Clinically relevant approach to failure testing of all-cera

Journal of Prosthetic Dentistry 81, 652-661 DOI: 10.1016/s0022-3913(99)70103-4

Citation Report

#	Article	IF	CITATIONS
1	Annual Review of Selected Dental Literature: Report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. Journal of Prosthetic Dentistry, 2000, 84, 59-92.	1.1	1
2	PROSTHODONTICS: ACHIEVING QUALITY ESTHETIC DENTISTRY AND INTEGRATED COMPREHENSIVE CARE. Journal of the American Dental Association, 2000, 131, 1742-1749.	0.7	7
3	Fracture strength and survival rate of endodontically treated maxillary incisors with approximal cavities after restoration with different post and core systems: an in-vitro study. Journal of Dentistry, 2001, 29, 427-433.	1.7	192
4	The effect of luting media on the fracture resistance of a flame sprayed all-ceramic crown. Journal of Dentistry, 2001, 29, 539-544.	1.7	28
5	Role of flaw statistics in contact fracture of brittle coatings. Acta Materialia, 2001, 49, 3719-3726.	3.8	48
6	Contactâ€induced Damage in Ceramic Coatings on Compliant Substrates: Fracture Mechanics and Design. Journal of the American Ceramic Society, 2001, 84, 1066-1072.	1.9	103
7	Effect of Tangential Loading on Critical Conditions for Radial Cracking in Brittle Coatings. Journal of the American Ceramic Society, 2001, 84, 2719-2721.	1.9	27
8	Survival of Dicor glass-ceramic dental restorations over 16 years. Part III: Effect of luting agent and tooth or tooth-substitute core structure. Journal of Prosthetic Dentistry, 2001, 86, 511-519.	1.1	160
9	Use of contact testing in the characterization and design of all-ceramic crownlike layer structures: A review. Journal of Prosthetic Dentistry, 2001, 86, 495-510.	1.1	212
10	The safety and efficacy of anterior ceramic fixed partial dentures: A review of the literature. Journal of Prosthetic Dentistry, 2001, 86, 520-525.	1.1	71
11	Influence of core buildup material on the fatigue strength of an all-ceramic crown. Journal of Prosthetic Dentistry, 2001, 86, 624-631.	1.1	22
12	Contact fracture of brittle bilayer coatings on soft substrates. Journal of Materials Research, 2001, 16, 115-126.	1.2	57
13	Cracking of porcelain coatings bonded to metal substrates of different modulus and hardness. Journal of Materials Research, 2001, 16, 1471-1478.	1.2	34
14	Cracking in Ceramic/metal/polymer Trilayer Systems. Journal of Materials Research, 2002, 17, 1102-1111.	1.2	27
15	Materials Design of Ceramic-based Layer Structures for Crowns. Journal of Dental Research, 2002, 81, 433-438.	2.5	119
16	Overview: Damage in brittle layer structures from concentrated loads. Journal of Materials Research, 2002, 17, 3019-3036.	1.2	169
17	Ceramic-based layer structures for biomechanical applications. Current Opinion in Solid State and Materials Science, 2002, 6, 229-235.	5.6	39
18	Clinical evaluation of all-ceramic crowns. Journal of Prosthetic Dentistry, 2002, 87, 189-196.	1.1	56

#	Article	IF	CITATIONS
19	The restoration of endodontically treated, single-rooted teeth with cast or direct posts and cores: A systematic review. Journal of Prosthetic Dentistry, 2002, 87, 380-386.	1.1	154
20	Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and-core systems. Journal of Prosthetic Dentistry, 2002, 87, 438-445.	1.1	162
21	Effect of connector design on the fracture resistance of all-ceramic fixed partial dentures. Journal of Prosthetic Dentistry, 2002, 87, 536-542.	1.1	131
22	Influence of residual surface investment material on crystallization shrinkage of a mica-based glass-ceramic. Dental Materials, 2002, 18, 336-342.	1.6	4
23	Thermoplastic composites for veneering posterior teeth—a feasibility study. Dental Materials, 2002, 18, 479-485.	1.6	9
24	Characterization of damage modes in dental ceramic bilayer structures. Journal of Biomedical Materials Research Part B, 2002, 63, 137-145.	3.0	125
25	Rate Effects in Critical Loads for Radial Cracking in Ceramic Coatings. Journal of the American Ceramic Society, 2002, 85, 2019-2024.	1.9	70
26	All-ceramic crowns: bonding or cementing?. Clinical Oral Investigations, 2002, 6, 189-197.	1.4	40
27	Contact damage in model dental multilayers: an investigation of the influence of indenter size. Journal of Materials Science: Materials in Medicine, 2003, 14, 17-26.	1.7	37
28	Stress distribution and failure mode of dental ceramic structures under Hertzian indentation. Dental Materials, 2003, 19, 542-551.	1.6	45
29	Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dental Materials, 2003, 19, 603-611.	1.6	145
30	Fracture resistance of prepared teeth restored with bonded inlay restorations. Journal of Prosthetic Dentistry, 2003, 89, 551-557.	1.1	96
31	Comparison of the load at failure of soldered and nonsoldered porcelain- fused-to-metal crowns. Journal of Prosthetic Dentistry, 2003, 90, 235-240.	1.1	12
32	Fracture of ceramic/ceramic/polymer trilayers for biomechanical applications. Journal of Biomedical Materials Research Part B, 2003, 67A, 828-833.	3.0	53
33	Ceramic Inlays and Onlays: Clinical Procedures for Predictable Results. Journal of Esthetic and Restorative Dentistry, 2003, 15, 338-352.	1.8	24
34	Designing damage-resistant brittle-coating structures: II. Trilayers. Acta Materialia, 2003, 51, 4357-4365.	3.8	30
35	Effect of an adhesive interlayer on the fracture of a brittle coating on a supporting substrate. Journal of Materials Research, 2003, 18, 222-227.	1.2	55
36	Modeling of contact-induced radial cracking in ceramic bilayer coatings on compliant substrates. Journal of Materials Research, 2003, 18, 1275-1283.	1.2	29

ARTICLE IF CITATIONS # Ceramic-based Layer Structures for Biomechanical Applications., 2004, , 1-8. 37 0 Dental ceramics and the molar crown testing ground. Journal of Applied Oral Science, 2004, 12, 26-36. Effect of Flaw State on the Strength of Brittle Coatings on Soft Substrates. Journal of the American 39 1.9 58 Ceramic Society, 2001, 84, 2377-2384. Fracture strength of all-ceramic crowns luted using two bonding methods. Journal of Prosthetic Dentistry, 2004, 91, 247-252. Influence of different adhesive resin cements on the fracture strength of aluminum oxide ceramic 41 1.1 59 posterior crowns. Journal of Prosthetic Dentistry, 2004, 92, 359-364. Influence of cyclic loading and luting agents on the fracture load of two all-ceramic crown systems. Journal of Prosthetic Dentistry, 2004, 92, 551-556. 1.1 114 Long-term strength of ceramics for biomedical applications. Journal of Biomedical Materials Research 43 3.0 69 Part B, 2004, 69B, 166-172. Effect of sandblasting on the long-term performance of dental ceramics. Journal of Biomedical Materials Research Part B, 2004, 71B, 381-386. 44 400 45 Materials design in the performance of all-ceramic crowns. Biomaterials, 2004, 25, 2885-2892. 5.7 198 A numerical study of contact damage and stress phenomena in curved porcelain/glass-filled polymer 3.8 bilayers. Composites Science and Technology, 2004, 64, 2207-2212. Dental ceramics: current thinking and trends. Dental Clinics of North America, 2004, 48, 513-530. 47 0.8 176 Influence of Test Methods on Fracture Toughness of a Dental Porcelain and a Soda Lime Glass. Journal of the American Ceramic Society, 2005, 88, 2868-2873. The influence of design parameters on the FEA-determined stress distribution in CAD–CAM produced 49 1.6 149 all-ceramic dental crowns. Dental Materials, 2005, 21, 242-251. Fractographic analyses of three ceramic whole crown restoration failures. Dental Materials, 2005, 1.6 163 21, 920-929. The effect of a layer of resin luting agent on the biaxial flexure strength of two all-ceramic systems. 51 1.1 66 Journal of Prosthetic Dentistry, 2005, 93, 459-466. Flexural strength of a layered zirconia and porcelain dental all-ceramic system. Journal of Prosthetic Dentistry, 2005, 94, 125-131. Longevity and failure load of ceramic veneers with different preparation designs after exposure to 53 1.1 96 masticatory simulation. Journal of Prosthetic Dentistry, 2005, 94, 132-139. Fatigue sensitivity of Y-TZP to microscale sharp-contact flaws. Journal of Biomedical Materials 54 Research - Part B Applied Biomaterials, 2005, 72B, 388-392.

#	Article	IF	CITATIONS
55	Contact damage in brittle coating layers: Influence of surface curvature. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 179-185.	1.6	74
56	Evaluation of load testing of postendodontic restorationsin vitro: Linear compressive loading, gradual cycling loading and chewing simulation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74B, 829-834.	1.6	33
57	Failure of curved brittle layer systems from radial cracking in concentrated surface loading. Journal of Materials Research, 2005, 20, 2812-2819.	1.2	44
58	Competing Fracture Modes in Brittle Materials Subject to Concentrated Cyclic Loading in Liquid Environments: Monoliths. Journal of Materials Research, 2005, 20, 2021-2029.	1.2	46
59	The Effects of Stress State in Dental Biocontacts. , 2005, , 671.		0
60	Near-surface damage - a persistent problem in crowns obtained by computer-aided design and manufacturing. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2005, 219, 233-243.	1.0	107
61	Fracture resistance of different partial-coverage ceramic molar restorations. Journal of the American Dental Association, 2006, 137, 514-522.	0.7	84
62	Marginal toughness of bonded dental ceramics evaluated by determination of the crack length. Journal of Dentistry, 2006, 34, 146-154.	1.7	6
63	Influence of surface roughness on crack formation in a glass-ceramic bonded to a resin composite base. Journal of Oral Science, 2006, 48, 125-130.	0.7	0
64	Thin-wall ceramic CAD/CAM crown copings: strength and fracture pattern. Journal of Oral Rehabilitation, 2006, 33, 520-528.	1.3	42
65	Friction and wear behavior of dental feldspathic porcelain. Wear, 2006, 261, 611-621.	1.5	37
66	Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dental Materials, 2006, 22, 29-36.	1.6	146
67	Interfacial failure of a dental cement composite bonded to glass substrates. Dental Materials, 2006, 22, 585-591.	1.6	17
68	Failure of brittle layers on polymeric substrates from Vickers indentation. Scripta Materialia, 2006, 55, 335-338.	2.6	11
69	Evidence-based decision making: Guide to reading the dental materials literature. Journal of Prosthetic Dentistry, 2006, 95, 152-160.	1.1	18
70	A method of verifying and improving internal fit of all-ceramic restorations. Journal of Prosthetic Dentistry, 2006, 95, 82-83.	1.1	11
71	Resistance to fracture of two all-ceramic crown materials following endodontic access. Journal of Prosthetic Dentistry, 2006, 95, 33-41.	1.1	48
72	Fracture resistance of single-tooth implant-supported all-ceramic restorations: An in vitro study. Journal of Prosthetic Dentistry, 2006, 95, 111-116.	1.1	144

