of Adhesion and Adhesives, 2016, 66, 73-80.	1.4	11
2081	Polyolefin Compounds and Materials. Springer Series on Polymer and Composite Materials, 2016, , .	0.5	50
2082	Hemp fabric/epoxy composites manufactured by infusion process: Improvement of fire properties promoted by ammonium polyphosphate. Composites Part B: Engineering, 2016, 89, 117-126.	5.9	70
2083	Flax and its thermoplastic biocomposites. Journal of Composite Materials, 2016, 50, 3043-3051.	1.2	14
2084	Characterization of new cellulosic fiber from the stem of <i>Sida rhombifolia </i> International Journal of Polymer Analysis and Characterization, 2016, 21, 123-129.	0.9	79
2085	Nanomembrane Materials Based on Polymer Blends. , 2016, , 101-123.		10
2086	Numerical study of mechanical behaviour of a polypropylene reinforced with Alfa fibres. Journal of Composite Materials, 2016, 50, 2883-2893.	1.2	10
2087	Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina. Composites Part A: Applied Science and Manufacturing, 2016, 81, 105-110.	3.8	43
2088	Tailoring of dual-interface in high tenacity PP composites – Toughening with positive hybrid effect. Composites Part A: Applied Science and Manufacturing, 2016, 83, 185-192.	3.8	24
2089	Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydrate Polymers, 2016, 136, 945-954.	5.1	61
2090	Studies on Mechanical Properties and Morphology of Sisal Pulp Reinforced Phenolic Composites. Advances in Polymer Technology, 2016, 35, 353-360.	0.8	3
2091	Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Materials and Design, 2016, 89, 839-847.	3.3	146
2092	New route for modifying cellulosic fibres with fatty acids and its application to polyethylene/jute fibre composites. Journal of Composite Materials, 2016, 50, 2477-2485.	1.2	26
2093	PHB coating on jute fibers and its effect on natural fiber composites performance. Journal of Composite Materials, 2016, 50, 2047-2058.	1.2	15
2094	Static and dynamic mechanical properties of novel treated jute/green epoxy composites. Textile Reseach Journal, 2016, 86, 960-974.	1.1	37

#	Article	IF	CITATIONS
2095	Plant-derived nanostructures: types and applications. Green Chemistry, 2016, 18, 20-52.	4.6	341
2096	Vegetal fiberâ€based biocomposites: Which stakes for food packaging applications?. Journal of Applied Polymer Science, 2016, 133, .	1.3	54
2097	Optimization of flame retardant content with respect to mechanical properties of natural fiber polymer composites: Case study of polypropylene/flax/aluminum trihydroxide. Polymer Composites, 2016, 37, 3310-3325.	2.3	13
2098	The comparison of properties of (rubber tree seed shell flour)â€filled polypropylene and highâ€density polyethylene composites. Journal of Vinyl and Additive Technology, 2016, 22, 91-99.	1.8	4
2099	Mechanical properties of Napier grass fibre/polyester composites. Composite Structures, 2016, 136, 1-10.	3.1	102
2100	A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites. Polymer Bulletin, 2016, 73, 587-620.	1.7	65
2101	Antimicrobial properties of silver nanoparticles misting on cotton fabrics. Textile Reseach Journal, 2016, 86, 812-822.	1.1	22
2102	Effect of zinc oxide and nanoclay on crosslinked jute-reinforced soy flour green nanocomposites. Journal of Composite Materials, 2016, 50, 723-737.	1.2	4
2103	Applications of biocomposite materials based on natural fibers from renewable resources: a review. Science and Engineering of Composite Materials, 2016, 23, 123-133.	0.6	134
2104	Jute fiber reinforced chemically functionalized polypropylene self-compatibilizing composites by Palsule process. Journal of Composite Materials, 2016, 50, 1199-1212.	1.2	20
2105	Cooling rate effects on the crystallization kinetics of polypropylene/date palm fiber composite materials. Science and Engineering of Composite Materials, 2016, 23, 523-533.	0.6	8
2106	The effect of pre-impregnation with maleated coupling agents on mechanical and water absorption properties of jute fabric reinforced polypropylene and polyethylene biocomposites. Journal of Composite Materials, 2016, 50, 257-267.	1.2	18
2107	Efficacy of alkali-treated jute as fibre reinforcement in enhancing the mechanical properties of cement mortar. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1093-1104.	1.3	23
2108	Empirical models for estimating the mechanical and morphological properties of recycled low density polyethylene/snail shell bio-composites. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2016, 21, 45-52.	1.0	10
2109	Composite materials based on low-density polyethylene loaded with date pits. Journal of Thermoplastic Composite Materials, 2017, 30, 1200-1216.	2.6	11
2110	Extraction and characterization of crystalline cellulose from jute fiber and application as reinforcement in biocomposite: Effect of gamma radiation. Journal of Composite Materials, 2017, 51, 31-38.	1.2	11
2111	A Review on Milkweed Fiber Properties as a High-Potential Raw Material in Textile Applications. Journal of Industrial Textiles, 2017, 46, 1412-1436.	1.1	38
2112	Evaluation of mechanical, morphological, and biodegradable properties of hybrid natural fiber polymer nanocomposites. Polymer Composites, 2017, 38, 583-587.	2.3	21

#	Article	IF	CITATIONS
2113	Effect of chemical treatment on thermal properties of bagasse fiber-reinforced epoxy composite. Science and Engineering of Composite Materials, 2017, 24, 237-243.	0.6	11
2114	Enzymeâ€mediated surface modification of jute and its influence on the properties of jute/epoxy composites. Polymer Composites, 2017, 38, 1327-1334.	2.3	13
2115	Effect of hybridization on the mode II fracture toughness properties of flax/vinyl ester composites. Polymer Composites, 2017, 38, 1732-1740.	2.3	9
2116	Effect of carbon nanotubes implantation on electrical properties of sisal fibre–epoxy composites. Composite Interfaces, 2017, 24, 111-123.	1.3	11
2117	Analytical Modeling for Mechanical Strength Prediction with Raman Spectroscopy and Fractured Surface Morphology of Novel Coconut Shell Powder Reinforced: Epoxy Composites. Journal of the Institution of Engineers (India): Series C, 2017, 98, 235-240.	0.7	7
2118	Effect of Alkalization on Mechanical and Moisture Absorption Properties of Azadirachta indica (Neem) Tj ETQq1 1 187-199.	0.784314 0.7	rgBT /Over 48
2119	The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites. Journal of Industrial Textiles, 2017, 47, 283-296.	1.1	67
2120	Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces, 2017, 24, 35-53.	1.3	85
2121	Flax and hemp fibre reinforced pozzolanic matrix: evaluation of impact of time and natural weathering. European Journal of Environmental and Civil Engineering, 2017, 21, 1403-1417.	1.0	3
2122	Effect of alkali treatment on the thermal properties of wheat straw fiber reinforced epoxy composites. Journal of Composite Materials, 2017, 51, 323-331.	1.2	22
2123	Effects of surface grafting of copper nanoparticles on the tensile and bonding properties of flax fibers. Science and Engineering of Composite Materials, 2017, 24, 651-660.	0.6	4
2124	Evaluation of Mechanical, Thermal, and Morphological Behaviors of Polyurethane/Mahua Seed Cake Green Composite. Advances in Polymer Technology, 2017, 36, 186-195.	0.8	3
2125	Unsaturated polyester-toughened epoxy composites: Effect of sisal fiber on thermal and dynamic mechanical properties. Journal of Vinyl and Additive Technology, 2017, 23, 188-199.	1.8	15
2126	Review of the applications of biocomposites in the automotive industry. Polymer Composites, 2017, 38, 2553-2569.	2.3	258
2127	A review on research and development of green composites from plant protein-based polymers. Polymer Composites, 2017, 38, 1504-1518.	2.3	47
2128	Moisture absorption behavior and its effect on the mechanical properties of jute-reinforced epoxy composite. Polymer Composites, 2017, 38, 516-522.	2.3	28
2129	Coir pith/nylon/epoxy hybrid composites: Dynamic mechanical, ageing, and dielectric properties. Polymer Composites, 2017, 38, 1671-1679.	2.3	7
2130	Characterization, morphology, and biodegradation of bioplastic fertilizer (<scp>B</scp> p <scp>F</scp>) composites made of poly(Butylene succinate) blended with oil palm biomass and fertilizer. Polymer Composites, 2017, 38, 2577-2583.	2.3	6

#	Article	IF	CITATIONS
2131	Evaluation of interlaminar shear of laminate by 3D digital holography. Optics and Lasers in Engineering, 2017, 92, 57-62.	2.0	8
2132	Interfacial interactions and reinforcement in thermoplastics/zeolite composites. Composites Part B: Engineering, 2017, 114, 386-394.	5.9	16
2133	The effect of lignin on the reactivity of natural fibres towards molecular fluorine. Materials and Design, 2017, 120, 66-74.	3.3	13
2134	Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Composite Structures, 2017, 167, 20-29.	3.1	51
2135	Wetting analysis and surface characterization of flax fibers modified with zirconia by sol-gel method. Surface and Coatings Technology, 2017, 313, 407-416.	2.2	37
2136	Wear performance of vinyl ester reinforced with Musaceae fiber bundles sliding against different metallic surfaces. Tribology International, 2017, 109, 447-459.	3.0	18
2137	A CaCO ₃ /nanocellulose-based bioinspired nacre-like material. Journal of Materials Chemistry A, 2017, 5, 16128-16133.	5.2	30
2138	Effect of silanized-chitosan on flammability, mechanical, water absorption and biodegradability properties of pseudo-stem banana fiber and montmorillonite filled waste polypropylene biocomposite. IOP Conference Series: Materials Science and Engineering, 2017, 172, 012063.	0.3	2
2139	A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 2017, 149, 582-596.	4.6	394
2140	Reinforcement of Polypropylene Composites Based on Recycled Wool or Cotton Powders. Journal of Natural Fibers, 2017, 14, 823-836.	1.7	15
2141	Elaboration of performance of tea dust–polypropylene composites. Journal of Applied Polymer Science, 2017, 134, .	1.3	2
2142	Nonlinear tensile behaviour of elementary hemp fibres: a numerical investigation of the relationships between 3D geometry and tensile behaviour. Journal of Materials Science, 2017, 52, 6591-6610.	1.7	28
2143	Potential use of cotton dust as filler in the production of thermoplastic composites. Journal of Composite Materials, 2017, 51, 4147-4155.	1.2	2
2146	Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. Journal of Colloid and Interface Science, 2017, 497, 266-275.	5.0	60
2147	A Study on the Mechanical Behaviors of Jute-polyester Composites. Procedia Engineering, 2017, 173, 631-638.	1.2	30
2148	Plant fibre-reinforced polymers: where do we stand in terms of tensile properties?. International Materials Reviews, 2017, 62, 441-464.	9.4	66
2149	Characterizing effects of humidity and channel size on imbibition in paper-based microfluidic channels. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	39
2150	Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Industrial Crops and Products, 2017, 99, 117-125.	2.5	91

#	Article	IF	CITATIONS
2151	Micromechanics of Cellulose Fibres and Their Composites. , 2017, , 299-321.		1
2152	Polyester Composites Reinforced with Corona-Treated Fibers from Pine, Eucalyptus and Sugarcane Bagasse. Journal of Polymers and the Environment, 2017, 25, 800-811.	2.4	20
2153	Comparative study on the properties of wood polymer composites based on different modified soybean oils. Journal of Wood Chemistry and Technology, 2017, 37, 124-135.	0.9	19
2154	Izod Impact Tests in Polyester Matrix Composites Reinforced with Jute Fabric. Minerals, Metals and Materials Series, 2017, , 373-378.	0.3	0
2155	Fillers for Polymer Applications. Polymers and Polymeric Composites, 2017, , .	0.6	55
2156	Design of Prosthetic Leg Socket from Kenaf Fibre Based Composites. Green Energy and Technology, 2017, , 127-141.	0.4	12
2157	Fabrication of hydrophobic biocomposite by combining cellulosic fibers with polyhydroxyalkanoate. Cellulose, 2017, 24, 2265-2274.	2.4	34
2158	Wetting and swelling property modifications of elementary flax fibres and their effects on the Liquid Composite Molding process. Composites Part A: Applied Science and Manufacturing, 2017, 97, 31-40.	3.8	34
2159	Izod Impact Test in Polyester Matrix Composites Reinforced with Blanket of the Malva and Jute Fibers. Minerals, Metals and Materials Series, 2017, , 21-25.	0.3	1
2160	Izod Impact Tests in Polyester Matrix Composites Reinforced with Fique Fabric. Minerals, Metals and Materials Series, 2017, , 365-372.	0.3	3
2161	Maleic anhydride grafted linear lowâ€density polyethylene/waste paper powder composites with superior mechanical behavior. Journal of Applied Polymer Science, 2017, 134, 45167.	1.3	20
2163	Effects of fiber loading and chemical treatments on properties of sisal fiber-reinforced sheet molding compounds. Journal of Composite Materials, 2017, 51, 3175-3185.	1.2	16
2164	Influence of Kevlar Hybridization on Dielectric and Conductivity of Bamboo Fiber Reinforced Epoxy Composite. Journal of Natural Fibers, 2017, 14, 837-845.	1.7	10
2165	Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydrate Polymers, 2017, 172, 60-67.	5.1	65
2166	Effects of Polyamide and/or Phenalkamine Curing Agents on the Jute Fibre Reinforcement with Epoxy Resin Matrix. Materials Today: Proceedings, 2017, 4, 2841-2850.	0.9	9
2167	Processing and Characterization of Banana Fiber/Epoxy Composites: Effect of Alkaline Treatment. Materials Today: Proceedings, 2017, 4, 2871-2878.	0.9	40
2168	Effect of Moisture Absorption on the Mechanical Properties of Ceramic Filled Jute/Epoxy Hybrid Composites. IOP Conference Series: Materials Science and Engineering, 2017, 178, 012010.	0.3	7
2169	Hybrid Cellulose Bionanocomposites from banana and jute fibre: A Review of Preparation, Properties and Applications. Materials Today: Proceedings, 2017, 4, 3942-3951.	0.9	19

#	Article	IF	CITATIONS
2170	Effect of acetylation on the properties of microfibrillated cellulose‣DPE composites. Journal of Applied Polymer Science, 2017, 134, 44933.	1.3	16
2171	Processing and characterization of polyethylene/starch/curau \tilde{A}_i composites: Potential for application as thermal insulated coating. Journal of Building Engineering, 2017, 11, 178-186.	1.6	7
2172	Directly Converting Agricultural Straw into All-Biomass Nanocomposite Films Reinforced with Additional in Situ-Retained Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2017, 5, 5127-5133.	3.2	36
2173	Mechanical properties of burmese silk orchid fiber reinforced epoxy composites. Materials Today: Proceedings, 2017, 4, 3116-3121.	0.9	6
2174	Studies on Natural/Glass Fiber Reinforced Polymer Hybrid Composites: An Evolution. Materials Today: Proceedings, 2017, 4, 2739-2747.	0.9	121
2175	Quantifying the Uncertainty Associated with the Material Properties of a Natural Fiber. Procedia CIRP, 2017, 61, 541-546.	1.0	13
2177	Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 2017, 62, 33-86.	15.8	1,748
2178	Synthesis and characterization of activated carbon from jute fibers for hydrogen storage. Renewable Energy and Environmental Sustainability, 2017, 2, 4.	0.7	48
2179	Impact of Bis-(3-triethoxysilylpropyl)tetrasulphide on the properties of PMMA/Cellulose composite. Polymer, 2017, 119, 224-237.	1.8	29
2180	Optimization of tribological behavior of nano clay particle with sisal/jute/glass/epoxy polymer hybrid composites using RSM. Polymers for Advanced Technologies, 2017, 28, 1813-1822.	1.6	15
2181	Tensile Properties and Deflection Temperature of Polypropylene/Sumberejo Kenaf Fiber Composites with Fiber Content Variation. IOP Conference Series: Materials Science and Engineering, 2017, 196, 012023.	0.3	6
2182	Effects of hydrothermal aging on the water uptake and tensile properties of PHB/flax fabric biocomposites. Polymer Degradation and Stability, 2017, 142, 129-138.	2.7	38
2183	Woven Kenaf/Kevlar Hybrid Yarn as potential fiber reinforced for anti-ballistic composite material. Fibers and Polymers, 2017, 18, 563-568.	1.1	47
2184	Flax fibers: assessing the non-cellulosic polysaccharides and an approach to supramolecular design of the cell wall. Cellulose, 2017, 24, 1985-2001.	2.4	36
2185	Physical structure and mechanical properties of polyamide/bamboo composites. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1463-1469.	2.0	14
2186	Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis. Scientific Reports, 2017, 7, 46052.	1.6	7
2187	Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Composites Part A: Applied Science and Manufacturing, 2017, 98, 166-173.	3.8	87
2188	Mechanical properties of natural fibre polymer composites. Journal of Polymer Engineering, 2017, 37, 879-895.	0.6	77

#	Article	IF	CITATIONS
2189	Improving the mechanical properties of CNF films by NMMO partial dissolution with hot calender activation. Cellulose, 2017, 24, 1691-1704.	2.4	15
2190	Effect of microstructural changes on thermal, electrical, and mechanical properties of HDPE reinforced by sisal fibers. Journal of Thermoplastic Composite Materials, 2017, 30, 1373-1392.	2.6	8
2191	Spinning of Cellulose Nanofibrils into Filaments: A Review. Industrial & Spinnering Chemistry Research, 2017, 56, 8-19.	1.8	138
2192	A review on physico-mechanical properties of bast fibre reinforced polymer composites. Journal of Building Engineering, 2017, 9, 91-99.	1.6	110
2193	Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 1906-1916.	3.2	132
2194	A Review: Nanomaterials as a Filler in Natural Fiber Reinforced Composites. Journal of Natural Fibers, 2017, 14, 311-325.	1.7	27
2195	Standard density measurement method development for flax fiber. Industrial Crops and Products, 2017, 96, 196-202.	2.5	63
2196	Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Composites Part B: Engineering, 2017, 111, 148-164.	5.9	149
2197	Effect of surface modification on morphological, mechanical and thermal conductivity of hemp fiber: Characterization of the interface of hemp –Polyurethane composite. Case Studies in Thermal Engineering, 2017, 10, 550-559.	2.8	70
2198	Biodegradation behavior of styrene butadiene rubber (SBR) reinforced with modified coconut shell powder. AIP Conference Proceedings, 2017, , .	0.3	3
2199	Thermal characteristics of Model houses Manufactured by date palm fiber reinforced earth bricks in desert regions of Ouargla Algeria. Energy Procedia, 2017, 119, 662-669.	1.8	15
2200	Kenaf/PP and EFB/PP: Effect of fibre loading on the mechanical properties of polypropylene composites. IOP Conference Series: Materials Science and Engineering, 2017, 217, 012036.	0.3	4
2201	Experimental investigations on Carbon-Nomex T410 reinforced polymer matrix composite for enhanced mechanical and tribological properties. AIP Conference Proceedings, 2017, , .	0.3	2
2202	Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Materials and Structures, 2017, 26, 125009.	1.8	58
2204	The strength of plants: theory and experimental methods to measure the mechanical properties of stems. Journal of Experimental Botany, 2017, 68, 4497-4516.	2.4	100
2205	Effect of temperature and moisture content on tensile behaviour of false banana fibre (Ensete) Tj ETQq1 1 0.784	314 rgBT / 0.7	Oygrlock 10
2207	Study of dielectric properties of biodegradable composites using (Poly)lactic acid and Luffa fiber. AIP Conference Proceedings, 2017, , .	0.3	3
2208	Physical and mechanical properties of agglomerated panels made from bamboo fiber and vegetable resin. Construction and Building Materials, 2017, 156, 330-339.	3.2	20

#	Article	IF	CITATIONS
2209	Synthesis and melt processing of cellulose esters for preparation of thermoforming materials and extended drug release tablets. Carbohydrate Polymers, 2017, 177, 105-115.	5.1	12
2210	The effects of alkali treatment on the mechanical and morphological properties of <i>Pennisetum purpureum</i> / i>/ glass-reinforced epoxy hybrid composites. Plastics, Rubber and Composites, 2017, 46, 421-430.	0.9	18
2213	Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomaterialia, 2017, 60, 3-22.	4.1	120
2214	Behavior of the interphase of dyed cotton residue flocks reinforced polypropylene composites. Composites Part B: Engineering, 2017, 128, 200-207.	5.9	39
2215	Effect of the middle lamella biochemical composition on the non-linear behaviour of technical fibres of hemp under tensile loading using strain mapping. Composites Part A: Applied Science and Manufacturing, 2017, 101, 529-542.	3.8	17
2217	Investigations On Mechanical Properties Of Glass And Sugarcane Fiber Polymer Matrix Composites. Materials Today: Proceedings, 2017, 4, 5408-5420.	0.9	19
2218	Macro- and nanodimensional plant fiber reinforcements for cementitious composites. , 2017, , 343-382.		14
2219	Super impact absorbing bio-alloys from inedible plants. Green Chemistry, 2017, 19, 4503-4508.	4.6	9
2220	Sisal (Agave sisalana) fibre and its polymer-based composites: A review on current developments. Journal of Reinforced Plastics and Composites, 2017, 36, 1759-1780.	1.6	88
2228	Impact of Chemical Treatment and the Manufacturing Process on Mechanical, Thermal, and Rheological Properties of Natural Fibers-Based Composites. , 2017, , 225-252.		13
2229	Okra Bast Fiber as Potential Reinforcement Element of Biocomposites: Can It Be the Flax of the Future?. , 2017, , 379-405.		11
2233	Effect of \hat{I}^3 -aminopropyltriethoxy silane (\hat{I}^3 -APS) coupling agent on mechanical and morphological properties of high density polyethylene (HDPE)/acrylonitrile butadiene rubber (NBR)/palm pressed fibre (PPF) composites. , 2017, , .		2
2234	Measuring elasticity of wet cellulose beads with an AFM colloidal probe using a linearized DMT model. Analytical Methods, 2017, 9, 4019-4022.	1.3	19
2235	The fracture toughness of natural fibre- and glass fibre-reinforced SMC. Plastics, Rubber and Composites, 2017, 46, 355-364.	0.9	3
2238	Cellulose nanocomposites. , 2017, , 483-516.		14
2239	Determination of mechanical behavior of natural fibre based hybrid composites experimentally. Materialwissenschaft Und Werkstofftechnik, 2017, 48, 1158-1165.	0.5	1
2240	An Evaluation of Mechanical Properties on Kenaf Natural Fiber/Polyester Composite Structures as Table Tennis Blade. Journal of Physics: Conference Series, 2017, 914, 012015.	0.3	7
2241	Lightweight bio-composites based on hemp fibres produced by conventional and unconventional processes. AIP Conference Proceedings, 2017, , .	0.3	2

#	Article	IF	CITATIONS
2242	The potential of natural fibres for automotive sector - <i>review</i> . IOP Conference Series: Materials Science and Engineering, 2017, 252, 012044.	0.3	46
2243	Immiscible polymer blends compatibilized with reactive hybrid nanoparticles: Morphologies and properties. Polymer, 2017, 132, 353-361.	1.8	50
2244	Influence of physical and chemical treatments on the mechanical properties of bamboo fibers. Procedia Engineering, 2017, 200, 457-464.	1.2	26
2245	Optimization of a Wood Plastic Composite for Architectural Applications. Procedia Manufacturing, 2017, 12, 203-220.	1.9	33
2246	Synergic effects of cellulose nanocrystals and alkali on the mechanical properties of sisal fibers and their bonding properties with epoxy. Composites Part A: Applied Science and Manufacturing, 2017, 101, 480-489.	3.8	29
2247	Thermal degradation of natural and treated hemp hurds under air and nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1649-1660.	2.0	50
2248	Polylactide/cellulose nanocrystals: The in situ polymerization approach to improved nanocomposites. European Polymer Journal, 2017, 94, 173-184.	2.6	36
2249	Jute yarn as reinforcement for polypropylene based commingled eco-composites: Effect of fibre content and chemical modifications on accelerated ageing and tear properties. Fibers and Polymers, 2017, 18, 948-956.	1.1	2
2250	Polypropylene/basalt thick film composites: structural, mechanical and dielectric properties. E-Polymers, 2017, 17, 417-425.	1.3	15
2251	Bamboo Fiber-Based Polymer Composites. , 2017, , 627-645.		3
2252	Long natural fibre composites. , 2017, , 141-177.		12
2253	Novel Functional Materials Based on Cellulose. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	17
2254	Paper fiber filled polymer. Mechanical evaluation and interfaces modification. Composites Part B: Engineering, 2017, 110, 520-529.	5.9	23
2255	Biopolymers for Biocomposites and Chemical Sensor Applications. , 2017, , 405-435.		44
2256	Biodegradable and Biobased Polymers. , 2017, , 127-143.		30
2257	Tensiometric method to reliably assess wetting properties of single fibers with resins: Validation on cellulosic reinforcements for composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512, 26-33.	2.3	20
2258	Natural Fiber-Based Biocomposites. Green Energy and Technology, 2017, , 31-70.	0.4	12
2259	Towards a multiscale model for flax composites from behaviour of fibre and fibre/polymer interface. Journal of Composite Materials, 2017, 51, 859-873.	1.2	12

#	Article	IF	CITATIONS
2260	Phenolic and lignosulfonate-based matrices reinforced with untreated and lignosulfonate-treated sisal fibers. Industrial Crops and Products, 2017, 96, 30-41.	2.5	27
2261	Kapok fiber as a natural source for fabrication of oil absorbent. Journal of Chemical Technology and Biotechnology, 2017, 92, 1613-1619.	1.6	29
2262	Effect of Rot-Retardant Treatment on Properties of Jute Fibers. Journal of Natural Fibers, 2017, 14, 205-216.	1.7	9
2263	Surface characterisation and wetting properties of single basalt fibres. Composites Part B: Engineering, 2017, 109, 72-81.	5.9	35
2264	Effect of Alkali Treatment on Alfa Fibers Behavior. Journal of Natural Fibers, 2017, 14, 239-249.	1.7	45
2265	Morphology of the Bagasse Fibers Obtained from the Elaboration Process of Mezcal and Effects on Their Tensile Properties. Journal of Natural Fibers, 2017, 14, 250-261.	1.7	8
2266	Nanocellulose-Polymer Composites for Applications in Food Packaging: Current Status, Future Prospects and Challenges. Polymer-Plastics Technology and Engineering, 2017, 56, 805-823.	1.9	106
2267	Chitosan Coated Cotton Fiber: Physical and Antimicrobial Properties for Apparel Use. Journal of Polymers and the Environment, 2017, 25, 334-342.	2.4	82
2268	Microbial diversity of pre-Columbian archaeological textiles and the effect of silver nanoparticles misting disinfection. Journal of Cultural Heritage, 2017, 23, 138-147.	1.5	20
2269	Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polymer Bulletin, 2017, 74, 2401-2430.	1.7	86
2270	Structural and Chemical Characteristics of Sisal Fiber and Its Components: Effect of Washing and Grinding. Journal of Natural Fibers, 2017, 14, 26-39.	1.7	27
2271	Mechanical and drug release properties of alginate beads reinforced with cellulose. Journal of Applied Polymer Science, 2017, 134, .	1.3	33
2272	Dependency of the Mechanical Properties of Sisal Fiber Reinforced Recycled Polypropylene Composites on Fiber Surface Treatment, Fiber Content and Nanoclay. Journal of Polymers and the Environment, 2017, 25, 427-434.	2.4	70
2273	The effect of chemical surface treatment on the fracture toughness of microfibrillated cellulose reinforced epoxy composites. Journal of Industrial and Engineering Chemistry, 2017, 45, 301-306.	2.9	39
2274	Historical textiles – a review of microbial deterioration analysis and disinfection methods. Textile Reseach Journal, 2017, 87, 2388-2406.	1.1	48
2275	Characterization of Sorghum Bran/Recycled Low Density Polyethylene for the Manufacturing of Polymer Composites. Journal of Polymers and the Environment, 2017, 25, 533-543.	2.4	7
2276	Mechanical properties and micromechanical analysis of nonwoven kenaf fibre/epoxy composites produced by resin transfer moulding. Journal of Composite Materials, 2017, 51, 1875-1885.	1.2	19
2277	Molecular Transport of Xylene Through Palm Pressed Fibre Filled Low Density Polyethylene: Role of Fibre Content, Alkali Treatment and Particle Size. Journal of Polymers and the Environment, 2017, 25, 544-555.	2.4	1

#	Article	IF	CITATIONS
2278	Fabrication and mechanical characterization of hybrid metal foam/bio-composite samples. AIP Conference Proceedings, 2017, , .	0.3	0
2279	Composites and Nanocomposites of PU Polymers Filled with Natural Fibers and Their Nanofibers. , 2017, , 253-276.		3
2281	Biomass-based composites from different sources. , 2017, , 45-76.		7
2285	Natural Pineapple Leaf Fibre Extraction On Josapine And Morris. MATEC Web of Conferences, 2017, 135, 00043.	0.1	0
2286	Nonwoven production from agricultural okra wastes and investigation of their thermal conductivities. IOP Conference Series: Materials Science and Engineering, 2017, 254, 192007.	0.3	9
2287	Vegetable Fiber-Reinforced Polymer Composites: Fundamentals, Mechanical Properties and Applications. , 2017, 14, 1-20.		1
2288	A review on natural areca fibre reinforced polymer composite materials. Ciência & Tecnologia Dos Materiais, 2017, 29, 106-128.	0.5	28
2289	The structure and properties of eucalyptus fiber/phenolic foam composites under $N-\hat{i}^2$ (aminoethyl)- $i>\hat{i}^3$ -aminopropyl trimethoxy silane pretreatments. Polish Journal of Chemical Technology, 2017, 19, 116-121.	0.3	5
2290	1. Cellulose and potential reinforcement. , 2017, , 1-46.		2
2291	Effect of carbonization on the processing characteristics of rubber seed shell. Arabian Journal of Chemistry, 2017, 10, S174-S178.	2.3	9
2292	Investigation on Suitability of Natural Fibre as Replacement Material for Table Tennis Blade. IOP Conference Series: Materials Science and Engineering, 2017, 226, 012037.	0.3	3
2293	Key issues in reinforcement involving nanocellulose. , 2017, , 401-425.		6
2294	Biocomposites from olive-stone flour. , 2017, , 387-408.		3
2295	Synthesis and utilization of natural fiber-reinforced poly (lactic acid) bionanocomposites. , 2017, , 313-345.		9
2296	Pretreatment of Wheat Bran for Suitable Reinforcement in Biocomposites. Journal of Renewable Materials, 2017, 5, 62-73.	1.1	16
2297	Bio-based hybrid polymer composites. , 2017, , 23-70.		9
2298	Raw Materials for Production of Nanocellulose. , 2017, , 15-25.		1
2299	Morphological and Chemical Effects of Plasma Treatment with Oxygen (O2) and Sulfur Hexafluoride (SF6) on Cellulose Surface. Materials Research, 2017, 20, 842-850.	0.6	21

