Chemical Ozone Loss in the Arctic Winter 1994/95 as De

Journal of Atmospheric Chemistry 32, 35-59 DOI: 10.1023/a:1006093826861

Citation Report

#	ARTICLE	IF	CITATIONS
1	Title is missing!. Journal of Atmospheric Chemistry, 1999, 34, 365-383.	1.4	14
2	Chemical ozone loss in the Arctic vortex in the winter 1995-96: HALOE measurements in conjunction with other observations. Annales Geophysicae, 1999, 17, 101-114.	0.6	4
3	Arctic Ozone Loss Due to Denitrification. Science, 1999, 283, 2064-2069.	6.0	214
4	The cold winters of the middle 1990s in the northern lower stratosphere. Journal of Geophysical Research, 1999, 104, 14209-14222.	3.3	131
5	A test of our understanding of the ozone chemistry in the Arctic polar vortex based on in situ measurements of ClO, BrO, and O3in the 1994/1995 winter. Journal of Geophysical Research, 1999, 104, 18755-18768.	3.3	42
6	Subsidence, mixing, and denitrification of Arctic polar vortex air measured during POLARIS. Journal of Geophysical Research, 1999, 104, 26611-26623.	3.3	49
7	Ozone differential absorption lidar algorithm intercomparison. Applied Optics, 1999, 38, 6225.	2.1	71
8	Arctic and Antarctic ozone layer observations: chemical and dynamical aspects of variability and long-term changes in the polar stratosphere. Polar Research, 2000, 19, 193-204.	1.6	14
9	Ozone loss rates in the Arctic stratosphere in the winter 1994/1995: Model simulations underestimate results of the Match analysis. Journal of Geophysical Research, 2000, 105, 15175-15184.	3.3	42
10	Modeled Arctic ozone depletion in winter 1997/1998 and comparison with previous winters. Journal of Geophysical Research, 2000, 105, 22185-22200.	3.3	32
11	ILAS observations of chemical ozone loss in the Arctic vortex during early spring 1997. Geophysical Research Letters, 2000, 27, 213-216.	1.5	25
12	Match observations in the Arctic winter 1996/97: High stratospheric ozone loss rates correlate with low temperatures deep inside the polar vortex. Geophysical Research Letters, 2000, 27, 205-208.	1.5	62
13	Northern midlatitude stratospheric ozone dilution in spring modeled with simulated mixing. Journal of Geophysical Research, 2000, 105, 6885-6890.	3.3	52
14	Ozone trends: A review. Reviews of Geophysics, 2001, 39, 231-290.	9.0	316
15	Occurrence of solid particles in the winter polar stratosphere above the nitric acid trihydrate coexistence temperature inferred from ground-based polarization lidar observations at Ny-Ãlesund, Spitsbergen. Journal of Geophysical Research, 2001, 106, 2979-2992.	3.3	10
16	A composite view of ozone evolution in the 1995-1996 northern winter polar vortex developed from airborne lidar and satellite observations. Journal of Geophysical Research, 2001, 106, 9879-9895.	3.3	18
17	Arctic ozone loss in threshold conditions: Match observations in 1997/1998 and 1998/1999. Journal of Geophysical Research, 2001, 106, 7495-7503.	3.3	66
18	Title is missing!. Journal of Atmospheric Chemistry, 2001, 39, 123-138.	1.4	15