#	Article	IF	CITATIONS
73	Effect of off-axis concentrated loading on failure of curved brittle layer structures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 334-339.	1.6	34
74	Transverse fracture of brittle bilayers: Relevance to failure of all-ceramic dental crowns. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 58-65.	1.6	50
75	The Effect of Base Materials with Different Elastic Moduli on the Fracture Loads of Machinable Ceramic Inlays. Operative Dentistry, 2006, 31, 180-187.	0.6	14
76	Strength measurement of a brittle coating with a trilayer structure using instrumented indentation and in situobservation techniques. Philosophical Magazine, 2006, 86, 5383-5396.	0.7	10
77	Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: Trilayer structures. Journal of Materials Research, 2006, 21, 512-521.	1.2	39
78	The Strengthening Mechanism of Resin Cements on Porcelain Surfaces. Journal of Dental Research, 2006, 85, 272-276.	2.5	73
79	Joining Veneers to Ceramic Cores and Dentition with Adhesive Interlayers. Journal of Dental Research, 2007, 86, 745-748.	2.5	11
80	Sliding Contact Fatigue Damage in Layered Ceramic Structures. Journal of Dental Research, 2007, 86, 1046-1050.	2.5	86
81	Bi-Axial Flexure Strength, Weibull Modulus and Fracture Mode of Alumina Glass-Infiltrated Core/Veneer Ceramic Composites. Key Engineering Materials, 2007, 353-358, 1556-1559.	0.4	1
82	Resin Elasticity and the Strengthening of All-ceramic Restorations. Journal of Dental Research, 2007, 86, 519-523.	2.5	72
83	Recent Advances in Materials for All-Ceramic Restorations. Dental Clinics of North America, 2007, 51, 713-727.	0.8	88
84	Fractured incisors: a judicious restorative approach — part 2. International Dental Journal, 2007, 57, 100-108.	1.0	6
85	Fracture resistance of different zirconium dioxide three-unit all-ceramic fixed partial dentures. Acta Odontologica Scandinavica, 2007, 65, 14-21.	0.9	23
86	Fracture of Porcelain-veneered Structures in Fatigue. Journal of Dental Research, 2007, 86, 142-146.	2.5	97
87	Margin failures in brittle dome structures: Relevance to failure of dental crowns. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 78-85.	1.6	61
88	Role of substrate material in failure of crown-like layer structures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 305-311.	1.6	30
89	Role of indenter material and size in veneer failure of brittle layer structures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 253-259.	1.6	29
90	Substrate creep on the fatigue life of a model dental multilayer structure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 374-382.	1.6	20

#	Article	IF	CITATIONS
91	Design maps for failure of all-ceramic layer structures in concentrated cyclic loading. Acta Materialia, 2007, 55, 2479-2488.	3.8	25
92	Fracture strength of fourâ€unit Yâ€TZP FPD cores designed with varying connector diameter. An <i>inâ€vitro</i> study. Journal of Oral Rehabilitation, 2007, 34, 702-709.	1.3	79
93	Developing meaningful systematic review of CAD/CAM reconstructions and fiber-reinforced composites. Clinical Oral Implants Research, 2007, 18, 205-217.	1.9	27
94	Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses?. Clinical Oral Implants Research, 2007, 18, 218-231.	1.9	153
95	Failure Modes in Ceramic-Based Layer Structures: A Basis for Materials Design of Dental Crowns. Journal of the American Ceramic Society, 2007, 90, 1671-1683.	1.9	69
96	The Strength and Hydrothermal Stability of Y-TZP Ceramics for Dental Applications. International Journal of Applied Ceramic Technology, 2007, 4, 164-174.	1.1	40
97	Mechanical and fracture behavior of veneer–framework composites for all-ceramic dental bridges. Dental Materials, 2007, 23, 115-123.	1.6	64
98	Material characteristics of a novel shrinkage-free ZrSiO4 ceramic for the fabrication of posterior crowns. Dental Materials, 2007, 23, 785-791.	1.6	26
99	Fracture toughness comparison of three test methods with four dental porcelains. Dental Materials, 2007, 23, 905-910.	1.6	38
100	Failure mode of dental restorative materials under Hertzian indentation. Dental Materials, 2007, 23, 1236-1244.	1.6	27
101	The influence of cavity preparation design on fracture strength and mode of fracture of laboratory-processed composite resin restorations. Journal of Prosthetic Dentistry, 2007, 98, 277-284.	1.1	39
102	Engineering long term clinical success of advanced ceramic prostheses. Journal of Materials Science: Materials in Medicine, 2007, 18, 47-56.	1.7	169
103	The role of skirt geometry of dental crowns on the mechanics of failure: Experimental and numerical study. Medical Engineering and Physics, 2008, 30, 661-668.	0.8	19
104	Micro-fine finishing of a feldspar porcelain for dental prostheses. Medical Engineering and Physics, 2008, 30, 856-864.	0.8	11
105	Contact fracture of full-ceramic crowns subjected to occlusal loads. Journal of Biomechanics, 2008, 41, 2995-3001.	0.9	24
106	<i>In vitro</i> study of mean loads and modes of failure of allâ€ceramic crowns cemented with lightâ€cured or dualâ€cured luting cement, after 1 and 30 d of storage. European Journal of Oral Sciences, 2008, 116, 83-88.	0.7	8
107	Fracture Strength and Fatigue Resistance of Allâ€Ceramic Molar Crowns Manufactured with CAD/CAM Technology. Journal of Prosthodontics, 2008, 17, 370-377.	1.7	104
108	Customization of milled zirconia copings for all-ceramic crowns: A clinical report. Journal of Prosthetic Dentistry, 2008, 99, 169-173.	1.1	89

#	Article	IF	CITATIONS
109	The effect of finish line preparation and layer thickness on the failure load and fractography of ZrO2 copings. Journal of Prosthetic Dentistry, 2008, 99, 369-376.	1.1	70
110	Hertzian contact response of dentin with loading rate and orientation. Archives of Oral Biology, 2008, 53, 729-735.	0.8	3
111	Effect of occlusal contact size on interfacial stresses and failure of a bonded ceramic: FEA and monotonic loading analyses. Dental Materials, 2008, 24, 403-409.	1.6	50
112	Strength influencing variables on CAD/CAM zirconia frameworks. Dental Materials, 2008, 24, 633-638.	1.6	226
113	Clinical performance and wear characteristics of veneered lithia-disilicate-based ceramic crowns. Dental Materials, 2008, 24, 667-673.	1.6	54
114	Influence of leucite content on slow crack growth of dental porcelains. Dental Materials, 2008, 24, 1114-1122.	1.6	43
115	Failure behavior of glass ionomer cement under Hertzian indentation. Dental Materials, 2008, 24, 1223-1229.	1.6	13
116	Effect of mouth-motion fatigue and thermal cycling on the marginal accuracy of partial coverage restorations made of various dental materials. Dental Materials, 2008, 24, 1248-1257.	1.6	39
117	Application of analytical stress solutions to bi-axially loaded dental ceramic–dental cement bilayers. Dental Materials, 2008, 24, 1336-1342.	1.6	19
118	Fracture frequency of all-ceramic crowns during dynamic loading in a chewing simulator using different loading and luting protocols. Dental Materials, 2008, 24, 1352-1361.	1.6	84
119	Initial versus final fracture of metal-free crowns, analyzed via acoustic emission. Dental Materials, 2008, 24, 1289-1295.	1.6	49
120	Fracture resistance and failure patterns of endodontically treated mandibular molars with and without glass fiber post in combination with a zirconia–ceramic crown. Journal of Dentistry, 2008, 36, 513-519.	1.7	42
121	Damage Maps for Layered Ceramics under Simulated Mastication. Journal of Dental Research, 2008, 87, 671-675.	2.5	55
122	Quantifying the Strength of a Resin-coated Dental Ceramic. Journal of Dental Research, 2008, 87, 542-547.	2.5	52
123	STRESS DISTRIBUTION AND DAMAGE MODE OF CERAMIC–DENTIN BILAYER SYSTEMS. Modern Physics Letters B, 2008, 22, 1317-1327.	1.0	1
124	Veneer <i>vs</i> . Core Failure in Adhesively Bonded All-ceramic Crown Layers. Journal of Dental Research, 2008, 87, 363-366.	2.5	8
125	Indenter/Coating Modulus Mismatches and Load Location Effects on Contact Damage in Curved Brittle-Based Bi-Layer Structures. Advanced Materials Research, 2008, 41-42, 33-39.	0.3	0
126	Finite element analysis of stresses in dental crowns. , 2008, , 343-359.		1

ARTICLE IF CITATIONS # Effects of Dental Adhesive Cement and Surface Treatment on Bond Strength and Leakage of Zirconium 127 0.8 44 Oxide Ceramics. Dental Materials Journal, 2008, 27, 159-171. Influence of Layer Thickness on Stress Distribution in Ceramic-Cement-Dentin Multilayer Systems. 0.8 Dental Materials Journal, 2008, 27, 626-632. 129 The Ferrule Effect. Dental Update, 2008, 35, 222-228. 0.1 31 Effect of surface treatmet on the shear bond strength of a zirconia core to veneering ceramic. The Journal of Korean Academy of Prosthodontics, 2009, 47, 199. A comparative study on the correlation between Korean foods and the fractures of PFG and all 131 ceramic crowns for posterior applications. The Journal of Korean Academy of Prosthodontics, 2009, 0.0 2 47, 156. The fracture resistance of heat pressed ceramics with wire reinforcement. The Journal of Korean Academy of Prosthodontics, 2009, 47, 191. CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results 133 0.7 85 of a randomized controlled clinical trial. Journal of Applied Oral Science, 2009, 17, 49-55. Fracture Modes in Human Teeth. Journal of Dental Research, 2009, 88, 224-228. 2.5 134 Laboratory Simulation of Y-TZP All-ceramic Crown Clinical Failures. Journal of Dental Research, 2009, 135 2.5 142 88, 382-386. Fracture modes in curved brittle layers subject to concentrated cyclic loading in liquid 1.2 environments. Journal of Materials Research, 2009, 24, 1075-1081. The influence of veneering porcelain thickness of all-ceramic and metal ceramic crowns on failure 137 1.1 65 resistance after cyclic loading. Journal of Prosthetic Dentistry, 2009, 101, 119-127. Bone metabolic activity around dental implants under loading observed using bone scintigraphy. 138 1.1 Journal of Prosthetic Dentistry, 2009, 101, 127. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings â€" A new 139 1.6 224 fabrication mode for all-ceramic restorations. Dental Materials, 2009, 25, 121-128. Bridging the gap between clinical failure and laboratory fracture strength tests using a 140 1.6 116 fractographic approach. Dental Materials, 2009, 25, 383-391. Graded structures for damage resistant and aesthetic all-ceramic restorations. Dental Materials, 141 1.6 117 2009, 25, 781-790. Off-axis sliding contact reliability and failure modes of veneered alumina and zirconia. Dental 142 Materials, 2009, 25, 892-898. Hertzian load-bearing capacity of a ceramic-reinforced glass ionomer cement stored wet and dry. 143 1.6 13 Dental Materials, 2009, 25, 952-955. Fatigue testing of two porcelain–zirconia all-ceramic crown systems. Dental Materials, 2009, 25, 144 1.6 1122-1127.