#	Article	IF	CITATIONS
2300	Treatments for viable utilization of vegetable fibers in inorganic-based composites. , 2017, , 69-123.		7
2301	Synthesis and applications of cellulose nanohybrid materials. , 2017, , 289-320.		4
2302	Characterizing the Mechanical Properties of Fused Deposition Modelling Natural Fiber Recycled Polypropylene Composites. Journal of Composites Science, 2017, 1, 7.	1.4	105
2303	New Bio-Composites Based on Polyhydroxyalkanoates and Posidonia oceanica Fibres for Applications in a Marine Environment. Materials, 2017, 10, 326.	1.3	57
2304	An Investigation into the Properties and Microstructure of Cement Mixtures Modified with Cellulose Nanocrystal. Materials, 2017, 10, 498.	1.3	47
2305	Effect of Silane Coupling Agent on Tribological Properties of Hemp Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Materials, 2017, 10, 1040.	1.3	45
2306	Extraction and Characterization of Cellulose Nanocrystals from Tea Leaf Waste Fibers. Polymers, 2017, 9, 588.	2.0	84
2307	Physical and mechanical properties of natural fibers. , 2017, , 59-83.		135
2308	Natural fiber composites. , 2017, , 23-48.		26
2309	Cellulose polymer composites (WPC)., 2017,, 115-139.		10
2310	Natural fibre cement composites. , 2017, , 205-214.		10
2311	Man-made cellulose fibre reinforcements (MMCFR). , 2017, , 23-55.		2
2312	Biopolymer Composites With High Dielectric Performance: Interface Engineering., 2017,, 27-128.		124
2313	Nanofibrillated cellulose reinforcement in thermoset polymer composites., 2017,, 1-24.		9
2314	Characterisation of the Anisotropic Thermoelastic Properties of Natural Fibres for Composite Reinforcement. Fibers, 2017, 5, 36.	1.8	22
2315	Recent innovations in biocomposite products. , 2017, , 275-306.		10
2316	Cellulose Fiber-Reinforced PLA versus PP. International Journal of Polymer Science, 2017, 2017, 1-10.	1.2	14
2317	Characterization of Alkaline Treatment and Fiber Content on the Physical, Thermal, and Mechanical Properties of Ground Coffee Waste/Oxobiodegradable HDPE Biocomposites. International Journal of Polymer Science, 2017, 2017, 1-12.	1.2	28

#	Article	IF	CITATIONS
2318	Physical, mechanical and thermal properties of wood/zeolite/plastic hybrid composites. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	6
2319	Thermal and flame retardancy properties of thermoplastics/natural fiber biocomposites. , 2017, , 479-508.		22
2320	Green braided composites., 2017,, 451-466.		4
2321	Effects of Fiber Surface Treatments on the Properties of Wood Fiber–Phenolic Foam Composites. BioResources, 2017, 12, .	0.5	12
2322	Hybrid polysaccharide-based systems for biomedical applications. , 2017, , 107-149.		3
2323	Biomatrix from Stipa tenacissima L. and its Application in Fiberboard Using Date Palm Rachis as Filler. Journal of Renewable Materials, 2017, 5, 116-123.	1.1	2
2324	Alginate-Poly(Ethylene) Glycol and Poly(Ethylene) Oxide Blend Materials., 2017,, 581-601.		15
2325	Polyurethane-Based Biocomposites. , 2017, , 525-546.		2
2326	Single fibre strength of cellulosic fibre extracted from "Belatlan roots―plant. AIP Conference Proceedings, 2017, , .	0.3	0
2327	Structural Characterization and Solid State Properties of Thermal Insulating Cellulose Materials of Different Size Classifications. BioResources, 2017, 13, .	0.5	3
2328	Insect damaged wood as a source of reinforcing filler for thermoplastic composites. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	0
2329	Reinforcement of Polyester with Renewable Ramie Fibers. Materials Research, 2017, 20, 51-59.	0.6	26
2330	NanopartÃculas de sÃlica silanizada como compatibilizante em compósitos de fibras de sisal/polietileno. Polimeros, 2017, 27, 61-69.	0.2	4
2331	Hybrid bast fiber reinforced thermoset composites. , 2017, , 203-234.		3
2332	Evaluation of Thermal and Thermomechanical Behaviour of Bio-Based Polyamide 11 Based Composites Reinforced with Lignocellulosic Fibres. Polymers, 2017, 9, 522.	2.0	26
2333	The influence of alkaline treatment on thermal stability of flax fibres. IOP Conference Series: Materials Science and Engineering, 2017, 191, 012007.	0.3	11
2334	& t; >Selection, pretreatment, and use of wheat bran for making thermoplastic composite& t; >., 2017,,.		4
2335	Improvement of Natural Fiber Composite Materials by Carbon Fibers. Journal of Renewable Materials, 2017, 5, 38-47.	1.1	9

#	Article	IF	CITATIONS
2336	The Effects of Lignocellulosic Fillers on Mechanical, Morphological and Thermal Properties of Wood Polymer Composites. Drvna Industrija, 2017, 68, 195-204.	0.3	7
2337	Gamma radiation effect on sisal / polyurethane composites without coupling agents. Polimeros, 2017, 27, 165-170.	0.2	17
2339	Macro and micro-mechanics behavior of stifness in alkaline treated hemp core fibres polypropylene-based composites. Composites Part B: Engineering, 2018, 144, 118-125.	5.9	40
2340	Characterization of stem phoenix fibres as potential reinforcement of self compacting mortar. Journal of Adhesion Science and Technology, 2018, 32, 1629-1642.	1.4	4
2341	Investigating the impact behaviour of short hemp fibres reinforced polypropylene biocomposites through high speed imaging and finite element modelling. Composites Part A: Applied Science and Manufacturing, 2018, 109, 428-439.	3.8	31
2342	Multifunctional cellulose-paper for light harvesting and smart sensing applications. Journal of Materials Chemistry C, 2018, 6, 3143-3181.	2.7	147
2343	A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Composite Interfaces, 2018, 25, 629-667.	1.3	115
2344	Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 2018, 5, 1446667.	1.1	265
2345	Potential of Borneo Acacia wood in fully biodegradable bio-composites' commercial production and application. Polymer Bulletin, 2018, 75, 5333-5354.	1.7	18
2346	Mechanical and Thermal Properties of Kenaf Reinforced Thermoplastic Polyurethane (TPU)-Natural Rubber (NR) Composites. Fibers and Polymers, 2018, 19, 446-451.	1.1	32
2347	Experimental Study on Mechanical Properties of Natural Fiber Reinforced Polymer Composite Materials for Wind Turbine Blades. Materials Today: Proceedings, 2018, 5, 2588-2596.	0.9	60
2348	Processing, Tensile, and Thermal Studies of Poly(Vinyl Chloride)/Epoxidized Natural Rubber/Kenaf Core Powder Composites with Benzoyl Chloride Treatment. Polymer-Plastics Technology and Engineering, 2018, 57, 1507-1517.	1.9	12
2349	Influences of modified bacterial cellulose nanofibers (BCNs) on structural, thermophysical, optical, and barrier properties of poly ethylene-co-vinyl acetate (EVA) nanocomposite. International Journal of Biological Macromolecules, 2018, 115, 266-272.	3.6	12
2350	Structural and chemical changes of cellulose fibres under low energy ion implantations. Surface and Coatings Technology, 2018, 355, 191-199.	2.2	8
2351	Surface modifications of wood materials using atmospheric pressure corona-based weakly ionized plasma. Journal of Thermoplastic Composite Materials, 2018, 31, 946-958.	2.6	4
2352	Development and analysis of high density poly ethylene (HDPE) nano SiO ₂ and wood powder reinforced polymer matrix hybrid nano composites. Journal of Experimental Nanoscience, 2018, 13, S24-S30.	1.3	20
2353	Reâ€Use of Marble Stone Powders in Producing Unsaturated Polyester Composites. Advanced Engineering Materials, 2018, 20, 1701061.	1.6	14
2354	Mechanical properties and abrasive wear of white/brown coir epoxy composites. Composites Part B: Engineering, 2018, 146, 88-97.	5.9	51

#	Article	IF	CITATIONS
2355	Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste. IOP Conference Series: Materials Science and Engineering, 2018, 294, 012021.	0.3	26
2356	Analysis of the morphometric variations in natural fibres by automated laser scanning: Towards an efficient and reliable assessment of the cross-sectional area. Composites Part A: Applied Science and Manufacturing, 2018, 108, 114-123.	3.8	29
2358	Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5030-5037.	4.0	191
2359	Effect of Chemical Modifications on Surface Morphological, Structural, Mechanical, and Thermal Properties of Sponge-gourd Natural Fiber. Fibers and Polymers, 2018, 19, 31-40.	1.1	39
2360	Surfaces and Interfaces in Natural Fibre Reinforced Composites. Springer Briefs in Molecular Science, 2018, , .	0.1	17
2361	Bio-based and recycled-waste materials in buildings: A study of energy performance of hemp-lime concrete and recycled-polyethylene terephthalate façades for office facilities in France and Italy. Science and Technology for the Built Environment, 2018, 24, 492-501.	0.8	20
2362	Modification of the Interface/Interphase in Natural Fibre Reinforced Composites: Treatments and Processes. Springer Briefs in Molecular Science, 2018, , 35-70.	0.1	9
2363	Characterization of the Fibre Modifications and Localization of the Functionalization Molecules. Springer Briefs in Molecular Science, 2018, , 71-100.	0.1	1
2364	Izod Impact Test Comparative Analysis of Epoxy and Polyester Matrix Composites Reinforced with Hemp Fibers. Minerals, Metals and Materials Series, 2018, , 155-164.	0.3	1
2365	Comparative Mechanical Analysis of Epoxy Composite Reinforced with Malva/Jute Hybrid Fabric by Izod and Charpy Impact Test. Minerals, Metals and Materials Series, 2018, , 177-183.	0.3	4
2366	Flexural Mechanical Characterization of Polyester Composites Reinforced with Jute Fabric. Minerals, Metals and Materials Series, 2018, , 529-534.	0.3	0
2367	Potential of allâ€cellulose composites in corrugated board applications: Comparison of chemical pulp raw materials. Packaging Technology and Science, 2018, 31, 173-183.	1.3	9
2368	Lignocellulosic Composite Materials. Springer Series on Polymer and Composite Materials, 2018, , .	0.5	9
2369	Mechanical and Thermal Properties of Less Common Natural Fibres and Their Composites. Springer Series on Polymer and Composite Materials, 2018, , 177-213.	0.5	1
2370	Assessment and Response of Treated Cocos nucifera Reinforced Toughened Epoxy Composite Towards Fracture and Viscoelastic Properties. Journal of Polymers and the Environment, 2018, 26, 2522-2535.	2.4	30
2371	Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Composites Part A: Applied Science and Manufacturing, 2018, 107, 171-179.	3.8	78
2372	Fabrication and characterization of cellulose nanofibrils/epoxy nanocomposite foam. Journal of Materials Science, 2018, 53, 4949-4960.	1.7	19
2373	Lignocellulosic Materials of Brazil––Their Characterization and Applications in Polymer Composites and Art Works. Springer Series on Polymer and Composite Materials, 2018, , 1-96.	0.5	4

#	Article	IF	CITATIONS
2374	Pretreatments of Natural Fibers for Polymer Composite Materials. Springer Series on Polymer and Composite Materials, 2018, , 137-175.	0.5	5
2375	Towards selection chart of flame retardants for natural fibre reinforced polypropylene composites. Composites Part B: Engineering, 2018, 141, 1-8.	5.9	35
2376	Properties of an industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles. Construction and Building Materials, 2018, 162, 543-552.	3.2	54
2377	Reinforcement of natural fiber yarns by cellulose nanomaterials: A multi-scale study. Industrial Crops and Products, 2018, 111, 471-481.	2.5	27
2378	Effect of Oil Palm Fiber Content on the Physical and Mechanical Properties and Microstructure of High-Calcium Fly Ash Geopolymer Paste. Arabian Journal for Science and Engineering, 2018, 43, 5215-5224.	1.7	19
2379	The effect of microfibrils cellulose modified epoxy on the quasi-static and fatigue behaviour of open hole carbon textile composites. Journal of Composite Materials, 2018, 52, 3365-3380.	1.2	4
2380	Enhancing the mechanical properties of virgin and damaged jute/polypropylene hybrid nonwoven geotextiles via mild alkali treatment of jute fibers. Textile Reseach Journal, 2018, 88, 2132-2140.	1.1	9
2381	The role of lignin on the mechanical performance of polylactic acid and jute composites. International Journal of Biological Macromolecules, 2018, 116, 299-304.	3.6	36
2382	Thermally Stable Pyrolytic Biocarbon as an Effective and Sustainable Reinforcing Filler for Polyamide Bio-composites Fabrication. Journal of Polymers and the Environment, 2018, 26, 3574-3589.	2.4	60
2383	Fatigue of flax-epoxy and other plant fibre composites: Critical review and analysis. Composites Part A: Applied Science and Manufacturing, 2018, 109, 440-462.	3.8	51
2384	Poro-elasto-capillary wicking of cellulose sponges. Science Advances, 2018, 4, eaao7051.	4.7	48
2385	Morphological and physicomechanical analysis of highâ€density polyethylene filled with Salago fiber. Journal of Applied Polymer Science, 2018, 135, 46479.	1.3	4
2386	Characterization of Biodegradable Composites and Application of Preference Selection Index for Deciding Optimum Phase Combination. Materials Today: Proceedings, 2018, 5, 3353-3360.	0.9	13
2387	Fiber Extraction from Okra Plant Agricultural Wastes, Their Characterizations and Surface Modifications by Environmental Methods. Textile Science and Clothing Technology, 2018, , 53-80.	0.4	4
2388	A cradle-to-gate based life cycle impact assessment comparing the KBF w EFB hybrid reinforced poly hydroxybutyrate biocomposite and common petroleum-based composites as building materials. Environmental Impact Assessment Review, 2018, 70, 11-21.	4.4	27
2389	Effect of starch sizes particle as binder on short pineapple leaf fiber composite mechanical properties. MATEC Web of Conferences, 2018, 150, 04008.	0.1	6
2390	Study of the Production of a Metallic Coating on Natural Fiber Composite Through the Cold Spray Technique. Journal of Materials Engineering and Performance, 2018, 27, 739-750.	1.2	31
2391	Multifunctional Composite Ecomaterials and Their Impact on Sustainability. , 2018, , 1-31.		0

#	Article	IF	CITATIONS
2392	Sustainable Innovations in Textile Fibres. Textile Science and Clothing Technology, 2018, , .	0.4	0
2393	Hybrid composites based on sisal fibers and silica nanoparticles. Polymer Composites, 2018, 39, 146-156.	2.3	27
2394	Potential of pine needles for PLAâ€based composites. Polymer Composites, 2018, 39, 1339-1349.	2.3	15
2395	Effect of maleated polypropylene as a compatibilizer and hyperbranched polyester as a processing aid on polypropyleneâ€wood flour biocomposites. Journal of Vinyl and Additive Technology, 2018, 24, 179-184.	1.8	8
2396	Preparation and analysis of polypropylene composites with maleated tea dust particles. Science and Engineering of Composite Materials, 2018, 25, 373-381.	0.6	6
2397	Effect of alkali treatment on the flexural properties of a <i>Luffa cylindrica-</i> reinforced epoxy composite. Science and Engineering of Composite Materials, 2018, 25, 85-93.	0.6	14
2398	Effects of compatilizers on mechanical, morphology and dynamic mechanical properties of LGF/TPU/SAN composites. Journal of Vinyl and Additive Technology, 2018, 24, E48.	1.8	4
2399	Studies on mechanical properties of thermoplastic composites prepared from flax-polypropylene needle punched nonwovens. Science and Engineering of Composite Materials, 2018, 25, 489-499.	0.6	5
2400	Characterization of New Natural Cellulosic Fiber from the Bark of <i>Dichrostachys Cinerea</i> Journal of Natural Fibers, 2018, 15, 62-68.	1.7	130
2401	Recycled polypropylene/peanut shell powder (RPP/PSP) composites: Property comparison before and after electron beam irradiation. Polymer Composites, 2018, 39, 3048-3056.	2.3	12
2402	Mechanical properties of wood-plastic composites made from various wood species with different compatibilisers. European Journal of Wood and Wood Products, 2018, 76, 57-68.	1.3	19
2403	Effect of alkali treatment on mechanical properties of the green composites reinforced with milkweed fibers. Journal of the Textile Institute, 2018, 109, 24-31.	1.0	25
2404	Enhancement of Mechanical Properties of Bio-Resin Epoxy/Flax Fiber Composites using Acetic Anhydride. Journal of Polymers and the Environment, 2018, 26, 224-234.	2.4	38
2405	Influence of fiber content and chemical modifications on the transport properties of <scp>PP</scp> /jute commingled biocomposites. Polymer Composites, 2018, 39, E250.	2.3	7
2406	A comparative analysis of physicoâ€mechanical, water absorption, and morphological behaviour of surface modified woven jute fiber composites. Polymer Composites, 2018, 39, 2952-2960.	2.3	12
2407	Electrically conducting linen fabrics for technical applications. Textile Reseach Journal, 2018, 88, 144-154.	1.1	11
2408	Impact on peel strength, tensile strength and shear viscosity of the addition of functionalized low density polyethylene to a thermoplastic polyurethane sheet calendered on a polyester fabric. Journal of Industrial Textiles, 2018, 48, 848-874.	1.1	3
2409	An energy and carbon footprint assessment upon the usage of hemp-lime concrete and recycled-PET façades for office facilities in France and Italy. Journal of Cleaner Production, 2018, 170, 1640-1653.	4.6	54

#	Article	IF	CITATIONS
2410	Reuse FRP waste as filler replacement for sisal fiber reinforced sheet molding compound. Polymer Composites, 2018, 39, 1896-1904.	2.3	5
2411	The mechanical properties of flax fibre reinforced poly(lactic acid) bio-composites exposed to wet, freezing and humid environments. Journal of Composite Materials, 2018, 52, 835-850.	1.2	15
2412	The Influence of Chemical Treatments on Cantala Fiber Properties and Interfacial Bonding of Cantala Fiber/Recycled High Density Polyethylene (rHDPE). Journal of Natural Fibers, 2018, 15, 98-111.	1.7	38
2413	Chemical treatment of cotton stalk and its effects on mechanical, rheological and morphological properties of Polypropylene/cotton stalk bioâ€composites. Polymer Composites, 2018, 39, E286.	2.3	4
2414	Processing and properties of pineapple leaf fibersâ€polypropylene composites prepared by twinâ€screw extrusion. Polymer Composites, 2018, 39, 4115-4122.	2.3	21
2415	Cellulose–Polyvinyl Alcohol–Nano-TiO ₂ Hybrid Nanocomposite: Thermal, Optical, and Antimicrobial Properties against Pathogenic Bacteria. Polymer-Plastics Technology and Engineering, 2018, 57, 669-681.	1.9	17
2416	An integrated theoretical and experimental investigation of insensitive munition compounds adsorption on cellulose, cellulose triacetate, chitin and chitosan surfaces. Journal of Environmental Sciences, 2018, 64, 174-180.	3.2	3
2417	Interfacial characterisation and mechanical properties of heat treated non-woven kenaf fibre and its reinforced composites. Composite Interfaces, 2018, 25, 187-203.	1.3	32
2418	The role of interface in improving fracture toughness of shaped steel fiber-reinforced composites. Journal of Composite Materials, 2018, 52, 981-987.	1.2	1
2419	Structural analysis and mechanical properties of lignite fly-ash-added jute–epoxy polymer matrix composite. Journal of Reinforced Plastics and Composites, 2018, 37, 90-104.	1.6	35
2420	Effect of grafting generations of poly(amidoamine) dendrimer from the sisal fiber surface on the mechanical properties of composites. Journal of Natural Fibers, 2018, 15, 896-905.	1.7	6
2421	Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. Carbohydrate Polymers, 2018, 182, 1-7.	5.1	43
2422	Effect of Extraction Methods on the Properties of <i>Althea Officinalis L.</i> Fibers. Journal of Natural Fibers, 2018, 15, 325-336.	1.7	27
2423	Effect of Thermal Aging and Chemical Treatment on Tensile Properties of Coir Fiber. Journal of Natural Fibers, 2018, 15, 112-121.	1.7	26
2424	Effect of chemical treatments on tensile properties and interfacial shear strength of unsaturated polyester/fan palm fibers. Journal of Natural Fibers, 2018, 15, 762-775.	1.7	14
2425	Polypropylene/short glass fiber/nanosilica hybrid composites: evaluation of morphology, mechanical, thermal, and transport properties. Polymer Bulletin, 2018, 75, 2587-2605.	1.7	23
2426	Effect of Curing Temperature on Mechanical Properties of Natural Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 2018, 15, 687-696.	1.7	62
2427	Kenaf fibre-reinforced polyester composites: flexural characterization and statistical analysis. Journal of the Textile Institute, 2018, 109, 713-722.	1.0	12

#	Article	IF	CITATIONS
2428	Cellulose Reinforced Biodegradable Polymer Composite Film for Packaging Applications. , 2018, , 49-69.		26
2429	Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites. Composites Science and Technology, 2018, 154, 117-127.	3.8	71
2430	Design of doum palm fibers biocomposites by Reactor/elongational flow MiXer: Evaluation of morphological, mechanical, and microstructural performances. Polymer Composites, 2018, 39, E519.	2.3	3
2431	Triboluminescent composite microspheres consisting of alginate and EuD4TEA crystals. Sensors and Actuators A: Physical, 2018, 269, 556-562.	2.0	3
2432	Progress in the research and applications of natural fiber-reinforced polymer matrix composites. Science and Engineering of Composite Materials, 2018, 25, 835-846.	0.6	42
2433	Fabrication of iron oxide nanoparticles, and green catalytic application of an immobilized novel iron Schiff on wood cellulose. Cellulose, 2018, 25, 915-923.	2.4	22
2434	Highly Conductive, Light Weight, Robust, Corrosionâ€Resistant, Scalable, Allâ€Fiber Based Current Collectors for Aqueous Acidic Batteries. Advanced Energy Materials, 2018, 8, 1702615.	10.2	63
2435	Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Industrial Crops and Products, 2018, 111, 422-429.	2.5	95
2436	Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 2018, 181, 1038-1051.	5.1	384
2437	Strengthening of a Polyurethane Matrix by Luffa Cylindrica Treated with TDI: Water Absorption and Mechanical Properties. Journal of Polymers and the Environment, 2018, 26, 2514-2521.	2.4	6
2438	Changes in the hygroscopic behavior of cellulose due to variations in relative humidity. Cellulose, 2018, 25, 87-104.	2.4	18
2439	Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 2018, 111, 878-888.	2.5	106
2440	Graphene oxide decorated sisal fiber/MAPP modified PP composites: Toward highâ€performance biocomposites. Polymer Composites, 2018, 39, E113.	2.3	23
2441	Sisal fibril epoxy composite—a high strength electrical insulating material. Polymer Composites, 2018, 39, E2175.	2.3	7
2442	Water Absorption in Sisal Fiber Reinforced-Polymeric Matrix Composites: Three-Dimensional Simulations and Experiments., 2018, 20, 143-154.		2
2443	Fabrication and characterisation of B-H-G fiber with teak wood particles reinforced hybrid composite. International Journal of Engineering and Technology(UAE), 2018, 7, 208.	0.2	4
2444	Composite materials manufacturing using textile inserts with natural origins fibres. IOP Conference Series: Materials Science and Engineering, 0, 393, 012088.	0.3	10
2445	Effects of pre-treatment of Curau \tilde{A}_i fibers on compatibility with portland cements. Revista Materia, 2018, 23, .	0.1	3

#	Article	IF	Citations
2446	A Review on Application of Natural fibre in Structural Reinforcement: Challenges of Properties Adaptation. Journal of Applied Sciences and Environmental Management, 2018, 22, 749.	0.1	4
2447	Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber. IOP Conference Series: Materials Science and Engineering, 2018, 352, 012002.	0.3	9
2448	Mechanical, Degradation and Water Uptake Properties of Fabric Reinforced Polypropylene Based Composites: Effect of Alkali on Composites. Fibers, 2018, 6, 94.	1.8	23
2449	Comparison of Processing and Mechanical Properties of Polypropylene/Recycled Acrylonitrile Butadiene Rubber/Rice Husk Powder Composites Modified With Silane and Acetic Anhydride Compound. , 2018, , 333-347.		4
2450	The effect of eco-degradant on properties corn stalk filled low density polyethylene biocomposites. AIP Conference Proceedings, 2018, , .	0.3	0
2451	MODIFICATION AND APPLICATION OF STARCH IN NATURAL RUBBER LATEX COMPOSITES. Rubber Chemistry and Technology, 2018, 91, 184-204.	0.6	14
2452	Properties of Slow Release Fertilizer Composites Made from Electron Beam-irradiated Poly(Butylene) Tj ETQq0 0 (0 rgBT /Ο\	erlock 10 Tf 5
2453	The Effect of Nano TiO2 and Nano Boron Nitride on Mechanical, Morphological and Thermal Properties of WF/PP Composites. Drvna Industrija, 2018, 69, 13-22.	0.3	2
2454	Izod impact energy study of re-forced polisher matrix compounds with curaous fibers aligned and epoxy matrix reinforced with piassava fibers. Revista Materia, 2018, 23, .	0.1	0
2455	Mechanical and Thermal Properties of Environment Friendly Composite Based on Mango's Seed Shell and Highâ€Density Polyethylene. Macromolecular Symposia, 2018, 381, 1800125.	0.4	7
2457	Impact properties of thermoplastic composites. Textile Progress, 2018, 50, 109-183.	1.3	27
2458	Effect of thermal radiation on boundary layer flow and heat transfer of dusty fluid over an unsteady stretching sheet. International Journal of Engineering, Science and Technology, 2018, 4, 36-48.	0.3	13
2459	Extraction and surface characterization of novel bast fibers extracted from the Pennisetum Purpureum plant for composite application. Materials Today: Proceedings, 2018, 5, 21926-21935.	0.9	13
2460	Effect of fiber loading and fiber length on tensile properties of fiber reinforced epoxy composites. Materials Today: Proceedings, 2018, 5, 27149-27154.	0.9	2
2461	Studies on Tensile Strength of Sugarcane Fiber Reinforced Hybrid Polymer Matrix Composite. Materials Today: Proceedings, 2018, 5, 13347-13357.	0.9	13
2462	The effect of alkali treatment on the tensile properties of hybrid Napier/glass reinforced epoxy composites. AIP Conference Proceedings, 2018, , .	0.3	1
2463	Enzymatic treatment of flax for use in composites. Biotechnology Reports (Amsterdam, Netherlands), 2018, 20, e00294.	2.1	38
2465	Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites. Journal of Renewable Materials, 2018, , .	1.1	6

#	Article	IF	CITATIONS
2466	Effect of Silica Fume as a Component of Alternative Binder on the Selected Technically Important Characteristics of Bio-Aggregate-Based Composites. Materials, 2018, 11, 2153.	1.3	4
2467	Mechanical performances of bamboo composite with different fibre heat treatments. AIP Conference Proceedings, 2018, , .	0.3	1
2468	Tribo-mechanical behavior of HDPE/Natural fibers filler composite materials. MRS Advances, 2018, 3, 3775-3781.	0.5	2
2469	Improvement of Mechanical Properties of Pineapple Leaf Fibers by Mercerization Process. Fibers and Polymers, 2018, 19, 2604-2611.	1.1	25
2470	Effect of surface treatment and titanium dioxide nanoparticles on the mechanical and morphological properties of wood flour/polypropylene nanocomposites. International Wood Products Journal, 2018, 9, 176-185.	0.6	18
2471	Weibull analysis of tensile tested piassava fibers with different diameters. Revista Materia, 2018, 23, .	0.1	3
2472	Characterizing Teline monspessulana as a Green Sustainable Source of Biofibers. BioResources, 2018, 13, .	0.5	0
2473	Nanocrystalline cellulose from agricultural waste: an overview. International Journal of Nanoparticles, 2018, 10, 284.	0.1	6
2474	Study of fillers treatment using NaOH on the thermal properties of LLDPE/date seeds (DS) composites. AIP Conference Proceedings, 2018, , .	0.3	0
2475	Effect of fibre orientation on the mechanical properties of polypropylene–lyocell composites. Cellulose, 2018, 25, 7197-7210.	2.4	88
2476	Nanocomposites based on renewable thermoplastic polyurethane and chemically modified cellulose nanocrystals with improved mechanical properties. Journal of Applied Polymer Science, 2018, 135, 46736.	1.3	15
2477	Experimental Investigation on the Flexural and Dynamic Mechanical Properties of Jute Fiber/Cork-reinforced Polyester Sandwich Composites. BioResources, 2018, 13, .	0.5	4
2478	Natural Rubber Composites Filled with Cereals Straw Modified with Acetic and Maleic Anhydride: Preparation and Properties. Journal of Polymers and the Environment, 2018, 26, 4141-4157.	2.4	29
2479	Evolution of the interfacial transition zone and the degradation mechanism of zirconia treated flax fabric reinforced cementitious composites. Construction and Building Materials, 2018, 190, 120-130.	3. 2	5
2480	Durability of cementitious materials reinforced with various Kraft pulp fibers. Construction and Building Materials, 2018, 191, 1191-1200.	3.2	26
2481	Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites. Industrial Crops and Products, 2018, 126, 394-402.	2.5	62
2482	Evaluating the effect of some mechanical properties for chemically treated various natural fibers reinforced polyester composite. AIP Conference Proceedings, 2018, , .	0.3	0
2483	Antioxidant properties of flax fibers in polyethylene matrix composites. Industrial Crops and Products, 2018, 126, 333-339.	2.5	14