ATION RED

#	Article	IF	CITATIONS
19	An assessment of the ozone loss during the 1999–2000 SOLVE/THESEO 2000 Arctic campaign. Journal of Geophysical Research, 2002, 107, SOL 3-1.	3.3	22
20	POAM III observations of arctic ozone loss for the 1999/2000 winter. Journal of Geophysical Research, 2002, 107, SOL 5-1.	3.3	38
21	Comparison of empirically derived ozone losses in the Arctic vortex. Journal of Geophysical Research, 2002, 107, SOL 7-1.	3.3	56
22	Chemical depletion of Arctic ozone in winter 1999/2000. Journal of Geophysical Research, 2002, 107, SOL 18-1.	3.3	95
23	Stratospheric ozone loss in the 1996/1997 Arctic winter: Evaluation based on multiple trajectory analysis for double-sounded air parcels by ILAS. Journal of Geophysical Research, 2002, 107, ILS 7-1.	3.3	24
24	Chemical loss of ozone during the Arctic winter of 1999/2000: An analysis based on balloon-borne observations. Journal of Geophysical Research, 2002, 107, SOL 11-1.	3.3	39
25	Ozone loss from quasi-conservative coordinate mapping during the 1999–2000 SOLVE/THESEO 2000 campaigns. Journal of Geophysical Research, 2002, 107, SOL 16-1.	3.3	9
26	POAM III measurements of dehydration in the Antarctic and comparisons with the Arctic. Journal of Geophysical Research, 2002, 107, SOL 33-1.	3.3	29
27	An overview of the SOLVE/THESEO 2000 campaign. Journal of Geophysical Research, 2002, 107, SOL 1-1.	3.3	94
28	The influence of vortex ozone depletion on Arctic ozone trends. Geophysical Research Letters, 2002, 29, 9-1.	1.5	16
29	Intercomparison of Stratospheric Chemistry Models under Polar Vortex Conditions. Journal of Atmospheric Chemistry, 2003, 45, 51-77.	1.4	18
30	On the unexplained stratospheric ozone losses during cold Arctic Januaries. Geophysical Research Letters, 2003, 30, 8-1-8-4.	1.5	68
31	Seasonally averaged ozone and nitrous oxide in the Northern Hemisphere lower stratosphere. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	19
32	Estimation of Arctic polar vortex ozone loss during the winter of 1999–2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths. Journal of Geophysical Research, 2003, 108, .	3.3	4
33	Analysis of ozone loss in the Arctic stratosphere during the late winter and spring of 1997 using the Chemical Species Mapping on Trajectories (CSMT) technique. Journal of Geophysical Research, 2003, 108, .	3.3	1
34	Very early chlorine activation and ozone loss in the Arctic winter 2002-2003. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	19
35	Forecasting for a Lagrangian aircraft campaign. Atmospheric Chemistry and Physics, 2004, 4, 1113-1124.	1.9	21
36	Ozone loss derived from balloon-borne tracer measurements in the 1999/2000 Arctic winter. Atmospheric Chemistry and Physics, 2005, 5, 1423-1436.	1.9	12

#	Article	IF	CITATIONS
37	Statistical analysis of the precision of the Match method. Atmospheric Chemistry and Physics, 2005, 5, 2713-2727.	1.9	13
38	2002-2003 Arctic ozone loss deduced from POAM III satellite observations and the SLIMCAT chemical transport model. Atmospheric Chemistry and Physics, 2005, 5, 597-609.	1.9	48
39	Sensitivity of solar UV radiation to ozone and temperature profiles at Thessaloniki (40.5°N, 23°E), Greece. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1321-1330.	0.6	16
40	The September 2002 Antarctic vortex major warming as observed by visible spectroscopy and ozone soundings. International Journal of Remote Sensing, 2005, 26, 3361-3376.	1.3	7
41	A measurement/model comparison of ozone photochemical loss in the Antarctic ozone hole using Polar Ozone and Aerosol Measurement observations and the Match technique. Journal of Geophysical Research, 2005, 110, .	3.3	20
42	Estimating the impact of small-scale variability in satellite measurement validation. Journal of Geophysical Research, 2006, 111, .	3.3	14
43	Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophysical Research Letters, 2006, 33, .	1.5	151
44	The potential impact of ClO _x radical complexes on polar stratospheric ozone loss processes. Atmospheric Chemistry and Physics, 2006, 6, 3099-3114.	1.9	7
45	Elimination of hidden a priori information from remotely sensed profile data. Atmospheric Chemistry and Physics, 2007, 7, 397-408.	1.9	39
46	Characterization of Polar Stratospheric Clouds with spaceborne lidar: CALIPSO and the 2006 Antarctic season. Atmospheric Chemistry and Physics, 2007, 7, 5207-5228.	1.9	103
47	Comparison of polar ozone loss rates simulated by one-dimensional and three-dimensional models with Match observations in recent Antarctic and Arctic winters. Journal of Geophysical Research, 2007, 112, .	3.3	20
48	Ozone loss in the 2002–2003 Arctic vortex deduced from the assimilation of Odin/SMR O ₃ and N ₂ O measurements: N ₂ O as a dynamical tracer. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 217-228.	1.0	37
49	A study of ozone depletion in the 2004/2005 Arctic winter based on data from Odin/SMR and Aura/MLS. Journal of Geophysical Research, 2008, 113, .	3.3	27
50	The impact of transport across the polar vortex edge on Match ozone loss estimates. Atmospheric Chemistry and Physics, 2008, 8, 565-578.	1.9	16
51	Size distribution time series of a polar stratospheric cloud observed above Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (69°N) and analyzed from multiwavelength lidar measurements during winter 2005. Journal of Geophysical Research, 2009, 114, .	3.3	12
52	A closer look at Arctic ozone loss and polar stratospheric clouds. Atmospheric Chemistry and Physics, 2010, 10, 8499-8510.	1.9	50
53	Unprecedented Arctic ozone loss in 2011. Nature, 2011, 478, 469-475.	13.7	572
54	The effects of atmospheric waves on the amounts of polar stratospheric clouds. Atmospheric Chemistry and Physics, 2011, 11, 11535-11552.	1.9	19