#	Article	IF	CITATIONS
145	Competition of fracture mechanisms in monolithic dental ceramics: Flat model systems. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 402-411.	1.6	67
146	Effects of geometry on fracture initiation and propagation in allâ€ceramic crowns. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 436-446.	1.6	37
147	Effect of framework design on crown failure. European Journal of Oral Sciences, 2009, 117, 194-199.	0.7	51
148	Confocal Examination of Subsurface Cracking in Ceramic Materials. Journal of Prosthodontics, 2009, 18, 550-559.	1.7	22
149	Effect of Two Selfâ€Adhesive Cements on Marginal Adaptation and Strength of Esthetic Ceramic CAD/CAM Molar Crowns. Journal of Prosthodontics, 2009, 18, 403-410.	1.7	30
150	Comparison of the Load at Fracture of Turkomâ€Cera to Procera AllCeram and Inâ€Ceram Allâ€Ceramic Restorations. Journal of Prosthodontics, 2009, 18, 484-488.	1.7	16
151	Subsurface damage induced in dental resurfacing of a feldspar porcelain with coarse diamond burs. Journal of Biomechanics, 2009, 42, 355-360.	0.9	28
152	Predicting failure in mammalian enamel. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 33-42.	1.5	59
153	Influence of substructure design and spacer settings on the in vitro performance of molar zirconia crowns. Journal of Dentistry, 2009, 37, 978-983.	1.7	137
154	CAD/CAM to fabricate ceramic implant abutments and crowns: a preliminary <i>in vitro</i> study. Australian Dental Journal, 2009, 54, 12-16.	0.6	5
155	Dynamic fatigue and fracture resistance of non-retentive all-ceramic full-coverage molar restorations. Influence of ceramic material and preparation design. Dental Materials, 2010, 26, 533-538.	1.6	78
156	Interactive effect of indenter size and specimen thickness in Hertzian indentation test. Dental Materials, 2010, 26, 539-544.	1.6	4
157	Material properties and fractography of an indirect dental resin composite. Dental Materials, 2010, 26, 589-599.	1.6	69
158	Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements. Dental Materials, 2010, 26, 915-921.	1.6	28
159	In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. Journal of Prosthetic Dentistry, 2010, 104, 149-157.	1.1	186
160	Development of a clinically validated bulk failure test for ceramic crowns. Journal of Prosthetic Dentistry, 2010, 104, 228-238.	1.1	202
161	Porcelain Fracture Resistance of Screwâ€Retained, Cementâ€Retained, and Screwâ€Cementâ€Retained Implantâ€Supported Metal Ceramic Posterior Crowns. Journal of Prosthodontics, 2010, 19, 263-273.	1.7	60
162	Thermal/mechanical simulation and laboratory fatigue testing of an alternative yttria tetragonal zirconia polycrystal coreâ€veneer allâ€ceramic layered crown design. European Journal of Oral Sciences, 2010, 118, 202-209.	0.7	61

#	Article	IF	CITATIONS
163	Influence of surface treatment and cyclic loading on the durability of repaired all-ceramic crowns. Journal of Applied Oral Science, 2010, 18, 194-200.	0.7	32
164	Mechanical behavior of non veneered three unit fixed partial dentures of alumina-zirconia Under cyclic load in wet environment. Materials Research, 2010, 13, 107-111.	0.6	2
165	Comportamento biomecânico das cerâmicas odontológicas: revisão. Ceramica, 2010, 56, 148-155.	0.3	6
166	Graded Structures for All-ceramic Restorations. Journal of Dental Research, 2010, 89, 417-421.	2.5	77
167	Biomechanical Evaluation of an Anatomically Correct All-Ceramic Tooth-Crown System Configuration: Core Layer Multivariate Analysis Incorporating Clinically Relevant Variables. Journal of Biomechanical Engineering, 2010, 132, 051001.	0.6	6
168	Fatigue and damage accumulation of veneer porcelain pressed on Y-TZP. Journal of Dentistry, 2010, 38, 318-324.	1.7	37
169	Fatigue life and failure modes of crowns systems with a modified framework design. Journal of Dentistry, 2010, 38, 626-634.	1.7	70
170	Effect of firing protocols on cohesive failure of all-ceramic crowns. Journal of Dentistry, 2010, 38, 987-994.	1.7	76
171	Performance of Zirconia for Dental Healthcare. Materials, 2010, 3, 863-896.	1.3	59
172	The influence of incisal veneering porcelain thickness of two metal ceramic crown systems on failure resistance after cyclic loading. Journal of Prosthetic Dentistry, 2010, 103, 275-282.	1.1	14
173	Ceramics for Dental Applications: A Review. Materials, 2010, 3, 351-368.	1.3	337
174	Influence of water sorption of the underlying abutment on fracture resistance of zirconia copings. Acta Odontologica Scandinavica, 2011, 69, 170-175.	0.9	3
175	The influence of support properties and complexity on fracture strength and fracture mode of all-ceramic fixed dental prostheses. Acta Odontologica Scandinavica, 2011, 69, 229-237.	0.9	37
176	Modified Y-TZP Core Design Improves All-ceramic Crown Reliability. Journal of Dental Research, 2011, 90, 104-108.	2.5	84
177	All-Ceramic Systems: Laboratory and Clinical Performance. Dental Clinics of North America, 2011, 55, 333-352.	0.8	208
178	Transient and residual stresses in a pressable glass–ceramic before and after resin–cement coating determined using profilometry. Journal of Dentistry, 2011, 39, 368-375.	1.7	17
179	Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques. Journal of Dentistry, 2011, 39, 489-498.	1.7	61
180	The allâ€ceramic, inlay supported fixed partial denture. Part 2. Fixed partial denture design: a finite element analysis. Australian Dental Journal, 2011, 56, 302-311.	0.6	28

#	Article	IF	CITATIONS
181	Strength of a New All-Ceramic Restorative Material "Turkom-Cera―Compared to Two Other Alumina-Based All-Ceramic Systems. , 0, , .		0
182	The influence of zirconia coping designs on the fracture load of all-ceramic molar crowns. Dental Materials Journal, 2011, 30, 281-285.	0.8	45
183	The effect of the elastic modulus of endodontic posts on static load failure. International Endodontic Journal, 2011, 44, 458-468.	2.3	7
184	Influence of Veneering Materials on the Marginal Fit and Fracture Resistance of an Alumina Core System. Journal of Prosthodontics, 2011, 20, 45-51.	1.7	11
185	Fracture Resistance of Ceramic Veneers with Different Preparation Designs. Journal of Prosthodontics, 2011, 20, 380-384.	1.7	22
186	In Vitro Study of Fracture Load and Fracture Pattern of Ceramic Crowns: A Finite Element and Fractography Analysis. Journal of Prosthodontics, 2011, 20, 447-455.	1.7	23
187	Fatigue resistance and failure mode of novel-design anterior single-tooth implant restorations: influence of material selection for type III veneers bonded to zirconia abutments. Clinical Oral Implants Research, 2011, 22, 195-200.	1.9	15
188	Fatigue resistance and failure mode of CAD/CAM composite resin implant abutments restored with type III composite resin and porcelain veneers. Clinical Oral Implants Research, 2011, 22, 1275-1281.	1.9	18
189	Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. Journal of Prosthetic Dentistry, 2011, 105, 217-226.	1.1	167
190	Complete and partial contour zirconia designs for crowns and fixed dental prostheses: A clinical report. Journal of Prosthetic Dentistry, 2011, 106, 145-152.	1.1	73
191	The effect of endodontic access preparation on the failure load of lithium disilicate glass-ceramic restorations. Journal of Prosthetic Dentistry, 2011, 106, 328-336.	1.1	20
192	A new method to test the fracture probability of all-ceramic crowns with a dual-axis chewing simulator. Dental Materials, 2011, 27, e10-e19.	1.6	46
193	Transient and residual stresses induced during the sintering of two dentin ceramics. Dental Materials, 2011, 27, 379-385.	1.6	14
194	Joining dental ceramic layers with glass. Dental Materials, 2011, 27, 1011-1016.	1.6	17
195	Flexural strength and failure modes of layered ceramic structures. Dental Materials, 2011, 27, 1259-1266.	1.6	124
196	Influence of the fabrication process on the in vitro performance of fixed dental prostheses with zirconia substructures. Clinical Oral Investigations, 2011, 15, 1007-1012.	1.4	34
197	Improving Fatigue Damage Resistance of Alumina through Surface Grading. Journal of Dental Research, 2011, 90, 1026-1030.	2.5	12
198	Fracture resistance and marginal discrepancy of porcelain laminate veneers influenced by preparation design and restorative material in vitro. Journal of Dentistry, 2012, 40, 202-209.	1.7	57

#	Article	IF	CITATIONS
199	Ferrule Effect: A Literature Review. Journal of Endodontics, 2012, 38, 11-19.	1.4	209
200	Machining variability impacts on the strength of a â€~chair-side' CAD–CAM ceramic. Dental Materials, 2012, 28, 880-887.	1.6	44
201	Insights into "bonding―of all-ceramics influenced by cement, sandblasting and water storage time. Dental Materials, 2012, 28, 939-944.	1.6	17
202	Fracture mode during cyclic loading of implant-supported single-tooth restorations. Journal of Prosthetic Dentistry, 2012, 108, 74-83.	1.1	18
203	Aesthetic dental practices by dental and prosthodontic practitioners in Riyadh, Saudi Arabia. King Saud University Journal of Dental Sciences, 2012, 3, 77-83.	0.1	2
204	In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. Journal of Dentistry, 2012, 40, 921-928.	1.7	88
205	<i>In vitro</i> evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. Journal of Advanced Prosthodontics, 2012, 4, 162.	1.1	48
206	Finite element analysis of adhesive endo-crowns of molars at different height levels of buccally applied load. Journal of Dental Biomechanics, 2012, 3, 1758736012455421.	1.2	24
207	Designing functionally graded materials with superior load-bearing properties. Acta Biomaterialia, 2012, 8, 1101-1108.	4.1	96
208	Fatigue Resistance and Microleakage of CAD/CAM Ceramic and Composite Molar Crowns. Journal of Prosthodontics, 2012, 21, 28-32.	1.7	76
209	Fracture load of tooth–implantâ€retained zirconia ceramic fixed dental prostheses: effect of span length and preparation design. Clinical Oral Implants Research, 2012, 23, 719-725.	1.9	3
210	Fracture strength of yttriaâ€stabilized tetragonal zirconia polycrystals crowns with different design: an <i>in vitro</i> study. Clinical Oral Implants Research, 2012, 23, 820-826.	1.9	48
211	Fatigue resistance and failure mode of adhesively restored custom implant zirconia abutments. Clinical Oral Implants Research, 2012, 23, 1360-1368.	1.9	12
212	Computerâ€Aidedâ€Design/Computerâ€Assistedâ€Manufactured Adhesive Restoration of Molars with a Compromised Cusp: Effect of Fiberâ€Reinforced Immediate Dentin Sealing and Cusp Overlap on Fatigue Strength. Journal of Esthetic and Restorative Dentistry, 2012, 24, 135-146.	1.8	20
213	Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal–ceramic fixed dental prostheses. Dental Materials, 2012, 28, 102-111.	1.6	220
214	In vitro performance of full-contour zirconia single crowns. Dental Materials, 2012, 28, 449-456.	1.6	223
215	Modeling of ultrathin occlusal veneers. Dental Materials, 2012, 28, 777-782.	1.6	63
216	The Effect of Surface Treatment of the Interfacial Surface on Fatigueâ€Related Microtensile Bond Strength of Milled Zirconia to Veneering Porcelain, Journal of Prosthodontics, 2012, 21, 346-352	1.7	31