#	Article	IF	CITATIONS
2484	Investigations on short coir fibre–reinforced composites via full factorial design. Polymers and Polymer Composites, 2018, 26, 391-399.	1.0	32
2485	Mechanical and Crash Performance of Unidirectional Oil Palm Empty Fruit Bunch Fibre-reinforced Polypropylene Composite. BioResources, 2018, 13, .	0.5	6
2486	Interfacial Modification of Hemp Fiber–Reinforced Composites. , 0, , .		5
2487	Experimental investigations on natural fiber embedded additive manufacturing-based biodegradable structures for biomedical applications. Rapid Prototyping Journal, 2018, 24, 1221-1234.	1.6	43
2488	Study of the alkali lignin stabilization thanks to plasma process. Polymer Degradation and Stability, 2018, 156, 202-210.	2.7	4
2489	In Search of Stronger/Cheaper Chitin Nanofibers through Electrospinning of Chitin–Cellulose Composites Using an Ionic Liquid Platform. ACS Sustainable Chemistry and Engineering, 2018, 6, 14713-14722.	3.2	36
2490	High-Performance Graphene-Based Natural Fiber Composites. ACS Applied Materials & Amp; Interfaces, 2018, 10, 34502-34512.	4.0	116
2491	A Review of the Impact Performance of Natural Fiber Thermoplastic Composites. Frontiers in Materials, 2018, 5, .	1.2	51
2492	Polystyrene/cellulose nanofibril composites: Fiber dispersion driven by nanoemulsion flocculation. Journal of Molecular Liquids, 2018, 272, 387-394.	2.3	15
2493	Characterization, testing, and reinforcing materials of biodegradable composites. , 2018, , 55-79.		40
2494	Natural fibre-reinforced thermoplastic composites from woven-nonwoven textile preforms: Mechanical and fire performance study. Composites Part B: Engineering, 2018, 153, 456-464.	5.9	57
2495	Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresource Technology, 2018, 270, 270-277.	4.8	69
2496	Effects of aspect ratio and crystal orientation of cellulose nanocrystals on properties of poly(vinyl) Tj ETQq0 0 0 rg	gBT/Overl	ock 10 Tf 50
2497	Moisture Absorption and Opacity of Starch-Based Biocomposites Reinforced with Cellulose Fiber from Bengkoang. Fibers, 2018, 6, 62.	1.8	23
2498	Rice husk reinforced polypropylene composites: mechanical, morphological and thermal properties. Journal of the Indian Academy of Wood Science, 2018, 15, 96-104.	0.3	19
2499	Modeling of natural fiber reinforced composites under hygrothermal ageing. Composite Structures, 2018, 200, 144-152.	3.1	30
2500	Effects of KMnO4 Treatment on the Flexural, Impact, and Thermal Properties of Sugar Palm Fiber-Reinforced Thermoplastic Polyurethane Composites. Jom, 2018, 70, 1326-1330.	0.9	9
2501	1.11 Natural Fibers. , 2018, , 269-294.		4

#	Article	IF	CITATIONS
2502	Towards the design of high-performance plant fibre composites. Progress in Materials Science, 2018, 97, 347-408.	16.0	295
2503	All-cellulose composites based on the self-reinforced effect. Composites Communications, 2018, 9, 42-53.	3.3	51
2504	Water Absorption Process in Polymer Composites: Theory Analysis and Applications. Advanced Structured Materials, 2018, , 219-249.	0.3	4
2505	Fabrication and Characterization of Pineapple Fiber-Reinforced Polypropylene Based Composites. Nano Hybrids and Composites, 0, 21, 31-42.	0.8	23
2506	Recent Advances in Polyethylene-Based Biocomposites. , 2018, , 71-96.		6
2507	Treatment of bamboo fibres in improving mechanical performance of polymer composites – A review. AIP Conference Proceedings, 2018, , .	0.3	11
2508	Natural fiber reinforced vinyl polymer composites., 2018,, 27-70.		32
2509	Unsaturated Polyester Resins. , 2018, , 1-69.		2
2510	Transport Phenomena in Multiphase Systems. Advanced Structured Materials, 2018, , .	0.3	42
2511	Specific Mechanical Energy and Thermal Degradation of Poly(lactic acid) and Poly(caprolactone)/Date Pits Composites. International Journal of Polymer Science, 2018, 2018, 1-10.	1.2	9
2512	Preparation and characterization of biocomposite packaging film from poly(lactic acid) and acylated microcrystalline cellulose using rice bran oil. International Journal of Biological Macromolecules, 2018, 118, 1090-1102.	3.6	64
2513	Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Industrial Crops and Products, 2018, 122, 657-668.	2.5	55
2514	Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength. ACS Sustainable Chemistry and Engineering, 2018, 6, 9951-9957.	3.2	18
2515	In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. Journal of Reinforced Plastics and Composites, 2018, 37, 1099-1113.	1.6	45
2516	Frictional Characteristics of Friction Brake Material Using Cantala Fibers as Reinforcement. Tribology Online, 2018, 13, 188-194.	0.2	10
2517	Modification of Wood: Mechanical Properties and Application $\hat{a}^{-}1$., 2018, , .		2
2518	Agrowaste Materials as Composites for Biomedical Engineering. , 2018, , 1-16.		0
2519	Extraction and refinement of agricultural plant fibers for composites manufacturing. Comptes Rendus Chimie, 2018, 21, 897-906.	0.2	28

#	Article	IF	CITATIONS
2520	Study on the Interfacial Functionary Mechanism of Rare-Earth-Solution-Modified Bamboo-Fiber-Reinforced Resin Matrix Composites. Materials, 2018, 11, 1190.	1.3	17
2521	Characterization of raffia palm fiber for use in polymer composites. Journal of Wood Science, 2018, 64, 650-663.	0.9	15
2522	Effect of raw and chemically treated oil palm mesocarp fibers on thermoplastic cassava starch properties. Industrial Crops and Products, 2018, 124, 149-154.	2.5	26
2523	Polydopamine induced natural fiber surface functionalization: a way towards flame retardancy of flax/poly(lactic acid) biocomposites. Composites Part B: Engineering, 2018, 154, 56-63.	5. 9	108
2524	Bio-polyethylene reinforced with thermomechanical pulp fibers: Mechanical and micromechanical characterization and its application in 3D-printing by fused deposition modelling. Composites Part B: Engineering, 2018, 153, 70-77.	5.9	89
2525	The static and dynamic mechanical properties of kenaf/glass fibre reinforced hybrid composites. Materials Research Express, 2018, 5, 095304.	0.8	27
2526	Enhanced flexural performance of epoxy polymer concrete with short natural fibers. Science China Technological Sciences, 2018, 61, 1107-1113.	2.0	11
2527	Hemp, jute, banana, kenaf, ramie, sisal fibers., 2018, , 301-325.		39
2528	Sustainable Bio-Aggregate-Based Composites Containing Hemp Hurds and Alternative Binder. Buildings, 2018, 8, 25.	1.4	25
2529	Dynamic In-Situ Observation on the Failure Mechanism of Flax Fiber through Scanning Electron Microscopy. Fibers, 2018, 6, 17.	1.8	21
2530	Thermal and Mechanical Properties of Eco-friendly Poly(Vinyl Alcohol) Films with Surface Treated Bagasse Fibers. Journal of Polymers and the Environment, 2018, 26, 3949-3956.	2.4	21
2531	Novel Sustainable Composites Based on Poly(hydroxybutyrate-co-hydroxyvalerate) and Seagrass Beach-CAST Fibers: Performance and Degradability in Marine Environments. Materials, 2018, 11, 772.	1.3	41
2532	The Dispersion of Pulp-Fiber in High-Density Polyethylene via Different Fabrication Processes. Polymers, 2018, 10, 122.	2.0	8
2533	Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics. Polymers, 2018, 10, 354.	2.0	7
2534	Towards More Sustainable Material Formulations: A Comparative Assessment of PA11-SGW Flexural Performance versus Oil-Based Composites. Polymers, 2018, 10, 440.	2.0	18
2535	Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites. Polymers, 2018, 10, 608.	2.0	169
2536	Effects of Fiber Size and Fiber Content on Mechanical and Physical Properties of Mengkuang Reinforced Thermoplastic Natural Rubber Composites. BioResources, 2018, 13, .	0.5	14
2537	Water exposure, tensile and fatigue properties of treated hemp reinforced vinyl ester composites. AIP Conference Proceedings, 2018, , .	0.3	1

#	Article	IF	Citations
2538	Mechanical and thermal behaviour of biodegradable composites based on polycaprolactone with pine cone particle. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	0.8	22
2539	Preparation and characterization of polylactic acid-g-bamboo fiber based on in-situ solid phase polymerization. Industrial Crops and Products, 2018, 123, 646-653.	2.5	37
2540	Custom-built electrostatics and supplementary bonding in the design of reinforced Collagen-g-P(methyl methacrylate-co-ethyl acrylate)/ nylon 66 core-shell fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 19-29.	1.5	14
2541	DFT Optimization of Isolated Molecular Chain Sheet Models Constituting Native Cellulose Crystal Structures. ACS Omega, 2018, 3, 8050-8058.	1.6	21
2542	A review on date palm (<i>phoenix dactylifera</i>) fibers and its polymer composites. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012009.	0.3	47
2543	Biomaterials for Bone Tissue Engineering: Recent Advances and Challenges. , 2018, , 429-452.		5
2544	Physical properties of lyocell-reinforced polypropylene composites from intermingled fibre with varying fibre volume fractions. Journal of Thermoplastic Composite Materials, 2018, 31, 1029-1041.	2.6	6
2545	Preparation and Characterization of Cellulose-Based Nanofiltration Membranes by Interfacial Polymerization with Piperazine and Trimesoyl Chloride. ACS Sustainable Chemistry and Engineering, 2018, 6, 13168-13176.	3.2	46
2546	Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Composites Part A: Applied Science and Manufacturing, 2018, 113, 350-358.	3.8	57
2547	The Rise of Hierarchical Nanostructured Materials from Renewable Sources: Learning from Nature. ACS Nano, 2018, 12, 7425-7433.	7.3	128
2548	A flexible carbon/sulfur-cellulose core-shell structure for advanced lithium–sulfur batteries. Energy Storage Materials, 2018, 15, 388-395.	9.5	38
2549	Charpy impact test of epoxy composites reinforced with untreated and mercerized mallow fibers. Journal of Materials Research and Technology, 2018, 7, 520-527.	2.6	42
2550	Influence of Low Pressure Plasma Treatment on the Durability of Thermoplastic Composites LDPE-flax/coconut under Thermal and Humidity Conditions. Fibers and Polymers, 2018, 19, 1327-1334.	1.1	22
2551	A viscoelastoplastic stiffening model for plant fibre unidirectional reinforced composite behaviour under monotonic and cyclic tensile loading. Composites Science and Technology, 2018, 167, 396-403.	3.8	16
2552	Towards "green―viscoelastically prestressed composites: Cellulose fibre reinforcement. Composites Part B: Engineering, 2018, 154, 439-448.	5.9	11
2553	Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. Journal of Materials Research and Technology, 2018, 7, 528-534.	2.6	61
2554	Preparation and Characterization of Esterified Bamboo Flour by an in Situ Solid Phase Method. Polymers, 2018, 10, 920.	2.0	3
2555	Effect of silane modification on CNTs/silica composites fabricated by a non-firing process to enhance interfacial property and dispersibility. Advanced Powder Technology, 2018, 29, 2091-2096.	2.0	20

#	Article	IF	Citations
2556	Dielectric Relaxation in Biocomposites Based on Olive Pomace Grains. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 285-292.	0.2	0
2557	Bio-Composites Based on Poly(lactic acid) Containing Mallow and Eucalyptus Surface Modified Natural Fibers. Journal of Polymers and the Environment, 2018, 26, 3785-3801.	2.4	5
2558	Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete. Construction and Building Materials, 2018, 177, 409-416.	3.2	48
2559	Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Industrial Crops and Products, 2018, 122, 513-521.	2.5	50
2560	Crashworthiness characteristics of natural ramie/bio-epoxy composite tubes for energy absorption application. Iranian Polymer Journal (English Edition), 2018, 27, 563-575.	1.3	9
2561	Mechanical characteristics of tri-layer eco-friendly polymer composites for interior parts of aerospace application., 2018,, 35-53.		16
2562	Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications., 2018, , 253-268.		38
2563	Potential of natural/synthetic hybrid composites for aerospace applications. , 2018, , 315-351.		77
2564	Extraction and structural investigation of jute cellulose nanofibers. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	1.3	11
2565	Toughening and stiffening of starch food extrudates through the addition of cellulose fibres and minerals. Food Hydrocolloids, 2018, 84, 515-528.	5. 6	11
2566	Lignocellulosic Materials and Their Use in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , .	0.1	10
2568	Morphological Approach for Nonlinear Flow and Heat Transfer in Complex Bio-Composite Material. Heat Transfer Engineering, 2019, 40, 1486-1497.	1.2	0
2569	A Review on Peanut Shell Powder Reinforced Polymer Composites. Polymer-Plastics Technology and Materials, 2019, 58, 349-365.	0.6	28
2570	Synthesis of DOPOâ€gâ€GPTS modified wood fiber and its effects on the properties of composite phenolic foams. Journal of Applied Polymer Science, 2019, 136, 46917.	1.3	9
2571	Production of Green Composites from Various Sustainable Raw Materials. Textile Science and Clothing Technology, 2019, , 1-24.	0.4	14
2572	Morphological study of surface-modified urea–formaldehyde microcapsules using 3-aminopropyltriethoxy silane. Polymer Bulletin, 2019, 76, 1317-1331.	1.7	10
2573	Polypropylene composites reinforced with hybrid inorganic fillers: Morphological, mechanical, and rheological properties. Journal of Thermoplastic Composite Materials, 2019, 32, 848-864.	2.6	21
2574	Comparison of different natural fiber treatments: a literature review. International Journal of Environmental Science and Technology, 2019, 16, 629-642.	1.8	152

#	Article	IF	CITATIONS
2575	Mechanical properties of green canola meal composites and reinforcement with cellulose fibers. Polymer Bulletin, 2019, 76, 1257-1275.	1.7	10
2576	Fabrication and Testing of Vetiver Fiber-Reinforced Composite. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 457-469.	0.4	0
2577	Effect of Chemical Treatment on the Mechanical Properties of Okra-Fiber-Reinforced Epoxy Composites. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 247-256.	0.4	0
2578	Phosphate bonded natural fibre composites: a state of the art assessment. SN Applied Sciences, 2019, 1, 1.	1.5	3
2579	Sustainable Alternative Composites Using Waste Vegetable Oil Based Resins. Journal of Polymers and the Environment, 2019, 27, 2464-2477.	2.4	24
2580	Nanocellulose-Polymer Composites: Novel Materials for Food Packaging Applications. , 2019, , 553-599.		11
2581	Mechanical and Dynamic Mechanical Properties of Unsaturated Polyester Resin-Based Composites. , 2019, , 407-434.		8
2582	Investigating the Structure-Related Properties of Cellulose-Based Superabsorbent Hydrogels. , 2019, , .		4
2583	Effect of Filler Parameters on the Mechanical Properties of Wheat Husk Filled Polystyrene Composite. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 103-110.	0.4	0
2584	Compatibilization of biocomposites based on spongeâ€gourd natural fiber reinforced poly(lactic acid). Polymer Composites, 2019, 40, 4489-4499.	2.3	16
2585	Influence of Natural Fillers on Thermal and Mechanical Properties and Surface Morphology of Cellulose Acetate-Based Biocomposites. International Journal of Polymer Science, 2019, 2019, 1-17.	1.2	9
2586	Tensile Behavior and Diffusion of Moisture through Flax Fibers by Desorption Method. Sustainability, 2019, 11, 3558.	1.6	10
2587	Trends in Materials Engineering. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , .	0.4	2
2588	Preparation and Characterization of Three-Element Compound Plasticizing Bamboo Fiber-g-Polylactic Acid/Polylactic Acid Composite. Materials Science Forum, 2019, 956, 201-211.	0.3	3
2589	Mechanical Properties of Polypropylene Biocomposites Reinforced with Man-Made Cellulose Fibres and Cellulose Microfibres. IOP Conference Series: Materials Science and Engineering, 2019, 500, 012008.	0.3	0
2590	Thermal decomposition mechanism of O-acetyl-4-O-methylglucurono-xylan. Journal of Molecular Modeling, 2019, 25, 234.	0.8	4
2591	Evaluation of the morphology, mechanical and thermal properties of cork and green polyethylene ecocomposites. Materials Research Express, 2019, 6, 095331.	0.8	5
2592	Identification of MVOCs Produced by Coniophora puteana and Poria placenta Growing on WPC Boards by Using Subtraction Mass Spectra. International Journal of Environmental Research and Public Health, 2019, 16, 2499.	1.2	5

#	Article	IF	CITATIONS
2593	TiO ₂ doped polydimethylsiloxane (PDMS) and <i>Luffa cylindrica</i> based photocatalytic nanosponge to absorb and desorb oil in diatom solar panels. RSC Advances, 2019, 9, 22410-22416.	1.7	18
2594	Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Materials Research Express, 2019, 6, 095335.	0.8	21
2595	Effects of Surface Modifications of Kraft Wood Pulp Cellulose Fibres on Improving the Mechanical Properties of Cellulose Fibre/Latex Composites. Journal of Polymers and the Environment, 2019, 27, 2445-2453.	2.4	2
2596	A Comparison between Sabra and Alfa Fibers in Rubber Biocomposites. Journal of Bionic Engineering, 2019, 16, 754-767.	2.7	25
2597	Moisture adsorption in TEMPO-oxidized cellulose nanocrystal film at the nanogram level based on micro-FTIR spectroscopy. Cellulose, 2019, 26, 7175-7183.	2.4	13
2598	Pectic Polysaccharides in Plants: Structure, Biosynthesis, Functions, and Applications. Biologically-inspired Systems, 2019, , 487-514.	0.4	7
2599	Structure Simulation and Calculation of the Energy of Interaction of the Fragments of Cellulose Macromolecules. Solid Fuel Chemistry, 2019, 53, 190-196.	0.2	0
2601	Surface characterization of weathered and heatâ€treated woodâ€based composites reinforced by styrene maleic anhydride. Color Research and Application, 2019, 44, 1017-1023.	0.8	2
2602	Electron Beam Irradiation Isolates Cellulose Nanofiber from Korea "Tall Goldenrod―Invasive Alien Plant Pulp. Nanomaterials, 2019, 9, 1358.	1.9	15
2603	Optimization and characterization of the properties of treated avocado wood flour-linear low density polyethylene composites. AEJ - Alexandria Engineering Journal, 2019, 58, 891-899.	3.4	12
2604	Graphene two-dimensional crystal prepared from cellulose two-dimensional crystal hydrolysed from sustainable biomass sugarcane bagasse. Journal of Cleaner Production, 2019, 241, 118209.	4.6	24
2605	Waste Utilization: Insulation Panel from Recycled Polyurethane Particles and Wheat Husks. Materials, 2019, 12, 3075.	1.3	18
2606	Sustainability of surface treatment of natural fibre in composite formation: challenges of environment-friendly option. International Journal of Advanced Manufacturing Technology, 2019, 105, 3183-3195.	1.5	26
2607	Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, 2019, , .	0.7	12
2608	Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type. Journal of Industrial Textiles, 2021, 51, 594-610.	1.1	2
2609	Modeling the Stiffness of Coupled and Uncoupled Recycled Cotton Fibers Reinforced Polypropylene Composites. Polymers, 2019, 11, 1725.	2.0	11
2610	Cyclic hygrothermal ageing of flax fibers' bundles and unidirectional flax/epoxy composite. Are bio-based reinforced composites so sensitive?. Industrial Crops and Products, 2019, 141, 111730.	2.5	30
2611	Hygroscopic multi-scale behavior of polypropylene matrix reinforced with flax fibers. Industrial Crops and Products, 2019, 140, 111634.	2.5	17

#	Article	IF	CITATIONS
2612	Mechanical properties and water absorption behavior of injection-molded wood fiber/carbon fiber high-density polyethylene hybrid composites. Advanced Composites and Hybrid Materials, 2019, 2, 690-700.	9.9	50
2613	A comprehensive review on contemporary materials used for blades of wind turbine. Materials Today: Proceedings, 2019, 19, 556-559.	0.9	11
2614	Review On Natural Fiber Reinforced Composites. Materials Today: Proceedings, 2019, 16, 897-906.	0.9	68
2615	Green Composite Materials from Biopolymers Reinforced with Agroforestry Waste. Journal of Polymers and the Environment, 2019, 27, 2651-2673.	2.4	34
2616	Microstructural evolution and hardness properties of coir-coconut husk powder reinforced polymer composites subjected to an acidic environment. Procedia Manufacturing, 2019, 35, 737-742.	1.9	4
2617	Thermo-Mechanical Properties of PLA/Short Flax Fiber Biocomposites. Applied Sciences (Switzerland), 2019, 9, 3797.	1.3	63
2618	Molecular transport of aromatic solvents through oil palm micro fiber filled nitrile rubber composites. Materials Today: Proceedings, 2019, 9, 266-278.	0.9	1
2619	Biomass porous carbon derived from jute fiber as anode materials for lithium-ion batteries. Diamond and Related Materials, 2019, 98, 107514.	1.8	63
2620	Effect of chemical treatments on properties of raffia palm (Raphia farinifera) fibers. Cellulose, 2019, 26, 9463-9482.	2.4	20
2621	Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Frontiers in Materials, 2019, 6, .	1.2	475
2622	MECHANICAL CHARACTERIZATION OF GFRP/CFRP/NATURAL FIBER LAMINATED IN EPOXY RESIN COMPOSITE. Materials Today: Proceedings, 2019, 16, 934-938.	0.9	5
2623	Extraction and characterization of palm fibers and their use to produce wool- and polyester-blended nonwovens. Journal of Industrial Textiles, 2021, 51, 177-205.	1.1	8
2624	Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 2019, 75, 1-11.	2.3	107
2625	Machinability of natural-fibre-reinforced polymer composites: Conventional vs ultrasonically-assisted machining. Composites Part A: Applied Science and Manufacturing, 2019, 119, 188-195.	3.8	58
2626	Mechanical properties of untreated and treated sugar palm fibre reinforced polypropylene composites. AIP Conference Proceedings, 2019, , .	0.3	0
2627	Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review. Polymer-Plastics Technology and Materials, 2019, 58, 1311-1326.	0.6	52
2628	Effect of mechanically induced micro deformations on extensibility and strength of individual softwood pulp fibers and sheets. Cellulose, 2019, 26, 1995-2012.	2.4	21
2629	Investigation of the possible origins of the differences in mechanical properties of hemp and flax fibres: A numerical study based on sensitivity analysis. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105488.	3.8	17

#	Article	IF	CITATIONS
2630	Surface hydrophobisation of lignocellulosic waste for the preparation of biothermoelastoplastic composites. European Polymer Journal, 2019, 118, 481-491.	2.6	17
2631	Composites and Nanocomposites. Polymers and Polymeric Composites, 2019, , 447-512.	0.6	2
2632	Effect of Reinforcing Fillers and Fibres Treatment on Morphological and Mechanical Properties of Typha-Phenolic Resin Composites. Fibers and Polymers, 2019, 20, 1046-1053.	1.1	8
2633	Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. Journal of Materials Research and Technology, 2019, 8, 3327-3337.	2.6	152
2634	Composites and Nanocomposites. Polymers and Polymeric Composites, 2019, , 1-67.	0.6	2
2635	Lengthwise jute fibre properties variation and its effect on jute–polyester composite. Journal of the Textile Institute, 2019, 110, 1695-1702.	1.0	21
2636	Cellulose structure and property changes indicated via wetting-drying cycles. Polymer Degradation and Stability, 2019, 167, 33-43.	2.7	26
2637	Performance of flax-FRP sandwich panels exposed to different ambient temperatures. Construction and Building Materials, 2019, 219, 121-130.	3.2	22
2638	Comparison between tensile and damage analysis of hybrid jute/polypropylene needlepunched nonwoven geotextiles produced from untreated and alkali treated jute fibers. Journal of the Textile Institute, 2019, 110, 1800-1809.	1.0	3
2639	Microstructure of Thermoplastic Composites Reinforced with Wool and Wood. Applied Mechanics and Materials, 0, 890, 98-112.	0.2	4
2640	Recycling of textile wastes into textile composites based on natural fibres: the reinforcement type and the architecture. IOP Conference Series: Materials Science and Engineering, 0, 477, 012055.	0.3	4
2641	Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification. Polymers, 2019, 11, 200.	2.0	22
2642	Mechanical properties of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 2019, 38, 910-922.	1.6	11
2643	Review of Functional Properties of Natural Fiber-Reinforced Polymer Composites: Thermal Insulation, Biodegradation and Vibration Damping Properties. Advanced Composite Materials, 2019, 28, 525-543.	1.0	41
2644	Optimisation of the surface treatment of jute fibres for natural fibre reinforced polymer composites using Weibull analysis. Journal of the Textile Institute, 2019, 110, 1588-1595.	1.0	20
2645	Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose, 2019, 26, 4693-4706.	2.4	17
2646	Properties of Lyocell-polypropylene composites. AIP Conference Proceedings, 2019, , .	0.3	1
2647	Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering, 2019, 172, 16-25.	5.9	245

#	Article	IF	CITATIONS
2648	Characterization and analytical parametrization of composite in cellulose fibre and PVA matrix. Composites Part B: Engineering, 2019, 172, 496-505.	5.9	10
2649	Effects of sol-gel modification on the interfacial and mechanical properties of sisal fiber reinforced polypropylene composites. Industrial Crops and Products, 2019, 137, 89-97.	2.5	31
2650	Fabrication of Calotropis Gigantea fibre reinforced compression spring for light weight applications. Composites Part B: Engineering, 2019, 172, 281-289.	5.9	22
2651	Preparation and studies of pigeon pea stalk/polypropylene composites with and without compatibilizer. Polymers and Polymer Composites, 2019, 27, 337-346.	1.0	8
2652	Preparation of Linear Low-density Polyethylene/Treated Date Palm Leaflet Green Composites and Investigation of their Thermal and Mechanical Properties. Oriental Journal of Chemistry, 2019, 35, 200-206.	0.1	O
2653	Assessment of Mechanical Property Variation of As-Processed Bast Fibers. Sustainability, 2019, 11, 2655.	1.6	9
2654	Cultivation of straw mushroom (Volvariella volvacea) on oil palm empty fruit bunch growth medium. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 381-392.	2.0	22
2655	Study on the Tensile Strength and Micromechanical Analysis of Alfa Fibers Reinforced High Density Polyethylene Composites. Fibers and Polymers, 2019, 20, 602-610.	1.1	20
2656	Effects of mercerization in the chemical and morphological properties of amazon piassava. Polimeros, 2019, 29, .	0.2	20
2657	Particulate Filled Polypropylene: Structure and Properties. , 2019, , 357-417.		3
2658	Wear and frictional behaviour of composites filled with agro-based waste materials. Emerging Materials Research, 2019, 8, 84-93.	0.4	4
2659	Poly (lactic acid)/ <i>Spartium junceum</i> fibers biocomposites: effects of the fibers content and surface treatments on the microstructure and thermomechanical properties. Composite Interfaces, 2019, 26, 1101-1121.	1.3	9
2660	Physical and Chemical Modifications of Plant Fibres for Reinforcement in Cementitious Composites. Advances in Civil Engineering, 2019, 2019, 1-18.	0.4	55
2661	Exploring the potential of gas-phase esterification to hydrophobize the surface of micrometric cellulose particles. European Polymer Journal, 2019, 115, 138-146.	2.6	20
2662	Impact of hybrid flame retardant on the flammability and thermomechanical properties of wood sawdust polymer composite panel. Fire and Materials, 2019, 43, 335-343.	0.9	9
2663	Construction Materials Reinforced with Natural Products. , 2019, , 2119-2142.		8
2664	Recycling of textile wastes into textile composites based on natural fibres: the valorisation potential. IOP Conference Series: Materials Science and Engineering, 0, 477, 012004.	0.3	11
2665	Thermal and Mechanical Properties of Biocomposites Made of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Potato Pulp Powder. Polymers, 2019, 11, 308.	2.0	25

#	Article	IF	CITATIONS
2666	Modulable properties of PVA/cellulose fiber composites. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001983122.	0.7	10
2667	Strategy for Manufacturing a Deep-Red Ink Based on Nanocellulose and Reactive Red 120. ACS Sustainable Chemistry and Engineering, 2019, 7, 7233-7240.	3.2	8
2668	Surface modification of abaca fibers by permanganate and alkaline treatment via factorial design. , 2019, , .		8
2669	Polyhydroxybutyrate/hemp biocomposite: tuning performances by process and compatibilisation. Green Materials, 2019, 7, 194-204.	1.1	10
2670	Foam extrusion of polypropylene–rice husk composites using CO2 as the blowing agent. Journal of Cellular Plastics, 2019, 55, 401-419.	1.2	11
2671	Thermal, Mechanical, Viscoelastic and Morphological Properties of Poly(lactic acid) based Biocomposites with Potato Pulp Powder Treated with Waxes. Materials, 2019, 12, 990.	1.3	24
2672	Investigation of Structural Degradation of Fiber Cement Boards Due to Thermal Impact. Materials, 2019, 12, 944.	1.3	12
2673	Electrical conductivity and dielectric relaxation studies of biocomposites based on green microcrystalline cellulose-reinforced vinyl resin matrix. Journal of Composite Materials, 2019, 53, 2801-2808.	1.2	11
2674	Flax (Linum usitatissimum L.) Fibers for Composite Reinforcement: Exploring the Link Between Plant Growth, Cell Walls Development, and Fiber Properties. Frontiers in Plant Science, 2019, 10, 411.	1.7	78
2675	Drying of Sisal Fiber: A Theoretical and Experimental Investigation. Defect and Diffusion Forum, 0, 391, 36-41.	0.4	2
2677	Comparative Study of the Use of Rice Husk Ashes and Graphite as Fillers in Polypropylene Matrix Composites. Minerals, Metals and Materials Series, 2019, , 561-570.	0.3	1
2679	Mechanical properties of sisal fiber reinforced starch based bio composites. AIP Conference Proceedings, 2019, , .	0.3	O
2680	Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly(lactic acid) and Potato Pulp Powder. International Journal of Molecular Sciences, 2019, 20, 675.	1.8	29
2681	Experimental testing of the tensile elastic properties of cellulose braided composites. Composites Part B: Engineering, 2019, 166, 542-548.	5.9	9
2682	Characterization and structural performance of hybrid fiber-reinforced composite deck panels. Advanced Composites and Hybrid Materials, 2019, 2, 115-124.	9.9	20
2683	Identification of the degree of fibre-cement boards degradation under the influence of high temperature. Automation in Construction, 2019, 101, 190-198.	4.8	19
2684	Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands. Industrial Crops and Products, 2019, 132, 319-326.	2.5	40
2685	Surface Properties of Non-conventional Cellulose Fibres. Springer Briefs in Molecular Science, 2019, ,	0.1	6

