Aggression heightened by alcohol or social instigation is receptor agonist CP-94,253

Psychopharmacology 146, 391-399 DOI: 10.1007/pl00005484

Citation Report

#	Article	IF	CITATIONS
1	Aggressive and social stress responses in genetically modified mice: from horizontal to vertical strategy. Psychopharmacology, 1999, 147, 17-19.	3.1	19
2	Aggressive Behavior, Increased Accumbal Dopamine, and Decreased Cortical Serotonin in Rats. Journal of Neuroscience, 2000, 20, 9320-9325.	3.6	314
3	Molecular basis of aggression. Trends in Neurosciences, 2001, 24, 713-719.	8.6	366
4	Aggressive behavioral phenotypes in mice. Behavioural Brain Research, 2001, 125, 167-181.	2.2	403
5	Alcohol, allopregnanolone and aggression in mice. Psychopharmacology, 2001, 153, 473-483.	3.1	103
6	Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT 1B agonist anpirtoline. Psychopharmacology, 2001, 157, 421-429.	3.1	84
7	Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1277-1281.	7.1	185
8	Reappraisal of the serotonin 5-HT1B receptor gene in alcoholism: of mice and men. Brain Research Bulletin, 2002, 57, 103-107.	3.0	31
9	Aggression Escalated by Social Instigation or by Discontinuation of Reinforcement ("Frustrationâ€) in Mice Inhibition by Anpirtoline: A 5-HT1B Receptor Agonist. Neuropsychopharmacology, 2002, 27, 171-181.	5.4	135
10	5-HT 1B receptors modulate components of satiety in the rat: behavioural and pharmacological analyses of the selective serotonin 1B agonist CP-94,253. Psychopharmacology, 2002, 164, 49-60.	3.1	62
11	Aggressive behavior as a reinforcer in mice: activation by allopregnanolone. Psychopharmacology, 2002, 163, 459-466.	3.1	104
12	Sexual aggression in mice: effects of male strain and of female estrous state. Behavior Genetics, 2003, 33, 521-528.	2.1	25
13	Effect of isolation rearing on pre- and post-synaptic serotonergic function in the rat dorsal hippocampus. Synapse, 2003, 47, 209-217.	1.2	63
14	Interaction of nitric oxide and serotonin in aggressive behavior. Hormones and Behavior, 2003, 44, 233-241.	2.1	92
15	Neurosteroids, GABAA receptors, and escalated aggressive behavior. Hormones and Behavior, 2003, 44, 242-257.	2.1	163
16	Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats Behavioral Neuroscience, 2003, 117, 667-674.	1.2	81
17	Association of 5-HT1B receptor gene and antisocial behavior in alcoholism. Journal of Neural Transmission, 2004, 111, 101-109.	2.8	64
18	Serotonin receptors: from protein to physiological function and behavior. Neuroscience and Biobehavioral Reviews, 2004, 28, 565-582.	6.1	294