#	Article	IF	CITATIONS
217	Overview: Damage resistance of graded ceramic restorative materials. Journal of the European Ceramic Society, 2012, 32, 2623-2632.	2.8	52
218	Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements. Journal of Materials Science: Materials in Medicine, 2012, 23, 677-685.	1.7	18
219	Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation. Acta Biomaterialia, 2013, 9, 5273-5279.	4.1	55
220	Endodontic access cavity simulation in ceramic dental crowns. Dental Materials, 2013, 29, 626-634.	1.6	8
221	Fracture Resistance of Teeth Restored With All-ceramic Inlays and Onlays: An In Vitro Study. Operative Dentistry, 2013, 38, 626-634.	0.6	34
222	Evaluation of Fracture Resistance and Failure Risks of Posterior Partial Coverage Restorations. Journal of Esthetic and Restorative Dentistry, 2013, 25, 110-122.	1.8	28
223	Fractographic analyses of all-ceramic crowns: A study of 27 clinically fractured crowns. Dental Materials, 2013, 29, e78-e84.	1.6	55
224	Tomography of indentation cracks in feldspathic dental porcelain on zirconia. Dental Materials, 2013, 29, 348-356.	1.6	17
225	Edge chipping and flexural resistance of monolithic ceramics. Dental Materials, 2013, 29, 1201-1208.	1.6	180
226	Thermo and mechanical cycling and veneering method do not influence Y-TZP core/veneer interface bond strength. Journal of Dentistry, 2013, 41, 307-312.	1.7	27
227	Simulation of cumulative damage associated with long term cyclic loading using a multi-level strain accommodating loading protocol. Dental Materials, 2013, 29, 252-258.	1.6	25
228	Comparison of fracture resistance of pressable metal ceramic custom implant abutment with a commercially fabricated CAD/CAM zirconia implant abutment. Journal of Prosthetic Dentistry, 2013, 110, 389-396.	1.1	19
229	Fracture resistance of titanium and zirconia abutments: An in vitro study. Journal of Prosthetic Dentistry, 2013, 109, 304-312.	1.1	91
230	Comparison of Fracture Resistance between Cast Posts and Fiber Posts: A Meta-analysis of Literature. Journal of Endodontics, 2013, 39, 11-15.	1.4	95
231	Influence of convergence angle of tooth preparation on the fracture resistance of Y-TZP-based all-ceramic restorations. Dental Materials, 2013, 29, 339-347.	1.6	56
232	Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: Finite element and theoretical analyses. Dental Materials, 2013, 29, 742-751.	1.6	105
233	Effects of extreme cooling methods on mechanical properties and shear bond strength of bilayered porcelain/3Y-TZP specimens. Journal of Dentistry, 2013, 41, 356-362.	1.7	14
234	Three-dimensional finite element modelling of all-ceramic restorations based on micro-CT. Journal of Dentistry, 2013, 41, 412-419.	1.7	45

#		IF	CITATIONS
235	Testing rate and cementation seating load effects on resin-strengthening of a dental porcelain analogue. Journal of Dentistry, 2013, 41, 514-520.	1.7	9
236	Hertzian indentation testing of glass-ionomer restoratives: A reliable and clinically relevant testing approach. Journal of Dentistry, 2013, 41, 968-973.	1.7	7
237	Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?. Journal of Dentistry, 2013, 41, 24-30.	1.7	24
238	Estimation of the reliability of all-ceramic crowns using finite element models and the stress–strength interference theory. Computers in Biology and Medicine, 2013, 43, 1214-1220.	3.9	18
239	Fatigue of dental ceramics. Journal of Dentistry, 2013, 41, 1135-1147.	1.7	231
240	Fracture Load of Monolithic CAD/CAM Lithium Disilicate Ceramic Crowns and Veneered Zirconia Crowns as a Posterior Implant Restoration. Implant Dentistry, 2013, 22, 66-70.	1.7	39
241	Plastic Damage Induced Fracture Behaviors of Dental Ceramic Layer Structures Subjected to Monotonic Load. Journal of Prosthodontics, 2013, 22, 456-464.	1.7	7
242	Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns. Journal of Advanced Prosthodontics, 2013, 5, 92.	1.1	10
243	Effect of thickness of zirconia-ceramic crown frameworks on strength and fracture pattern. Dental Materials Journal, 2013, 32, 189-194.	0.8	41
244	In vitro comparison of fracture load of implant-supported, zirconia-based, porcelain- and composite-layered restorations after artificial aging. Dental Materials Journal, 2014, 33, 607-613.	0.8	18
245	Total Occlusal Convergence and Margin Design in Relation to Survival of Glass-Ceramic Crowns: A Review. Current Research in Dentistry, 2014, 5, 10-16.	0.1	1
246	Resistance to Contact Deformation and Damage of Hard Ceramics. , 2014, , 367-383.		1
247	Fractographic features of glassâ€ceramic and zirconiaâ€based dental restorations fractured during clinical function. European Journal of Oral Sciences, 2014, 122, 238-244.	0.7	62
248	Effects of Differing Thickness and Mechanical Properties of Cement on the Stress Levels and Distributions in a Threeâ€Unit Zirconia Fixed Prosthesis by FEA. Journal of Prosthodontics, 2014, 23, 358-366	1.7	15
249	Influence of surrounding wall thickness on the fatigue resistance of molars restored with ceramic inlay. Brazilian Oral Research, 2014, 28, 1-8.	0.6	9
250	Postfatigue fracture resistance of modified prefabricated zirconia implant abutments. Journal of Prosthetic Dentistry, 2014, 112, 299-305.	1.1	25
251	A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue. Journal of Prosthetic Dentistry, 2014, 112, 878-885.	1.1	36
252	Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process. Journal of Prosthetic Dentistry, 2014, 111, 310-317.	1.1	67

#	Article	IF	CITATIONS
253	Investigation of the time-dependent wear behavior of veneering ceramic in porcelain fused to metal crowns during chewing simulations. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 23-32.	1.5	17
254	Strength Determination of Brittle Materials as Curved Monolithic Structures. Journal of Dental Research, 2014, 93, 412-416.	2.5	7
255	Surface structure and mechanical properties of impaction-modified Y-TZP. Dental Materials, 2014, 30, 808-816.	1.6	9
256	Biaxial flexure strength determination of endodontically accessed ceramic restorations. Dental Materials, 2014, 30, 902-909.	1.6	11
257	The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dental Materials, 2014, 30, 954-962.	1.6	166
258	Effect of heat treatment and in vitro aging on the microstructure and mechanical properties of cold isostatic-pressed zirconia ceramics for dental restorations. Dental Materials, 2014, 30, e272-e282.	1.6	21
259	Reliability Estimation for Single-unit Ceramic Crown Restorations. Journal of Dental Research, 2014, 93, 923-928.	2.5	15
260	Influence of No-Ferrule and No-Post Buildup Design on the Fatigue Resistance of Endodontically Treated Molars Restored With Resin Nanoceramic CAD/CAM Crowns. Operative Dentistry, 2014, 39, 595-602.	0.6	68
261	Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns. Dental Materials, 2014, 30, 164-171.	1.6	68
262	Effect of the infrastructure material on the failure behavior of prosthetic crowns. Dental Materials, 2014, 30, 578-585.	1.6	9
263	Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontologica Scandinavica, 2014, 72, 145-153.	0.9	126
264	Fatigue Resistance and Failure Mode of Adhesively Restored Custom Metal–Composite Resin Premolar Implant Abutments. International Journal of Oral and Maxillofacial Implants, 2014, 29, 364-373.	0.6	3
266	Fracture strength of ceramic monolithic crown systems of different thickness. Journal of Oral Science, 2015, 57, 255-261.	0.7	60
267	Microwave Sintering of Ceramics for Dentistry: Part 2. Dentistry (Sunnyvale, Calif), 2015, 05, .	0.1	0
268	Fracture resistance of computerâ€aided design/computerâ€aided manufacturingâ€generated composite resinâ€based molar crowns. European Journal of Oral Sciences, 2015, 123, 122-129.	0.7	35
269	Crown fracture: Failure load, stress distribution, and fractographic analysis. Journal of Prosthetic Dentistry, 2015, 114, 447-455.	1.1	29
270	Survival rate of lithium disilicate restorations at 4 years: A retrospective study. Journal of Prosthetic Dentistry, 2015, 114, 364-366.	1.1	63
271	Influence of the resin cement thickness on the fatigue failure loads of CAD/CAM feldspathic crowns. Dental Materials, 2015, 31, 895-900.	1.6	56

#	Article	IF	CITATIONS
272	Fracture toughness testing: A discriminatory mechanical testing performance indicator for glass-ionomer restoratives?. Dental Materials, 2015, 31, 877-886.	1.6	7
273	Contact fatigue of veneer feldspathic porcelain on dental zirconia. Dental Materials, 2015, 31, 217-224.	1.6	12
274	Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontologica Scandinavica, 2015, 73, 602-608.	0.9	164
275	Fracture Strength of Zirconia and Alumina Ceramic Crowns Supported by Implants. Journal of Oral Implantology, 2015, 41, 352-359.	0.4	16
276	Effects of cementation surface modifications on fracture resistance of zirconia. Dental Materials, 2015, 31, 435-442.	1.6	32
278	Microstructural evolution and physical behavior of a lithium disilicate glass–ceramic. Dental Materials, 2015, 31, 928-940.	1.6	118
279	Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process. Journal of Prosthetic Dentistry, 2015, 114, 574-579.	1.1	39
280	Fracture resistance of lithium disilicate restorations after endodontic access preparation: An inÂvitro study. Journal of Prosthetic Dentistry, 2015, 114, 580-586.	1.1	19
281	Loading capacity of zirconia implant supported hybrid ceramic crowns. Dental Materials, 2015, 31, e279-e288.	1.6	32
282	On crack growth in molar teeth from contact on the inclined occlusal surface. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 44, 76-84.	1.5	9
283	Correlation of flexural strength of coupons versus strength of crowns fabricated with different zirconia materials with and without aging. Journal of the American Dental Association, 2015, 146, 904-912.e1.	0.7	13
284	Fracture Resistance and Microleakage of Endocrowns Utilizing Three CAD-CAM Blocks. Operative Dentistry, 2015, 40, 201-210.	0.6	112
285	On edge chipping testing and some personal perspectives on the state of the art of mechanical testing. Dental Materials, 2015, 31, 26-36.	1.6	38
286	Fracture resistance of endodontically treated canines restored with different sizes of fiber post and all-ceramic crowns. Journal of Advanced Prosthodontics, 2016, 8, 158.	1.1	6
288	Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers. Clinical, Cosmetic and Investigational Dentistry, 2016, 8, 15.	0.7	17
289	Effect of screw access hole preparation on fracture load of implant-supported zirconia-based crowns: an in vitro study. Journal of Dental Research, Dental Clinics, Dental Prospects, 2016, 10, 181-188.	0.4	13
290	Fracture Load Before and After Veneering Zirconia Posterior Fixed Dental Prostheses. Journal of Prosthodontics, 2016, 25, 550-556.	1.7	19
291	Fatigue analysis of computerâ€aided design/computerâ€aided manufacturing resinâ€based composite vs. lithium disilicate glassâ€ceramic. European Journal of Oral Sciences, 2016, 124, 387-395.	0.7	29

Сітат	ion Report	
	IF	CITATIONS
a Repair Method. International	1.1	5
premolars. Ceramics	2.3	27