#	Article	IF	CITATIONS
2686	Anatomy of Plant Fibres. Springer Briefs in Molecular Science, 2019, , 7-15.	0.1	2
2687	The potential of rising husk fiber/native sago starch reinforced biocomposite to automotive component. IOP Conference Series: Materials Science and Engineering, 2019, 602, 012085.	0.3	0
2688	A Comparative Study of the Effect of Field Retting Time on the Properties of Hemp Fibres Harvested at Different Growth Stages. Fibers, 2019, 7, 108.	1.8	13
2689	Chemical Modification of Urena lobata (Caeser Weed) Fibers for Reinforcement Applications. Journal of Physics: Conference Series, 2019, 1378, 022015.	0.3	8
2690	Fabrication, experimental investigation of jute fiber reinforced epoxy composites and hybrid composites. IOP Conference Series: Materials Science and Engineering, 2019, 628, 012011.	0.3	8
2691	The Influence of Manufacturing Factors in the Short-Fiber Non-Woven Chestnut Hedgehog Spine-Reinforced Polyester Composite Performance. Journal of Natural Fibers, 2021, 18, 1307-1319.	1.7	4
2692	A Review of the Compositions, Processing, Materials and Properties of Brake Pad Production. Journal of Physics: Conference Series, 2019, 1378, 032103.	0.3	4
2693	Curing Kinetic Parameters of Epoxy Composite Reinforced with Mallow Fibers. Materials, 2019, 12, 3939.	1.3	10
2694	Study the mechanical properties of corncob husk filler reinforced epoxy composite. AIP Conference Proceedings, 2019, , .	0.3	4
2695	Chemical Treatment on Rattan Fibers: Durability, Mechanical, Thermal, and Morphological Properties. Journal of Natural Fibers, 2021, 18, 1762-1771.	1.7	18
2696	Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 2022, 35, 1169-1209.	2.6	130
2697	Effect of layering pattern on the mechanical properties of jute-linen reinforced polypropylene hybrid laminated composites. Materials Today: Proceedings, 2019, 18, 4182-4189.	0.9	2
2698	Industrial Hemp Fibers: An Overview. Fibers, 2019, 7, 106.	1.8	126
2699	Biobased Composites from Biobased-Polyethylene and Barley Thermomechanical Fibers: Micromechanics of Composites. Materials, 2019, 12, 4182.	1.3	27
2700	Preparation and Characterisation of PVA+TiO2 Nanofiber by Electrospinning Technique. IOP Conference Series: Materials Science and Engineering, 2019, 577, 012077.	0.3	1
2701	Surface Modification of Banana Fiber and its Influence on Performance of Biodegradable Banana-Cassava Starch Composites. Applied Mechanics and Materials, 0, 895, 15-20.	0.2	3
2702	Lowâ€temperature compounding of flax fibers with polyamide 6 via solidâ€state shear pulverization: Towards viable natural fiber composites with engineering thermoplastics. Polymer Composites, 2019, 40, 3285-3295.	2.3	10
2703	Deformation and failure of sugarcane bagasse reinforced PP. European Polymer Journal, 2019, 112, 153-160.	2.6	34

#	ARTICLE	IF	CITATIONS
2704	Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science, 2019, 102, 109-166.	16.0	162
2705	Fabrication and characterization of emulsified and freeze-dried epoxy/cellulose nanofibril nanocomposite foam. Cellulose, 2019, 26, 1769-1780.	2.4	7
2706	A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers, 2019, 207, 108-121.	5.1	584
2707	Electron beam irradiation effect on the mechanical and thermal properties of 2-D silk fibroin fabric/poly(lactic acid) biocomposites. Journal of Industrial and Engineering Chemistry, 2019, 71, 150-159.	2.9	8
2708	A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. International Journal of Biological Macromolecules, 2019, 124, 591-626.	3 . 6	51
2709	Surface modification of natural fibers in polymer composites. , 2019, , 3-41.		86
2710	3D printing technologies and composite materials for structural applications. , 2019, , 171-196.		25
2711	Effect of hygroscopy on non-impregnated quasi-unidirectional flax reinforcement behaviour. Industrial Crops and Products, 2019, 128, 315-322.	2.5	9
2712	Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Advanced Composites and Hybrid Materials, 2019, 2, 214-233.	9.9	189
2713	Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydrate Polymers, 2019, 209, 328-337.	5.1	77
2714	The effect of a zirconium dioxide sol-gel treatment on the durability of flax reinforcements in cementitious composites. Cement and Concrete Research, 2019, 115, 105-115.	4.6	14
2715	Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities. International Journal of Sustainable Engineering, 2019, 12, 212-220.	1.9	200
2716	Mechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compression. Composites Part A: Applied Science and Manufacturing, 2019, 116, 87-97.	3.8	42
2717	Effect of SEBS-MA and MAPP as coupling agent on the thermal and mechanical properties in highly filled composites of oil palm fiber/PP. Composite Interfaces, 2019, 26, 699-709.	1.3	14
2718	A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. International Journal of Biological Macromolecules, 2019, 122, 969-996.	3.6	121
2719	Comparative moisture and heat sorption properties of fibre and shiv derived from hemp and flax. Cellulose, 2019, 26, 823-843.	2.4	36
2720	The reinforcing effects of dendritic short carbon fibers for rigid polyurethane composites. Composites Science and Technology, 2019, 170, 128-134.	3.8	36
2721	Finite element modeling of natural fiber-based hybrid composites. , 2019, , 1-18.		7

#	Article	IF	CITATIONS
2722	Investigation of the mechanical properties of Napier-grass-reinforced composites for the aerospace industry. , 2019 , , 321 - 334 .		4
2723	Mechanical performance of biofibers and their corresponding composites. , 2019, , 259-292.		11
2724	Cellulose filaments reinforced lowâ€density polyethylene. Polymer Composites, 2019, 40, 16-23.	2.3	5
2725	Sustainable composites from agricultural waste: The use of steam explosion and surface modification to potentialize the use of wheat straw fibers for wood plastic composite industry. Polymer Composites, 2019, 40, E53.	2.3	13
2726	Characterization of dimensional stability in flax fiber reinforced polypropylene composites. Polymer Composites, 2019, 40, 132-140.	2.3	15
2727	The structure of isotactic polypropylene in composites filled with lignocellulosic material. Journal of Natural Fibers, 2019, 16, 471-483.	1.7	10
2728	Exploring the potential of milkweed stalk in wood plastic manufacture. Journal of Natural Fibers, 2019, 16, 77-87.	1.7	5
2729	Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications. Journal of Natural Fibers, 2019, 16, 768-780.	1.7	78
2730	The post-impact response of flax/UP composite laminates under low velocity impact loading. International Journal of Damage Mechanics, 2019, 28, 183-199.	2.4	16
2731	Surface modification and performance of jute fibers as reinforcement on polymer matrix: an overview. Journal of Natural Fibers, 2019, 16, 944-960.	1.7	44
2732	Alkalinization and graft copolymerization of pineapple leaf fiber cellulose and evaluation of physicâ€chemical properties. Polymer Composites, 2019, 40, 1395-1403.	2.3	7
2733	Exploiting poly(É→ â€caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites. Polymer Composites, 2019, 40, 1342-1353.	2.3	19
2734	Recent advances in fibre-hybrid composites: materials selection, opportunities and applications. International Materials Reviews, 2019, 64, 181-215.	9.4	128
2735	Mechanical, electrical, and thermal analysis of sisal fibril/kenaf fiber hybrid polyester composites. Polymer Composites, 2019, 40, 664-676.	2.3	54
2736	Proposed Method for Determining Cross-Sectional Area of <i>Guadua angustifolia</i> Bamboo Fibers. Journal of Natural Fibers, 2019, 16, 253-262.	1.7	1
2737	Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials. Waste and Biomass Valorization, 2019, 10, 3125-3142.	1.8	9
2738	Material properties of sponge-gourd fiber–reinforced polylactic acid biocomposites: Effect of fiber weight ratio, chemical treatment, and treatment concentrations. Journal of Thermoplastic Composite Materials, 2019, 32, 967-994.	2.6	4
2739	Effect of surface modification of sisal fibers on water absorption and mechanical properties of polyaniline composite. Polymer Composites, 2019, 40, E46.	2.3	16

#	ARTICLE	IF	CITATIONS
2740	An experimental study on the interdependence of mercerization, moisture absorption and mechanical properties of sustainable <i>Phoenix</i> sp. fibre-reinforced epoxy composites. Journal of Industrial Textiles, 2020, 49, 1233-1251.	1.1	33
2741	Investigation of Microfibril Angle of Flax Fibers Using X-Ray Diffraction and Scanning Electron Microscopy. Journal of Natural Fibers, 2020, 17, 1001-1010.	1.7	13
2742	Physical and performance characteristics of nonwoven aviation wipers composed of various staple fibers including raw cotton. Journal of Industrial Textiles, 2020, 49, 1198-1217.	1.1	1
2743	Application of \hat{l}^2 -sheet proteins as a compatibilizer in injection molding of kenaf core/polypropylene composites. Journal of Natural Fibers, 2020, 17, 609-621.	1.7	0
2744	Development of fiber-reinforced polypropylene with NaOH pretreated rice and coffee husks as fillers: Mechanical and thermal properties. Journal of Thermoplastic Composite Materials, 2020, 33, 1269-1291.	2.6	36
2745	Effect of Industrial Waste on Chemical and Water Absorption of Bamboo Fiber Reinforced Composites. Silicon, 2020, 12, 139-146.	1.8	2
2746	Possibility of Exploring and Applying Wastes from Some Ornamental Plants (<i>Elatior etlingera;) Tj ETQq0 0 0 rg Fibers, 2020, 17, 1488-1496.</i>	BT /Overlo 1.7	ock 10 Tf 50 5 4
2747	Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Critical Reviews in Food Science and Nutrition, 2020, 60, 435-460.	5.4	135
2748	Opportunities With Renewable Jute Fiber Composites to Reduce Eco-Impact of Nonrenewable Polymers. , 2020, , 810-821.		4
2749	Mechanical properties of natural fiber composites produced using dynamic sheet former. Wood Material Science and Engineering, 2020, 15, 76-86.	1.1	20
2750	A review on the properties of natural fibres and its bio-composites: Effect of alkali treatment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 198-217.	0.7	55
2751	A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 2020, 55, 829-892.	1.7	478
2752	Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices. Carbohydrate Polymers, 2020, 227, 115366.	5.1	38
2753	Characterization of a new natural cellulose based fiber from Hierochloe Odarata. Cellulose, 2020, 27, 127-139.	2.4	61
2754	Injection Molding and Appearance of Celluloseâ€Reinforced Composites. Polymer Engineering and Science, 2020, 60, 5-12.	1.5	12
2755	Modified hemp fibers intended for fiberâ€reinforced polymer composites used in structural applicationsâ€"A review. I. Methods of modification. Polymer Composites, 2020, 41, 5-31.	2.3	92
2756	Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020, 7, 73-83.	4.6	60
2757	Mechanical Analysis of Bio-composites Using Gamma Irradiated Fibers of Luffa Cylindrica. , 2020, , 253-259.		2

#	Article	IF	CITATIONS
2758	Recyclability of Natural Fiber-Filled Thermoplastic Composites. , 2020, , 215-218.		2
2759	Comparison in Performance of Hybrid and Marvel NoKH Okra/Abelmoschus esculentus Fibre Reinforced Polymer Composites Under Tensile Load. Advanced Structured Materials, 2020, , 243-255.	0.3	1
2761	Properties Enhancement of Mengkuang Leaf Fiber/Ethyleneâ€Vinyl Acetate/Natural Rubber Thermoplastic Elastomer Composites by Alkaline Peroxide Bleaching Treatment. Journal of Vinyl and Additive Technology, 2020, 26, 127-134.	1.8	5
2762	Lignocellulosic Materials for Production of Cement Composites: Valorization of the Alkali Treated Soybean Pod and Eucalyptus Wood Particles to Obtain Higher Value-Added Products. Waste and Biomass Valorization, 2020, 11, 2235-2245.	1.8	17
2763	Influence of gamma and ultraviolet radiation on the mechanical behavior of a hybrid polyester composite reinforced with curaua mat and aramid fabric. Journal of Materials Research and Technology, 2020, 9, 394-403.	2.6	11
2764	Manufacture of a super-stable green gel pen ink based on CNC-indigo. Cellulose, 2020, 27, 1009-1020.	2.4	2
2765	Impact of field retting and accelerated retting performed in a lab-scale pilot unit on the properties of hemp fibres/polypropylene biocomposites. Industrial Crops and Products, 2020, 143, 111912.	2.5	13
2766	The effect of cellulose and starch on the viscoelastic and thermal properties of acid-swollen collagen paste. Food Hydrocolloids, 2020, 101, 105460.	5.6	1
2767	Some studies on the effect of bagasse concentration on the mechanical and physical properties of SBR composites. Polymers and Polymer Composites, 2020, 28, 663-677.	1.0	6
2768	Effects of the addition of date palm fibers on the physical, rheological and thermal properties of bitumen. Construction and Building Materials, 2020, 239, 117808.	3.2	26
2769	Preparation and characterization of cornhusk/sugar palm fiber reinforced Cornstarch-based hybrid composites. Journal of Materials Research and Technology, 2020, 9, 200-211.	2.6	62
2770	Direct injection molding of hybrid polypropylene/wood-fiber composites reinforced with glass fiber and carbon fiber. International Journal of Advanced Manufacturing Technology, 2020, 106, 201-209.	1.5	20
2771	Highly Loaded Cellulose/Poly (butylene succinate) Sustainable Composites for Woody-Like Advanced Materials Application. Molecules, 2020, 25, 121.	1.7	34
2772	Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose, 2020, 27, 2569-2582.	2.4	35
2773	Surface improvement effect of silica nanoparticles on epoxy nanocomposites mechanical and physical properties, and curing kinetic. Journal of Polymer Research, 2020, 27, 1.	1.2	10
2774	Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics. International Journal of Advanced Manufacturing Technology, 2020, 106, 1753-1774.	1.5	33
2775	Evaluation of injection moulded natural fibre-polyolefin for potential in automotive applications. Materials Today: Proceedings, 2020, 31, S201-S205.	0.9	3
2776	Isolation and characterization of cellulosic fibers from ramie using organosolv degumming process. Cellulose, 2020, 27, 1225-1237.	2.4	29

#	Article	IF	CITATIONS
2777	A proposal to modify the Kelly-Tyson equation to calculate the interfacial shear strength (IFSS) of composites with low aspect ratio fibers. Composites Science and Technology, 2020, 186, 107920.	3.8	44
2778	Variability of mechanical properties of flax fibres for composite reinforcement. A review. Industrial Crops and Products, 2020, 145, 111984.	2.5	102
2779	Effect of maleic anhydride content on physico-mechanical properties of \hat{I}^3 -irradiated waste polypropylene/corn husk fibers bio-composites. Radiochimica Acta, 2020, 108, 151-157.	0.5	7
2780	Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling. Biomacromolecules, 2020, 21, 597-603.	2.6	26
2781	Wear analysis of bio-fillers reinforced epoxy composites. Materials Today: Proceedings, 2020, 22, 793-798.	0.9	18
2782	Inverse approach for flax yarns mechanical properties identification from statistical mechanical characterization of the fabric. Mechanics of Materials, 2020, 151, 103638.	1.7	6
2783	Impact Strength and Water Uptake Behavior of Bleached Kraft Softwood-Reinforced PLA Composites as Alternative to PP-Based Materials. Polymers, 2020, 12, 2144.	2.0	12
2784	Tensile strength and thermal behavior of jute fibre reinforced polypropylene laminate composite. Composites Communications, 2020, 22, 100483.	3.3	36
2785	Formulation and characterization of new ternary stable composites: Polyvinyl chloride-wood flour-calcium carbonate of promising physicochemical properties. Journal of Materials Research and Technology, 2020, 9, 12840-12854.	2.6	16
2786	Comparison of LDPE/corn stalk with eco degradant and LDPE/corn stalk with MAPE: Influence of coupling agent and compatibiliser on mechanical properties. Materials Today: Proceedings, 2020, 31, 360-365.	0.9	4
2787	Tribological behaviour of fibre-reinforced thermoset polymer composites: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 1439-1449.	0.7	14
2788	Effect of chemical and enzymatic treatments of alfa fibers on polylactic acid bio-composites properties. Journal of Composite Materials, 2020, 54, 4959-4967.	1.2	20
2789	Effect of drilling process parameters on natural fiber reinforced basket epoxy composites using grey relational analysis. Materials Today: Proceedings, 2020, 24, 2255-2264.	0.9	15
2790	Study on biodegradability and thermal behaviour of composites using poly lactic acid and gamma-irradiated fibres of Luffa cylindrica. Chemosphere, 2020, 261, 127684.	4.2	13
2791	Study on Flexural Properties of Lotus, Eucalyptus Composites Reinforced with Epoxy and E-glass Fibers in Different Orientations. Journal of Natural Fibers, 2022, 19, 3001-3014.	1.7	0
2792	Effect of a Bio-Based Dispersing Aid (Einar \hat{A}^{\otimes} 101) on PLA-Arbocel \hat{A}^{\otimes} Biocomposites: Evaluation of the Interfacial Shear Stress on the Final Mechanical Properties. Biomolecules, 2020, 10, 1549.	1.8	7
2793	Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. Materials, 2020, 13, 5145.	1.3	52
2794	Up-cycling of agave tequilana bagasse-fibres: A study on the effect of fibre-surface treatments on interfacial bonding and mechanical properties. Results in Materials, 2020, 8, 100158.	0.9	11

#	Article	IF	CITATIONS
2795	Comparative analysis on mechanical behavior of coir fiber composite by varying the fiber length and composition of filler materials. AIP Conference Proceedings, 2020, , .	0.3	1
2796	A Review on the Production of Thermo-Plastic Starch From the Wastes of Starchy Fruits and Vegetables. , 2020, , .		O
2797	Thermal and dynamic mechanical characterization of miscanthus stem fragments: Effects of genotypes, positions along the stem and their relation with biochemical and structural characteristics. Industrial Crops and Products, 2020, 156, 112863.	2.5	5
2798	A detailed characterization of sandalwood-filled high-density polyethylene composites. Journal of Thermoplastic Composite Materials, 2022, 35, 1903-1920.	2.6	4
2799	Eco-friendly surface hydrophobization of all-cellulose composites using layer-by-layer deposition. EXPRESS Polymer Letters, 2020, 14, 896-907.	1,1	6
2800	Processing and Characterization of Cornstalk/Sugar Palm Fiber Reinforced Cornstarch Biopolymer Hybrid Composites. , 2020, , 35-46.		2
2801	Biopolymers in Building Materials. , 2020, , 185-195.		2
2802	Micro Cellulose Grewia Optiva Fiber-reinforced Polymer Composites: Relationship between Structural and Mechanical Properties. Journal of Natural Fibers, 2022, 19, 2140-2151.	1.7	13
2803	A review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polymer Testing, 2020, 91, 106792.	2.3	83
2804	Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers, 2020, 12, 1558.	2.0	209
2805	The Effect of Orientation Fibres on Flexural and Tensile Properties of Arenga Pinnata Fibres Reinforced Polyester Composites. IOP Conference Series: Materials Science and Engineering, 2020, 807, 012031.	0.3	0
2806	Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review. Polymers and Polymer Composites, 2021, 29, 1011-1038.	1.0	44
2807	Experimental investigation on mechanical characteristics of composite reinforced cantala fiber (CF) subjected to microcrystalline cellulose and fumigation treatments. Composites Communications, 2020, 21, 100419.	3.3	17
2808	Physico Chemical Characterization of Fiber from Melia Azedarach Barks as an Effective Reinforcement in Polymer Matrices. Journal of Natural Fibers, 2022, 19, 2093-2105.	1.7	3
2809	Study and Characterization of Sisal Fiber/Zein Resin Interface. Reviews of Adhesion and Adhesives, 2020, 8, S1-S19.	3.3	0
2810	Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustainable Energy and Fuels, 2020, 4, 4390-4414.	2.5	140
2811	Development of Nipah Palm Fibre Extraction Process. Materials Science Forum, 2020, 997, 57-65.	0.3	3
2812	Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview. Polymers, 2020, 12, 1601.	2.0	69

#	Article	IF	CITATIONS
2813	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	11.1	77
2814	Mechanical characterization of wood apple and coconut shell reinforced hybrid composites. AIP Conference Proceedings, 2020, , .	0.3	6
2815	Introduction of raw palm fibers in the textile industry by development of nonwoven composite materials based on Washingtonia palm fibers. Journal of the Textile Institute, 2021, 112, 1717-1729.	1.0	7
2816	The thermo-oxidative durability of polyethylene reinforced with wood-based fibres. Polymer Degradation and Stability, 2020, 181, 109374.	2.7	6
2817	Investigation on thermal buckling analysis of jute/epoxy polymer matrix composites. Emerging Materials Research, 2020, 9, 1229-1236.	0.4	4
2818	Effect of APPT Treatment on Mechanical Properties and Durability of Green Composites with Woven Flax. Materials, 2020, 13, 4762.	1.3	10
2819	Effect of CS2/NaOH activation on the hydrophobic durability of cotton filter fabric modified via ARGET-ATRP. European Polymer Journal, 2020, 141, 110087.	2.6	7
2820	Fracture Behaviors of SiC Particle Filled and Jute Fiber Reinforced Natural Composites. Journal of Natural Fibers, 2022, 19, 2338-2355.	1.7	10
2821	Effects of Heat Treatment on Mechanical Properties of Jute Fiber–Reinforced Polymer Composites for Concrete Confinement. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	22
2822	A Study of Some Mechanical Properties of Composite Materials with a Dammar-Based Hybrid Matrix and Reinforced by Waste Paper. Polymers, 2020, 12, 1688.	2.0	11
2823	Characterization of Activated Carbon Paper Electrodes Prepared by Rice Husk-Isolated Cellulose Fibers for Supercapacitor Applications. Molecules, 2020, 25, 3951.	1.7	18
2824	Interfacial Studies of Natural Fiber-Reinforced Particulate Thermoplastic Composites and Their Mechanical Properties. Journal of Natural Fibers, 2022, 19, 2299-2326.	1.7	12
2825	Utilization of Chemically Modified Novel <i>Urena Lobata</i> Fibers as Reinforcement in Polymer Composites – an Experimental Study. Journal of Natural Fibers, 2022, 19, 2479-2489.	1.7	7
2826	Fiber Orientation and Concentration in an Injection-Molded Ethylene-Propylene Copolymer Reinforced by Hemp. Polymers, 2020, 12, 2771.	2.0	10
2827	Sustainable and Renewable Bio-Based Natural Fibres and Its Application for 3D Printed Concrete: A Review. Sustainability, 2020, 12, 10485.	1.6	54
2828	Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. International Journal of Polymer Science, 2020, 2020, 1-15.	1.2	80
2829	Synthesis and Mechanical Properties of Natural Fiber Reinforced Epoxy/Polyester/Polypropylene Composites: A Review. Journal of Natural Fibers, 2022, 19, 3718-3741.	1.7	37
2830	Investigation of Mechanical Properties of Jute Fiber Reinforced Low Density Polyethylene Composites. Journal of Natural Fibers, 2022, 19, 3109-3126.	1.7	28

#	Article	IF	CITATIONS
2831	Laccase-Enzyme Treated Flax Fibre for Use in Natural Fibre Epoxy Composites. Materials, 2020, 13, 4529.	1.3	13
2832	Influence of Mercerization Process on the Surface of Coconut Fiber for Composite Reinforcement. Materials Science Forum, 0, 1012, 37-42.	0.3	2
2833	Development and characterization of sawdust and sisal fiber reinforced vegetable based polyurethane foam hybrid composites. Journal of Natural Fibers, 2022, 19, 3265-3274.	1.7	9
2834	Effect of nano SiO2 on properties of natural fiber reinforced epoxy hybrid composite: A review. Materials Today: Proceedings, 2020, 26, 3183-3186.	0.9	35
2835	Bio-Based Polyurethane Composites and Hybrid Composites Containing a New Type of Bio-Polyol and Addition of Natural and Synthetic Fibers. Materials, 2020, 13, 2028.	1.3	22
2836	Hydration and Sorption Properties of Raw and Milled Flax Fibers. ACS Omega, 2020, 5, 6113-6121.	1.6	15
2837	Feasibility of Barley Straw Fibers as Reinforcement in Fully Biobased Polyethylene Composites: Macro and Micro Mechanics of the Flexural Strength. Molecules, 2020, 25, 2242.	1.7	15
2838	Study on the variation law of bamboo fibers' tensile properties and the organization structure on the radial direction of bamboo stem. Industrial Crops and Products, 2020, 152, 112521.	2.5	55
2839	Pathways for Alkali Ion Transport in Mold Compounds. ECS Journal of Solid State Science and Technology, 2020, 9, 053001.	0.9	2
2840	Comprehensive characterization of a novel natural <i>Bauhinia Vahlii</i> stem fiber. Polymer Composites, 2020, 41, 3807-3816.	2.3	21
2841	Preparation and characterization of wood-plastic composite by utilizing a hybrid compatibilizer system. Industrial Crops and Products, 2020, 154, 112659.	2.5	28
2842	All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules, 2020, 25, 2836.	1.7	74
2843	Removal of methylene blue from aqueous solution by ryegrass straw. International Journal of Environmental Science and Technology, 2020, 17, 3723-3740.	1.8	21
2844	Effect of fiber hybridization and montmorillonite clay on properties of treated kenaf/aloe vera fiber reinforced PLA hybrid nanobiocomposite. Cellulose, 2020, 27, 6977-6993.	2.4	23
2845	A Review on Thermoplastic or Thermosetting Polymeric Matrices Used in Polymeric Composites Manufactured with Banana Fibers from the Pseudostem. Applied Sciences (Switzerland), 2020, 10, 3023.	1.3	4
2846	Nanocellulose/polymer nanocomposite membranes for pervaporation application., 2020,, 17-34.		1
2847	Characterization of New Cellulosic Fiber from the Bark of <i>Acacia nilotica L</i> . Plant. Journal of Natural Fibers, 2022, 19, 199-208.	1.7	65
2848	Alkali treatment of bamboo powder mixed polypropylene and its effect on properties. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012056.	0.3	0

#	Article	IF	CITATIONS
2849	Cellulose valorization to potential platform chemicals. , 2020, , 433-457.		8
2850	Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review. Materials, 2020, 13, 1245.	1.3	49
2851	Influence of nanosilica particles on the high-temperature performance of waste denim fibre-modified bitumen. International Journal of Pavement Engineering, 2022, 23, 207-220.	2.2	13
2852	Micromechanical analysis on tensile properties prediction of discontinuous randomized zalacca fibre/high-density polyethylene composites under critical fibre length. Theoretical and Applied Mechanics Letters, 2020, 10, 57-65.	1.3	11
2853	Cellular, Mineralized, and Programmable Cellulose Composites Fabricated by 3D Printing of Aqueous Pastes Derived from Paper Wastes and Microfibrillated Cellulose. Macromolecular Materials and Engineering, 2020, 305, 1900740.	1.7	9
2854	Natural fibre reinforced composite materials: Environmentally better life cycle assessment – A case study. Materials Today: Proceedings, 2020, 26, 3157-3160.	0.9	40
2855	Influence of Filler on Mechanical and Di-electric Properties of Coir and Luffa Cylindrica Fiber Reinforced Epoxy Hybrid Composites. Journal of Natural Fibers, 2020, , 1-10.	1.7	15
2856	Effect of Different Chemical Treatments on Surface Morphology, Thermal and Tensile Strength of <i>Bauhinia Vahlii</i> (BV) Stem Fibers. Journal of Natural Fibers, 2022, 19, 280-291.	1.7	11
2857	Property changes in plant fibres during the processing of bio-based composites. Industrial Crops and Products, 2020, 154, 112705.	2.5	57
2858	A review of 3D and 4D printing of natural fibre biocomposites. Materials and Design, 2020, 194, 108911.	3 . 3	146
2859	Study the impact of drilling process parameters on natural fiber reinforced chaired epoxy composites. Materials Today: Proceedings, 2020, 24, 2204-2218.	0.9	14
2860	Effect of fiber modified by alkali/polyvinyl alcohol coating treatment on properties of sisal fiber plastic composites. Journal of Reinforced Plastics and Composites, 2020, 39, 880-889.	1.6	11
2861	Mechanical Properties of Boehmeria nivea Natural Fabric Reinforced Epoxy Matrix Composite Prepared by Vacuum-Assisted Resin Infusion Molding. Polymers, 2020, 12, 1311.	2.0	13
2862	Effect of Dimethyl Sulfoxide in Hydrophobic Modification of Cotton Filter Cloth by ARGET-ATRP Mechanism. Materials Science Forum, 2020, 993, 1407-1416.	0.3	4
2863	Structure and electrical resistivity of individual carbonised natural and man-made cellulose fibres. Journal of Materials Science, 2020, 55, 10271-10280.	1.7	10
2864	Valorization of Hemp Core Residues: Impact of NaOH Treatment on the Flexural Strength of PP Composites and Intrinsic Flexural Strength of Hemp Core Fibers. Biomolecules, 2020, 10, 823.	1.8	10
2865	Methods and process parameters of gel coating on laminated composites - A review. AIP Conference Proceedings, 2020, , .	0.3	0
2866	Synthetic materials to bionanocomposites: an overview., 2020,, 1-20.		4

