Vaporization, melting and heat conduction in the laser

International Journal of Heat and Mass Transfer 42, 1775-1790 DOI: 10.1016/s0017-9310(98)00268-3

Citation Report

#	Article	IF	CITATIONS
1	NUMERICAL SIMULATION OF SHORT-PULSED LASER PROCESSING OF MATERIALS. Numerical Heat Transfer; Part A: Applications, 2001, 40, 497-509.	2.1	12
2	Heat transfer – a review of 1999 literature. International Journal of Heat and Mass Transfer, 2001, 44, 3579-3699.	4.8	29
3	Appropriate regimes of laser drilling models containing melt eject mechanisms. Journal of Laser Applications, 2002, 14, 159-164.	1.7	12
4	An optodynamic determination of the depth of laser-drilled holes by the simultaneous detection of ultrasonic waves in the air and in the workpiece. Ultrasonics, 2002, 40, 791-795.	3.9	26
5	Entropy generation analysis of laser evaporative heating. Exergy an International Journal, 2002, 2, 309-313.	0.7	0
6	Modeling of waterjet guided laser grooving of silicon. International Journal of Machine Tools and Manufacture, 2003, 43, 925-936.	13.4	66
7	Modelling of heat transfer in waterjet guided laser drilling of silicon. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217, 583-600.	2.4	8
8	Laser non-conduction limited heating and prediction of surface recession velocity in relation to drilling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217, 1067-1075.	2.1	12
9	Parametric Studies on Improved Laser Cutting Performance of Magnesium Alloy with Two Flow Nozzles. Japanese Journal of Applied Physics, 2004, 43, 5347-5351.	1.5	9
10	Investigations of laser percussion drilling of small holes on thin sheet metals. , 2004, 5525, 31.		2
11	Laser hole drilling quality and efficiency assessment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218, 225-233.	2.4	16
12	EPMA microanalysis of recast layers produced during laser drilling of type 305 stainless steel. Thin Solid Films, 2004, 453-454, 84-88.	1.8	21
13	Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials. International Journal of Heat and Mass Transfer, 2004, 47, 1159-1174.	4.8	112
14	Numerical modeling of scanning laser-induced melting, vaporization and resolidification in metals subjected to step heat flux input. International Journal of Heat and Mass Transfer, 2004, 47, 4153-4164.	4.8	40
15	Thermal stresses and their implication on cracking during laser melting of ceramic materials. Acta Materialia, 2004, 52, 4385-4398.	7.9	47
17	Entropy Analysis Due to Temperature and Stress Fields in the Solid Irradiated by a Time Exponentially Varying Laser Pulse. Heat Transfer Engineering, 2005, 26, 80-89.	1.9	3
18	Laser Pulse Heating of Steel Surface: Consideration of Phase-Change Process. Numerical Heat Transfer; Part A: Applications, 2006, 50, 787-807.	2.1	16
19	Solid velocity correction schemes for a temperature transforming model for convection phase change. International Journal of Numerical Methods for Heat and Fluid Flow, 2006, 16, 204-225.	2.8	40

		CITATION REPORT	
# 20	ARTICLE Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys. International Journal of Machine Tools and Manufacture, 2006, 46, 1972-1982.	IF 13.4	Citations
21	An analytical model for laser drilling incorporating effects of exothermic reaction, pulse width and hole geometry. International Journal of Heat and Mass Transfer, 2006, 49, 1358-1374.	4.8	64
22	MELTING AND SOLIDIFICATION. , 2006, , 421-530.		1
23	INTRODUCTION TO TRANSPORT PHENOMENA. , 2006, , 1-106.		5
24	A theoretical and experimental investigation on limitations of pulsed laser drilling. Journal of Materials Processing Technology, 2007, 183, 96-103.	6.3	100
25	Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Tag method. International Journal of Advanced Manufacturing Technology, 2007, 33, 308-316.	uchi 3.0	108
26	Thermal dynamics-based mechanism for intense laser-induced material surface vaporization. Pram Journal of Physics, 2008, 71, 529-543.	nana - 1.8	4
27	Laser pulse heating and vapor front generation. AICHE Journal, 2008, 54, 627-638.	3.6	7
28	Opposing steady and transiently developing jets in relation to laser machining. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222 967-985.	2, 2.1	0
29	Modeling of Melting, Evaporating, and Resolidifying Procedure in Laser-Induced Metal Processing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2009, 131, .	2.2	2
30	Laser pulse heating and phase changes in the irradiated region: Temperature-dependent thermal properties case. International Journal of Thermal Sciences, 2009, 48, 761-772.	4.9	19
31	Laser heating of moving solid: Influence of workpiece speed on melt size. AICHE Journal, 2010, 56 2997-3004.	, 3.6	4
32	Experimental and numerical optimization of beam shapes for short-pulse ultraviolet laser cutting processing. Physics Procedia, 2010, 5, 137-146.	1.2	10
33	Numerical Study of Waterjet Guided Laser Drilling of Silicon based on FVM. AIP Conference Proceedings, 2010, , .	0.4	2
34	Ultrashort-pulse laser microablation of aluminum oxide ceramics. , 2011, , .		1
35	Laser Heating and Flow Field Developed in the Melt Pool. Numerical Heat Transfer; Part A: Applications, 2011, 59, 970-987.	2.1	5
36	An Interfacial Tracking Model for Convection-Controlled Melting Problems. Numerical Heat Transf Part B: Fundamentals, 2011, 59, 209-225.	er, 0.9	11
37	Laser heating of a moving slab: Influence of laser intensity parameter and scanning speed on temperature field and melt size. Optics and Lasers in Engineering, 2011, 49, 265-272.	3.8	20