292	Comparison of the Effectiveness of Bonding Composite to Zirconia as a Repair Method. International Journal of Applied Ceramic Technology, 2016, 13, 405-411.	1.1	5
293	Fatigue resistance of monolithic CAD/CAM ceramic crowns on human premolars. Ceramics International, 2016, 42, 15709-15717.	2.3	27
294	Surface and Mechanical Characterization of Dental Yttria-Stabilized Tetragonal Zirconia Polycrystals (3Y-TZP) After Different Aging Processes. Microscopy and Microanalysis, 2016, 22, 1179-1188.	0.2	26
295	Fracture rate of monolithic zirconia restorations up to 5 years: A dental laboratory survey. Journal of Prosthetic Dentistry, 2016, 116, 436-439.	1.1	81
296	A Critical Perspective on Mechanical Testing of Implants and Prostheses. Advances in Dental Research, 2016, 28, 18-27.	3.6	91
297	Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and meta-analysis. Dental Materials, 2016, 32, 827-845.	1.6	124
298	Fatigue behavior of zirconia under different loading conditions. Dental Materials, 2016, 32, 915-920.	1.6	23
299	The mechanical behavior of the material-tissue and material-material interface in dental reconstructions. International Journal of Adhesion and Adhesives, 2016, 69, 2-14.	1.4	8
300	Putting inÂvitro evidence into perspective. Journal of the American Dental Association, 2016, 147, 313-314.	0.7	1
301	The effect of endodontic access on all-ceramic crowns: A systematic review of in vitro studies. Journal of Dentistry, 2016, 53, 22-29.	1.7	18
302	Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments. International Journal of Oral and Maxillofacial Implants, 2016, 31, 304-309.	0.6	37
303	Effect of Connector Design on Fracture Resistance in Zirconia-based Fixed Partial Dentures for Upper Anterior Region. Bulletin of Tokyo Dental College, The, 2016, 57, 65-74.	0.1	8
304	Fracture resistance and failure mode of endodontically treated teeth restored using ceramic onlays with or without fiber posts <i>—</i> an ex vivo study. Dental Traumatology, 2016, 32, 328-335.	0.8	8
305	Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement thickness. Ceramics International, 2016, 42, 14928-14936.	2.3	17
306	Effect of cements on fracture resistance of monolithic zirconia crowns. Acta Biomaterialia Odontologica Scandinavica, 2016, 2, 12-19.	4.0	47
307	Lithium Disilicate Restorations Fatigue Testing Parameters: A Systematic Review. Journal of Prosthodontics, 2016, 25, 116-126.	1.7	88
309	Fracture-resistant monolithic dental crowns. Dental Materials, 2016, 32, 442-449.	1.6	83
310	Dental prostheses mimic the natural enamel behavior under functional loading: A review article. Japanese Dental Science Review, 2016, 52, 2-13.	2.0	19

ARTICLE

#

#	Article	IF	CITATIONS
311	Reliability and failure behavior of CAD-on fixed partial dentures. Dental Materials, 2016, 32, 624-630.	1.6	29
312	Fatigue limit of polycrystalline zirconium oxide ceramics: Effect of grinding and low-temperature aging. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 45-54.	1.5	53
313	Survival of resin infiltrated ceramics under influence of fatigue. Dental Materials, 2016, 32, 529-534.	1.6	36
314	Fracture resistance of monolithic zirconia crowns with different occlusal thicknesses in implant prostheses. Journal of Prosthetic Dentistry, 2016, 115, 76-83.	1.1	27
315	Influence of Adhesive Core Buildup Designs on the Resistance of Endodontically Treated Molars Restored With Lithium Disilicate CAD/CAM Crowns. Operative Dentistry, 2016, 41, 76-82.	0.6	34
316	The impact of endodontic access on the biaxial flexure strength of dentineâ€bonded crown substrates – an <i>inÂvitro</i> study. International Endodontic Journal, 2017, 50, 184-193.	2.3	2
317	Effect of material and fabrication technique on marginal fit and fracture resistance of adhesively luted inlays made of CAD/CAM ceramics and hybrid materials. Journal of Adhesion Science and Technology, 2017, 31, 55-70.	1.4	20
318	Fracture of layered zirconia restorations at 5 years: A dental laboratory survey. Journal of Prosthetic Dentistry, 2017, 118, 353-356.	1.1	21
319	The substitution of the implant and abutment for their analogs in mechanical studies: In vitro and in silico analysis. Materials Science and Engineering C, 2017, 75, 50-54.	3.8	6
320	Ferrule-Effect Dominates Over Use of a Fiber Post When Restoring Endodontically Treated Incisors: An In Vitro Study. Operative Dentistry, 2017, 42, 396-406.	0.6	59
321	Effect of cement space on stress distribution in Y-TZP based crowns. Dental Materials, 2017, 33, 144-151.	1.6	37
322	Fracture behaviors of monolithic lithium disilicate ceramic crowns with different thicknesses. RSC Advances, 2017, 7, 25542-25548.	1.7	10
323	Influence of surface finishing on fracture load and failure mode of glass ceramic crowns. Journal of Prosthetic Dentistry, 2017, 118, 511-516.	1.1	23
324	Survival and testing parameters of zirconiaâ€based crowns under cyclic loading in an aqueous environment: A systematic review. Journal of Investigative and Clinical Dentistry, 2017, 8, e12261.	1.8	14
325	Influence of misfit on the occurrence of veneering porcelain fractures (chipping) in implantâ€supported metalâ€ceramic fixed dental prostheses: an <i>inÀvitro</i> pilot trial. Clinical Oral Implants Research, 2017, 28, 1381-1387.	1.9	7
326	Reliability and mode of failure of bonded monolithic and multilayer ceramics. Dental Materials, 2017, 33, 191-197.	1.6	48
327	Dimensional changes from the sintering process and fit of Y-TZP copings: Micro-CT analysis. Dental Materials, 2017, 33, e405-e413.	1.6	23
328	Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics. Dental Materials, 2017, 33, 1286-1297.	1.6	61

#	Article	IF	CITATIONS
329	Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 342-348.	1.5	56
331	Using a chewing simulator for fatigue testing of metal ceramic crowns. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 770-780.	1.5	28
332	Fracture resistance of zirconia-based implant abutments after artificial long-term aging. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 224-232.	1.5	31
333	Fracture strength of veneered translucent zirconium dioxide crowns with different porcelain thicknesses. Acta Biomaterialia Odontologica Scandinavica, 2017, 3, 74-83.	4.0	9
334	Fracture resistance of zirconia-composite veneered crowns in comparison with zirconia-porcelain crowns. Dental Materials Journal, 2017, 36, 289-295.	0.8	19
335	Functional Biomimetic Dental Restoration. , 2017, , .		0
336	<i>In vitro</i> study of the fracture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses. Journal of Advanced Prosthodontics, 2017, 9, 244.	1.1	27
337	Polishing of Monolithic Zirconia Crowns—Results of Different Dental Practitioner Groups. Dentistry Journal, 2017, 5, 30.	0.9	11
338	Effect of Abutment Preparation and Fatigue Loading in a Moist Environment on the Fracture Resistance of the One-Piece Zirconia Dental Implant. International Journal of Oral and Maxillofacial Implants, 2017, 32, 533-540.	0.6	3
339	Comparing the Fracture Resistance of Alternatively Engineered Zirconia Abutments with Original Equipment Manufactured Abutments with Different Implant Connection Designs. International Journal of Oral and Maxillofacial Implants, 2017, 32, 992-1000.	0.6	9
340	Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness. Journal of Advanced Prosthodontics, 2017, 9, 416.	1.1	17
341	Correlations among bending test methods for dental hard resins. Dental Materials Journal, 2017, 36, 491-496.	0.8	10
342	Influence of thermal and mechanical fatigue on the shear bond strength of different all-ceramic systems. Journal of Clinical and Experimental Dentistry, 2017, 9, 0-0.	0.5	4
343	In vitro methods to evaluate the mechanical behavior of teeth restored with post and core: a structured review. Revista Da Faculdade De Odontologia (Universidade De Passo Fundo), 2017, 22, .	0.2	0
344	Understanding the mechanical behavior of the material–tissue and material–material interface in dental reconstructions. , 2017, , 113-145.		1
345	Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 52-60.	1.5	36
347	Fracture load of metal-ceramic, monolithic, and bi-layered zirconia-based posterior fixed dental prostheses after thermo-mechanical cycling. Journal of Dentistry, 2018, 73, 97-104.	1.7	33
348	Does veneering technique affect the flexural strength or load-to-failure of bilayer Y-TZP? A systematic review and meta-analysis. Journal of Prosthetic Dentistry, 2018, 119, 916-924.	1.1	18

ARTICLE IF CITATIONS The effect of hydrofluoric acid concentration on the fatigue failure load of adhesively cemented 349 1.6 36 feldspathic ceramic discs. Dental Materials, 2018, 34, 667-675. Fatigue resistance of all-ceramic fixed partial dentures $\hat{a} \in \hat{a}$ Fatigue tests and finite element analysis. 1.6 Dental Materials, 2018, 34, 494-507. Impact of simulated reduced alveolar bone support, increased tooth mobility, and distal 351 post-supported, root-treated abutment tooth on load capability of all-ceramic zirconia-supported 9 1.4 cantilever FDP. Clinical Oral Investigations, 2018, 22, 2799-2807. On the mechanical properties of monolithic and laminated nano-ceramic resin structures obtained by 5.9 laser printing. Composites Part B: Engineering, 2018, 141, 76-83. Incisal preparation design for ceramic veneers. Journal of the American Dental Association, 2018, 149, 353 0.7 43 25-37. Fracture strengths of endocrown restorations fabricated with different preparation depths and CAD/CAM materials. Dental Materials Journal, 2018, 37, 256-265. 354 0.8 The Impact of Core/Veneer Thickness Ratio and Cyclic Loading on Fracture Resistance of Lithium 355 1.7 13 Disilicate Crown. Journal of Prosthodontics, 2018, 27, 75-82. Veneered Zirconiaâ€Based Restorations Fracture Resistance Analysis. Journal of Prosthodontics, 2018, 1.7 20 27, 651-658. Fatigue failure load of feldspathic ceramic crowns after hydrofluoric acid etching at different 357 28 1.1 concentrations. Journal of Prosthetic Dentistry, 2018, 119, 278-285. How oral environment simulation affects ceramic failure behavior. Journal of Prosthetic Dentistry, 1.1 2018, 119, 812-818. Influence of thickness and incisal extension of indirect veneers on the biomechanical behavior of 359 0.6 6 maxillary canine teeth. Restorative Dentistry & Endodontics, 2018, 43, e48. Fem and Von Mises Analysis of OSSTEM ® Dental Implant Structural Components: Evaluation of Different Direction Dynamic Loads. Open Dentistry Journal, 2018, 12, 219-229. Failure loads of allâ€ceramic cantilever fixed dental prostheses on postâ€restored abutment teeth: 361 0.7 1 influence of the post presence and post position. European Journal of Oral Sciences, 2018, 126, 526-532. Fatigue behavior of ultrafine tabletop ceramic restorations. Dental Materials, 2018, 34, 1401-1409. 1.6 How does hydrofluoric acid etching affect the cyclic load-to-failure of lithium disilicate 363 1.5 24 restorations?. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 306-311. Mechanical performance of Y-TZP monolithic ceramic after grinding and aging: Survival estimates and 364 36 fatigue strength. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 288-295. Critical considerations on load-to-failure test for monolithic zirconia molar crowns. Journal of the 365 1.520 Mechanical Behavior of Biomedical Materials, 2018, 87, 180-189. Effect of different semimonolithic designs on fracture resistance and fracture mode of translucent and high-translucent zirconia crowns. Člinical, Cosmetic and Investigational Dentistry, 2018, Volume 10, 51-60.