#	Article	IF	CITATIONS
2869	(Bio)composites of chitin/chitosan with natural fibers. , 2020, , 273-298.		3
2870	Interactions of Single Particle with Organic Matters: A Facile Bottom-Up Approach to Low Dimensional Nanostructures. Quantum Beam Science, 2020, 4, 7.	0.6	5
2871	Cellulose fibrillation and interaction with psyllium seed husk heteroxylan. Food Hydrocolloids, 2020, 104, 105725.	5.6	11
2872	An investigation on the flammability and dynamic mechanical behavior of coir fibers reinforced polymer composites. Journal of Industrial Textiles, 2022, 51, 1616-1640.	1.1	10
2873	Wood-Based Flexible Electronics. ACS Nano, 2020, 14, 3528-3538.	7. 3	152
2874	Enzymatic treatments effect on the poly (butylene succinate)/date palm fibers properties for bio-composite applications. Industrial Crops and Products, 2020, 148, 112270.	2.5	21
2875	The water absorption, mechanical and thermal properties of chemically treated woven fan palm reinforced polyester composites. Journal of Materials Research and Technology, 2020, 9, 4410-4420.	2.6	47
2876	Pineapple Leaf Fibers. Green Energy and Technology, 2020, , .	0.4	17
2877	Influence of Water Absorption on the Low Velocity Falling Weight Impact Damage Behaviour of Flax/Glass Reinforced Vinyl Ester Hybrid Composites. Molecules, 2020, 25, 278.	1.7	32
2878	Strength improvement of adhesively bonded single lap joints with date palm fibers: Effect of type, size, treatment method and density of fibers. Composites Part B: Engineering, 2020, 188, 107874.	5.9	41
2879	Toward Biocomposites Recycling: Localized Interphase Degradation in PCL-Cellulose Biocomposites and its Mitigation. Biomacromolecules, 2020, 21, 1795-1801.	2.6	7
2880	Isolation and characterization of microfibrillated cellulose and nanofibrillated cellulose with "biomechanical hotspots― Carbohydrate Polymers, 2020, 234, 115827.	5.1	20
2881	Mechanical Properties of Sisal/Cattail Hybrid-Reinforced Polyester Composites. Advances in Materials Science and Engineering, 2020, 2020, 1-9.	1.0	12
2882	High-efficiency organosolv degumming of ramie fiber by autocatalysis of high-boiling alcohols: an evaluation study of solvents. Cellulose, 2020, 27, 4271-4285.	2.4	10
2883	Recent trends in isolation of cellulose nanocrystals and nanofibrils from various forest wood and nonwood products and their application., 2020,, 41-80.		16
2884	Comparative study of fiber reinforced PP composites: Effect of fiber type, coupling and failure mechanisms. Composites Part A: Applied Science and Manufacturing, 2020, 133, 105895.	3.8	36
2885	The Role of Green Building Materials in Reducing Environmental and Human Health Impacts. International Journal of Environmental Research and Public Health, 2020, 17, 2589.	1.2	58
2886	Galactose-derived poly(amide-triazole)s. Degradation, deprotection and derivatization studies. European Polymer Journal, 2020, 130, 109653.	2.6	2

#	Article	IF	CITATIONS
2887	Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy. Reactive and Functional Polymers, 2020, 153, 104612.	2.0	12
2888	Delignification and Ionic Liquid Treatment of Wood toward Multifunctional High-Performance Structural Materials. ACS Applied Materials & Structural Materials.	4.0	42
2889	Characterization of Nano-Mechanical, Surface and Thermal Properties of Hemp Fiber-Reinforced Polycaprolactone (HF/PCL) Biocomposites. Applied Sciences (Switzerland), 2020, 10, 2636.	1.3	10
2890	Influence of eco-friendly pretreatment of lignocellulosic biomass using ionic liquids on the interface adhesion and characteristics of polymer composite boards. Journal of Composite Materials, 2020, 54, 3717-3729.	1,2	8
2891	Light-Activated Heterostructured Nanomaterials for Antibacterial Applications. Nanomaterials, 2020, 10, 643.	1.9	45
2892	Valorization of Biomass Residues from Forest Operations and Wood Manufacturing Presents a Wide Range of Sustainable and Innovative Possibilities. Current Forestry Reports, 2020, 6, 172-183.	3.4	56
2893	Effect of cellulose oxalate as cellulosic reinforcement in ternary composites of polypropylene/maleated polypropylene/cellulose. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105894.	3.8	9
2894	High performances of plant fiber reinforced compositesâ€"A new insight from hierarchical microstructures. Composites Science and Technology, 2020, 194, 108151.	3.8	103
2895	Manufacturing of bamboo composite in the industrial aspect. Materials Today: Proceedings, 2020, 26, 2875-2887.	0.9	6
2896	Mechanical properties of hybrid glass fiber/rice husk reinforced polymer composite. Materials Today: Proceedings, 2020, 27, 1749-1755.	0.9	6
2897	Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 2020, 88, 106549.	2.3	77
2898	Influence of coupling agent on altering the reinforcing efficiency of natural fibre-incorporated polymers – A review. Journal of Reinforced Plastics and Composites, 2020, 39, 520-544.	1.6	50
2899	Multi-Scale Analysis and Testing of Tensile Behavior in Polymers with Randomly Oriented and Agglomerated Cellulose Nanofibers. Nanomaterials, 2020, 10, 700.	1.9	15
2900	Falling Weight Impact Damage Characterisation of Flax and Flax Basalt Vinyl Ester Hybrid Composites. Polymers, 2020, 12, 806.	2.0	11
2901	Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers. Polymers, 2020, 12, 821.	2.0	38
2902	Analysing Flammability Characteristics of Green Biocomposites: An Overview. Fire Technology, 2021, 57, 31-67.	1.5	29
2903	Development and characterization of hybrid composite laminate based on luffa and glass fibers. Materials Today: Proceedings, 2021, 36, 22-28.	0.9	6
2904	The effect of acid aging on the mechanical and tribological properties of coir–coconut husk-reinforced low-density polyethylene composites. Polymer Bulletin, 2021, 78, 3489-3508.	1.7	5

#	Article	IF	CITATIONS
2905	Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (<i>Arenga pinnata (Wurmb.) Merr</i>). Textile Reseach Journal, 2021, 91, 152-167.	1.1	127
2906	New nanostructure based on hydroxyapatite modified cellulose for bone substitute, synthesis, and characterization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 437-448.	1.8	9
2907	Effects of length and content of natural cellulose fiber on the mechanical behaviors of phenol formaldehyde composites. Materials Today: Proceedings, 2021, 45, 516-521.	0.9	4
2908	Improving the engineering behaviour of residual soil with fly ash and treated natural fibres in alkaline condition. International Journal of Geotechnical Engineering, 2021, 15, 313-326.	1.1	16
2909	Impact of types of orthophthalic unsaturated polyester matrix on tensile strength of woven roving fibers as reinforcement. Journal of Industrial Textiles, 2021, 50, 1006-1019.	1.1	1
2910	Jute-reinforced polymer composites. , 2021, , 111-130.		4
2911	Performance of SiO ₂ -impregnated flax fibre reinforced polymers under wet dry and freeze thaw cycles. Journal of Composite Materials, 2021, 55, 251-263.	1.2	4
2912	Mechanical behaviour and microscopic analysis of epoxy and E-glass reinforced banyan fibre composites with the application of artificial neural network and deep neural network for the automatic prediction of orientation. Journal of Composite Materials, 2021, 55, 213-234.	1.2	18
2913	Effect of Different Constraint on Tribological Behaviour of Natural Fibre/Filler Reinforced Polymeric Composites: a Review. Silicon, 2021, 13, 2785-2807.	1.8	21
2914	Investigation on the use of ground alfa fibres as reinforcement of cement mortars. Proceedings of Institution of Civil Engineers: Construction Materials, 2021, 174, 161-171.	0.7	6
2915	Challenges on machining characteristics of natural fiber-reinforced composites – A review. Journal of Reinforced Plastics and Composites, 2021, 40, 41-69.	1.6	39
2916	Polypropylene/wood powder/ethylene propylene diene monomer rubberâ€maleic anhydride composites: Effect of PP melt flow index on the thermal, mechanical, thermomechanical, water absorption, and morphological parameters. Polymer Composites, 2021, 42, 484-497.	2.3	25
2917	A study on mechanical, structural, morphological, and thermal properties of raw and alkali treated Cordia dichotoma â€polyester composite. Polymer Composites, 2021, 42, 309-319.	2.3	9
2918	External strengthening of concrete with natural and synthetic fiber composites. Materials Today: Proceedings, 2021, 38, 2803-2809.	0.9	15
2919	Toward a facile fabrication route for all-cellulose composite laminates via partial dissolution in aqueous tetrabutylphosphonium hydroxide solution. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106148.	3.8	4
2920	Dimensional variation and evolution of mechanical properties of wet aged composites reinforced with flax fibers. Journal of Composite Materials, 2021, 55, 1131-1148.	1.2	4
2921	Influence of Different Diss Fiber Treatments over the Properties of Poly Propylene/Recycled and Regenerated Low Density Polyethylene BasedÂBiocomposites. Journal of Polymers and the Environment, 2021, 29, 291-303.	2.4	1
2922	Cross-country analysis of life cycle assessment–based greenhouse gas emissions for automotive parts: Evaluation of coefficient of country. Renewable and Sustainable Energy Reviews, 2021, 138, 110546.	8.2	7

#	Article	IF	CITATIONS
2923	Melt processing of nanocomposites of cellulose nanocrystals with biobased thermoplastic polyurethane. Journal of Applied Polymer Science, 2021, 138, 50343.	1.3	8
2924	Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. Journal of Polymers and the Environment, 2021, 29, 1350-1364.	2.4	17
2925	Recent studies on modified cellulose/nanocellulose epoxy composites: A systematic review. Carbohydrate Polymers, 2021, 255, 117366.	5.1	44
2926	Abaca fibre reinforced polymer composites: a review. Journal of Materials Science, 2021, 56, 4569-4587.	1.7	33
2927	Design of experience to evaluate the Interfacial compatibility on high tenacity viscose fibers reinforced Polyamide-6 composites. Composites Science and Technology, 2021, 203, 108615.	3.8	9
2928	Fabrication of cellulose acetate nanocomposite films with lignocelluosic nanofiber filler for superior effect on thermal, mechanical and optical properties. Nano Structures Nano Objects, 2021, 25, 100642.	1.9	44
2929	Using linseed oil as flax fibre coating for fibre-reinforced cementitious composite. Industrial Crops and Products, 2021, 161, 113168.	2.5	14
2930	The toughening mechanism of core-shell particles by the interface interaction and crystalline transition in polyamide 1012. Composites Part B: Engineering, 2021, 206, 108539.	5.9	20
2931	Investigation of the Thermal and Mechanical Properties of Organic Waste Reinforced Polyester Composites. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2021, 45, 757-766.	1.0	7
2932	A facile method for the phosphorylation of cellulosic fabric via atmospheric pressure plasma. Carbohydrate Polymers, 2021, 256, 117531.	5.1	10
2933	Study of Thermal Behaviour of Poly(Lactic) Acid Composites with Gamma Irradiated Luffa Fiber. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2021, 91, 597-603.	0.8	1
2934	Physical and abrasive wear behaviour of Urena lobata fiber-reinforced polymer composites. Journal of Reinforced Plastics and Composites, 2021, 40, 341-351.	1.6	10
2935	Hybrid composites with glass fiber and natural fibers of sisal, coir, and luffa sponge. Journal of Composite Materials, 2021, 55, 717-728.	1.2	9
2936	Characterization of lignocellulosic fibres extracted from agricultural biomass: arecanut leaf sheath. Journal of the Textile Institute, 2021, 112, 1224-1231.	1.0	1
2937	Effect of Alkaline Surface Modification and Carbonization on Biochemical Properties of Rice and Coffee Husks for Use in Briquettes and Fiber-Reinforced Plastics. Journal of Natural Fibers, 2021, 18, 620-629.	1.7	19
2938	Plant Extraction and Physicochemical Characterizations of Untreated and Pretreated Diss Fibers (Ampelodesmos mauritanicus). Journal of Natural Fibers, 2021, 18, 1083-1093.	1.7	6
2939	Principle of Green Chemistry: A modern perspective for development of sustainable textile fiber-based green nanocomposites., 2021,, 121-136.		3
2940	State-of-the-art review of green composites for automotive applications. , 2021, , 347-375.		0

#	Article	IF	CITATIONS
2941	Cashew nut testa tannin resin $\hat{a} \in \text{``preparation}$, characterization and adsorption studies. Journal of Taibah University for Science, 2021, 15, 170-183.	1.1	6
2942	Influence of worn tire rubber fibres on the swelling potential and pressure of clay soils. Materials Today: Proceedings, 2021, 45, 5225-5230.	0.9	2
2943	Fiber-Reinforced Composites for Restituting Automobile Leaf Spring Suspension System. Materials Horizons, 2021, , 67-105.	0.3	3
2944	The Effect of Stem Diameter on the <i>Brassica napus</i> (Type: Canola) (Cultivar: HYHEAR 3) Fiber Quality. World Journal of Engineering and Technology, 2021, 09, 458-481.	0.3	2
2945	Sustainable Natural Bio-composites and its Applications. Lecture Notes in Mechanical Engineering, 2021, , 433-439.	0.3	1
2946	Thermal evaluation on basalt/ramie fibers reinforced hybrid epoxy composite. Materials Today: Proceedings, 2021, 46, 3624-3626.	0.9	O
2947	Hierarchical Vegetal Fiber Reinforced Composites. Composites Science and Technology, 2021, , 379-412.	0.4	3
2948	Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysis. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106137.	3.8	30
2949	Improved mechanical performances of unidirectional jute fibre composites developed with new fibre architectures. RSC Advances, 2021, 11, 23010-23022.	1.7	16
2950	Development of strong and tough electrospun fiber-reinforced composites. , 2021, , 287-313.		1
2951	Design, manufacturing processes and their effects on bio-composite properties., 2021,, 121-177.		2
2952	Sustainable natural fibre reinforcements and their morphological structures., 2021,, 17-51.		0
2953	Fabrication of Treated and Untreated Coconut Fibre-Reinforced Epoxy-Based Composites of Different Fibre Content and Comparison of Their Tensile and Flexural Strengths. Lecture Notes in Mechanical Engineering, 2021, , 61-69.	0.3	0
2954	Introduction to natural fibres and textiles. , 2021, , 1-32.		8
2956	Degradable composites: processes and applications. , 2021, , 197-228.		1
2957	The Properties of Feather Fiber-Reinforced Polymer Composites: A Review. Journal of Natural Fibers, 2022, 19, 4868-4885.	1.7	5
2958	A review of natural fiber reinforced recycled thermoplastic polymer composites., 2021,, 173-195.		2
2959	Biodegradable composites based on biopolymers and natural bast fibres: A review. Materials Today: Proceedings, 2021, 46, 1420-1428.	0.9	20

#	Article	IF	CITATIONS
2960	Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites. , 2021, , 249-264.		4
2961	Cellulose-based biocomposites. , 2021, , 135-195.		1
2962	Functional assessment of biodegradable cotton nonwoven substrates permeated with spatial insect repellants for disposable applications. Textile Reseach Journal, 2021, 91, 1578-1593.	1.1	0
2963	Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal of Materials Science, 2021, 56, 7231-7264.	1.7	122
2964	Evaluation of the behavior of mortars produced with fibers from the straw of carnauba: effects of the content of addition and length used. Revista Materia, 2021, 26, .	0.1	1
2965	A review on the usage of green composite with other composites. AIP Conference Proceedings, 2021, , .	0.3	2
2966	Emulsion Graft Polymerization of Methyl Methacrylate onto Cellulose Nanofibers. Green and Sustainable Chemistry, 2021, 11, 9-22.	0.8	2
2967	Natural fibers and their composites. , 2021, , 1-59.		44
2968	Development and characterization of aluminium silicon carbide composite materials with improved properties. Materials Today: Proceedings, 2021, 46, 6733-6736.	0.9	6
2969	A review on biomass-derived materials and their applications as corrosion inhibitors, catalysts, food and drug delivery agents. Current Research in Green and Sustainable Chemistry, 2021, 4, 100153.	2.9	14
2970	Improvement of Fiber-Matrix Adhesion of Vegetable Natural Fibers by Chemical Treatment. Composites Science and Technology, 2021, , 153-177.	0.4	1
2971	Manufacturing of Wood Polymer Composites. Composites Science and Technology, 2021, , 21-41.	0.4	1
2972	Mechanical Properties and Water Sorption of Chemically Modified Natural Fiber-Based Composites. , 2021, , 159-167.		1
2973	Multiscale Structure of Plant Fibers. , 2021, , 117-134.		2
2974	Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments. Cellulose, 2021, 28, 2675-2695.	2.4	95
2975	Effect of coconut fiber treatment with limestone water media on the fiber surface, wettability, and interface shear strength. Eastern-European Journal of Enterprise Technologies, 2021, 1, 48-56.	0.3	3
2976	Physical and Mechanical Performance of Coir Fiber-Reinforced Rendering Mortars. Materials, 2021, 14, 823.	1.3	12
2977	Date Seeds Fiber Reinforced Low-Density Polyethylene: Effect of Stearic Acid on its Mechanical and Morphological Characteristics. Materials Science Forum, 0, 1021, 290-298.	0.3	0

#	Article	IF	CITATIONS
2978	Effect of limestone mass concentration on tensile strength and surface morphology of coconut fiber. IOP Conference Series: Materials Science and Engineering, 2021, 1034, 012168.	0.3	0
2979	Mechanical characteristics and hydrophobicity of alkyl ketene dimer compatibilized hybrid biopolymer composites. Polymer Composites, 2021, 42, 2324-2333.	2.3	9
2980	Physical, chemical and surface morphological characterization of single areca sheath fiber. IOP Conference Series: Materials Science and Engineering, 2021, 1065, 012020.	0.3	0
2981	A Sustainable Strategy for Medium-Density Fiberboards Preparation from Waste Hybrid Pennisetum Straws. Waste and Biomass Valorization, 2021, 12, 5161-5173.	1.8	3
2982	Influence of Epoxy Resin Treatment on the Mechanical and Tribological Properties of Hemp-Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Molecules, 2021, 26, 1228.	1.7	7
2983	Biopolymer Nanoscale Assemblies as Building Blocks for New Materials: A Review. Advanced Functional Materials, 2021, 31, 2008552.	7.8	62
2984	Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven. Composites Science and Technology, 2021, 205, 108678.	3.8	36
2985	Influence of Ethylene Plasma Treatment of Agave Fiber on the Cellular Morphology and Compressive Properties of Low-Density Polyethylene/Ethylene Vinyl Acetate Copolymer/Agave Fiber Composite Foams. International Journal of Polymer Science, 2021, 2021, 1-13.	1.2	4
2986	Microstructure, elastic modulus, and energy storage properties of portion II in the locust semi-lunar process. AIP Advances, 2021, 11, 035225.	0.6	1
2987	Developments in Chemical Treatments, Manufacturing Techniques and Potential Applications of Natural-Fibers-Based Biodegradable Composites. Coatings, 2021, 11, 293.	1.2	76
2988	Environmental impact and effect of chemical treatment on bio fiber based polymer composites. Materials Today: Proceedings, 2022, 49, 3418-3422.	0.9	8
2989	Characterization of Calcium Hydroxide-treated Zalacca Fibers for Improving Properties as Reinforcement for Composites. IOP Conference Series: Materials Science and Engineering, 2021, 1096, 012036.	0.3	1
2990	A study on seismic response of buildings on coir mat reinforced sand bed. IOP Conference Series: Materials Science and Engineering, 2021, 1114, 012018.	0.3	1
2991	Non-woody Biomass as Sources of Nanocellulose Particles: A Review of Extraction Procedures. Frontiers in Energy Research, 2021, 9, .	1.2	28
2992	Biobased PLA/sugarcane bagasse fiber composites: Effect of fiber characteristics and interfacial adhesion on properties. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106273.	3.8	38
2993	Tensile behavior of lotus natural fiber and e-glass fibers reinforced with epoxy composites. IOP Conference Series: Materials Science and Engineering, 2021, 1123, 012034.	0.3	2
2994	Development of new biodegradable composites materials from polycaprolactone and wood flour. Wood Material Science and Engineering, 2022, 17, 586-597.	1.1	7
2995	Optimization of NaOH Treatment Conditions of Baobab Pod Fibres Using Box-Behnken Method. IOP Conference Series: Earth and Environmental Science, 2021, 730, 012011.	0.2	1

#	Article	IF	Citations
2996	Investigation on mechanical properties of fiber reinforced concrete. IOP Conference Series: Earth and Environmental Science, 2021, 758, 012016.	0.2	3
2997	Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites. Polymers, 2021, 13, 1369.	2.0	48
2998	Highly Hydrophobic Organosilane-Functionalized Cellulose: A Promising Filler for Thermoplastic Composites. Materials, 2021, 14, 2005.	1.3	7
2999	Extraction and Characterization of Fiber Treatment Inula viscosa Fibers as Potential Polymer Composite Reinforcement. Journal of Polymers and the Environment, 2021, 29, 3779-3793.	2.4	28
3000	Highly thermally conductive SiO2-coated NFC/BNNS hybrid films with water resistance. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106261.	3.8	23
3001	Recent Advances in Multi-Scale Experimental Analysis to Assess the Role of Compatibilizers in Cellulosic Filler-Reinforced Plastic Composites. Journal of Composites Science, 2021, 5, 138.	1.4	6
3003	Green composites based on thermoplastic starches and various natural plant fibers: Impacting parameters of the mechanical properties using machineâ€learning. Polymer Composites, 2021, 42, 3458-3467.	2.3	7
3004	Extraction, Treatment and Applications of Natural Fibers for Bio-Composites – A Critical Review. International Polymer Processing, 2021, 36, 114-130.	0.3	23
3005	Enhancing the mechanical properties of natural jute yarn suitable for structural applications. Materials Research Express, 2021, 8, 055503.	0.8	16
3006	Dependence of the insulating behavior of some common woods to the pore network and packing density of their fibers: a microstructural approach. Transport in Porous Media, 2021, 138, 309-336.	1.2	1
3007	Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers. Materials, 2021, 14, 2636.	1.3	42
3008	Development and Characterization of Environmentally Friendly Wood Plastic Composites from Biobased Polyethylene and Short Natural Fibers Processed by Injection Moulding. Polymers, 2021, 13, 1692.	2.0	26
3009	Opportunity of Non-Wood Forest Products in Biocomposites., 0,,.		1
3010	Influence of biological origin on the tensile properties of cellulose nanopapers. Cellulose, 2021, 28, 6619.	2.4	27
3011	Unused Plant Waste and Thermal Insulation Composition Boards on their Basis. Key Engineering Materials, 0, 887, 480-486.	0.4	0
3012	Dielectric Properties of Wood-Polymer Composites: Effects of Frequency, Fiber Nature, Proportion, and Chemical Composition. Journal of Composites Science, 2021, 5, 141.	1.4	14
3013	Effect of the state of conservation of the hemp used in geopolymer and hydraulic lime concretes. Construction and Building Materials, 2021, 285, 122853.	3.2	17
3014	Mechanical, dynamic and tribological characterization of HDPE/peanut shell composites. Polymer Testing, 2021, 98, 107075.	2.3	21

#	Article	IF	CITATIONS
3015	Development and characterization of epoxy resin composite reinforced with bamboo fiber and bagasse as filler. Research Journal of Textile and Apparel, 2021, ahead-of-print, .	0.6	1
3016	Impact of alkali treatment and fiber length on mechanical properties of new agro waste <i>Lagenaria Siceraria </i> fiber reinforced epoxy composites. Journal of Natural Fibers, 2022, 19, 6853-6864.	1.7	31
3017	Processing and Properties of Oil Palm Fronds Composite Boards from <i>Elaeis guineensis</i>		2
3018	Effect of Polyelectrolyte-Cationized Cellulose Nanofibril on the Properties of Paper. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2021, 53, 49-56.	0.1	0
3019	Experimental and Finite Element Analysis of Lignite Fly Ash on the Mechanical Properties of Sisal-added Polymer Matrix Composite Using ANSYS Workbench. Journal of Natural Fibers, 2022, 19, 7008-7032.	1.7	3
3020	Extraction of cellulose to progress in cellulosic nanocomposites for their potential applications in supercapacitors and energy storage devices. Journal of Materials Science, 2021, 56, 14448-14486.	1.7	21
3021	Advanced natural fibre-based fully biodegradable and renewable composites and nanocomposites: a comprehensive review. International Wood Products Journal, 2021, 12, 178-193.	0.6	7
3022	Electrical conductivity of polymer composites based on carbonized wood flour via plasma postâ€treatment as an effective and economical filler. Polymer Composites, 2021, 42, 4814-4821.	2.3	8
3023	Plethysmography Variability Index and Stroke Volume Variation Changes in Relation to Central Venous Pressure Changes During Living Related Donor Right Hepatotomy: A Diagnostic Test Accuracy. Experimental and Clinical Transplantation, 2021, 19, 693-702.	0.2	0
3024	Tensile Properties of Bagasse Fiber Composites. Mehran University Research Journal of Engineering and Technology, 2021, 40, 502-511.	0.3	2
3025	Effect of Mercerization/Alkali Surface Treatment of Natural Fibres and Their Utilization in Polymer Composites: Mechanical and Morphological Studies. Journal of Composites Science, 2021, 5, 175.	1.4	33
3026	Thermal buckling of flax fibre reinforced epoxy laminated composite plate using finite element analysis. International Journal for Computational Methods in Engineering Science and Mechanics, 2022, 23, 219-227.	1.4	3
3027	Impact Resistance of Epoxy Composites Reinforced with Amazon Guaruman Fiber: A Brief Report. Polymers, 2021, 13, 2264.	2.0	10
3028	Wet processing of agro-residual fibres for potential application in fancy $d\tilde{A}$ ©cor items. Advances in Materials and Processing Technologies, 2022, 8, 3215-3230.	0.8	1
3029	Current State and Challenges of Natural Fibre-Reinforced Polymer Composites as Feeder in FDM-Based 3D Printing. Polymers, 2021, 13, 2289.	2.0	32
3030	A study of waterâ€induced elementary hemp fiber swelling and the reinforced polypropylene composite expansion. Polymer Composites, 2021, 42, 5101.	2.3	3
3031	Natural Fibre-Reinforced Polymer Composites: Manufacturing and Biomedical Applications. Advances in Material Research and Technology, 2022, , 25-63.	0.3	2
3032	Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites. International Journal of Biological Macromolecules, 2021, 182, 2108-2116.	3.6	41

#	Article	IF	CITATIONS
3033	A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 2021, 13, 2442-2458.	2.6	262
3034	Fabrication, Mechanical Testing and Structural Simulation of Regenerated Cellulose Fabric Elium® Thermoplastic Composite System. Polymers, 2021, 13, 2969.	2.0	4
3035	Properties of Wood–Plastic Composites Manufactured from Two Different Wood Feedstocks: Wood Flour and Wood Pellets. Polymers, 2021, 13, 2769.	2.0	18
3036	Experimental Investigation on the Mechanical, Thermal, and Morphological Behaviour of Prosopis juliflora Bark Reinforced Epoxy Polymer Composite. Journal of Natural Fibers, 0, , 1-11.	1.7	5
3037	Modelling the influence of fibre internal structure on the measured modulus of technical natural fibres. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106478.	3.8	7
3038	Finite Element-Based Numerical Simulations to Evaluate the Influence of Wollastonite Microfibers on the Dynamic Compressive Behavior of Cementitious Composites. Materials, 2021, 14, 4435.	1.3	2
3039	Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers, 2021, 13, 2710.	2.0	143
3040	The Natural Fiber Reinforced Thermoplastic Composite Made of Woven Bamboo Fiber and Polypropylene. Fibers and Polymers, 2022, 23, 155-163.	1.1	8
3041	Physicochemical and Thermal Properties of New Cellulosic Fiber Obtained from the Stem of <i>Markhamia lutea</i> . Journal of Natural Fibers, 2022, 19, 8429-8447.	1.7	6
3042	Facile Oneâ€Step Synthesis of Calcium Phosphate/Cellulose Composite: Synthesis, Morphology, Structure and Properties. Macromolecular Symposia, 2021, 398, 2000264.	0.4	0
3043	Research Progress on Durability of Cellulose Fiber-Reinforced Cement-Based Composites. International Journal of Polymer Science, 2021, 2021, 1-13.	1.2	20
3044	Surface modification and improvements of wicking properties and dyeability of grey jute-cotton blended fabrics using low-pressure glow discharge air plasma. Heliyon, 2021, 7, e07893.	1.4	8
3045	The exchange of Musa spp. fibre in composite fabrication: a systematic review. Bulletin of the National Research Centre, 2021, 45, .	0.7	7
3046	Characterization Studies on New Natural Cellulosic Fiber Extracted from the Bark of <i>Erythrina variegata </i> . Journal of Natural Fibers, 2022, 19, 8246-8265.	1.7	4
3047	Thermal Stability and Dynamic Mechanical Analysis of Benzoylation Treated Sugar Palm/Kenaf Fiber Reinforced Polypropylene Hybrid Composites. Polymers, 2021, 13, 2961.	2.0	19
3048	Fully Renewable Composites Based on Agricultural Waste. Key Engineering Materials, 0, 899, 86-91.	0.4	0
3049	Scalable Preparation of Cellulose Nanofibers from Office Waste Paper by an Environment-Friendly Method. Polymers, 2021, 13, 3119.	2.0	10
3050	Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineering, 2021, 11, 100263.	2.2	193

#	Article	IF	CITATIONS
3051	Processing of sustainable thermoplastic based biocomposites: A comprehensive review on performance enhancement. Journal of Cleaner Production, 2021, 316, 128068.	4.6	10
3052	Characterization and Investigation of Tensile Properties of Kenaf Fiber Reinforced Polyester Composite Material. Journal of Natural Fibers, 2022, 19, 8355-8366.	1.7	1
3053	Assessment of plastic lumber production in Brazil as a substitute for natural wood. Environment, Development and Sustainability, 0 , 1 .	2.7	0
3054	Innovative ionic liquids as functional agent for wood-polymer composites. Cellulose, 2021, 28, 10589-10608.	2.4	8
3055	Tensile Strength and Fracture Behavior of Single Abaca Fiber. Journal of Natural Fibers, 2022, 19, 8796-8810.	1.7	6
3056	Characterization of Agro Waste Fiber Extracted from the Stem of Canna Edulis Plant and Its Potential in the Textiles. Journal of Natural Fibers, 2022, 19, 8909-8922.	1.7	4
3057	Reinforced epoxy-based laminates containing agro-industrial waste fiber from peach palm tree: effect of the matrix modification. Polymer Bulletin, 0 , 1 .	1.7	0
3058	Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends in Food Science and Technology, 2021, 115, 461-485.	7.8	122
3059	Temperature effect on impact response of flax/epoxy laminates: Analytical, numerical and experimental results. Composite Structures, 2021, 274, 114316.	3.1	11
3060	The impact of thermomechanical pulp fiber modifications on thermoplastic lignin composites. Composites Part C: Open Access, 2021, 6, 100170.	1.5	1
3061	Damping behavior of plant fiber composites: A review. Composite Structures, 2021, 275, 114392.	3.1	24
3062	Analysis of morphological variations of flax fibre bundles by Fraunhofer diffraction. Industrial Crops and Products, 2021, 171, 113856.	2.5	1
3063	Natural fiber alfa/epoxy randomly reinforced composite mechanical properties identification. Structures, 2021, 34, 542-549.	1.7	18
3064	Review of Chemical Treatments of Natural Fibers: A Novel Plastination Approach. Materials Horizons, 2021, , 599-617.	0.3	1
3065	Alteration and enhancing the properties of natural fibres., 2021,, 367-405.		3
3066	Tribological properties of areca sheath fiber composites. Materials Today: Proceedings, 2021, 46, 7955-7961.	0.9	2
3067	Study of Physico-Mechanical Behaviour of Alkali Treated Date Palm Petiole Fiber/Epoxy Composites. Springer Proceedings in Materials, 2021, , 305-314.	0.1	0
3068	Cellulose and its derivatives: towards biomedical applications. Cellulose, 2021, 28, 1893-1931.	2.4	386