#	Article	IF	CITATIONS
55	Strategic ozone sounding networks: Review of design and accomplishments. Atmospheric Environment, 2011, 45, 2145-2163.	1.9	63
57	Modeling the ascent of sounding balloons: derivation of the vertical air motion. Atmospheric Measurement Techniques, 2011, 4, 2235-2253.	1.2	30
59	Ozone loss rates in the Arctic winter stratosphere during 1994–2000 derived from POAM II/III and ILAS observations: Implications for relationships among ozone loss, PSC occurrence, and temperature. Journal of Geophysical Research, 2012, 117, .	3.3	3
60	Cirrus crystal fall velocity estimates using the Match method with ground-based lidars: first investigation through a case study. Atmospheric Measurement Techniques, 2013, 6, 457-470.	1.2	6
61	Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009. Atmospheric Chemistry and Physics, 2013, 13, 1809-1835.	1.9	19
62	Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results. Atmospheric Chemistry and Physics, 2013, 13, 9233-9268.	1.9	88
63	Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004–2005. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2673-2688.	1.2	53
64	Balloon-borne match measurements of midlatitude cirrus clouds. Atmospheric Chemistry and Physics, 2014, 14, 7341-7365.	1.9	28
65	A Match-based approach to the estimation of polar stratospheric ozone loss using Aura Microwave Limb Sounder observations. Atmospheric Chemistry and Physics, 2015, 15, 9945-9963.	1.9	34
66	First quasi-Lagrangian in situ measurements of Antarctic Polar springtime ozone: observed ozone loss rates from the Concordiasi long-duration balloon campaign. Atmospheric Chemistry and Physics, 2015, 15, 2463-2472.	1.9	4
67	Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses. Atmospheric Chemistry and Physics, 2015, 15, 3873-3892.	1.9	32
68	Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013. Atmospheric Chemistry and Physics, 2015, 15, 5381-5403.	1.9	36
69	Linking uncertainty in simulated Arctic ozone loss to uncertainties in modelled tropical stratospheric water vapour. Atmospheric Chemistry and Physics, 2018, 18, 15047-15067.	1.9	1
70	Nearâ€Complete Local Reduction of Arctic Stratospheric Ozone by Severe Chemical Loss in Spring 2020. Geophysical Research Letters, 2020, 47, e2020GL089547.	1.5	75
71	Climate change favours large seasonal loss of Arctic ozone. Nature Communications, 2021, 12, 3886.	5.8	44
72	Chemical Evolution of the Exceptional Arctic Stratospheric Winter 2019/2020 Compared to Previous Arctic and Antarctic Winters. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034356.	1.2	8
73	UV Radiation Effects on Phytoplankton Primary Production: A Comparison Between Arctic and Antarctic Marine Ecosystems. Ecological Studies, 2002, , 203-226.	0.4	7
74	Trace gas transport in the stratosphere: Diagnostic tools and techniques. Geophysical Monograph Series, 2010, , 137-156.	0.1	3

#	Article	IF	CITATIONS
75	Stratospheric Ozone Loss over Eureka in 1999/2000 Observed with ECC Ozonesondes. Journal of the Meteorological Society of Japan, 2003, 81, 295-304.	0.7	1
76	Variation in PSC Occurrence Observed with ILAS-II over the Antarctic in 2003. Scientific Online Letters on the Atmosphere, 2006, 2, 72-75.	0.6	5
88	Polar Stratospheric Clouds in the Arctic. Springer Polar Sciences, 2020, , 415-467.	0.0	1
89	Influence of the polar vortex strength and the QBO phase on Arctic ozone depletion. , 2020, , .		0
90	Ozonesondes: Instrumentation and Data Applications. , 2023, , 57-78.		0