#	Article	lF	CITATIONS
19	mCPP-induced hyperactivity in 5-HT2C receptor mutant mice is mediated by activation of multiple 5-HT receptor subtypes. Neuropharmacology, 2004, 46, 663-671.	4.1	48
20	Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behavioural Pharmacology, 2004, 15, 523-534.	1.7	73
21	5-HT3 receptors, alcohol and aggressive behavior in mice. Behavioural Pharmacology, 2005, 16, 163-169.	1.7	37
22	Serotonin-1B receptor activity and expression modulate the aggression-stimulating effects of adolescent anabolic steroid exposure in hamsters Behavioral Neuroscience, 2005, 119, 1184-1194.	1.2	46
23	Antidepressant-like effect of the selective 5-HT1B receptor agonist CP 94253: A possible mechanism of action. European Journal of Pharmacology, 2005, 516, 46-50.	3.5	36
24	5-HT1A and 5-HT1B receptor agonists and aggression: A pharmacological challenge of the serotonin deficiency hypothesis. European Journal of Pharmacology, 2005, 526, 125-139.	3.5	265
25	5-HT1B receptors and aggression: A review. European Journal of Pharmacology, 2005, 526, 207-217.	3.5	130
26	Serotonin and aggressive behavior in rodents and nonhuman primates: Predispositions and plasticity. European Journal of Pharmacology, 2005, 526, 259-273.	3.5	88
27	Escalated aggressive behavior: Dopamine, serotonin and GABA. European Journal of Pharmacology, 2005, 526, 51-64.	3.5	251
28	Behavioral sensitization due to social defeat stress in mice: antagonism at mCluR5 and NMDA receptors. Psychopharmacology, 2005, 179, 230-239.	3.1	65
29	Escalated aggression as a reward: corticosterone and GABAA receptor positive modulators in mice. Psychopharmacology, 2005, 182, 116-127.	3.1	87
30	Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology, 2005, 183, 331-340.	3.1	154
31	Repeated brief social defeat episodes in mice: Effects on cell proliferation in the dentate gyrus. Behavioural Brain Research, 2006, 172, 344-350.	2.2	86
32	Acute and long-term effects of a single dose of MDMA on aggression in Dark Agouti rats. International Journal of Neuropsychopharmacology, 2006, 9, 63.	2.1	20
33	Role of Alcohol Consumption in Escalation to Violence. Annals of the New York Academy of Sciences, 2006, 1036, 278-289.	3.8	33
34	Escalated Aggressive Behavior: New Pharmacotherapeutic Approaches and Opportunities. Annals of the New York Academy of Sciences, 2006, 1036, 336-355.	3.8	70
35	Serotonin and Aggression. Annals of the New York Academy of Sciences, 2004, 1036, 382-392.	3.8	119
36	5-HT1B receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology, 2006, 185, 441-450.	3.1	72

#	Article	IF	CITATIONS
37	Anticonvulsant effect of the selective 5-HT1B receptor agonist CP 94253 in mice. European Journal of Pharmacology, 2006, 541, 57-63.	3.5	19
38	Serotonin-1A receptor activity and expression modulate adolescent anabolic/androgenic steroid-induced aggression in hamsters. Pharmacology Biochemistry and Behavior, 2006, 85, 1-11.	2.9	72
39	From genes to aggressive behavior: the role of serotonergic system. BioEssays, 2006, 28, 495-503.	2.5	205
40	Quantitative Genomics of Aggressive Behavior in Drosophila melanogaster. PLoS Genetics, 2006, 2, e154.	3.5	165
41	Impaired nitric oxide synthase signaling dissociates social investigation and aggression Behavioral Neuroscience, 2007, 121, 362-369.	1.2	47
42	Factors influencing aggression toward females by male rats exposed to anabolic androgenic steroids during puberty. Hormones and Behavior, 2007, 51, 135-141.	2.1	20
43	Risperidone Exerts Potent Anti-aggressive Effects in a Developmentally Immature Animal Model of Escalated Aggression. Biological Psychiatry, 2007, 62, 218-225.	1.3	19
44	Neurochemistry and Molecular Neurobiology of Aggressive Behavior. , 2007, , 285-336.		24
45	Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Brazilian Journal of Medical and Biological Research, 2007, 40, 825-830.	1.5	34
46	Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes, Brain and Behavior, 2007, 6, 529-539.	2.2	93
47	Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology, 2007, 193, 295-304.	3.1	61
48	Long-term citalopram maintenance in mice: selective reduction of alcohol-heightened aggression. Psychopharmacology, 2008, 196, 407-416.	3.1	21
49	5-HT1B receptor inhibition of alcohol-heightened aggression in mice: comparison to drinking and running. Psychopharmacology, 2008, 197, 145-156.	3.1	27
50	Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology, 2008, 201, 237-248.	3.1	53
51	Aggressive and Mating Behaviors in Two Types of Sex Reversed Mice: XY Females and XX Males. Archives of Sexual Behavior, 2008, 37, 2-8.	1.9	14
52	Differences in aggressive behavior and in the mesocorticolimbic DA system between A/J and BALB/cJ mice. Synapse, 2008, 62, 715-724.	1.2	34
53	Changes in attack behavior and activity in EphA5 knockout mice. Brain Research, 2008, 1205, 91-99.	2.2	18
54	Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Hormones and Behavior, 2008, 54,	2.1	28