#	Article	IF	CITATIONS
3069	A review on hybrid materials based polysaccharide systems for the applications in the field of biomedical. AIP Conference Proceedings, 2021 , , .	0.3	0
3070	Thermoplastic natural fiber based composites. , 2021, , 113-139.		2
3071	Structure of Wood Fiber and Factors Affecting Mechanical Properties of Wood Polymer Composites. Composites Science and Technology, 2021, , 137-160.	0.4	4
3072	Surface treatments in fiber-reinforced composites. , 2021, , 47-81.		1
3073	The characterization and properties of low linear density polyethyelene (LLDPE)/ acrylonitrile butadiene rubber (NBR)/ palm press fiber (PPF) with \hat{I}^3 -aminopropyltriethoxysilane coupling agent., 2021,		0
3074	Eco-Friendly Wood Fibre Composites with High Bonding Strength and Water Resistance. Composites Science and Technology, 2021, , 105-122.	0.4	2
3075	Effect of fiber fraction on the physical and mechanical properties of short areca sheath fiber reinforced polymer composite. Materials Today: Proceedings, 2021, 44, 4972-4975.	0.9	2
3076	Impact of E-waste on the mechanical and machining characteristics of epoxy-based hemp fibre composite. Materials Today: Proceedings, 2021, 46, 7143-7152.	0.9	1
3077	Cellulose Nanocrystals for Skin Barrier Protection by Preparing a Versatile Foundation Liquid. ACS Omega, 2021, 6, 2906-2915.	1.6	9
3078	Cotton-reinforced polymer composites. , 2021, , 131-161.		1
3079	Synthesis, characterization and finite element analysis of polypropylene composite reinforced by jute and carbon fiber. Materials Today: Proceedings, 2021, 46, 10884-10891.	0.9	9
3080	Worn Surface Morphological Characterization of NaOH-Treated Chopped Abaca Fiber Reinforced Epoxy Composites. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	1.2	16
3081	Processing and characterization of pineapple fiber reinforced recycled polyethylene composites. Materials Today: Proceedings, 2021, 44, 2153-2157.	0.9	8
3085	Plastics and Composites from Lignophenols. , 2004, , 193-225.		19
3086	Ramie Fiber Reinforced Natural Plastics. , 2004, , 321-343.		12
3087	Insulation Materials Made with Vegetable Fibres. , 2013, , 411-455.		1
3088	Surface Modification Techniques for the Preparation of Different Novel Biofibers for Composites. , 2020, , 1-34.		37
3089	Influence of Fillers on the Thermal and Mechanical Properties of Biocomposites: An Overview. , 2020, , 111-133.		26

#	Article	IF	Citations
3090	Natural Fibers Reinforced Polymeric Matrix: Thermal, Mechanical and Interfacial Properties. , 2014, , 225-245.		23
3091	Natural Fiber-Reinforced Composites: Potential, Applications, and Properties. , 2015, , 51-72.		5
3092	Particulate Fillers in Thermoplastics. Polymers and Polymeric Composites, 2017, , 51-93.	0.6	8
3093	Tensile Properties of Epoxy Composites Reinforced with Continuous PALF Fibers., 2015, , 139-144.		4
3095	Tensile Strength Tests in Epoxy Composites with High Incorporation of Malva Fibers. , 2016, , 273-277.		1
3096	Charpy Impact Tests in Epoxy Matrix Composites Reinforced with Malva Fibers. , 2014, , 425-432.		1
3097	Construction Materials Reinforced with Natural Products. , 2018, , 1-24.		13
3099	Novel Regenerated Cellulosic Materials. SpringerBriefs in Applied Sciences and Technology, 2017, , 25-43.	0.2	2
3100	Cementitious Composites Reinforced with Natural Fibres. Research for Development, 2017, , 197-331.	0.2	4
3101	Use of Sugar Cane Fibers for Composites—A Short Review. , 2018, , 27-35.		2
3102	Potential Use of Cellulose Fibre Composites in Marine Environmentâ€"A Review. Advanced Structured Materials, 2018, , 25-55.	0.3	8
3103	Particulate Fillers in Thermoplastics. , 2016, , 1-43.		3
3104	Moisture Transport Process in Vegetable Fiber Composites: Theory and Analysis for Technological Applications. Advanced Structured Materials, 2013, , 37-62.	0.3	13
3105	Effects of Water Ageing on the Mechanical Properties of Flax and Glass Fibre Composites: Degradation and Reversibility. RILEM Bookseries, 2016, , 183-196.	0.2	6
3106	Sabai Grass: Possibility of Becoming a Potential Textile. Environmental Footprints and Eco-design of Products and Processes, 2016, , 45-60.	0.7	9
3107	Effect of Fiber Orientation on the Tensile and Wear Properties of Flax Fiber-Reinforced Composites. Lecture Notes in Mechanical Engineering, 2020, , 505-513.	0.3	6
3108	Nanopolysaccharides in Barrier Composites. Springer Series in Biomaterials Science and Engineering, 2019, , 321-366.	0.7	3
3109	Pineapple Leaf Fibres for Automotive Applications. Green Energy and Technology, 2020, , 279-296.	0.4	5

#	Article	IF	CITATIONS
3110	Bionanocomposites in food industry. , 2020, , 421-456.		3
3111	Green fibre thermoplastic composites. , 2004, , 181-206.		18
3112	Hygro-mechanical coupling and multiscale swelling coefficients assessment of flax yarns and flax / epoxy composites. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105914.	3.8	17
3113	Evaluating of reinforcing effect of Ceratonia Siliqua for polypropylene: Tensile, flexural and other properties. Polymer Testing, 2020, 89, 106607.	2.3	10
3114	The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering, 2017, 23, 116-123.	1.2	210
3115	Investigation of Agave cantala-based composite fibers as prosthetic socket materials accounting for a variety of alkali and microcrystalline cellulose treatments. Theoretical and Applied Mechanics Letters, 2020, 10, 405-411.	1.3	21
3116	Préparation et caractérisation d'un matériau composite à base de <i>Posidonia oceanica</i> Materiaux Et Techniques, 2012, 100, 369-375.	0.3	7
3117	Élaboration et propriétés des composites polypropylÓne recyclé/fibres de bambou. Materiaux Et Techniques, 2012, 100, 413-423.	0.3	12
3118	Caractérisation des propriétés biochimiques et hygroscopiques d'une fibre de lin. Materiaux Et Techniques, 2012, 100, 525-535.	0.3	10
3119	Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber. AIP Conference Proceedings, 2016, , .	0.3	1
3122	The Influence of Chemical and Thermal Treatments on the Diss Fiber Hygroscopic Behaviors. Journal of Natural Fibers, 2022, 19, 3865-3878.	1.7	11
3123	Recent Researches In Polylactic Acid Reinforced With Natural Fiber Composites– A Literature Review. IOP Conference Series: Materials Science and Engineering, 0, 988, 012025.	0.3	3
3124	Cellulose Fibers/Polyethylene Hybrid Composites: Effect of Long Chain Organic Acid Cellulose Esters and Organic Peroxide on Rheology and Tensile Properties. Journal of Reinforced Plastics and Composites, 2001, 20, 697-717.	1.6	1
3125	The effect of mercerization process on the structural and morphological properties of pineapple leaf fiber (PALF) pulp. Malaysian Journal of Fundamental and Applied Sciences, 2014, 10, .	0.4	5
3126	Effect of Red Mud and Copper Slag Particles on Physical and Mechanical Properties of Bamboo-Fiber-Reinforced Epoxy Composites. Advances in Mechanical Engineering, 2012, 4, 141248.	0.8	21
3127	Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites. Advances in Mechanical Engineering, 2012, 4, 418031.	0.8	18
3128	Developing Simple Production of Continuous Ramie Single Yarn Reinforced Composite Strands. Advances in Mechanical Engineering, 2013, 5, 496274.	0.8	4
3129	Injection Moulded Biocomposites from Oat Hull and Polypropylene/Polylactide Blend: Fabrication and Performance Evaluation. Advances in Mechanical Engineering, 2013, 5, 761840.	0.8	14

#	Article	IF	CITATIONS
3130	Extraction and Characterization of Fibres from the Stalk and Spikelets of Empty Fruit Bunch. Hindawi Journal of Chemistry, 2015, 2015, 1-10.	1.6	24
3132	Study of Extraction and Characterization of Ultimate Date Palm Fibers. Advances in Materials, 2015, 4, 7.	0.3	9
3133	Study of Mechanical Properties and Absorption Behaviour of Coconut Shell Powder-Epoxy Composites. International Journal of Materials Science and Applications, 2013, 2, 157.	0.1	25
3134	Effects of Fire Retardants on Jute Fiber Reinforced Polyvinyl Chloride/Polypropylene Hybrid Composites. International Journal of Materials Science and Applications, 2013, 2, 162.	0.1	2
3135	Mechanical Performance of Short Banana/Sisal Hybrid Fiber Reinforced Polyester Composites., 0,.		1
3137	Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: A critical review. Journal of Industrial Textiles, 2022, 51, 5518S-5542S.	1.1	159
3138	Starch-based nanocomposites. , 2009, , 205-251.		11
3139	Green Composites., 2013,, 1-10.		7
3141	Introduction to Natural Fiber Composites. , 2015, , 1-34.		7
3142	Alternative Solutions for Reinforcement of Thermoplastic Composites. , 2015, , 65-92.		7
3143	Characterization of Date Palm Wood Used as Composites Reinforcement. Acta Physica Polonica A, 2015, 127, 1072-1074.	0.2	18
3144	Water absorption characteristics of polyester matrix composites reinforced with oil palm ash and oil palm fibre. Usak University Journal of Material Sciences, 2013, 2, 109-109.	0.2	7
3145	Investigation of Physical and Mechanical Properties of Bamboo Fiber and PVC Foam Sheet Composites. Universal Journal of Materials Science, 2014, 2, 119-124.	0.3	21
3146	The Influence of the Type of Lime on the Hygric Behaviour and Bio-Receptivity of Hemp Lime Composites Used for Rendering Applications in Sustainable New Construction and Repair Works. PLoS ONE, 2015, 10, e0125520.	1.1	18
3147	Environment Friendly Composite Materials: Biocomposites and Green Composites. Defence Science Journal, 2014, 64, 244-261.	0.5	136
3148	Sponge Gourd (Luffa Cylindrica) Reinforced Polyester Composites: Preparation and Properties. Defence Science Journal, 2014, 64, 273-280.	0.5	36
3149	Nanocrystalline cellulose from agricultural waste: an overview. International Journal of Nanoparticles, 2018, 10, 284.	0.1	2
3150	Enhancement of mechanical, thermal and water uptake performance of TPU/jute fiber green composites via chemical treatments on fiber surface. E-Polymers, 2020, 20, 133-143.	1.3	31

#	Article	IF	Citations
3151	Potential of Uncultivated, Harmful and Abundant Weed as a Natural Geo-Reinforcement Material. Advances in Civil Engineering Materials, 2016, 5, 276-288.	0.2	11
3152	A Review of Physio-Biochemical Properties of Natural Fibers and Their Application in Soil Reinforcement. Advances in Civil Engineering Materials, 2017, 6, 323-359.	0.2	25
3153	Chemically Altered Natural Fiber Impregnated Soil for Improving Subgrade Strength of Pavements. Advances in Civil Engineering Materials, 2018, 7, 48-63.	0.2	6
3154	Mechanical, Microstructural and Thermal Characterization of Epoxy-Based Human Hair–Reinforced Composites. Journal of Testing and Evaluation, 2019, 47, 1193-1215.	0.4	66
3155	Wear Response of Walnut-Shell-Reinforced Epoxy Composites. Materials Performance and Characterization, 2017, 6, 55-79.	0.2	8
3156	Flexural Properties of Alkaline Treated Sugar Palm Fibre Reinforced Epoxy Composites. International Journal of Automotive and Mechanical Engineering, 2010, 1, 79-90.	0.5	88
3157	Alkaline treatment and thermal properties of Napier grass fibres. International Journal of Automotive and Mechanical Engineering, 2016, 13, 3238-3247.	0.5	4
3158	Low-velocity impact responses of Napier fibre/polyester composites. International Journal of Automotive and Mechanical Engineering, 2016, 13, 3226-3237.	0.5	11
3159	Curing behaviour of unsaturated polyester resin and interfacial shear stress of sugar palm fibre. Journal of Mechanical Engineering and Sciences, 2017, 11, 2650-2664.	0.3	27
3160	Effect of Rice Husks as Filler in Polymer Matrix Composites. Journal of Mechanical Engineering and Sciences, 2012, 2, 181-186.	0.3	69
3163	Characterizing Cellulosic Fibers from Ulex europaeus. BioResources, 2014, 9, .	0.5	3
3164	Influence of water absorption on the selected properties of hemp hurds composites. Pollack Periodica, 2015, 10, 123-132.	0.2	2
3165	Influence of Water Absorption on The Selected Properties of Hemp Hurds Composites. Pollack Periodica, 2015, 10, 123-132.	0.2	9
3167	Comparison of Machinability Study of Palm Oil-Based Wax/ Polymer/ Palm Oil Fiber Blends. International Review of Mechanical Engineering, 2014, 8, 1052.	0.1	5
3168	Effects of weathering on mechanical and morphological properties cork filled green polyethylene eco-composites. Polimeros, 2020, 30, .	0.2	6
3169	Desenvolvimento de um compósito laminado hÃbrido com fibras natural e sintética. Revista Materia, 2008, 13, 154-161.	0.1	16
3170	Effect of electron beam irradiation on the mechanical properties of buriti fiber. Revista Materia, 2012, 17, 1135-1143.	0.1	5
3171	Effect of the Mechanical Treatment of Alumina on Thermal, Morphological and Dielectric Properties of LDPE/Al2O3 Composites. South African Journal of Chemistry, 2018, 71, 150-154.	0.3	5

#	Article	IF	CITATIONS
3172	Effects of Silane Surface Treatment of Cellulose Nanocrystals on the Tensile Properties of Cellulose-Polyvinyl chloride Nanocomposite. Sains Malaysiana, 2015, 44, 801-810.	0.3	50
3173	Physico-Mechanical, Chemical Composition, Thermal Degradation and Crystallinity of Oil Palm Empty Fruit Bunch, Kenaf and Polypropylene Fibres: A Comparatives Study. Sains Malaysiana, 2018, 47, 839-851.	0.3	17
3174	Revisiting the Morphology, Microstructure, and Properties of Cellulose Fiber from Pineapple Leaf so as to Expand Its Utilization. Sains Malaysiana, 2019, 48, 145-154.	0.3	16
3176	Effect of Chemicals Treatments on the Morphological, Mechanical, Thermal and Water Uptake Properties of Polyvinyl Chloride/ Palm Fibers Composites. Revue Des Composites Et Des Materiaux Avances, 2019, 29, 1-8.	0.2	6
3177	Thermoplastic/Natural Filler Composites: A Short Review. Journal of Physical Science, 2019, 30, 81-99.	0.5	45
3179	Using Genetic Algorithms to study the Effect of Cellulose Fibers Ratio on the Fiber-Matrix Interface Damage of Biocomposite Materials. Current Materials Science, 2019, 12, 83-90.	0.2	5
3180	Dry Sliding Wear Behaviour of Glass Fibre Reinforced Epoxy Composites Filled with Natural Fillers. Reason-A Technical Journal, 2013, 12, 61.	0.0	4
3181	Preparation and characterization of jute fiber reinforced shellac biocomposites: effect of additive. Chemistry and Chemical Technology, 2008, 2, 231-234.	0.2	12
3182	Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chemistry and Chemical Technology, 2010, 4, 225-229.	0.2	24
3183	4. ã,°ãfªãf¼ãf³ã,³ãf³ãfã,ãffãf°ã•ããã®ç"ç©¶ã®æ–°å±•é–‹. Zairyo/Journal of the Society of Materials Science, Ja	ар еп, 200	6, 5 5, 438-4
3184	Current Status and Future Prospects of Biocomposites. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 977-983.	0.1	1
3185	A novel DOPO-g-KH550 modification wood fibers and its effects on the properties of composite phenolic foams. Polish Journal of Chemical Technology, 2018, 20, 47-53.	0.3	11
3186	Analysis of the Physical-Mechanical Behavior of Clayey Sand Soil Improved with Coir Fiber. Soils and Rocks, 2019, 42, 31-42.	0.2	5
3187	Investigation of using rice husk dust and ulexite in automotive brake pads. Materialpruefung/Materials Testing, 2015, 57, 877-882.	0.8	27
3188	Interfacial and physico-mechanical properties of walnut shell fiber reinforced polyester matrix composites. Materialpruefung/Materials Testing, 2018, 60, 510-518.	0.8	13
3189	Low Density Polypropylene/Waste Cellulose Fiber Composites by High-Shear Thermo-Kinetic Mixer. International Polymer Processing, 2017, 32, 562-567.	0.3	3
3190	Mechanical and Thermal Properties of Teak Wood Flour/Starch Filled High Density Polyethylene Composites. International Polymer Processing, 2019, 34, 209-218.	0.3	3
3191	Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites. EXPRESS Polymer Letters, 2007, 1, 299-307.	1.1	163

#	Article	IF	CITATIONS
3192	Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. EXPRESS Polymer Letters, 2008, 2, 78-87.	1.1	83
3193	Morphology and properties of polypropylene/ethylene vinyl acetate copolymer/wood powder blend composites. EXPRESS Polymer Letters, 2009, 3, 190-199.	1.1	71
3194	Effect of electron beam irradiation and poly(vinylpyrrolidone) addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB) composite. EXPRESS Polymer Letters, 2009, 3, 226-234.	1.1	33
3195	High temperature tensile properties and deep drawing of fully green composites. EXPRESS Polymer Letters, 2009, 3, 19-24.	1.1	38
3196	Influence of static and cyclic climate condition on bending properties of wood plastic composites (WPC). EXPRESS Polymer Letters, 2010, 4, 364-372.	1.1	16
3197	Biocomposites based on poly(lactic acid)/willow-fiber and their injection moulded microcellular foams. EXPRESS Polymer Letters, 2016, 10, 176-186.	1.1	19
3198	Composites from a forest biorefinery byproduct and agrofibers: Lignosulfonate-phenolic type matrices reinforced with sisal fibers. Tappi Journal, 2012, 11, 41-49.	0.2	23
3199	Secagem de fibras de sisal em estufa com circulação forçada de ar: Um estudo experimental. Research, Society and Development, 2020, 9, e8639109342.	0.0	2
3200	Secagem de fibras de sisal em leito fixo: uma an \tilde{A}_i lise preditiva usando modelos concentrados. Research, Society and Development, 2020, 9, e9469109360.	0.0	1
3201	Mechanical Behavior of Gypsum Composites Reinforced with Retama monosperma Fibers. Proceedings (mdpi), 2020, 63, .	0.2	4
3202	Agricultural Waste Fibers Towards Sustainability and Advanced Utilization: A Review. Asian Journal of Plant Sciences, 2015, 15, 42-55.	0.2	101
3203	Investigating the Physical Properties of Treated and Untreated Jute Fibre-Polyester Composites. Asian Journal of Textile, 2017, 8, 13-21.	2.0	14
3204	Physical and Mechanical Characterization of Technical Esparto (Alfa) Fibres. Journal of Applied Sciences, 2006, 6, 2450-2455.	0.1	19
3205	Influence of Alkaline and Enzymatic Treatments on the Properties of Doum Palm Fibres and Composite. Journal of Applied Sciences, 2009, 9, 366-371.	0.1	19
3206	Investigation of Tribological Properties of Brake Pads by Using Rice Straw and Rice Husk Dust. Journal of Applied Sciences, 2009, 9, 377-381.	0.1	45
3207	Oil Palm Bio-Fiber Reinforced Thermoplastic Composites-Effects of Matrix Modification on Mechanical and Thermal Properties. Journal of Applied Sciences, 2010, 10, 3271-3276.	0.1	26
3208	Potential biodegradable matrices and fiber treatment for green composites: A review. AIMS Materials Science, 2019, 6, 119-138.	0.7	40
3209	Chemical Modification Effect on the Mechanical Properties of Coir Fiber. Engineering Journal, 2012, 16, 73-84.	0.5	37

#	Article	IF	CITATIONS
3210	Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites. Advances in Materials Physics and Chemistry, 2011, 01, 78-85.	0.3	44
3211	Structure, Plastic Deformation of Polyethylene: A Molecular Dynamics Method. Advances in Materials Physics and Chemistry, 2020, 10, 125-150.	0.3	2
3212	Cure Characteristics and Mechanical Properties of Pineapple Leaf Fibre Filled Natural Rubber. Journal of Minerals and Materials Characterization and Engineering, 2018, 06, 601-617.	0.1	4
3213	Influence of Polyester Resin Treatment on Jute Fabrics for Geotextile Applications. Journal of Textile Science and Technology, 2016, 02, 67-14.	0.2	14
3214	The Effects of Filler Contents and Particle Sizes on the Mechanical and End-Use Properties of Snail Shell Powder Filled Polypropylene. Materials Sciences and Applications, 2011, 02, 810-816.	0.3	34
3215	The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications. Materials Sciences and Applications, 2016, 07, 257-294.	0.3	25
3216	Effects of the Fiber Diameter on Mechanic Properties in Polymethyl-Methacrylate Composites Reinforced with Goose Feather Fiber. Materials Sciences and Applications, 2017, 08, 811-827.	0.3	1
3217	Preparation and Characterization of Raw and Chemically Modified Sponge-Gourd Fiber Reinforced Polylactic Acid Biocomposites. Materials Sciences and Applications, 2018, 09, 281-304.	0.3	3
3218	Effect of Fiber Weight Ratio and Fiber Modification on Flexural Properties of <i>Posidonia</i> -Polyester Composites. Open Journal of Composite Materials, 2016, 06, 69-77.	0.4	9
3219	Surface Treatments of Natural Fibresâ€"A Review: Part 1. Open Journal of Polymer Chemistry, 2015, 05, 41-46.	1.8	65
3220	Mechanical Properties of Injection Molded Poly(lactic) Acidâ€" <i>Luffa</i> Fiber Composites. Soft Nanoscience Letters, 2015, 05, 65-72.	0.8	16
3221	Influence of Shape and Size of Powdered Cellulose on Mechanical Properties for PP/Cellulose Composites. Seikei-Kakou, 2013, 25, 103-107.	0.0	1
3222	The Application of Solid Olive Waste as Reinforcement in Carboxylated Nitrile Butadiene Rubber/Organo Nano Layered Silicates Composites. Journal of Solid Waste Technology and Management, 2013, 39, 197-203.	0.2	5
3223	Effect of Variation Aluminum Oxide Concentration on the Modified Novolac Stalk Composite. ISRN Chemical Engineering, 2012, 2012, 1-7.	1.2	3
3224	Effects of Alkaline Treatment on the Mechanical and Rheological Properties of Low-Density Polyethylene/ <i>Spartium junceum</i> Flour Composites. ISRN Polymer Science, 2012, 2012, 1-7.	0.3	17
3225	Advances in Composite Materials - Analysis of Natural and Man-Made Materials. , 2011, , .		16
3226	Small scale rheological observation of high consistency nanofibrillar material based furnishes. Journal of Applied Engineering Science, 2013, 11, 145-151.	0.4	2
3227	Characterization of Chemical-Treated and Gamma Irradiated Pineapple Leaf Fabric/Epoxy Composites: Surface Structure and Physico-Mechanical Properties. Tekstil Ve Muhendis, 2020, 27, 144-153.	0.3	2

#	Article	IF	CITATIONS
3228	Effects of Plasma Treatment on Mechanical Properties of Jute Fibers and Their Composites with Polypropylene. Elastomers and Composites, 2012, 47, 310-317.	0.1	5
3229	Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 0.1	Tf 50 707 Td 2
3230	Preparation and Physical Properties of Poly(lactic acid) Bio-Composites using Surface Modified Microfibriled Celluloses. Elastomers and Composites, 2015, 50, 62-67.	0.1	1
3231	Biodegradable Polymers and Its Applications. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2011, , 173-176.	0.2	24
3232	Properties of Biodegradable Polymers and Degradation for Sustainable Development. International Journal of Chemical Engineering and Applications (IJCEA), 0, , 164-167.	0.3	16
3233	Evaluation of Bast Fibres of the Stem of Carica papaya L. for Application as Reinforcing Material in Green Composites. Annual Research & Review in Biology, 2015, 6, 245-252.	0.4	8
3234	Effect of Mercerization on the Properties of Pandanus Odorifer Lignocellulosic Fibre. IOSR Journal of Polymer and Textile Engineering, 2017, 04, 07-15.	0.2	14
3235	Experimental Testing Of Natural Composite Material (Jute Fiber). IOSR Journal of Mechanical and Civil Engineering, 2014, 11, 01-09.	0.1	4
3236	Characterization and Investigation of Mechanical Properties of Hybrid Natural Fiber Polymer Composite Materials Used As Orthopaedic Implants for Femur Bone Prosthesis. IOSR Journal of Mechanical and Civil Engineering, 2014, 11, 40-52.	0.1	20
3237	Effect of Alkali Treatment on Mechanical Properties of Agave Fibre Reinforced Polymer Composites. IOSR Journal of Mechanical and Civil Engineering, 2016, 16, 37-43.	0.1	6
3238	Influence of Low Temperature Plasma Treatment on the surface, Optical and DC Electrical Properties of Jute. IOSR Journal of Applied Physics, 2012, 1, 16-22.	0.1	6
3239	Properties of Mexican Tropical Palm Oil Flower and Fruit Fibers for Their Prospective Use in Eco-Friendly Construction Material. Fibers, 2021, 9, 63.	1.8	3
3240	An Overview of Alkali Treatments of Hemp Fibres and Their Effects on the Performance of Polymer Matrix Composites. , 0, , .		1
3241	A comparative review of Nettle and Ramie fiber and their use in biocomposites, particularly with a PLA matrix. Journal of Natural Fibers, 2022, 19, 8205-8229.	1.7	19
3242	Rice waste–based polymer composites for packaging applications: A review. Polymers and Polymer Composites, 2021, 29, \$1621-\$1629.	1.0	3
3243	Investigation of Tensile Creep Behavior for High-Density Polyethylene (HDPE) via Experiments and Mathematical Model. Materials, 2021, 14, 6188.	1.3	1
3244	Wheat Biocomposite Extraction, Structure, Properties and Characterization: A Review. Polymers, 2021, 13, 3624.	2.0	18
3245	Implementation and Characterization of a Laminate Hybrid Composite Based on Palm Tree and Glass Fibers. Polymers, 2021, 13, 3444.	2.0	1

#	Article	IF	CITATIONS
3246	Effect of Natural Crosslinker on the Properties of Chicken Feather and Modified Vegetable Oil Based Green Composites. Journal of Natural Fibers, 0 , , 1 - 13 .	1.7	0
3247	A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 2021, 15, e00724.	0.8	27
3248	All-Green Composites. , 2007, , 747-772.		1
3249	Micromechanical Simulations on Waving and Kinked Natural Fiber-Reinforced Plastic Composites. , 2008, , .		0
3250	Fiber-Filled Vinyl Polymer Composites. Plastics Engineering, 2008, , 455-498.	0.1	0
3251	Biological and electrical resistance of acetylated flax fibre reinforced polypropylene composites. BioResources, 2009, 4, 111-125.	0.5	20
3252	Polymers and Short Fibers. , 2009, , 339-410.		0
3253	Typical Fillers for Polymers. , 2009, , 21-89.		0
3254	Synthesis and Mechanical Characterization of Grewia Serrulata Short Natural Fiber Composites. International Journal of Current Engineering and Technology, 2013, 2, 43-46.	0.0	1
3255	THE EDITION EFFECT OF NATURAL FIBERS ON POLYMERIC MATERIALS AND STUDY SOME OF THERMAL AND MECHANICAL PROPERTIES. Journal of Al-Nahrain University-Science, 2010, 13, 84-90.	0.1	0
3256	Effects of Water Absorption before Molding on Degradation Behavior of Hemp Fiber Reinforced Composites under Hot Water. Seikei-Kakou, 2011, 23, 181-189.	0.0	0
3261	Physico-Mechanical Properties of Cellulose Acetate Butyrate/ Yellow Poplar Wood Fiber Composites as a Function of Fiber Aspect Ratio, Fiber Loading, and Fiber Acetylation. International Journal of Basic and Applied Science, 2012, 1, 371-383.	1.0	0
3264	Nonlinear Behavior of Natural Fiber/Bio-Based Matrix Composites. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 131-137.	0.3	1
3265	A Tempo-Topographical Model Inference of a Camera Network for Video Surveillance. International Journal of Computer and Electrical Engineering, 2013, , 430-434.	0.2	0
3268	Structure and Mechanical Properties of Thermoplastic Composites Using Microcrystalline Cellulose Nanofibers. Textile Science and Engineering, 2013, 50, 386-392.	0.4	0
3270	Natural Fiber Hybrid Interwoven Reinforcement Sheet for Polymer Composites, Processing, Characterization, Structural and Wear Application. IOSR Journal of Mechanical and Civil Engineering, 2014, 11, 16-26.	0.1	0
3272	Izod Impact Tests in Polyester Matrix Composites Reinforced with Malva Fibers., 2014,, 417-423.		0
3273	INNOVATIVE HEAT PIPES AND NANOTECHNOLOGIES. , 2014, , .		1