#	Article	IF	CITATIONS
367	Do composite resin restorations protect cracked teeth? An in-vitro study. British Dental Journal, 2018, 225, 223-228.	0.3	5
368	How does the piston material affect the inÂvitro mechanical behavior of dental ceramics?. Journal of Prosthetic Dentistry, 2018, 120, 747-754.	1.1	11
369	<i>In-vitro</i> performance and fracture strength of thin monolithic zirconia crowns. Journal of Advanced Prosthodontics, 2018, 10, 79.	1.1	46
370	Hydrofluoric acid concentrations: Effect on the cyclic load-to-failure of machined lithium disilicate restorations. Dental Materials, 2018, 34, e255-e263.	1.6	36
371	Effect of restoration material on stress distribution on partial crowns: A 3D finite element analysis. Journal of Dental Sciences, 2018, 13, 311-317.	1.2	9
372	Fracture resistance of implant-supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns. Journal of Advanced Prosthodontics, 2018, 10, 65.	1.1	32
373	Effects of artificial aging and progression of cracks on thin occlusal veneers using SD-OCT. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 231-237.	1.5	18
374	Internal adjustments decrease the fatigue failure load of bonded simplified lithium disilicate restorations. Dental Materials, 2018, 34, e225-e235.	1.6	26
375	Fatigue Failure Load of Restored Premolars: Effect of Etching the Intaglio Surface of Ceramic Inlays With Hydrofluoric Acid at Different Concentrations. Operative Dentistry, 2018, 43, E81-E91.	0.6	4
376	An evidence-based evaluation of contemporary dental ceramics. Dental Update, 2018, 45, 541-546.	0.1	4
377	Fatigue Behavior of Different CAD/CAM Materials for Monolithic, Implantâ€ S upported Molar Crowns. Journal of Prosthodontics, 2019, 28, e548-e551.	1.7	4
378	Fracture load and chewing simulation of zirconia and stainlessâ€steel crowns for primary molars. European Journal of Oral Sciences, 2019, 127, 369-375.	0.7	20
379	Fracture Localisation of Porcelain Veneers with Different Preparation Designs. Open Access Macedonian Journal of Medical Sciences, 2019, 7, 1675-1679.	0.1	3
380	Simulated occlusal adjustments and their effects on zirconia and antagonist artificial enamel. Journal of Advanced Prosthodontics, 2019, 11, 162.	1.1	3
381	Clinical performance of occlusal onlays made of lithium disilicate ceramic in patients with severe tooth wear up to 11 years. Dental Materials, 2019, 35, 1319-1330.	1.6	41
382	Fracture Resistance of Monolithic Zirconia Crowns on Four Occlusal Convergent Abutments in Implant Prosthesis. Applied Sciences (Switzerland), 2019, 9, 2585.	1.3	6
383	Fracture Resistance of Various Thickness e.max CAD Lithium Disilicate Crowns Cemented on Different Supporting Substrates: An In Vitro Study. Journal of Prosthodontics, 2019, 28, 997-1004.	1.7	21
384	Effect of Incisal Porcelain Veneering Thickness on the Fracture Resistance of CAD/CAM Zirconia All-Ceramic Anterior Crowns. International Journal of Dentistry, 2019, 2019, 1-12.	0.5	8

#	Article	IF	CITATIONS
385	Effects of Surface Treatments on Mechanical Behavior of Sintered and Pre-sintered Yttria-Stabilized Zirconia and Reliability of Crowns and Abutments Processed by CAD/CAM. International Journal of Oral and Maxillofacial Implants, 2019, 34, 907-919.	0.6	5
386	Fatigue survival and damage modes of lithium disilicate and resin nanoceramic crowns. Journal of Applied Oral Science, 2019, 27, e20180297.	0.7	13
387	Polymer-infiltrated layered silicates for dental restorative materials. Rare Metals, 2019, 38, 1003-1014.	3.6	5
388	Effect of zirconia surface treatment, resin cement and aging on the load-bearing capacity under fatigue of thin simplified full-contour Y-TZP restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 21-29.	1.5	18
390	Effect of different loading pistons on stress distribution of a CAD/CAM silica-based ceramic: CAD-FEA modeling and fatigue survival analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 207-212.	1.5	10
391	Fatigue resistance of monolithic lithium disilicate occlusal veneers: a pilot study. Odontology / the Society of the Nippon Dental University, 2019, 107, 482-490.	0.9	19
392	Do thermal treatments affect the mechanical behavior of porcelain-veneered zirconia? A systematic review and meta-analysis. Dental Materials, 2019, 35, 807-817.	1.6	15
393	Full-mouth Rehabilitation of Hypocalcified-type Amelogenesis Imperfecta With Chairside Computer-aided Design and Computer-aided Manufacturing: A Case Report. Operative Dentistry, 2019, 44, E145-E158.	0.6	3
394	Fatigue damage of monolithic posterior computer aided designed/computer aided manufactured crowns. Journal of Prosthodontic Research, 2019, 63, 368-373.	1.1	14
395	Ceramic Fracture in Bilayered All-ceramic Indirect Restoration: A Review of the Literature. Journal of Advanced Oral Research, 2019, 10, 5-12.	0.3	1
396	Ten-year survival of pressed, acid-etched e.max lithium disilicate monolithic and bilayered complete-coverage restorations: Performance and outcomes as a function of tooth position and age. Journal of Prosthetic Dentistry, 2019, 121, 782-790.	1.1	51
397	Brittleness index and its relationship with materials mechanical properties: Influence on the machinability of CAD/CAM materials. Brazilian Oral Research, 2019, 33, e026.	0.6	11
398	Newer vs. older CAD/CAM burs: Influence of bur experience on the fatigue behavior of adhesively cemented simplified lithium-disilicate glass-ceramic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95, 172-179.	1.5	17
399	Silica-Based Infiltrations for Enhanced Zirconia-Resin Interface Toughness. Journal of Dental Research, 2019, 98, 423-429.	2.5	24
400	File-splitting multilayer vs monolithic Y-TZP: Fatigue flexural strength and loading stresses by finite element analysis. Dental Materials, 2019, 35, e63-e73.	1.6	13
401	Is 'Digital Dentistry' Dangerous for Teeth? Problems Associated with Zirconia and CAD/CAM Restorations. Primary Dental Journal, 2019, 8, 52-60.	0.3	4
402	Dental Biomaterials. , 2019, , 453-510.		1
403	Lithium disilicate glass-ceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 122-130.	1.5	42

#	Article	IF	CITATIONS
404	Strength-limiting damage in lithium silicate glass-ceramics associated with CAD–CAM. Dental Materials, 2019, 35, 98-104.	1.6	28
405	Load-bearing capacity under fatigue and survival rates of adhesively cemented yttrium-stabilized zirconia polycrystal monolithic simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 673-680.	1.5	19
406	Effect of margin design on fracture load of zirconia crowns. European Journal of Oral Sciences, 2019, 127, 89-96.	0.7	29
407	Sequential usage of diamond bur for CAD/CAM milling: Effect on the roughness, topography and fatigue strength of lithium disilicate glass ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 326-334.	1.5	23
408	Wear of ceramic-based dental materials. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92, 144-151.	1.5	57
409	Do endodontic retreatment techniques influence the fracture strength of endodontically treated teeth? A systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 306-312.	1.5	17
410	Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clinical Oral Investigations, 2019, 23, 2777-2784.	1.4	62
411	Effect of storage and aging conditions on the flexural strength and flexural modulus of CAD/CAM materials. Dental Materials Journal, 2019, 38, 264-270.	0.8	24
412	Biomechanical Assessment of Restored Mandibular Molar by Endocrown in Comparison to a Glass Fiber Postâ€Retained Conventional Crown: 3D Finite Element Analysis. Journal of Prosthodontics, 2019, 28, 988-996.	1.7	35
413	Microleakage of composite crowns luted on CAD/CAM-milled human molars: a new method for standardized in vitro tests. Clinical Oral Investigations, 2019, 23, 511-517.	1.4	15
414	Grinding, polishing and glazing of the occlusal surface do not affect the load-bearing capacity under fatigue and survival rates of bonded monolithic fully-stabilized zirconia simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103528.	1.5	20
415	Fatigue Failure Load of a Bonded Simplified Monolithic Feldspathic Ceramic: Influence of Hydrofluoric Acid Etching and Thermocycling. Operative Dentistry, 2020, 45, E21-E31.	0.6	5
416	Implant Angulation Effect on the Fracture Resistance of Monolithic Zirconia Custom Abutments: An In Vitro Study. Journal of Prosthodontics, 2020, 29, 394-400.	1.7	5
417	The effect of crown fabrication process on the fatigue life of the tooth-crown structure. Materials Science and Engineering C, 2020, 109, 110272.	3.8	2
418	Tooth usp preservation with lithium disilicate onlay restorations: A fatigue resistance study. Journal of Esthetic and Restorative Dentistry, 2020, , .	1.8	5
419	Wear behavior and microstructural characterization of translucent multilayer zirconia. Dental Materials, 2020, 36, 1407-1417.	1.6	25
420	Acoustic emission and finite element study on the influence of cusp angles on zirconia dental crowns. Dental Materials, 2020, 36, 1524-1535.	1.6	2
421	The influence of the restorative material on the mechanical behavior of screw-retained hybrid-abutment-crowns. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 103988	1.5	22

#	Article	IF	CITATIONS
422	Fatigue resistance of composite resins and glass-ceramics on dentin and enamel. Journal of Prosthetic Dentistry, 2020, , .	1.1	3
423	Effect of endodontic access simulation on the fracture strength of lithiumâ€disilicate and resinâ€matrix ceramic <scp>CADâ€CAM</scp> crowns. Journal of Esthetic and Restorative Dentistry, 2020, 32, 472-479.	1.8	7
424	A comparison of mvM stress of inlays, onlays and endocrowns made from various materials and their bonding with molars in a computer simulation of mastication – FEA. Dental Materials, 2020, 36, 854-864.	1.6	25
425	Effect of resin cement space on the fatigue behavior of bonded CAD/CAM leucite ceramic crowns. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103893.	1.5	10
426	3D full-field strain in bone-implant and bone-tooth constructs and their morphological influential factors. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103858.	1.5	14
427	Accelerated loading frequency does not influence the fatigue behavior of polymer infiltrated ceramic network or lithium disilicate glass-ceramic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103905.	1.5	24
428	In vitro Simulation of Periodontal Ligament in Fatigue Testing of Dental Crowns. European Journal of Dentistry, 2020, 14, 380-385.	0.8	5
429	Endodontic Access Effect on Full Contour Zirconia and Lithium Disilicate Failure Resistance. Operative Dentistry, 2020, 45, 276-285.	0.6	6
430	One-step ceramic primer as surface conditioner: Effect on the load-bearing capacity under fatigue of bonded lithium disilicate ceramic simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103686.	1.5	27
431	Cyclic contact fatigue resistance of ceramics for monolithic and multilayer dental restorations. Dental Materials, 2020, 36, 535-541.	1.6	23
433	Survival probability of zirconia-reinforced lithium silicate ceramic: Effect of surface condition and fatigue test load profile. Dental Materials, 2020, 36, 808-815.	1.6	11
434	Effect of incisal preparation design on loadâ€ŧoâ€failure of ceramic veneers. Journal of Esthetic and Restorative Dentistry, 2020, 32, 424-432.	1.8	5
435	Static and Fatigue Loading of Veneered Implant‣upported Fixed Dental Prostheses. Journal of Prosthodontics, 2020, 29, 679-685.	1.7	10
436	Esthetic Oral Rehabilitation with Veneers. , 2020, , .		2
437	Influence of Antagonist Material on Fatigue and Fracture Resistance of Zirconia Crowns. European Journal of Dentistry, 2020, 14, 200-205.	0.8	10
438	High load frequency at 20Hz: Its effects on the fatigue behavior of a leucite-reinforced glass-ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103769.	1.5	7
439	Microleakage of thin-walled monolithic zirconia and polymer-containing CAD-CAM crowns. Journal of Prosthetic Dentistry, 2021, 125, 316-322.	1.1	2
440	Step-stress vs. staircase fatigue tests to evaluate the effect of intaglio adjustment on the fatigue behavior of simplified lithium disilicate glass-ceramic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104091.	1.5	6