#	Article	IF	CITATIONS
55	Changes in social instigation- and food restriction-induced aggressive behaviors and hippocampal 5HT1B mRNA receptor expression in male mice from early weaning. Behavioural Brain Research, 2008, 187, 442-448.	2.2	37
56	The role of dopamine and serotonin in suicidal behaviour and aggression. Progress in Brain Research, 2008, 172, 307-315.	1.4	73
57	Neurobiology of Aggression and Violence. American Journal of Psychiatry, 2008, 165, 429-442.	7.2	795
58	Escalated Aggression after Alcohol Drinking in Male Mice: Dorsal Raphé and Prefrontal Cortex Serotonin and 5-HT1B Receptors. Neuropsychopharmacology, 2008, 33, 2888-2899.	5.4	54
59	Two modes of intense cocaine bingeing: increased persistence after social defeat stress and increased rate of intake due to extended access conditions in rats. Psychopharmacology, 2009, 206, 109-120.	3.1	72
60	Behavioural and Neurochemical Consequences of Early Weaning in Rodents. Journal of Neuroendocrinology, 2009, 21, 427-431.	2.6	136
61	Anabolicâ€androgenic steroid treatment induces behavioral disinhibition and downregulation of serotonin receptor messenger RNA in the prefrontal cortex and amygdala of male mice. Genes, Brain and Behavior, 2009, 8, 161-173.	2.2	73
62	Effects of Acute Alcohol Intoxication and Paroxetine on Aggression in Men. Alcoholism: Clinical and Experimental Research, 2009, 33, 581-590.	2.4	15
63	Hormones and the Development and Expression of Aggressive Behavior. , 2009, , 167-205.		18
64	Chronic treatment with 13-cis-retinoic acid changes aggressive behaviours in the resident–intruder paradigm in rats. European Neuropsychopharmacology, 2009, 19, 876-886.	0.7	18
65	Animal violence demystified. Frontiers in Behavioral Neuroscience, 2010, 4, 9.	2.0	39
66	Zolmitriptan and human aggression: interaction with alcohol. Psychopharmacology, 2010, 210, 521-531.	3.1	25
67	Chronic passive exposure to aggression escalates aggressiveness of rat observers. Aggressive Behavior, 2010, 36, 54-66.	2.4	5
68	Individual vulnerability to escalated aggressive behavior by a low dose of alcohol: decreased serotonin receptor mRNA in the prefrontal cortex of male mice. Genes, Brain and Behavior, 2010, 9, 110-119.	2.2	39
69	Increased 5-HT1B receptor density in the basolateral amygdala of passive observer rats exposed to aggression. Brain Research Bulletin, 2010, 83, 38-43.	3.0	16
70	Chronic passive exposure to aggression decreases D2 and 5-HT1B receptor densities. Physiology and Behavior, 2010, 99, 562-570.	2.1	19
71	Serotonin and Aggression. Handbook of Behavioral Neuroscience, 2010, 21, 687-713.	0.7	13
72	Serotonin 1B Autoreceptors Originating in the Caudal Dorsal Raphe Nucleus Reduce Expression of Fear and Depression-Like Behavior. Biological Psychiatry, 2011, 69, 780-787.	1.3	55