#	Article	IF	CITATIONS
3274	Processing and Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Poly(butylene) Tj ETQq0 0 0	O rgBT /Ov	erlock 10 Tf
3276	Physical Properties of Cellulose Acetate Reinforced by Cellulose Nanowhisker. Textile Science and Engineering, 2014, 51, 299-305.	0.4	0
3278	Particulate Fillers in Thermoplastics. , 2015, , 1-35.		2
3280	Evaluation of Palf Fibers Elasticity Modulus with Different Diameters by Weibull Analysis. , 2015, , 607-612.		0
3281	Chapter 4. Natural Fibre-reinforced Thermoplastic Starch Composites. RSC Green Chemistry, 2015, , 109-142.	0.0	0
3282	OPTIMIZATION OF ORGANIC FILLER PROPERTIES BY ITS PHYSICAL TREATMENT. Journal of Civil Engineering, Environment and Architecture, 2015, XXXII, 427-433.	0.0	0
3283	Characterization of Polyester Matrix Reinforced with Banana Fibers Thermal Properties by Photoacoustic Technique., 2015,, 471-478.		0
3284	Photoacoustic Thermal Characterization of Malva Fibers. , 2015, , 259-264.		0
3285	Simulation of Fragmentation Technique Using ANSYS Software. Advances in Chemical and Materials Engineering Book Series, 2015, , 341-372.	0.2	0
3286	Investigation and Development of Composite Board for Automobile Applications Using Agave. International Journal of Innovative Research in Science, Engineering and Technology, 2015, 04, 172-177.	0.4	1
3288	Additional Questions and Answers. , 2015, , 327-352.		0
3289	Jute Fiber Reinforced Composites - Developing Techniques and its Applications. ScieXplore International Journal of Research in Science, 2015, 2, 28.	0.1	0
3291	Unidirectional Cordenka Fibre-Reinforced Furan Resin Full Biocomposite: Properties and Influence of High Fibre Mass Fraction. Journal of Composites, 2015, 2015, 1-8.	0.8	12
3292	Matrices for Natural Fiber Composites. , 2015, , 93-126.		O
3293	Preparation and Characterization of Cellulose/Montmorillonite Hybrid Membranes. Journal of Composites and Biodegradable Polymers, 2015, 3, 2-9.	0.3	0
3294	Composite Bonding Increment by Banana Fiber as Alternate in Polypropylene Matrix. International Journal of Advanced Engineering Research and Science, 2016, 3, 125-130.	0.0	0
3295	Preliminary Study on the Compatibilization Techniques of Natural Fibers as Reinforcement of Polymeric Matrices. , 2016 , , .		1
3296	Charpy Impact Tests of Polyester Composites Reinforced with PALF Fibers. , 2016, , 371-376.		0

#	ARTICLE	IF	CITATIONS
3297	FLEXURAL BEHAVIOR OF JUTE-REINFORCED HYBRID MATRIX POLYMER COMPOSITE. Composites: Mechanics, Computations, Applications, 2016, 7, 17-30.	0.2	1
3298	Bionanocomposites: A Greener Alternative for Future Generation. , 2016, , 527-551.		1
3299	Characterization of Thermal Behavior of Epoxy Composites Reinforced with Curaua Fibers by Differential Scanning Calorimetry., 2016,, 403-407.		0
3300	Tensile Strength of Epoxy Composites Reinforced with Fique Fibers. , 2016, , 391-396.		0
3301	Effect of Combined Chemical Treatment on Physical, Mechanical and Chemical Properties of Posidonia Fiber. Advances in Materials Physics and Chemistry, 2016, 06, 275-290.	0.3	1
3302	Flexural Test in Epoxy Matrix Composites Reinforced with Hemp Fiber. , 2016, , 417-423.		O
3305	Guar Gum and Its Derivatives: Versatile Materials for Controlled Drug Delivery., 2016,, 289-316.		0
3306	Study by Genetic Algorithm of the Role of Alfa Natural Fibre in Enhancing the Mechanical Properties of Composite Materials Based on Epoxy Matrix. Fibres and Textiles in Eastern Europe, 2016, 24, 58-62.	0.2	2
3307	Short Sisal Fibers Reinforced Epoxy Resins: Tensile Strength. Manufacturing Technology, 2016, 16, 637-641.	0.2	7
3308	An investigation of Mechanical characterization of Orange Peel Reinforced Epoxy Composite. IOSR Journal of Mechanical and Civil Engineering, 2016, 16, 33-41.	0.1	3
3309	FIBRA DE BURITI (MAURITIA FLEXUOSA MART.): CARACTERÃSTICAS E APLICAÇÕES., 0,,.		0
3310	Cellulose-Based Materials: Plasma Modification. , 2016, , 259-268.		0
3311	Analysis of Coir Fiber Porosity. Minerals, Metals and Materials Series, 2017, , 325-330.	0.3	1
3312	Charpy Toughness Behavior of Jute Fabric Reinforced Polyester Matrix Composites. Minerals, Metals and Materials Series, 2017, , 601-606.	0.3	0
3313	The Dimensional Characterization of Jute Fabric Strips for Reinforcement in Composite Polymeric. Minerals, Metals and Materials Series, 2017, , 33-40.	0.3	0
3314	Tensile Behavior of Epoxy Matrix Composites Reinforced with Pure Ramie Fabric. Minerals, Metals and Materials Series, 2017, , 415-421.	0.3	1
3316	DEVELOPMENT OF WATER HYACINTH NONWOVEN FABRICS FOR THERMAL INSULATION. I-manager's Journal on Future Engineering and Technology, 2017, 13, 22.	0.3	1
3317	Izod Toughness Behavior of Continuous Palf Fibers Reinforced Polyester Matrix Composites. Minerals, Metals and Materials Series, 2017, , 41-47.	0.3	1

#	ARTICLE	IF	CITATIONS
3318	Review on the Preparation, Structure and Property Relation of Clay-Based Polymer Nanocomposites. Kimika, 2017, 28, 44-56.	0.4	3
3319	Effect of Composition of Fibers on Properties of Hybrid Composites. International Journal of Manufacturing, Materials, and Mechanical Engineering, 2017, 7, 28-43.	0.3	2
3320	lsırgan Lifi-Fındık Kabuğu Unu Dolgulu Hibrit Kompozitlerin Mekanik Davranışının İncelenmesi. G Üniversitesi Fen Bilimleri Dergisi, 0, , .	azi 0.2	2
3321	A Review of Chemical Treatments on Natural Fibers-Based Hybrid Composites for Engineering Applications. Advances in Chemical and Materials Engineering Book Series, 2018, , 16-37.	0.2	0
3322	Dynamic-Mechanical Analysis of Epoxy Composites Reinforced with PALF Fibers. Minerals, Metals and Materials Series, 2018, , 139-145.	0.3	0
3324	Effect of Jute Reinforcement Parameters on Mechanical Properties of Composite Structures. Journal of Testing and Evaluation, 2019, 47, 2585-2595.	0.4	0
3325	Synthesis and Mechanical Characterization of Synthetic Bio Hybrid FRP Composites. SSRN Electronic Journal, 0, , .	0.4	0
3326	Izod Impact Test on Epoxy Composites Reinforced with Mallow Fibers. Minerals, Metals and Materials Series, 2019, , 143-149.	0.3	0
3327	Agrowaste Materials as Composites for Biomedical Engineering. , 2019, , 1925-1940.		1
3328	Impact Energy Evaluation of Natural Castor Oil Polyurethane Matrix Composites Reinforced with Jute Fabric. Minerals, Metals and Materials Series, 2019, , 63-68.	0.3	0
3329	Multifunctional Composite Ecomaterials and Their Impact on Sustainability., 2019,, 3193-3222.		0
3330	COMPARATIVO DA RESISTÊNCIA AO IMPACTO CHARPY DE COMPÓSITOS EM MATRIZ EPÓXI E POLIÉSTER REFORÇADOS COM FIBRA DE CÃ,NHAMO. , 0, , .		0
3331	ENSAIO DE IMPACTO IZOD EM COMPÓSITOS DE EPÓXI REFORÇADOS COM FIBRAS DE MALVA. , 0, , .		0
3332	INFLUÊNCIA DA RADIAÇÃ f O ULTRAVIOLETA NAS PROPRIEDADES FÃ f ICO-QUÃ f MICAS DE UMA FIBRA NATURAL LIGNOCELULÓSICA: O CURAUÃ f , O, , .		0
3333	Alkali muameleli kupula lifi katkılı yýksek yoğunluklu polietilen kompozitlerin teknolojik özellikleri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 0, , 1-9.	0.5	0
3334	Production of Ceiling Board from Piliostigma thonningii using Styrofoam Adhesive as Binder. Traektori \tilde{A}^{φ} Nauki, 2019, 5, 4008-4015.	0.1	0
3335	Fabrication and Study of Mechanical and Thermal Properties of Natural Fibre Composites Material Based on SCB and GNSP. International Journal of Scientific Research in Science, Engineering and Technology, 2019, , 51-56.	0.1	0
3336	Tek ve Hibrit Olarak Tarımsal Atık Takviyelendirici Dolguların Polipropilenin Mekanik ve Isıl Özellikleri Üzerindeki Etkileri. Deu Muhendislik Fakultesi Fen Ve Muhendislik, 2019, 21, 395-408.	0.1	O

#	Article	IF	CITATIONS
3337	Investigation of the Mechanical Properties of Palm Kernel Fiber Reinforced with Waste Water Sachet (Polyethylene) Composite Material. International Journal of Engineering and Technologies, 0, 17, 43-51.	0.0	0
3338	Study of the Chemical and Physical Properties of the Fiber-Matrix Interface of Biocomposite Material Based on a Copolymer Matrix Polylactic Acid (PLA). Recent Innovations in Chemical Engineering, 2019, 12, 70-78.	0.2	O
3339	Cellulosic Nanomaterials., 2019,, 4-1-4-19.		0
3340	Increased-Value Oxide Powders for Polymeric Fibrous Matrices with Tailored Surfaces for Clothing Wear Comfort: A Review., 0, , .		0
3341	APLICAÇÕES E TRATAMENTOS DA FIBRA DE BAMBU E SIMILARES: UMA REVISÃO. The Journal of Engineering and Exact Sciences, 2020, 5, 0460-0468.	0.0	1
3342	Properties of Cellulose Based Bio-fibres Reinforced Polymer Composites. , 2020, , 71-89.		2
3343	Date Palm Fiber Extraction and Treatment. , 2020, , 75-91.		9
3344	Palm leaf sheath fiber extraction, bleaching, softening and characterization of effect of softening on longitudinal view, tensile strength and elongation of the fiber. Journal of Textile Engineering & Fashion Technology, 2020, 6, .	0.1	0
3345	Low velocity impact response of polypropylene biocomposites reinforced with man-made cellulose and soft wood fibres. , 2020, , .		1
3346	Determination of crystallinity of Chinese handmade papers by means of X-ray diffraction. Restaurator, 2020, 41, 69-86.	0.2	1
3347	Synthesis and Characteristics of Acetylated Corn Cob Powder/ Unsaturated Polyester Composite. Engineering and Technology Journal, 2020, 38, 1084-1095.	0.4	1
3348	Green composites based on <i>Atriplex halimus</i> fibers and PLA matrix. Journal of Polymer Engineering, 2020, 40, 693-702.	0.6	9
3349	Fabrication and Characterization of Waste Wood Cellulose Fiber/Graphene Nanoplatelet Carbon Papers for Application as Electromagnetic Interference Shielding Materials. Nanomaterials, 2021, 11, 2878.	1.9	5
3350	Compatibility between Rice Straw Fibers with Different Pretreatments and Ordinary Portland Cement. Materials, 2021, 14, 6402.	1.3	0
3351	Flexural Properties of Surface-Modified Sisal Fiber-Reinforced Polyester Resin Composites. Journal of Natural Fibers, 0, , 1-14.	1.7	1
3352	Sustainable Textile Designs Made from Renewable Biodegradable Sustainable Natural Abaca Fibers. Sustainable Textiles, 2020, , 1-30.	0.4	6
3353	Physical, Chemical, Mechanical, and Microstructural Characterization of Banana Pseudostem Fibers from Musa Sapientum. Macromolecular Symposia, 2020, 394, 2000052.	0.4	2
3354	Nanocellulose Extraction of Pineapple Leaves for Chitosan-starch Nanocomposites. Journal of Natural Fibers, 2022, 19, 3624-3637.	1.7	6

#	Article	IF	CITATIONS
3355	Structural Characterization and Mechanical Behaviour of Sodium Hydroxide-Treated Urena lobata Fiber Reinforced Polypropylene Matrix Composites. Fibers and Polymers, 2020, 21, 2983-2992.	1.1	5
3356	Experimental Response of Nonwoven Waste Cellulose Fabric–Reinforced Epoxy Composites for High Toughness and Coating Applications. Materials Performance and Characterization, 2020, 9, 20190251.	0.2	35
3357	Date Palm Fiber Composites in Hot-Dry Construction and Building. , 2020, , 323-356.		1
3359	Avaliação dos efeitos da fibra de coco e da microcelulose cristalina nas propriedades de argamassas cimentÃcias. Revista Materia, 2020, 25, .	0.1	3
3360	Hemp Fibers in Serbia: Cultivation, Processing and Applications. Sustainable Agriculture Reviews, 2020, , 111-146.	0.6	4
3361	Potential Future Applications of Date Palm Fiber Composites. , 2020, , 407-417.		2
3362	Appraisal on Varied Natural and Artificial Fiber Reinforced Polymeric Composites. Materials Today: Proceedings, 2020, 22, 3213-3219.	0.9	1
3363	Water Hyacinth Cellulose/Silk Fibroin Composite Films: Preparation and Characterization. Asian Journal of Chemistry, 2020, 33, 132-136.	0.1	O
3364	Studies on dyeing properties of chitosan modified cellulosic fiber. Journal of Textile Engineering & Fashion Technology, 2020, 6, .	0.1	3
3365	Mechanical and Vibrational Behavior of Twill Woven Carbon Fiber Reinforced Composites. International Polymer Processing, 2020, 35, 203-210.	0.3	3
3366	Multi-scale physico-chemical characterization of CEB/ANS bio-composites. Materials Today: Proceedings, 2021, 52, 45-45.	0.9	1
3367	Influence of Mechanical Properties in the Surface Modification of Palm Fiber/Epoxy Matrix Composite. Journal of Natural Fibers, 2022, 19, 9791-9802.	1.7	4
3368	Compressive Characterization of Date Palm Leaf Fiber. Journal of Natural Fibers, 2022, 19, 9813-9826.	1.7	1
3369	Natural Fibers for the Production of Green Composites. Advances in Chemical and Materials Engineering Book Series, 0, , 1-23.	0.2	2
3370	Coir Fiber-Reinforced Composites. Advances in Chemical and Materials Engineering Book Series, 0, , 247-275.	0.2	1
3371	Harvesting, Processing, and Modification Techniques of Natural Fibers. Advances in Chemical and Materials Engineering Book Series, 0, , 69-109.	0.2	0
3372	Available Mechanical and Chemical Properties of Natural Fibers. Advances in Chemical and Materials Engineering Book Series, 0, , 110-136.	0.2	0
3375	Using a micromechanical viscoelastic creep model to capture multi-phase deterioration in bio-based wood polymer composites exposed to moisture. Construction and Building Materials, 2022, 314, 125252.	3.2	6

#	Article	IF	CITATIONS
3376	Injection-molded natural fiber-reinforced polymer composites–a review. International Journal of Mechanical and Materials Engineering, 2021, 16, .	1.1	23
3377	Effect of Hemp Fibre Surface Treatment on the Fibre-Matrix Interface and the Influence of Cellulose, Hemicellulose, and Lignin Contents on Composite Strength Properties. Advances in Materials Science and Engineering, 2021, 2021, 1-17.	1.0	4
3378	Effective Young's Modulus Estimation of Natural Fibers through Micromechanical Models: The Case of Henequen Fibers Reinforced-PP Composites. Polymers, 2021, 13, 3947.	2.0	8
3379	Effect of moisture susceptibility and aging on interlaminar fracture behavior of fumed silica reinforced <scp>Juteâ€Kevlar</scp> hybrid nanocomposite. Polymer Composites, 2022, 43, 517-532.	2.3	7
3380	Recent developments of lignocellulosic natural fiber reinforced hybrid thermosetting composites for high-end structural applications: a review. Journal of Polymer Research, 2021, 28, 1.	1,2	7
3381	Recycling of Bagasse as an Agricultural Waste and its Effect as Filler on Some Mechanical and Physical Properties of SBR Composites. International Polymer Processing, 2021, 36, 586-595.	0.3	2
3382	Influence of the Cellulose and Soft Wood Fibres on the Impact and Tensile Properties in Polypropylene Bio Composites. Key Engineering Materials, 0, 903, 134-139.	0.4	0
3383	Investigation of Physico-chemical, Mechanical, and Thermal Properties of New Cellulosic Bast Fiber Extracted from the Bark of <i>Bauhinia purpurea</i>). Journal of Natural Fibers, 2022, 19, 9624-9641.	1.7	6
3384	A Further Milestone to the Use of Natural Fibres in Concrete – Past Findings, Barriers and Novel Research Avenues. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022038.	0.3	3
3385	A Multiscale Study of the Elastic Properties of Bamboo. Wood and Fiber Science, 2021, 53, 238-246.	0.2	1
3386	Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polymer Composites, 2022, 43, 645-691.	2.3	182
3387	Creep behavior of flax fiber-reinforced polyamide 6 composites: experimental and numerical studies. Polymer Bulletin, 0, , 1.	1.7	1
3388	Progress in research on natural cellulosic fibre modifications by polyelectrolytes. Carbohydrate Polymers, 2022, 278, 118966.	5.1	7
3389	Obtaining and Characterization of Biodegradable Composites Reinforced with Microcrystalline Cellulose Fillers. Materials Sciences and Applications, 2021, 12, 561-577.	0.3	1
3390	Development and Characterization Mortar-Animal Fibers Composite: Chemical Treatment Effect. SSRN Electronic Journal, 0, , .	0.4	0
3391	A new composite made from Luffa Cylindrica and ethylene vinyl acetate (EVA): Mechanical and structural characterization for its use as Mouthguard (MG). Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105064.	1.5	7
3392	The strength and stiffness of oriented wood and cellulose-fibre materials: A review. Progress in Materials Science, 2022, 125, 100916.	16.0	61
3393	Study on betel nut fiber enhancing water stability of asphalt mixture based on response surface method. Case Studies in Construction Materials, 2022, 16, e00870.	0.8	3

#	Article	IF	CITATIONS
3394	Obtaining Woody Greens Enriched with L-Arginine during Forestry Management of Young Scots Pine Stands (Scientific Review). Izvestiya Vysshikh Uchebnykh Zavedenii, 2020, , 9-37.	0.1	1
3395	Multi-scale physico-chemical characterization of CEB/ANS bio-composites. MATEC Web of Conferences, 2021, 348, 01008.	0.1	0
3396	Applications of cellulose materials and their composites. , 2022, , 267-284.		1
3399	Joining behavior of natural fiber reinforced polymer composites. , 2022, , 33-63.		4
3400	Mechanical, thermal and morphological properties of raw cordia dichotoma fiber reinforced epoxy composites. Current Research in Green and Sustainable Chemistry, 2022, 5, 100264.	2.9	4
3401	Cellulose-based foaming materials. , 2022, , 207-242.		0
3402	Characterization of unary precursor-based geopolymer bonded composite developed from ground granulated blast slag and lignocellulosic material residues. European Journal of Wood and Wood Products, 2022, 80, 377-393.	1.3	0
3403	Nanocellulose-based composites for environmental applications: a review. , 2022, , 343-351.		3
3404	The effect of surface treatments and graphene-based modifications on mechanical properties of natural jute fiber composites: A review. IScience, 2022, 25, 103597.	1.9	36
3405	Hygrothermal Aging, Kinetics of Moisture Absorption, Degradation Mechanism and Their Influence on Performance of the Natural Fibre Reinforced Composites. Composites Science and Technology, 2022, , 257-277.	0.4	3
3406	Pore Water Pressure Analysis in Coir Mat-Reinforced Soil Incorporating Soil-Structure Interaction. International Journal of Geosynthetics and Ground Engineering, 2022, 8, 1.	0.9	1
3407	Biofiber composites in building and construction. , 2022, , 335-365.		2
3408	Cellulose-based composite carbon nanofibers. , 2022, , 159-174.		0
3409	Enhanced Thermal Stability, Mechanical Properties and Structural Integrity of MWCNT Filled Bamboo/Kenaf Hybrid Polymer Nanocomposites. Materials, 2022, 15, 506.	1.3	31
3410	Composite Materials with Natural Fibers. , 0, , .		3
3411	Oil Palm Empty Fruit Bunches (OPEFB) – Alternative Fibre Source for Papermaking. , 0, , .		3
3412	Reuse of harbour and river dredged sediments in adobe bricks. Cleaner Materials, 2022, 3, 100046.	1.9	8
3413	A review of coir fibre and coir fibre reinforced cement-based composite materials (2000–2021). Journal of Cleaner Production, 2022, 338, 130676.	4.6	35

#	Article	IF	CITATIONS
3414	The influence of Arenga pinnata fibres – reinforced orientation on tensile and fextural strength of epoxy matrix based composite. IOP Conference Series: Earth and Environmental Science, 2022, 969, 012039.	0.2	0
3415	Interpretation of Cole–Cole dielectric dispersion of green composites from medical LINAC modified luffa fiber/PLA. Journal of Materials Science: Materials in Electronics, 2022, 33, 6911-6925.	1.1	6
3416	Industrial production of activated carbon using circular bioeconomy principles: Case study from a Romanian company. Cleaner Engineering and Technology, 2022, 7, 100443.	2.1	14
3417	Comparison between the mechanical properties and environmental impacts of 3D printed synthetic and bio-based composites. Procedia CIRP, 2022, 105, 380-385.	1.0	3
3419	Introduction: Background and Literature Review. Advanced Ceramics and Composites, 2022, , 1-42.	0.6	0
3421	Testing and Characterization of Fiber Reinforced Epoxy and Polymer Composite., 2022,,.		0
3422	Surface modification of natural fibers through esterification treatments., 2022,, 47-65.		0
3423	Study of Mechanical Properties of Chemically Treated Kenaf Fiber and Its Composites. Springer Proceedings in Materials, 2022, , 115-123.	0.1	4
3424	Importance of Chemically Treated Natural Fibers in the Fabrication of Natural Fiber Reinforced Polymer Composites., 2022,, 10-1-10-20.		2
3425	Dynamic Mechanical Analysis of Epoxy/Natural Fiber Composites. , 2022, , 1-28.		0
3426	Synthesis of Reinforced Polyurethane Composites from a Matrix Composed of Recycled PET Oligomers Incorporating Undeveloped Brazilian Pine-Fruit Seeds. Journal of Polymers and the Environment, 2022, 30, 2955-2963.	2.4	2
3427	Experimental investigation of the effect of weave type on the mechanical properties of woven hemp fabric/epoxy composites. Journal of Composite Materials, 2022, 56, 1255-1265.	1.2	6
3428	Piassava Fiber: A Novel Reinforcement for Cement-Based Matrix Composites., 2022, 22, 379-390.		6
3429	Morphology, Chemical Characterization and Sources of Microplastics in a Coastal City in the Equatorial Zone with Diverse Anthropogenic Activities (Fortaleza city, Brazil). Journal of Polymers and the Environment, 2022, 30, 2862-2874.	2.4	12
3430	Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11016-11027.	4.0	13
3431	Effects of Dry Etching Plasma Treatments on Natural and Synthetics Fibers: a Comparative Study. Materials Circular Economy, 2022, 4, 1.	1.6	0
3432	Review of literature on eco-friendly sandwich structures made of non-wood cellulose fibers. Journal of Sandwich Structures and Materials, 2022, 24, 1653-1705.	2.0	11
3433	Mechanical Properties and Tensile Model of Hemp-Fiber-Reinforced Poly(butylene) Tj ETQq1 1 0.784314 rgBT /O	verlock 10	Tf ₅ 50 62 Td

#	Article	IF	CITATIONS
3434	Chemical Treatments for Modification of the Surface Morphology of Coir Fiber: A Review. Journal of Natural Fibers, 2022, 19, 11940-11961.	1.7	1
3435	Effect of Banana Peel Powder on the Fade and Recovery of Brake Friction Material. Jom, 0, , 1.	0.9	4
3436	Tensile properties and micromechanical modeling of polypropylene composites reinforced with alfa fibers. Journal of Composite Materials, 0, , 002199832210874.	1.2	3
3437	Effect of alkali-treated sisal fibres on expansive clay. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2023, 176, 233-248.	0.7	3
3438	Investigation of process parameters effect on wood-bioplastic nanocomposites behavior using Taguchi method. Polymer Bulletin, 0, , 1.	1.7	1
3439	The influence of structural and chemical parameters on mechanical properties of natural fibers: a statistical exploratory analysis. Journal of Polymer Engineering, 2022, .	0.6	1
3440	Characterization of long bamboo Guadua Angustifolia fibre composite extracted via rotary–peeling method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	0
3441	Study on fibre reinforced composites developed by using recycled fibres from garment cut waste. International Journal of Clothing Science and Technology, 2022, 34, 605-614.	0.5	1
3442	Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials, 2022, 4, 100078.	1.9	23
3443	Utilization of leather fibrous wastes for the production of reconstituted fibric materials: heavy metal determination and removal. Waste Disposal & Sustainable Energy, 2022, 4, 29-37.	1.1	5
3444	Acrylic Acid-Functionalized Cellulose Diacrylate-Carbon Nanocomposite Thin Film: Preparation, Characterization, and Applications. Jom, 2022, 74, 2113-2119.	0.9	3
3445	Controlled preparation of grafted starch modified with Ni nanoparticles for biodegradable polymer nanocomposites and its application in food packaging. Microscopy Research and Technique, 2022, , .	1.2	2
3446	Accelerated Aging Effect in Physical and Thermo-mechanical Properties of Maize Starch Biocomposites Reinforced with Agave Salmiana Fibers from Different Leaf Ages. Fibers and Polymers, 2022, 23, 807-818.	1.1	0
3447	Crosslinked nanocollagen-cellulose nanofibrils reinforced electrospun polyvinyl alcohol/methylcellulose/polyethylene glycol bionanocomposites: Study of material properties and sustained release of ketorolac tromethamine. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100195.	1.6	4
3448	Spatial confinement and ion exchange synergetic strategy for highly selective removal of metal ions from the spinning solution containing ionic liquids. Chemical Engineering Journal, 2022, 437, 135425.	6.6	12
3449	Glass and carbon fiber reinforced polymer composite wastes in pervious concrete: Material characterization and lifecycle assessment. Resources, Conservation and Recycling, 2022, 182, 106304.	5.3	20
3450	Developing fire retardant composites of biodegradable polyethylene reinforced with agricultural wastes. Ain Shams Engineering Journal, 2022, 13, 101768.	3.5	4
3451	Ubim Fiber (Geonoma baculÃfera): A Less Known Brazilian Amazon Natural Fiber for Engineering Applications. Sustainability, 2022, 14, 421.	1.6	9

#	Article	IF	CITATIONS
3452	The potential application of sheep wool as a component of composites. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 2021, 17, 1-8.	0.2	1
3453	Relationships between the Decomposition Behaviour of Renewable Fibres and Their Reinforcing Effect in Composites Processed at High Temperatures. Polymers, 2021, 13, 4448.	2.0	5
3455	Mechanical and Water Absorption Properties of Short Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod Hybrid Nanobiocomposites. ACS Omega, 2021, 6, 35256-35271.	1.6	6
3456	Production of Cellulose From Bamboo Shoot Shell Using Hydrothermal Technique. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2021, 100, 307-312.	0.2	2
3457	Micromechanical Tests on Natural Fibre Composites with Enzymatically Enhanced Fibre–Matrix Adhesion. Materials Circular Economy, 2022, 4, 1.	1.6	1
3458	Vibrational analysis of glass/ramie fiber reinforced hybrid polymer composite. Polymer Composites, 2022, 43, 1395-1406.	2.3	20
3460	Effect of Coupling Agent on Softwood Kraft Nanocellulose Fibril-Reinforced Polylactic Acid Biocomposite. Journal of Nanomaterials, 2021, 2021, 1-13.	1.5	48
3461	Surface Modification of Commingled Flax/PP and Flax/PLA Fibres by Silane or Atmospheric Argon Plasma Exposure to Improve Fibre–Matrix Adhesion in Composites. Fibers, 2022, 10, 2.	1.8	11
3462	Microstructure, physical, and strength properties of compressed oil palm frond composite boards from Elaeis guineensis., 2022, , 175-190.		2
3465	Basic properties of oil palm biomass (OPB). , 2022, , 39-56.		0
3466	Pretreatment of empty fruit bunch fiber: Its effect as a reinforcing material in composite panels., 2022, , 153-174.		0
3467	Structural, thermal, mechanical and physical properties of Washingtonia filifera fibres reinforced thermoplastic biocomposites. Materials Today Communications, 2022, 31, 103574.	0.9	18
3468	Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review. Construction and Building Materials, 2022, 333, 127353.	3.2	68
3470	Injection-Molding., 0,, 185-196.		0
3471	Influence of Addition of Fiber on the Mechanical Properties of TPS Moldings., 0,, 197-208.		2
3472	New Printable Concrete Formulation Based on Fibers from Doum Palm Leaflets for 3D Printing of Energy-Efficient Buildings. Lecture Notes in Networks and Systems, 2022, , 813-824.	0.5	1
3473	Cotton fibers, their composites and applications. , 2022, , 379-390.		5
3474	Textile Industry Wastewater Treatment Using Eco-Friendly Techniques. , 2022, , 63-74.		3

#	Article	IF	Citations
3476	A Study of some Morphological and Essential Oil Characteristics of Spartium junecum L Research Journal of Pharmacy and Technology, 2022, , 1137-1144.	0.2	0
3477	Mechanical, Thermal and Solvent Transport Properties of Glutaraldehyde Cured Natural Rubber/Cotton Fabric Composites. Fibers and Polymers, 2022, 23, 1068-1076.	1.1	3
3478	Effect of stacking sequence on the mechanical properties of non-interlaced multiaxial jute yarn/epoxy composites. Journal of Composite Materials, 2022, 56, 2083-2094.	1.2	3
3479	Physicochemical, Thermal And Mechanical Properties of Novel Cellulosic Fiber Extracted from <i>Ficus Retusa </i> . Journal of Natural Fibers, 2022, 19, 14706-14724.	1.7	4
3480	A review on the limitations of natural fibres and natural fibre composites with emphasis on tensile strength using coir as a case study. Polymer Bulletin, 2023, 80, 3489-3506.	1.7	28
3481	Investigation on Physicochemical, Thermal and Mechanical Properties of New Cellulosic Fiber Obtained from the Stem of <i>Tecoma Stans</i> . Journal of Natural Fibers, 2022, 19, 14975-14993.	1.7	1
3482	Effect of Moisture Absorption on Mode II Fracture Behavior of Fumed Silica Reinforced Hybrid Fiber Composite. Journal of Natural Fibers, 2022, 19, 12548-12564.	1.7	2
3484	Modification of Fibers and Matrices in Natural Fiber Reinforced Polymer Composites: A Comprehensive Review. Macromolecular Rapid Communications, 2022, 43, .	2.0	37
3485	"Film-stacking method as an alternative Agave tequilana fibre/PLA composite fabrication― Materials Today Communications, 2022, 31, 103853.	0.9	2
3486	Physico-Chemical and Mechanical Characterization of <i>Triumfetta Pentandra</i> Bast Fiber from the Equatorial Region of Cameroon as a Potential Reinforcement of Polymer Composites. Journal of Natural Fibers, 2022, 19, 13106-13119.	1.7	9
3487	Long-Term Creep Compliance of Wood Polymer Composites: Using Untreated Wood Fibers as a Filler in Recycled and Neat Polypropylene Matrix. Polymers, 2022, 14, 2539.	2.0	2
3488	The application of timoho fiber coating to improve the composite performance. Results in Engineering, 2022, 15, 100499.	2.2	8
3489	Formation and emission characteristics of intermediate volatile organic compounds (IVOCs) from the combustion of biomass and their cellulose, hemicellulose, and lignin. Atmospheric Environment, 2022, 286, 119217.	1.9	11
3490	Polymer-based bio-composites and their applications. , 2022, , 109-121.		0
3491	4D printing of natural fiber composite. , 2022, , 297-333.		1
3492	DEVELOPMENT AND ANALYSIS OF PROSTHETIC FOOT BY A NEW IDEA. Journal of Mechanics in Medicine and Biology, 0, , .	0.3	0
3493	Approaching a Zero-Waste Strategy in Rapeseed (Brassica napus) Exploitation: Sustainably Approaching Bio-Based Polyethylene Composites. Sustainability, 2022, 14, 7942.	1.6	7
3494	INCREASING WATER RESISTANCE OF WOOD WITH IMPREGNANT COMPOSITION BASED ON VEGETABLE OIL WITH SILICON DIOXIDE NANOPOWDER. Forestry Engineering Journal, 2022, 12, 68-79.	0.1	1