#	Article	IF	CITATIONS
441	Monolithic Zirconia Partial Coverage Restorations: An In Vitro Mastication Simulation Study. Journal of Prosthodontics, 2021, 30, 76-82.	1.7	13
442	Damage sensitivity of dental zirconias to simulated occlusal contact. Dental Materials, 2021, 37, 158-167.	1.6	10
443	Stress distribution within the ceramic veneerâ€ŧooth system with butt joint and feathered edge incisal preparation designs. Journal of Esthetic and Restorative Dentistry, 2021, 33, 496-502.	1.8	3
444	Fracture strength of non-invasively reinforced MOD cavities on endodontically treated teeth. Odontology / the Society of the Nippon Dental University, 2021, 109, 368-375.	0.9	5
445	Fracture load and microcrack comparison of crowns manufactured from toothâ€shaped and traditional blocks. Microscopy Research and Technique, 2021, 84, 111-118.	1.2	1
446	Biocomposites for prosthesis. , 2021, , 339-351.		2
447	Influence of fatigue loading on fracture resistance of endodontically treated teeth restored with endocrowns. Journal of Prosthodontic Research, 2021, 65, 78-85.	1.1	11
448	Does overlay preparation design affect polymerization shrinkage stress distribution? A 3D FEA study. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 1026-1034.	0.9	10
449	Restoration's thickness and bonding tooth substrate are determining factors in minimally invasive adhesive dentistry. Journal of Prosthodontic Research, 2021, 65, 407-414.	1.1	3
450	Fracture resistance of cement-retained and screw-cement–retained milled posterior crowns with screw-access hole preparations before and after firing: An inÂvitro study. Journal of Prosthetic Dentistry, 2022, 127, 768-774.	1.1	2
451	Load capacity of occlusal veneers of different restorative CAD/CAM materials under lateral static loading. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104290.	1.5	11
452	Effect of milling, fitting adjustments, and hydrofluoric acid etching on the strength and roughness of CAD-CAM glass-ceramics: A systematic review and meta-analysis. Journal of Prosthetic Dentistry, 2022, 128, 1190-1200.	1.1	13
453	Fatigue resistance of simplified CAD–CAM restorations: Foundation material and ceramic thickness effects on the fatigue behavior of partially- and fully-stabilized zirconia. Dental Materials, 2021, 37, 568-577.	1.6	19
454	Influence of the foundation substrate on the fatigue behavior of bonded glass, zirconia polycrystals, and polymer infiltrated ceramic simplified CAD-CAM restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 117, 104391.	1.5	15
455	Fatigue behavior of endodontically treated maxillary premolars with MOD defects under different minimally invasive restorations. Clinical Oral Investigations, 2022, 26, 197-206.	1.4	6
456	Alumina particle air-abrasion and aging effects: Fatigue behavior of CAD/CAM resin composite crowns and flexural strength evaluations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104592.	1.5	4
457	Fatigue behavior of bonded lithium disilicate glass-ceramic simplified restorations is not damaged by the finishing/grinding of the bonding surface of dentin analogue material. International Journal of Adhesion and Adhesives, 2021, 107, 102824.	1.4	2
458	Effect of Die Spacer Thickness on the Fracture Resistance of CAD/CAM Lithium Disilicate Veneers on Maxillary First Premolars. Clinical, Cosmetic and Investigational Dentistry, 2021, Volume 13, 223-230.	0.7	1

#	Article	IF	CITATIONS
459	Fatigue survival of endodontically treated teeth restored with different fiber-reinforced composite resin post strategies versus universal 2-piece fiber post system: An inÂvitro study. Journal of Prosthetic Dentistry, 2023, 129, 456-463.	1.1	5
460	Fatigue Behavior of Monolithic Zirconia-Reinforced Lithium Silicate Ceramic Restorations: Effects of Conditionings of the Intaglio Surface and the Resin Cements. Operative Dentistry, 2021, 46, 316-326.	0.6	4
461	Impact of varying step-stress protocols on the fatigue behavior of 3Y-TZP, 4Y-TZP and 5Y-TZP ceramic. Dental Materials, 2021, 37, 1073-1082.	1.6	10
462	Influence of piston material on the fatigue behavior of a glass-ceramic. Journal of Prosthetic Dentistry, 2023, 129, 931-937.	1.1	3
463	Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104760.	1.5	18
464	Grinding and polishing of the inner surface of monolithic simplified restorations made of zirconia polycrystals and lithium disilicate glass-ceramic: Effects on the load-bearing capacity under fatigue of the bonded restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104833	1.5	3
465	Influence of surface treatment of resin composite substrate on the load-bearing capacity under fatigue of lithium disilicate monolithic simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104792.	1.5	7
466	Monitoring fatigue damage in different CAD/CAM materials: A new approach with optical coherence tomography. Journal of Prosthodontic Research, 2021, 65, 31-38.	1.1	5
468	Masticatory Loading and Oral Environment Simulation in Testing Lithium Disilicate Restorations: A Structured Review. Advanced Structured Materials, 2015, , 189-215.	0.3	3
469	Material Choice. BDJ Clinician's Guides, 2019, , 163-205.	0.1	1
470	Effect of different grinding protocols on surface characteristics and fatigue behavior of yttria-stabilized zirconia polycrystalline: An inÂvitro study. Journal of Prosthetic Dentistry, 2020, 124, 486.e1-486.e8.	1.1	4
471	Dental Polymers: Applications. , 0, , 2501-2522.		4
472	Contemporary All-ceramic Materials – Part 1. Acta Medica (Hradec Kralove), 2007, 50, 101-104.	0.2	8
473	Standardized test methods for mechanical properties of dental prosthetic/restorative materials and their applications. Ci'gwa Gi'jae Haghoeji - Daehan Ci'gwa Gi'jae Haghoe, 2015, 42, 259.	0.3	7
474	Correlation between Surface Roughness and Shear Bond Strength in Zirconia Veneering Ceramics: a Preliminary Report. Acta Stomatologica Croatica, 2013, 47, 45-50.	0.4	3
475	Clinical Evaluation of In-Ceram Crowns Fabricated Using GN-I System: Preliminary Results after 24-39 Months of Use. Prosthodontic Research & Practice, 2007, 6, 265-271.	0.2	3
476	Nonretentive Bonded Ceramic Partial Crowns: Concept and Simplified Protocol for Long-lasting Dental Restorations. Journal of Adhesive Dentistry, 2018, 20, 495-510.	0.3	23
477	Fracture Resistance of Aluminium Oxide and Lithium Disilicate-based Crowns using Different Luting Cements: An in vitro Study. Journal of Contemporary Dental Practice, 2009, 10, 51-58. ————————————————————————————————————	0.2	18

#	Article	IF	CITATIONS
478	Influence of Different Techniques of Laboratory Construction on the Fracture Resistance of Fiber-Reinforced Composite (FRC) Bridges. Journal of Contemporary Dental Practice, 2004, 5, 1-13.	0.2	19
479	Effect of newly Developed Resin Cements and Thermocycling on the Strength of Porcelain Laminate Veneers. Journal of Contemporary Dental Practice, 2017, 18, 209-213.	0.2	2
480	All-ceramic Computer-aided Design and Computer-aided Manufacturing Restorations: Evolution of Structures and Criteria for Clinical Application. Journal of Contemporary Dental Practice, 2019, 20, 516-523.	0.2	15
481	Influence of Full Veneer Restoration on Fracture Resistance of Three Different Core Materials: An Invitro Study. Journal of Clinical and Diagnostic Research JCDR, 2015, 9, ZC12-5.	0.8	4
482	Fatigue behavior and stress distribution of molars restored with MOD inlays with and without deep margin elevation. Clinical Oral Investigations, 2022, 26, 2513-2526.	1.4	11
483	Caracterização micrográfica de barras de ZTA infiltradas com vidro de lantânio e sua correlação com resistência à flexão por três pontos. Revista Materia, 2008, 13, 617-623.	0.1	1
484	Effect of Collar Height in Zirconia Copings on The Fracture Strength of Veneering Porcelain. Annals of Japan Prosthodontic Society, 2012, 4, 411-418.	0.0	0
485	Fracture Strength of Three All-Ceramic Systems: Top-Ceram compared with IPS-Empress and In-Ceram. Journal of Contemporary Dental Practice, 2012, 13, 210-215.	0.2	3
486	Fracture Strength of All-Ceramic 3-Unit Fixed Partial Dentures Manufactured by CAD/CAM and Copy-Milling Systems. Journal of Korean Acedemy of Dental Technology, 2012, 34, 95-103.	0.4	1
487	Diminished fracture initiation sites in ceramic layers bonded to glow-discharge treated substructure. Open Journal of Stomatology, 2013, 03, 307-313.	0.1	0
488	Mechanical and microstructural properties of a nickel-chromium alloy after casting process. Rsbo, 2021, 9, 17-24.	0.1	3
489	Current Trends in Aesthetic Dentistry. Health, 2014, 06, 1941-1949.	0.1	6
490	Advance All-Ceramic Restoration by CAD/CAM: A Case Report. Journal of Dental Health, Oral Disorders & Therapy, 2014, 1, .	0.0	0
491	Influence of fracture strength of zirconia ceramic restoration on thickness of veneer porcelain. Ci'gwa Gi'jae Haghoeji - Daehan Ci'gwa Gi'jae Haghoe, 2015, 42, 149.	0.3	0
492	Effect of thermo-cycling and repeated loading on the mechanical properties of all ceramic restorations. Ci'gwa Gi'jae Haghoeji - Daehan Ci'gwa Gi'jae Haghoe, 2015, 42, 173.	0.3	0
493	VERTICAL MARGINAL GAP DISTANCE AND RETENTION OF DIFFERENT CAD/CAM CERAMIC ENDOCROWNS WITH TWO PREPARATION DESIGNS. Egyptian Dental Journal, 2017, 63, 755-767.	0.1	0
494	FRACTURE RESISTANCE, FINITE ELEMENT ANALYSIS AND WEIBULL RISK OF FAILURE FOR ENDODONTICALLY TREATED MOLARS RESTORED WITH LITHIUM DISILICATE AND HYBRID CERAMIC ENDOCROWNS WITH TWO PREPARATION DESIGNS. Egyptian Dental Journal, 2017, 63, 2803-2820.	0.1	1
495	Dental Polymers: Applications. , 2017, , 411-432.		0