CITATION REPORT

#	Article	IF	CITATIONS
38	Laser repetitive pulse heating and melt pool formation at the surface. Journal of Mechanical Science and Technology, 2011, 25, 479-487.	1.5	23
39	Laser melting of aluminaâ€coated steel. AICHE Journal, 2011, 57, 2547-2554.	3.6	4
40	Laser produced melt pool: Influence of laser intensity parameter on flow field in melt pool. Optics and Laser Technology, 2011, 43, 767-775.	4.6	25
41	Influence of the interaction between nanoparticles and high brilliant laser radiation during μs-pulses on the ablation process of metals. Optics and Lasers in Engineering, 2012, 50, 717-726.	3.8	7
42	CO2 laser heating of surfaces: Melt pool formation at surface. Optics and Laser Technology, 2012, 44, 463-470.	4.6	6
43	An experimental and numerical study on laser percussion drilling of thick-section alumina. Journal of Materials Processing Technology, 2012, 212, 1257-1270.	6.3	75
44	Spatter reduction in nanosecond fibre laser drilling using an innovative nozzle. International Journal of Advanced Manufacturing Technology, 2013, 66, 1231-1245.	3.0	16
45	Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using Nd: YAG laser. Optics and Lasers in Engineering, 2013, 51, 681-695.	3.8	57
46	Experimental observation and simulation of keyhole dynamics during laser drilling. Optics and Laser Technology, 2013, 48, 405-414.	4.6	44
47	Laser induced heating of coated carbon steel sheets: Consideration of melting and Marangoni flow. Optics and Laser Technology, 2013, 47, 47-55.	4.6	6
48	Prediction of material removal rate due to laser beam percussion drilling in aluminium sheet using the finite element method. International Journal of Machining and Machinability of Materials, 2013, 14, 342.	0.1	4
49	Prediction of hole characteristics and hole productivity during pulsed Nd:YAG laser beam percussion drilling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227, 494-507.	2.4	12
50	<i>In situ</i> optical observations of keyhole dynamics during laser drilling. Applied Physics Letters, 2013, 103, .	3.3	21
51	MODELLING OF HOLE TAPER AND HEAT AFFECTED ZONE DUE TO LASER BEAM PERCUSSION DRILLING. Machining Science and Technology, 2013, 17, 270-291.	2.5	18
52	Investigation into Flow Field in Relation to Laser Gas Assisted Processing: Influence of Assisting Gas Velocity on the Flow Field. Numerical Heat Transfer; Part A: Applications, 2014, 65, 556-583.	2.1	0
53	Laser Drilling of Metallic and Nonmetallic Substrates. , 2014, , 115-175.		11
54	Laser Heating and the Phase Change Process. , 2014, , 5-24.		3
55	Developing three dimensional transient thermal model for laser beam assisted heating and material removal of solids. International Journal of Machining and Machinability of Materials, 2014, 16, 259.	0.1	0