#	ARTICLE	IF	CITATIONS
3495	Advances in the development of biodegradable coronary stents: A translational perspective. Materials Today Bio, 2022, 16, 100368.	2.6	27
3497	Water Sorption and Mechanical Properties of Cellulosic Derivative Fibers. Polymers, 2022, 14, 2836.	2.0	8
3498	Experimental analysis using polypropylene, polyester and waste denim fiber in road construction. Materials Today: Proceedings, 2022, , .	0.9	1
3499	Polymeric nanocomposite materials for photocatalytic detoxification of polycyclic aromatic hydrocarbons in aquatic environments-A review. Results in Engineering, 2022, 15, 100530.	2.2	10
3500	Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polymer Testing, 2022, 115, 107707.	2.3	45
3501	A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Composites Part C: Open Access, 2022, 9, 100298.	1.5	38
3502	Use of Lignin Fibers to Improve Mechanical Properties of Coated Wood. Tikrit Journal of Engineering Science, 2022, 16, 30-37.	0.2	0
3503	Dynamic Mechanical Analysis of Epoxy/Natural Fiber Composites. , 2022, , 611-638.		O
3504	Nano-Silikanın Jýt/Cam Elyaf Takviyeli Epoksi Hibrit Kompozitlerin Mekanik Özellikleri Üzerindeki Etkisi. Northwestern Medical Journal, 0, , 399-410.	0.0	1
3505	Characterisation of Elementary Kenaf Fibres Extracted Using HNO3 and H2O2/CH3COOH. Fibers, 2022, 10, 63.	1.8	1
3506	A method for chemical and physical modification of oriented pulp fibre sheets. Cellulose, 2022, 29, 8371-8386.	2.4	3
3507	Influence of sampling area and extraction method on the thermal, physical and mechanical properties of Cameroonian Ananas comosus leaf fibers. Heliyon, 2022, 8, e10127.	1.4	16
3508	Lemongrass Plant as Potential Sources of Reinforcement for Biocomposites: A Preliminary Experimental Comparison Between Leaf and Culm Fibers. Journal of Polymers and the Environment, 2022, 30, 4726-4737.	2.4	7
3509	Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites. International Advanced Researches and Engineering Journal, 2022, 6, 90-99.	0.4	0
3510	Aloe vera Nanofibers Contained Pseudomonas Bacteriophages Fabrication, Characterization, and Biofunction. BioNanoScience, 2022, 12, 1125-1135.	1.5	3
3511	Recent developments in composite reinforcement using date palm fibers for improved performance through physical and chemical modifications. International Journal of Polymer Analysis and Characterization, 2022, 27, 446-463.	0.9	2
3512	Overview of organic–inorganic hybrid silica aerogels: Progress and perspectives. Materials and Design, 2022, 222, 111091.	3.3	38
3513	Effective utilization of natural fibres (coir and jute) for sustainable low-volume rural road construction – A critical review. Construction and Building Materials, 2022, 347, 128606.	3.2	10

#	Article	IF	Citations
3514	Sustainable Fiberâ€Reinforced Composites: A Review. Advanced Sustainable Systems, 2022, 6, .	2.7	61
3515	Mechanical properties and interface improvement of bamboo cellulose nanofibers reinforced autoclaved aerated concrete. Cement and Concrete Composites, 2022, 134, 104760.	4.6	10
3516	Introduction to Epoxy/Synthetic/Natural Fibre Composites. , 2022, , 869-901.		0
3517	Preparation and Water Absorption Analysis of Polyurethane Foam Reinforced Sawdust Composites. Lecture Notes in Mechanical Engineering, 2022, , 317-326.	0.3	0
3518	Introduction to natural fiber composites. , 2022, , 1-13.		1
3519	Spectroscopic Analysis of Natural Fiber/Epoxy Composites. , 2022, , 539-573.		1
3520	Characterization of the Neuropeltis Acuminatas Liana Fiber Treated as Composite Reinforcement. SSRN Electronic Journal, $0, , .$	0.4	0
3521	Cellulose-Based Functional Materials for Sensing. Chemosensors, 2022, 10, 352.	1.8	15
3522	All-Cellulose Composite Laminates Made from Wood-Based Textiles: Effects of Process Conditions and the Addition of TEMPO-Oxidized Nanocellulose. Polymers, 2022, 14, 3959.	2.0	2
3523	Anisotropic Muscle-like Conductive Composite Hydrogel Reinforced by Lignin and Cellulose Nanofibrils. ACS Sustainable Chemistry and Engineering, 2022, 10, 12993-13003.	3.2	18
3524	Molecular Dynamics Simulations on the Elastic Properties of Polypropylene Bionanocomposite Reinforced with Cellulose Nanofibrils. Nanomaterials, 2022, 12, 3379.	1.9	2
3525	Pharmaceutical and Biomedical Applications of Bio-Based Excipients. , 2022, , 105-138.		O
3526	Preparation of Biocomposites with Natural Reinforcements: The Effect of Native Starch and Sugarcane Bagasse Fibers. Molecules, 2022, 27, 6423.	1.7	2
3527	Mechanical Properties of a PLA/Nettle Agro-Composite with 10% Oriented Fibers. Applied Sciences (Switzerland), 2022, 12, 9835.	1.3	2
3528	Upcycling of waste artificial turf for <scp>highâ€performance</scp> woodâ€plastic composites. Journal of Applied Polymer Science, 0, , .	1.3	1
3529	Influence of Various Surface Treatments on Mechanical, Thermal, Morphological, and Water Absorption Properties of Rattan (<i>Calamus beccarii)</i> Fiber. Journal of Natural Fibers, 2023, 20, .	1.7	3
3530	Investigation on Physicomechanical, Tribological and Optimality Condition for Coir Filler-Reinforced Polymeric Composites. Arabian Journal for Science and Engineering, 2023, 48, 3615-3630.	1.7	2
3531	Mechanical Properties, Critical Length, and Interfacial Strength of Seven-Islands-Sedge Fibers (Cyperus malaccensis) for Possible Epoxy Matrix Reinforcement. Polymers, 2022, 14, 3807.	2.0	7

#	Article	IF	Citations
3532	A Review on Gypsum-Based Composites Reinforced With Palm Fibers in Construction Applications. International Journal of Thermophysics, 2022, 43, .	1.0	2
3533	Effect of microwave heat treatment on physical and mechanical properties of high-Density polyethylene/wood flour/Nano-SiO ₂ composites. Journal of Thermoplastic Composite Materials, 0, , 089270572211281.	2.6	0
3534	Investigation and Characterization of Coir Fiber Reinforced Polymer Composite Under Cyclic Loading. Lecture Notes in Mechanical Engineering, 2023, , 377-387.	0.3	1
3535	Evaluation of the Change in Density with the Diameter and Thermal Analysis of the Seven-Islands-Sedge Fiber. Polymers, 2022, 14, 3687.	2.0	6
3536	Thermal and Mechanical Characterization of Coir Fibre–Reinforced Polypropylene Biocomposites. Crystals, 2022, 12, 1249.	1.0	11
3537	Multi-objectives Statistical Optimization and micro-mechanics Mathematical Modelling of Musa Acuminate fibre-vinyl Ester Composite Reinforcement. Fibers and Polymers, 2022, 23, 3163-3178.	1.1	2
3538	Renewable rice straw cellulose nanofibril reinforced poly($\hat{l}\mu$ -caprolactone) composite films. Materials Chemistry and Physics, 2022, 292, 126879.	2.0	3
3539	Thermogravimetric analysis of lignocellulosic leaf-based fiber-reinforced thermosets polymer composites: an overview. Biomass Conversion and Biorefinery, 0, , .	2.9	7
3541	Green technology of natural fiber reinforced bio-composites as alternative sustainable product. Environmental and Toxicology Management, 2022, 2, 21-25.	0.3	0
3542	Mechanical Properties and Equilibrium Swelling Characteristics of Some Polymer Composites Based on Ethylene Propylene Diene Terpolymer (EPDM) Reinforced with Hemp Fibers. Materials, 2022, 15, 6838.	1.3	3
3543	Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Composites Part C: Open Access, 2022, 9, 100322.	1.5	27
3544	A study on vetiver fiber and lemongrass fiber reinforced composites. Materials Today: Proceedings, 2022, 68, 2640-2645.	0.9	0
3545	Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications. Polymers, 2022, 14, 4396.	2.0	14
3546	Biocomposites with Epoxy Resin Matrix Modified with Ingredients of Natural Origin. Materials, 2022, 15, 7167.	1.3	3
3548	Hydro/Hygrothermal Behavior of Plant Fibers and Its Influence on Bio-Composite Properties. , 0, , .		1
3549	Interfacial treatment-induced high-strength plant fiber/phenolic resin composite. Frontiers in Materials, 0, 9, .	1.2	1
3550	Hierarchical Model for Optimizing Natural Fiber Selection Process for Eco-design of Buildings. Journal of Natural Fibers, 2022, 19, 10897-10909.	1.7	2
3551	Biocomposites from Fruit and Vegetable Wastes and Their Applications. , 2022, , 385-406.		1

#	Article	IF	CITATIONS
3552	Elaboration and Characterization of a Plaster Reinforced with Fibers from the Stem of & Elaborations. World Journal of Engineering and Technology, 2022, 10, 824-842.	0.3	2
3553	Effective Tensile Strength Estimation of Natural Fibers through Micromechanical Models: The Case of Henequen Fiber Reinforced-PP Composites. Polymers, 2022, 14, 4890.	2.0	1
3554	Poly(lactic acid) reinforced with synthetic polymer fibers: interactions, structure and properties. Composites Part A: Applied Science and Manufacturing, 2023, 164, 107318.	3.8	5
3555	Cellulose-based Composites Prepared by Two-step Extrusion from Miscanthus Grass and Cellulose Esters. Fibers and Polymers, 2022, 23, 3282-3296.	1.1	1
3556	A novel approach to the impact modification of PLA. Engineering Fracture Mechanics, 2023, 277, 108950.	2.0	5
3557	Synergistic association of wood /hemp fibers reinforcements on mechanical, physical and thermal properties of polypropylene-based hybrid composites. Industrial Crops and Products, 2023, 192, 116052.	2.5	13
3558	Investigation of the Mechanical Properties of Palm Kernel Fiber Reinforced with Waste Water Sachet (Polyethylene) Composite Material. International Journal of Engineering and Technologies, 0, 17, 43-51.	0.0	0
3559	The Effect of fibre position and gauge lengths along the length of enset bundle fibres on physical and mechanical properties: Application of statistics analysis. Journal of Natural Fibers, 2023, 20, .	1.7	2
3560	Improving the Behaviour of Green Concrete Geopolymers Using Different HEMP Preservation Conditions (Fresh and Wet). Minerals (Basel, Switzerland), 2022, 12, 1530.	0.8	5
3561	INVESTIGATION ON PHYSICO-CHEMICAL, MECHANICAL AND THERMAL PROPERTIES OF EXTRACTED NOVEL PINUS ROXBURGHII FIBER. Journal of Natural Fibers, 2023, 20, .	1.7	8
3562	Preliminary Studies on Conversion of Sugarcane Bagasse into Sustainable Fibers for Apparel Textiles. Sustainability, 2022, 14, 16450.	1.6	1
3563	Influence of surface modification on mechanical and tribology performance of jute filler polymer composites and prediction of the performance using artificial neural network. Polymer Bulletin, 2023, 80, 11953-11974.	1.7	6
3564	The Effect of the Extrusion Method on Processing and Selected Properties of Poly(3-hydroxybutyric-co-3-hydroxyvaleric Acid)-Based Biocomposites with Flax and Hemp Fibers. Polymers, 2022, 14, 5370.	2.0	6
3565	A review on the impact of various conditions in natural fibre properties and their characterization techniques. Journal of Molecular and Engineering Materials, 0, , .	0.9	0
3566	Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production. Journal of Forestry Faculty of Kastamonu University, 0, , 280-288.	0.1	0
3568	Multiscale micromechanics modeling of plant fibers: upscaling of stiffness and elastic limits from cellulose nanofibrils to technical fibers. Materials and Structures/Materiaux Et Constructions, 2023, 56, .	1.3	6
3569	High-Density Polyethylene Post-consumer Waste in Natural Fiber-Reinforced Compounds. , 2022, , 1-15.		0
3570	Review of recent developments in polymer matrix composites with fiber reinforcements. , 2022, , .		0

#	Article	IF	CITATIONS
3571	A review of environmental friendly green composites: production methods, current progresses, and challenges. Environmental Science and Pollution Research, 2023, 30, 16905-16929.	2.7	23
3572	Exploring Properties of Short Randomly Oriented Rattan Fiber Reinforced Epoxy Composite for Automotive Application. Journal of Natural Fibers, 2023, 20, .	1.7	4
3573	Structurally Tailoring Clay Nanosheets to Design Emerging Macrofibers with Tunable Mechanical Properties and Thermal Behavior. ACS Applied Materials & Samp; Interfaces, 2023, 15, 3141-3151.	4.0	2
3574	Melt processable cellulose fibres engineered for replacing oil-based thermoplastics. Chemical Engineering Journal, 2023, 458, 141372.	6.6	4
3575	PENGARUH PERLAKUAN ALKALI TERHADAP SIFAT FISIS DAN MEKANIS SERAT LANTUNG (ARTOCARPUS) Tj ETQq0 () 8 rgBT /(Overlock 10
3576	Corncob bio-waste and boron nitride particles reinforced epoxy-based composites for lightweight applications: fabrication and characterization. Biomass Conversion and Biorefinery, 0, , .	2.9	20
3577	Thermal Study of Traditional Gypsum Plaster Brick Prototypes: The Case of Ouargla. Selected Scientific Papers: Journal of Civil Engineering, 2022, 17, 1-13.	0.1	1
3578	Synthesis and Morphological Studies of Nanocellulose Fibers from Lignocellulosic Biomass in Ionic Liquid. Asian Journal of Chemistry, 2023, 35, 83-88.	0.1	0
3579	Cellulose fiber-reinforced polymer composites as packaging materials., 2023,, 283-316.		0
3580	Fused deposition modeling of polymer-matrix composites with natural fibers. , 2023, , 189-210.		0
3581	Mechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method. Molecules, 2023, 28, 1115.	1.7	6
3582	Multifunctional polymer/carbonaceous nanocomposites for aerospace applications., 2023,, 55-83.		5
3583	Ceramic particle–dispersed polymer composites. , 2023, , 399-432.		0
3584	Physical modification of cellulose fiber surfaces. , 2023, , 73-94.		2
3585	Compatibilization of coir fiber and elastomeric polyurethane by green modification routes. Green Materials, 2023, 11, 125-136.	1.1	3
3586	Experimental investigation of ship hull structure by using composite material. AIP Conference Proceedings, 2023, , .	0.3	1
3587	Processing technologies of polymer composites and fundamental issues related to polylactide composites processing., 2023,, 25-67.		0
3588	Properties of bamboo fibres: physical, performance, comfort, thermal, and low stress mechanical properties., 2023,, 101-135.		2

#	Article	IF	CITATIONS
3589	Jute and luffa fibers: Physical, acoustical, and mechanical properties. , 2023, , 357-378.		0
3590	Creep Analysis of Bamboo Composite for Structural Applications. Polymers, 2023, 15, 711.	2.0	3
3591	Thermal and Acoustic Performance of Green Polyethylene/Cork Composite for Civil Construction Applications. Materials Research, 0, 26, .	0.6	2
3592	Effect of graphite fillers on woven bamboo fiber-reinforced epoxy hybrid composites for semistructural applications: fabrication and characterization. Biomass Conversion and Biorefinery, 0,	2.9	4
3593	Production of composite filaments for fused deposition modeling. , 2023, , 89-108.		1
3594	Fused deposition modeling of composite materials at a glance – supplementary tables. , 2023, , 329-445.		1
3595	Applications of nanocellulose as biosensing platforms for the detection of functional biomacromolecules: A Review. Al-MaÄŸallatl^ Al-Qawmiyyatl^ Lil DirÄsÄŧ Al-TaÊ;Äá¹Ä« Wa Al-IdmÄn, 2022, 2, 15-45	5. ^{0.0}	2
3596	Lignocellulosic biowaste for composite applications. , 2023, , 639-678.		0
3597	Preparation of Electrically Conducting Bamboo Paper Using Multiâ€Walled Carbon Nanotubes. Macromolecular Symposia, 2023, 408, .	0.4	2
3598	Effects of organically-modified montmorillonite and alkalinization on physical, mechanical, chemical, morphological, and thermal properties of wheat straw/recycled polypropylene nanocomposites. Journal of Composite Materials, 0, , 002199832311689.	1.2	1
3599	High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions. Carbohydrate Polymers, 2023, 313, 120881.	5.1	4
3600	Wet spinning of strong cellulosic fibres with incorporation of phase change material capsules stabilized by cellulose nanocrystals. Carbohydrate Polymers, 2023, 312, 120734.	5.1	5
3601	A novel approach in wood waste utilization for manufacturing of catalyst-free polyurethane-wood composites (PU-WC). Sustainable Materials and Technologies, 2023, 36, e00619.	1.7	0
3602	Mechanical, thermo-mechanical and biodegradation behaviour of surface-silanized nettle fabric-reinforced poly(lactic acid) composites. Materials Chemistry and Physics, 2023, 297, 127381.	2.0	2
3603	Challenges associated with cellulose composite material: Facet engineering and prospective. Environmental Research, 2023, 223, 115429.	3.7	28
3604	Influence of Natural Fiber Content on the Frictional Material of Brake Pads—A Review. Journal of Composites Science, 2023, 7, 72.	1.4	18
3605	The influence of alkali treatment on banana fibre's mechanical properties. Ingenieria E Investigacion, 2012, 32, 83-87.	0.2	25
3606	A Review of Coal Fly Ash Utilization to Save the Environment. Water, Air, and Soil Pollution, 2023, 234,	1.1	11

#	Article	IF	CITATIONS
3607	Properties and Applications of Natural Fiber-Reinforced 3D-Printed Polymer Composites. Advances in Chemical and Materials Engineering Book Series, 2023, , 31-52.	0.2	1
3608	Mechanical Characterization of a Polymer/Natural Fibers/Bentonite Composite Material with Implementation of a Continuous Damage Model. Applied Sciences (Switzerland), 2023, 13, 2677.	1.3	3
3609	Influence of low-pressure Ar plasma modification of <i>Musa sapientum</i> banana fibers on banana fiber reinforced epoxy composite. Composite Interfaces, 2023, 30, 877-898.	1.3	1
3610	An experimental and simulation study on dielectric properties of bio-based kenaf composite laminated with PVC for futuristic applications. Materials Today: Proceedings, 2023, , .	0.9	2
3611	Coating of natural fiber composite envisaging through the patent landscape: An overview. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
3612	Effect of Mercerization on Coconut Fiber Surface Condition for Use in Natural Fiber-Reinforced Polymer Composites. Lecture Notes in Production Engineering, 2023, , 701-713.	0.3	0
3613	Cold glow discharge nitrogen plasma treatment of banana and sisal fiber for mechanical and surface characterization improvement. Journal of the Indian Academy of Wood Science, 2023, 20, 37-50.	0.3	0
3614	Bio-Polyethylene Composites Based on Sugar Cane and Curauá Fiber: An Experimental Study. Polymers, 2023, 15, 1369.	2.0	5
3615	The Influence of Cellulose Nanocrystal Characteristics on Regenerative Silk Composite Fiber Properties. Materials, 2023, 16, 2323.	1.3	2
3616	Effects of the corona treatment of rubber tire particles on the properties of particleboards. BioResources, 2017, 12, 9452-9465.	0.5	1
3617	The Effect of Cellulose Crystalline Structure Modification on Glucose Production from Chemical-Composition-Controlled Biomass. Sustainability, 2023, 15, 5869.	1.6	0
3618	Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose. NPG Asia Materials, 2023, 15, .	3.8	1
3619	Waste paper as a viable sustainable source for cellulosic extraction by chlorine free bleaching and acid hydrolysis method for the production of PVA-starch/cellulose based biocomposites. Materials Today: Proceedings, 2023, , .	0.9	1
3620	Modeling and Investigation of the Influential Reinforcement Parameters on the Strength of Polypropylene Lignocellulosic Fiber Composites Using Analysis of Variances and Box-Cox Transformation Technique. Materials Research, 0, 26, .	0.6	4
3621	Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Applied Sciences (Switzerland), 2023, 13, 5126.	1.3	20
3622	Waste materials as adsorbents for heavy metals removal from water: Comparative analysis of modification techniques. Tekstilna Industrija, 2023, 71, 4-10.	0.3	1
3623	Influence of weave arrangements on mechanical characteristics of cotton and bamboo woven fabric reinforced composite laminates. Journal of Reinforced Plastics and Composites, 2023, 42, 776-789.	1.6	12
3627	Molecular Organization and Higher Order Structures. , 2013, , 445-461.		0

#	Article	IF	CITATIONS
3631	Green composite materials and their applications. , 2023, , 159-182.		0
3632	Vegetable fiber-based green composites. , 2023, , 53-69.		0
3633	Bast fiber composites and their applications. , 2023, , 167-193.		0
3634	Microwave Treatment on Wood Waste Product-A Review. , 2023, , 205-232.		O
3641	Mechanical properties and durability analysis of coir fibre reinforced composites – State of art report. AIP Conference Proceedings, 2023, , .	0.3	0
3643	Effect of chemical treatment on the structural, thermal, and mechanical properties of lemongrass waste for biodegradable plastic. AIP Conference Proceedings, 2023, , .	0.3	0
3650	Designing a dynamic model of waste management to get a sustainable living condition. AIP Conference Proceedings, 2023, , .	0.3	0
3651	Green stalk fibers and their application in cement-based composites. , 2023, , 195-218.		0
3652	Animal fiber–based green composites. , 2023, , 305-346.		0
3653	Green wood fiber composites and their applications. , 2023, , 1-28.		0
3659	Characterization and Comparative Evaluation of Structural, Chemical, Thermal, Mechanical, and Morphological Properties of Plant Fibers. Composites Science and Technology, 2023, , 1-45.	0.4	1
3660	Corn Crop Residues as Source to Obtain Cellulose Nanocrystals. Composites Science and Technology, 2023, , 169-183.	0.4	0
3663	Nonwoven natural fiber preforms. , 2023, , 159-191.		0
3664	Three-dimensional (3D) braided natural fiber preforms. , 2023, , 279-310.		0
3670	Forest-Based Polymeric Biocomposites: Current Development, Challenges, and Emerging Trends. Environmental Footprints and Eco-design of Products and Processes, 2023, , 151-165.	0.7	0
3672	Fabrication and analysis of human hair fiber reinforced epoxy composites: A sustainable approach. AIP Conference Proceedings, 2023, , .	0.3	0
3673	Characterization on a physical and mechanical bamboo surface treated and untreated fiber. AIP Conference Proceedings, 2023, , .	0.3	0
3691	A Study on Mechanical Properties and Tribological Behaviour of Jute Filler Composites. , 2024, , 731-739.		2

#	Article IF	CITATIONS
3693	Recycled Cellulose and Cellulose-Based Materials by Gamma Rays and Its Use as Reinforcement in Composites. , 2023, , 291-306.	0
3700	Various factors affecting the fatigue performance of natural fiber-reinforced polymer composites: a systematic review. Iranian Polymer Journal (English Edition), 0, , .	0
3701	Biobased composites reinforced with annual plants—Design, manufacturing techniques, and parameters influencing the overall properties. , 2023, , .	0
3703	Biobased composites for advanced applications: Possibilities and difficulties on the path to circularity. , 2023, , .	O
3708	Modeling approaches for bio-based composites. , 2023, , .	0
3712	CARACTERIZAÇÃO DA RESISTÊNCIA AO IMPACTO CHARPY DE COMPÓSITOS DE MATRIZ POLIÉSTER REFORÇADA COM FIBRAS DE COCO. , 0, , .	O
3713	RESISTÊNCIA Ã \in TRAÇÃ f O DE TECIDO, FIO E FIBRA DE JUTA UTILIZADOS EM COMPÓSITOS POLIMÉRICOS REFORÇADOS COM SACOS DE ANIAGEM NOVOS E DESCARTADOS. , 0, , .	0
3714	ANÂŁISE DA RESISTŠNCIA AO IMPACTO CHARPY DE COMPÓSITOS COM FIBRAS ALINHADAS DE CURAUÕ REFOR‡ANDO MATRIZ DE RESINA EPÓXI. , 0, , .	1
3715	COMPORTAMENTO MECÃ,NICO DE COMPÓSITOS COM MATRIZ EPÓXI REFORÇADA COM FIBRA DE PIAÇAVA. , 0, , .	0
3716	CARACTERÃSTICAS ESTRUTURAIS E COMPORTAMENTO MECÃ,NICO DE COMPÓSITOS EPOXÃDICOS REFORÇADOS COM FIBRAS DE CURAUÕ , 0, , .	0
3718	ANÃLISE DINÃ,MICO-MECÃ,NICA DE COMPÓSITOS 1 EPOXÃDICOS REFORÇADOS COM FIBRA DE COCO. , 0, , .	0
3719	ENSAIOS DE IMPACTO EM COMPÓSITOS DE MATRIZ POLIÉSTER REFORÇADA COM FIBRAS DE RAMI. , 0, , .	1
3720	COMPÓSITOS DE FIBRAS DE COCO EM MATRIZ EPOXÃÐICA ENSAIADAS POR IMPACTO IZOD. , 0, , .	0
3721	AVALIAÇÃO DA INFLUÊNCIA DO DIÃ,METRO NA RESISTÊNCIA À TRAÇÃO DAS FIBRAS DE BURITI PELO MÉTODO DE WEIBULL. , 0, , .	О
3722	AVALIAÇÃO DAS PROPRIEDADES MECÃ,NICAS DA FIBRA DO CURAUÃ; UTILIZANDO ANÃŁISE DE WEIBULL. , 0, , .	0
3723	EFEITO DO TRATAMENTO DAS FIBRAS DE CURAUÕNAS PROPRIEDADES MECÃ,NICAS DE COMPÓSITOS COM MATRIZ EPOXÃDICA. , 0, , .	0
3724	DISTRIBUIÇÃO WEIBULL COMO INSTRUMENTO DE ANÃŁISE ESTATÃSTICA DE ENSAIO DE TRAÇÃO EM FIBRAS DE COCO. , 0, , .	O
3725	COMPORTAMENTO DINÃ,MICO MEDIDO POR ENSAIOS DE DMA DE COMPÓSITOS DE FIBRAS DE PIAÇAVA REFORÇANDO MATRIZ DE RESINA EPOXI. , 0, , .	O

#	Article	IF	CITATIONS
3726	COMPORTAMENTO DINÃ,MICO-MECÃ,NICO DE COMPÃ"SITOS DE MATRIZ POLIÉSTER REFORÇADOS COM FIL DE RAMI. , 0, , .	BRA	0
3727	ANÃLISE DINÃ,MICO-MECÃ,NICA EM COMPÓSITOS DE MATRIZ DE POLIETILENO REFORÇADOS COM TECIDO DE JUTA. , 0, , .	Ē	0
3728	TENACIDADE AO IMPACTO CHARPY DE COMPÓSITOS EPOXÃDICOS REFORÇADOS COM FIBRAS DE RAMI. , 0, ,		0
3729	DETERMINAÇÃO DA RESISTÊNCIA INTERFACIAL ATRAVÉS DE ENSAIOS DE PULLOUT DE FIBRAS DE PIAÇAV. EMBUTIDAS EM RESINA POLIÉSTER. , 0, , .	A	0
3731	COMPÓSITOS DE RESINA POLIÉSTER INCORPORADA COM FIBRA DE SISAL – PROPRIEDADES MECÃ,NICAS E CARACTERISTICAS DE FRATURA. , 0, , .	Ξ	0
3739	Comprehensive overview on tensile strength and size effect on nominal strength of natural fiber reinforced composite material. AIP Conference Proceedings, 2023, , .	0.3	0
3751	Biodegradable and Biobased Polymers. , 2024, , 133-165.		0
3752	Spectroscopic Analysis of Interfacial Adhesion in Natural Fibre Polymer Composites. Composites Science and Technology, 2024, , 79-96.	0.4	0
3753	Biocomposites derived from plant fiber resources. , 2024, , 23-54.		0
3756	Morphology of the Interfacial Interface of the Natural Fibre Reinforced Polymer Composites. Composites Science and Technology, 2024, , 47-77.	0.4	0
3761	Biocomposites derived from animal fibers and other minerals. , 2024, , 55-78.		0
3763	Production of Cellulose Nanocrystal (CNC) Combine with Silane Treatment from Pennisetum Purpureum via Acid Hydrolysis. Lecture Notes in Mechanical Engineering, 2024, , 535-543.	0.3	0
3769	Effects of Pretreatment Methods and Physical Properties of Cellulose Fibers on Compatibility of Fiber-Cement Composites: A Review. RILEM Bookseries, 2024, , 253-264.	0.2	0
3770	Biocomposites with cellulosic fibers. , 2024, , 41-79.		0
3771	Biocomposites with polyamide fibers (nylons and aramids). , 2024, , 121-147.		0
3777	Mechanical behavior of 3D-printed rice husk reinforced recycled high density polyethylene composite. AIP Conference Proceedings, 2024, , .	0.3	0