#	Article	IF	CITATIONS
496	EVALUATION OF FRACTURE RESISTANCE AND FIT ACCURACY OF THREE TYPES OF CAD/CAM FABRICATED CROWNS USING CONE BEAM COMPUTERIZED TOMOGRAPHY. Egyptian Dental Journal, 2018, 64, 1571-1586.	0.1	0
497	BASAMAK TİPİ VE KONİKLİK AÇISININ LİTYUM DİSİLİKAT CAM SERAMİKLERİN BASKI DAYANIMII DEĞERLENDİRİLMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 0, , .	NĄ ETKİS 0.0	SİNİN O
498	BASAMAK TİPİ VE KONİKLİK AÇISININ LİTYUM DİSİLİKAT CAM SERAMİKLERİN BASKI DAYANIMII DEĞERLENDİRİLMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 0, , 545-552.	NĄ EŢKİS	SİNİN O
499	Evaluation of internal fit, marginal integrity and fatigue resistance of E-max CAD crowns on two different preparation designs for maxillary anterior teeth. An Invitro study. Egyptian Dental Journal, 2019, 65, 3019-3029.	0.1	0
500	Fracture Strength of Endodontically Treated Teeth Restored with Endocrown restorations with /without Resin Composite Base Materials – An in vitro study. Egyptian Dental Journal, 2019, 65, 2837-2848.	0.1	0
501	Effect of surface treatments on repair strength, roughness and morphology in aged metal-free crowns. Brazilian Journal of Oral Sciences, 0, 19, e206155.	0.1	0
502	The effect of short and long duration sintering method on microstructure and flexural strength of zirconia. Journal of Korean Acedemy of Dental Technology, 2020, 42, 73-79.	0.4	0
503	Repair Bond Strength of Composite to Zirconia Ceramic Using Two Types of Zirconia Primers. Frontiers in Dentistry, 2019, 16, 342-350.	0.6	1
504	Effect of different ceramic materials and substructure designs on fracture resistance in anterior restorations. Journal of Prosthetic Dentistry, 2020, , .	1.1	2
505	Effect of Adhesive Gap Setting on Fracture Resistance of All-ceramic Crowns. Open Dentistry Journal, 2020, 14, 600-607.	0.2	0
506	Could light-curing time, post-space region and cyclic fatigue affect the nanomechanical behavior of a dual-curing cement for fiber post luting?. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104886.	1.5	9
507	Adhesion to Glass–Ceramics: Concepts and Clinical Implications. , 2020, , 189-210.		1
508	Influence of finish line in the distribution of stress trough an all ceramic implant-supported crown.: A 3D Finite Element Analysis. ORAL and Implantology, 2009, 2, 14-27.	0.3	10
509	Comparison of Marginal Fit and Fracture Strength of a CAD/CAM Zirconia Crown with Two Preparation Designs. Journal of Dentistry of Tehran University of Medical Sciences, 2015, 12, 874-81.	0.4	3
510	Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up. Acta Biomaterialia Odontologica Scandinavica, 2015, 1, 35-42.	4.0	1
511	Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles. Journal of Dental Biomaterials, 2016, 3, 327-334.	0.2	1
512	The Effect of Sintering Program on the Compressive Strength of Zirconia Copings. Journal of Dentistry, 2018, 19, 206-211.	0.1	2
513	Is the application of a silane-based coupling agent necessary to stabilize the fatigue performance of bonded simplified lithium disilicate restorations?. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 104989	1.5	4

#		IF	CITATIONS
#	Cyclic fatigue tests on non-anatomic specimens of dental ceramic materials: A scoping review, Journal	IF	CHAHONS
514	of the Mechanical Behavior of Biomedical Materials, 2022, 126, 104985.	1.5	14
515	Surface milled by CAD-CAM system Vs laboratorial methods to simulate the milled surface: Effect on the resin bond strength to lithium disilicate glass-ceramic. International Journal of Adhesion and Adhesives, 2022, 113, 103068.	1.4	5
516	Impact of Chemical Aging on the Fracture Resistance of Two Ceramic Materials: Zirconia-Reinforced Lithium Silicate and Lithium Disilicate Ceramics. Open Access Macedonian Journal of Medical Sciences, 2020, 8, 189-193.	0.1	3
517	Impact of the Veneering Technique and Framework Material on the Failure Loads of All-Ceramic Computer-Aided Design/Computer-Aided Manufacturing Fixed Partial Dentures. Materials, 2022, 15, 756.	1.3	2
518	Comparative evaluation of the fracture resistance of newly developed prefabricated fibreglass crowns and zirconium crowns. International Journal of Paediatric Dentistry, 2022, 32, 756-763.	1.0	2
519	Fatigue Resistance of 3â€Unit CADâ€CAM Ceramic Fixed Partial Dentures: An FEA Study. Journal of Prosthodontics, 2022, 31, 806-814.	1.7	4
520	Cyclic contact fatigue behavior of baria-silicate glass-ceramics as a function of crystal aspect ratio. Journal of the European Ceramic Society, 2022, 42, 2441-2448.	2.8	1
521	Literature review on the experimental method and interpretation of the edge chipping test (ECT). The Journal of Korean Academy of Prosthodontics, 2022, 60, 9.	0.0	1
522	Fracture resistance of CAD/CAM restorative materials in mismatched removable partial denture rests: An <i>in vitro</i> experimental and finite element analysis. Dental Materials Journal, 2022, , .	0.8	1
523	The Structural Integrity and Fracture Behaviour of Teeth Restored with PEEK and Lithium-Disilicate Glass Ceramic Crowns. Polymers, 2022, 14, 1001.	2.0	7
524	Comparison of porcelain veneer fracture in implantâ€supported fixed fullâ€arch prostheses with a framework of either titanium, cobalt–chromium, or zirconia:ÂAn in vitro study. Clinical and Experimental Dental Research, 2022, 8, 544-551.	0.8	2
525	Do resin cement viscosity and ceramic surface etching influence the fatigue performance of bonded lithium disilicate glass-ceramic crowns?. Dental Materials, 2022, 38, e59-e67.	1.6	15
526	Impact of high-speed sintering and choice of preshaded monochrome or multilayered blanks on fatigue behavior of 4 mol% yttria-stabilized tetragonal zirconia polycrystal. Journal of Prosthetic Dentistry, 2021, , .	1.1	1
527	In Vitro Fatigue and Fracture Load of Monolithic Ceramic Crowns Supported by Hybrid Abutment. Open Dentistry Journal, 2021, 15, 664-671.	0.2	0
531	Effect of Stiffness of Cement on Stress Distribution †in Ceramic Crowns. Chinese journal of dental research: the official journal of the Scientific Section of the Chinese Stomatological Association (CSA), The, 2016, 19, 217-223.	0.1	0
532	Influence of fabrication techniques and artificial aging on the fracture resistance of different cantilever zirconia fixed dental prostheses. Journal of Adhesive Dentistry, 2012, 14, 161-6.	0.3	9
533	The Effect of Dentin Bonding and Material Thickness on the Flexural Properties of a Lithium-Disilicate Glass-Ceramic. Journal of Adhesive Dentistry, 2021, 23, 309-318.	0.3	4
534	Effect of ferrule height and distribution on the fracture resistance of endodontically treated premolars. Nigerian Journal of Clinical Practice, 2021, 24, 505.	0.2	1

#	Article	IF	CITATIONS
535	Evaluation of Tensile Bond Strength between Self-Adhesive Resin Cement and Surface-Pretreated Zirconia. Materials, 2022, 15, 3089.	1.3	5
536	Effect of hydrothermal and mechanical aging on the fatigue performance of high-translucency zirconias. Dental Materials, 2022, 38, 1060-1071.	1.6	5
537	Simulation of CAD/CAM milling on lithium disilicate: Mechanical and topographic analyses of surface grinding different protocols. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 132, 105278.	1.5	2
538	Load-to-Failure Resistance and Optical Characteristics of Nano-Lithium Disilicate Ceramic after Different Aging Processes. Materials, 2022, 15, 4011.	1.3	7
539	In-Vitro evaluation of fracture strength of zirconia and peek anterior FPD Framework. International Journal of Health Sciences, 0, , 484-494.	0.0	0
540	Cement Choice and the Fatigue Performance of Monolithic Zirconia Restorations. Operative Dentistry, 2022, 47, 461-472.	0.6	2
541	Thickness and internal adjustment of monolithic resin composite milled crowns: Effect on the load-bearing capacity under fatigue. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 134, 105407.	1.5	4
542	Effects of material and piston diameter on the fatigue behavior, failure mode, and stress distribution of feldspathic ceramic simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 134, 105398.	1.5	3
543	Mechanical characterization of a multi-layered zirconia: Flexural strength, hardness, and fracture toughness of the different layers. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 135, 105455.	1.5	9
544	Adhesive application after ceramic surface treatment is detrimental to load-bearing capacity under fatigue of a lithium disilicate glass-ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 135, 105453.	1.5	1
545	Translasjonsforskning. , 2005, 115, .		0
546	Fracture Load of Layered Glass-Ceramic Structures. Strength of Materials, 2022, 54, 515-524.	0.2	0
547	Influence of connector cross-sectional geometry on the load-bearing capacity under fatigue of implant-supported zirconia fixed partial prosthesis. Journal of Prosthetic Dentistry, 2022, , .	1.1	2
548	A brief review on fatigue test of ceramic and some related matters in Dentistry. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105607.	1.5	12
549	Substrate Rigidity Effect on CAD/CAM Restorations at Different Thicknesses. European Journal of Dentistry, 2023, 17, 1020-1028.	0.8	1
550	Which dentine analogue material can replace human dentine for crown fatigue test?. Dental Materials, 2023, 39, 86-100.	1.6	7
551	Ceramic surface conditioning, resin cement viscosity, and aging relationships affect the load-bearing capacity under fatigue of bonded glass-ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 139, 105667.	1.5	3
552	Fracture Load of Molars Restored with Bulk-fill, Flowable Bulk-fill, and Conventional Resin Composite After Simulated Chewing. Operative Dentistry, 2023, , .	0.6	0

#	Article	IF	CITATIONS
553	The Role of All-Ceramic Crowns in Contemporary Restorative Dentistry. Journal of the California Dental Association, 2003, 31, 565-569.	0.0	5
554	Fatigue performance analysis of strength-graded zirconia polycrystals for monolithic three-unit implant-supported prostheses. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 140, 105736.	1.5	1
555	High-versus low-viscosity resin cements: Its effect on the load-bearing capacity under fatigue of a translucent zirconia. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105829.	1.5	4
556	Influence of thermo-mechanical aging on fracture resistance and wear of digitally standardized chairside computer-aided-designed/computer-assisted-manufactured restorations. Journal of Dentistry, 2023, 130, 104450.	1.7	2
557	Endocrown restorations in premolars: influence of remaining axial walls of tooth structure and restorative materials on fatigue resistance. Clinical Oral Investigations, 2023, 27, 2957-2968.	1.4	5
558	Fatigue-life and stress distribution of a glass-ceramic under different loading conditions. Brazilian Dental Journal, 2023, 34, 80-88.	0.5	1
559	Effect of immediate dentin sealing on load-bearing capacity under accelerated fatigue of thin occlusal veneers made of CAD-CAM glass-ceramic and resin composite material. Dental Materials, 2023, 39, 372-382.	1.6	3
560	InÂvitro fracture and fatigue resistance of monolithic zirconia crowns fabricated by stereolithography. Journal of Prosthetic Dentistry, 2023, , .	1.1	3
561	Pre-cementation treatment of glass-ceramics with vacuum impregnated resin coatings. Dental Materials, 2023, , .	1.6	1
572	Biomechanics of the Radicular Component of Endosteal Implants. , 2023, , 157-177.		0