#	Article	IF	CITATIONS
73	Hormonal and neurochemical mechanisms of aggression and a new classification of aggressive behavior. Aggression and Violent Behavior, 2011, 16, 461-471.	2.1	27
74	Behavioral and Pharmacogenetics of Aggressive Behavior. Current Topics in Behavioral Neurosciences, 2011, 12, 73-138.	1.7	89
75	Effects of chronic social stress during lactation on maternal behavior and growth in rats. Stress, 2011, 14, 677-684.	1.8	133
76	Social instigation and aggression in postpartum female rats: role of 5-Ht1A and 5-Ht1B receptors in the dorsal raphA© nucleus and prefrontal cortex. Psychopharmacology, 2011, 213, 475-487.	3.1	41
77	Association Between 5HT1b Receptor Gene and Methamphetamine Dependence. Current Neuropharmacology, 2011, 9, 163-168.	2.9	8
78	Effect of social instigation and aggressive behavior on hormone levels of lactating dams and adult male Wistar rats Psychology and Neuroscience, 2011, 4, 103-113.	0.8	2
79	Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology, 2011, 213, 183-212.	3.1	109
80	Role of the Serotonergic System in Alcohol Dependence. Progress in Molecular Biology and Translational Science, 2011, 98, 401-443.	1.7	64
81	Whole-hemisphere autoradiography of 5-HT1B receptor densities in postmortem alcoholic brains. Psychiatry Research - Neuroimaging, 2012, 202, 264-270.	1.8	6
82	Genetic and Epigenetic Determinants of Aggression. , 2012, , 227-280.		3
83	Aggression is suppressed by acute stress but induced by chronic stress: Immobilization effects on aggression, hormones, and cortical 5-HT1B/ striatal dopamine D2 receptor density. Cognitive, Affective and Behavioral Neuroscience, 2012, 12, 446-459.	2.0	18
85	Behavioral characterization of escalated aggression induced by GABAB receptor activation in the dorsal raphe nucleus. Psychopharmacology, 2012, 224, 155-166.	3.1	26
86	NMDA receptor antagonism: escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology, 2012, 224, 167-177.	3.1	39
87	Infralimbic and dorsal raphé microinjection of the 5-HT1B receptor agonist CP-93,129: attenuation of aggressive behavior in CFW male mice. Psychopharmacology, 2012, 222, 117-128.	3.1	25
88	Anti-aggressive activity of methyl jasmonate and the probable mechanism of its action in mice. Pharmacology Biochemistry and Behavior, 2012, 101, 271-277.	2.9	18
89	Polymorphism of Serotonin 5-HT Receptors as the Basis of the Multifunctionality of Serotonin. Neuroscience and Behavioral Physiology, 2012, 42, 161-166.	0.4	1
90	Aggression-reducing effects of F15599, a novel selective 5-HT1A receptor agonist, after microinjection into the ventral orbital prefrontal cortex, but not in infralimbic cortex in male mice. Psychopharmacology, 2013, 230, 375-387.	3.1	15
91	Excessive aggression as model of violence: a critical evaluation of current preclinical methods. Psychopharmacology, 2013, 226, 445-458.	3.1	84

#	Article	IF	CITATIONS
92	Suppression of Serotonin Neuron Firing Increases Aggression in Mice. Journal of Neuroscience, 2013, 33, 8678-8688.	3.6	95
93	Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology, 2013, 71, 83-97.	4.1	155
94	Aggressive behavior: A comprehensive review of its neurochemical mechanisms and management. Aggression and Violent Behavior, 2013, 18, 195-203.	2.1	23
95	Neurogenetics of Aggressive Behavior: Studies in Rodents. Current Topics in Behavioral Neurosciences, 2013, 17, 3-44.	1.7	165
96	The role of the serotonergic system at the interface of aggression and suicide. Neuroscience, 2013, 236, 160-185.	2.3	86
97	Nitric Oxide and Serotonin Interactions in Aggression. Current Topics in Behavioral Neurosciences, 2013, 17, 131-142.	1.7	12
98	The Role of Serotonin, Vasopressin, and Serotonin/Vasopressin Interactions in Aggressive Behavior. Current Topics in Behavioral Neurosciences, 2014, 17, 189-228.	1.7	42
99	Differential effects of chronic fluoxetine on the behavior of dominant and subordinate naked mole-rats. Behavioural Brain Research, 2014, 258, 119-126.	2.2	11
100	Absence of M-Ras modulates social behavior in mice. BMC Neuroscience, 2015, 16, 68.	1.9	7
101	Effect of drugs of abuse on social behaviour. Behavioural Pharmacology, 2015, 26, 541-570.	1.7	30
102	Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice. Psychopharmacology, 2015, 232, 2889-2902.	3.1	37
103	Escalated aggression in animal models: shedding new light on mesocorticolimbic circuits. Current Opinion in Behavioral Sciences, 2015, 3, 90-95.	3.9	38
104	Glutamate Input in the Dorsal Raphe Nucleus As a Determinant of Escalated Aggression in Male Mice. Journal of Neuroscience, 2015, 35, 6452-6463.	3.6	47
105	Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview. Amino Acids, 2015, 47, 651-683.	2.7	16
106	Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity. Neuron, 2015, 86, 813-826.	8.1	87
107	The neurobiology of aggression and violence. CNS Spectrums, 2015, 20, 254-279.	1.2	313
108	α2-containing GABA(A) receptors: a requirement for midazolam-escalated aggression and social approach in mice. Psychopharmacology, 2015, 232, 4359-4369.	3.1	17
109	Evidence for a Sex-Dependent <i>MAOA</i> × Childhood Stress Interaction in the Neural Circuitry of Aggression. Cerebral Cortex, 2016, 26, 904-914.	2.9	74