#	Article	IF	Citations
56	Laser Heating of Tungsten Carbide-Coated Steel Surface: Influence of Coating Thickness on Temperature Field and Melt Depth. Heat Transfer Engineering, 2014, 35, 110-121.	1.9	2
57	An approach to modelling evaporation pulsed laser drilling and its energy efficiency. International Journal of Advanced Manufacturing Technology, 2014, 72, 1227-1241.	3.0	35
58	Blind micro-hole array Ti6Al4V templates for carrying biomaterials fabricated by fiber laser drilling. Journal of Materials Processing Technology, 2015, 222, 335-343.	6.3	26
59	Experimental characterizations of burr deposition in Nd:YAG laser drilling: a parametric study. International Journal of Advanced Manufacturing Technology, 2015, 76, 1529-1542.	3.0	26
60	Numerical and experimental study on the effect of the pulse format in laser drilling. Journal of Laser Applications, 2016, 28, .	1.7	4
61	Melt flow and heat transfer in laser drilling. International Journal of Thermal Sciences, 2016, 107, 141-152.	4.9	19
62	Effect of temporally modulated pulse on reducing recast layer in laser drilling. International Journal of Advanced Manufacturing Technology, 2016, 87, 1641-1652.	3.0	19
63	Evolution of geometric and quality features during ultrasonic vibration-assisted continuous wave laser surface drilling. Journal of Materials Processing Technology, 2016, 232, 52-62.	6.3	32
64	Numerical simulation of metal removal in laser drilling using symmetric smoothed particle hydrodynamics. Precision Engineering, 2017, 49, 69-77.	3.4	10
65	Numerical simulation of metal removal in laser drilling using radial point interpolation method. Engineering Analysis With Boundary Elements, 2017, 77, 89-96.	3.7	17
66	Prediction of Crater Size in Drilling and Texturing by Pulsed Laser Ablation. Solid State Phenomena, 2017, 261, 129-134.	0.3	0
67	Numerical simulation of metal removal in laser drilling using meshless local Petrov–Galerkin collocation method. Applied Mathematical Modelling, 2018, 56, 239-253.	4.2	13
68	Pulsed Nd:YAG laser beam drilling: A review. Optics and Laser Technology, 2018, 100, 183-215.	4.6	147
69	Analysis of Thermal Stress and Temperature Distribution of Laser Power 10.0w and 20.0w on Material Removal in Aluminium Oxide Ceramic. Materials Today: Proceedings, 2018, 5, 12821-12831.	1.8	2
70	Thermal/Mechanical Interaction in Laser Perforation Process: Numerical-Model Buildup and Parametric Study. SPE Journal, 2019, 24, 2097-2110.	3.1	12
71	A continuum mixture model for moving pulsed laser phase change process. International Journal of Thermal Sciences, 2019, 140, 388-396.	4.9	5
72	Application of Ultraviolet Laser Working in Cold Ablation Conditions for Cutting Labels Used in Packaging in the Food Industry. Materials, 2020, 13, 5245.	2.9	1
73	Numerical modelling and microstructural evolution of hybrid Ti-6Al-4V/Ti-Al-Si-Cu composite coating. International Journal of Advanced Manufacturing Technology, 2020, 110, 967-975.	3.0	5

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
74	Laser micro drilling of 316L stainless steel orthopedic implant: A study. Journal of Manufacturing Processes, 2020, 52, 220-234.	5.9	16
75	Computational modelling of laser additive manufactured (LAM) Titanium alloy grade 5. Materials Today: Proceedings, 2021, 44, 1254-1262.	1.8	1
76	Laser Beam Drilling of Inconel 718 and Its Effect on Mechanical Properties Determined by Static Uniaxial Tensile Testing at Room and Elevated Temperatures. Materials, 2021, 14, 3052.	2.9	3
77	Dynamic change process of a recast layer in Nd:YAG millisecond laser trepan drilling. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 804.	2.1	3
78	Computational Dynamics of Laser Alloyed Metallic Materials for Improved Corrosion Performance. Advances in Civil and Industrial Engineering Book Series, 2016, , 197-235.	0.2	1
79	Temperature distribution in optical trepanning. , 2004, , .		0
80	Effect of beam angle on heat affected zone, recast and oxide layer in laser drilling of thermal barrier coated nickel alloys. , 2005, , .		0
81	Numerical investigation of the efffect of the pulse format on drilling performance. , 2010, , .		0
83	Investigations of Polypropylene Foil Cutting Process Using Fiber Nb: Yag and Diode Nd:YVO4 Lasers. Acta Mechanica Et Automatica, 2019, 13, 107-112.	0.6	0
84	Optimization of Exit Diameter of Hole on Ti-6Al-4V Superalloy Using Laser Drilling. Lecture Notes on Multidisciplinary Industrial Engineering, 2021, , 291-302.	0.6	0
85	Advances Towards a Comprehensive Model of Laser-Rock Interaction. , 2020, , .		0
86	Numerical analysis of laser melting of alumina coated steel. Materials Today: Proceedings, 2022, , .	1.8	0
90	Femtosecond laser drilling 100Âμm diameter micro holes with aspect ratios > 20 in a Nickel based superalloy. Journal of Materials Research and Technology, 2024, 28, 1415-1422.	5.8	0