#	Article	IF	CITATIONS
110	Aggression in nonâ€human vertebrates: Genetic mechanisms and molecular pathways. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 603-640.	1.7	38
111	Identification of Serotonergic Neuronal Modules that Affect Aggressive Behavior. Cell Reports, 2016, 17, 1934-1949.	6.4	89
112	`Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 70, 39-48.	4.8	34
113	Male Behaviors II: Neural Pathways Regulating Male Behaviors. , 2017, , 315-339.		0
114	Social instigation and repeated aggressive confrontations in male Swiss mice: analysis of plasma corticosterone, CRF and BDNF levels in limbic brain areas. Trends in Psychiatry and Psychotherapy, 2017, 39, 98-105.	0.8	6
115	Hormones and the Development and Expression of Aggressive Behavior. , 2017, , 145-173.		2
116	Effects of para-methoxyamphetamine (PMA) on agonistic encounters between male mice. Pharmacology Biochemistry and Behavior, 2018, 167, 9-16.	2.9	2
117	The 5-HT1B receptor - a potential target for antidepressant treatment. Psychopharmacology, 2018, 235, 1317-1334.	3.1	56
118	Serotonin and aggression. , 2019, , 155-180.		0
119	Transcriptome Analyses Provide Insights into the Aggressive Behavior toward Conspecific and Heterospecific in Thitarodes xiaojinensis (Lepidoptera: Hepialidae). Insects, 2021, 12, 577.	2.2	1
120	Regulation of stress-provoked aggressive behavior using endocannabinoids. Neurobiology of Stress, 2021, 15, 100337.	4.0	10
121	Dopamine, Glutamate, and Aggression. , 2005, , 237-263.		9
122	Hormonal Determinants. , 2014, , 33-68.		2
123	Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1277-1281.	7.1	99
124	Monoamines, GABA, Glutamate, and Aggression. , 2005, , 114-149.		17
125	An fMRI Study on the Role of Serotonin in Reactive Aggression. PLoS ONE, 2011, 6, e27668.	2.5	53
126	Fos expression in the prefrontal cortex and mesencephalic dorsal raphe nucleus in lactating rats after social instigation Psychology and Neuroscience, 2013, 6, 115-121.	0.8	2
128	5-HT-1B Receptor. , 2007, , 1-15.		0

	CITATION RE	CITATION REPORT	
# 129	ARTICLE Normal and Abnormal Aggressions: Definitions and Operational Approaches. , 2014, , 1-31.	IF	Citations 0
130	Serotonin and aggression—an update. Handbook of Behavioral Neuroscience, 2020, 31, 635-663.	0.7	4
131	Serotonergic Modulation of Sex and Aggression. , 2008, , 27-45.		0
132	Animal models in alcohol research. Alcohol Research, 2000, 24, 77-84.	1.0	49
133	Effects of repeated treatment with the 5-HT1A and 5-HT1B agonists (R)-( +)-8-hydroxy-DPAT and CP-94253 on the locomotor activity and axillary temperatures of preweanling rats: evidence of tolerance and behavioral sensitization. Psychopharmacology, 2021, 239, 413.	3.1	0
134	Social Stress and Aggression in Murine Models. Current Topics in Behavioral Neurosciences, 2021, , 1.	1.7	3
135	Effects of the serotonin 5-HT1B receptor agonist CP 94253 on the locomotor activity and body temperature of preweanling and adult male and female rats. European Journal of Pharmacology, 2022, , 175019.	3.5	0
136	Lateral habenula glutamatergic neurons projecting to the dorsal raphe nucleus promote aggressive arousal in mice. Nature Communications, 2022, 13, .	12.8	10
137	Aldehyde dehydrogenase 2–associated changes in pharmacokinetics, locomotor function and peripheral glutamic acid and gamma-aminobutyric acid levels during acute alcohol intoxication in male mice. Behavioural Pharmacology, 0, Publish Ahead of Print, .	1.7	1
138	Neurobiology of Alcohol-Induced Aggression. , 2023, , 1-29.		0
139	Neurobiology of Alcohol-Induced Aggression. , 2023, , 1617-1645.		0
140	Towards the convergent therapeutic potential of G proteinâ€coupled receptors in autism spectrum disorders. British Journal of Pharmacology, 0, , .	5.4	0