Inflammatory Mediators and Stroke: New Opportunitie

Journal of Cerebral Blood Flow and Metabolism 19, 819-834 DOI: 10.1097/00004647-199908000-00001

Citation Report

#	Article	IF	CITATIONS
1	Inflammatory Mediators and Stroke: New Opportunities for Novel Therapeutics. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 819-834.	2.4	869
2	Hypertonic Mannitol Loading of NF-κB Transcription Factor Decoys in Human Brain Microvascular Endothelial Cells Blocks Upregulation of ICAM-1. Stroke, 2000, 31, 1179-1186.	1.0	32
3	Effects of Lipopolysaccharide Priming on Acute Ischemic Brain Injury. Stroke, 2000, 31, 193-199.	1.0	102
4	Molecular mechanisms of ischemic neuronal injury. Annals of Emergency Medicine, 2000, 36, 483-506.	0.3	149
5	Neuroprotective Agent Chlomethiazole Attenuates c-fos, c-jun, and AP-1 Activation through Inhibition of p38 MAP Kinase. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1077-1088.	2.4	44
6	The Novel Î ² -Blocker, Carvedilol, Provides Neuroprotection in Transient Focal Stroke. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1197-1204.	2.4	124
7	Ischemic Penumbra: Evidence From Functional Imaging in Man. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1276-1293.	2.4	327
8	Activation of Mitogen-Activated Protein Kinases After Permanent Cerebral Artery Occlusion in Mouse Brain. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1320-1330.	2.4	117
9	Bench to Bedside Tumor Necrosis Factor-alpha: From Inflammation to Resuscitation. Academic Emergency Medicine, 2000, 7, 930-941.	0.8	33
10	Animal models of stroke. Trends in Molecular Medicine, 2000, 6, 133-135.	2.6	21
11	Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radical Biology and Medicine, 2000, 28, 1526-1531.	1.3	113
11 12	Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radical Biology and Medicine, 2000, 28, 1526-1531. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Research, 2000, 863, 169-181.	1.3 1.1	113
11 12 13	Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radical Biology and Medicine, 2000, 28, 1526-1531. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Research, 2000, 863, 169-181. Molecular mechanisms of ischemic neuronal injury. Annals of Emergency Medicine, 2000, 36, 483-506.	1.3 1.1 0.3	113 151 163
11 12 13 14	Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radical Biology and Medicine, 2000, 28, 1526-1531. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Research, 2000, 863, 169-181. Molecular mechanisms of ischemic neuronal injury. Annals of Emergency Medicine, 2000, 36, 483-506. What animal models have taught us about the treatment of acute stroke and brain protection. Current Atherosclerosis Reports, 2000, 2, 167-180.	1.3 1.1 0.3 2.0	113 151 163 12
11 12 13 14 15	Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radical Biology and Medicine, 2000, 28, 1526-1531.Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Research, 2000, 863, 169-181.Molecular mechanisms of ischemic neuronal injury. Annals of Emergency Medicine, 2000, 36, 483-506.What animal models have taught us about the treatment of acute stroke and brain protection. Current Atherosclerosis Reports, 2000, 2, 167-180.Tumor Necrosis Factor and Reactive Oxygen Species Cooperative Cytotoxicity Is Mediated via Inhibition of NF-1°B. Molecular Medicine, 2000, 6, 1028-1041.	1.3 1.1 0.3 2.0 1.9	 113 151 163 12 46
11 12 13 14 15	Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radical Biology and Medicine, 2000, 28, 1526-1531. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Research, 2000, 863, 169-181. Molecular mechanisms of ischemic neuronal injury. Annals of Emergency Medicine, 2000, 36, 483-506. What animal models have taught us about the treatment of acute stroke and brain protection. Current Atherosclerosis Reports, 2000, 2, 167-180. Tumor Necrosis Factor and Reactive Oxygen Species Cooperative Cytotoxicity Is Mediated via Inhibition of NF-1°B. Molecular Medicine, 2000, 6, 1028-1041. Therapeutic potential of anti-inflammatory drugs in focal stroke. Expert Opinion on Investigational Drugs, 2000, 9, 2281-2306.	1.3 1.1 0.3 2.0 1.9	 113 151 163 12 46 75
 11 12 13 14 15 16 17 	Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radical Biology and Medicine, 2000, 28, 1526-1531. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Research, 2000, 863, 169-181. Molecular mechanisms of ischemic neuronal injury. Annals of Emergency Medicine, 2000, 36, 483-506. What animal models have taught us about the treatment of acute stroke and brain protection. Current Atherosclerosis Reports, 2000, 2, 167-180. Tumor Necrosis Factor and Reactive Oxygen Species Cooperative Cytotoxicity Is Mediated via Inhibition of NF-I®B. Molecular Medicine, 2000, 6, 1028-1041. Therapeutic potential of anti-inflammatory drugs in focal stroke. Expert Opinion on Investigational Drugs, 2000, 9, 2281-2306. Oxygen-Glucose Deprivation Induces Inducible Nitric Oxide Synthase and Nitrotyrosine Expression in Cerebral Endothelial Cells. Stroke, 2000, 31, 1744-1751.	 1.3 1.1 0.3 2.0 1.9 1.9 1.0 	 113 151 163 12 46 75 95

#	Article	IF	CITATIONS
19	High concentrations of extracellular potassium enhance bacterial endotoxin lipopolysaccharide-induced neurotoxicity in glia–neuron mixed cultures. Neuroscience, 2000, 97, 757-764.	1.1	31
20	Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Molecular Brain Research, 2000, 77, 65-75.	2.5	252
21	The therapeutic time window—Theoretical and practical considerations. Journal of Stroke and Cerebrovascular Diseases, 2000, 9, 24-31.	0.7	16
22	Acute-Phase Proteins Before Cerebral Ischemia in Stroke-Prone Rats. Stroke, 2001, 32, 753-760.	1.0	93
23	Systemic LPS Injection Leads to Granulocyte Influx into Normal and Injured Brain: Effects of ICAM-1 Deficiency. Experimental Neurology, 2001, 172, 137-152.	2.0	98
24	Screening for cerebroprotective agents using an in vivo model of cerebral reversible depolarization in awake rats. Pharmacological Research, 2001, 44, 419-429.	3.1	3
25	Interleukin-1β exacerbates hypoxia-induced neuronal damage, but attenuates toxicity produced by simulated ischaemia and excitotoxicity in rat organotypic hippocampal slice cultures. Neuroscience Letters, 2001, 305, 29-32.	1.0	32
26	Drug delivery to damaged brain. Brain Research Reviews, 2001, 38, 140-148.	9.1	123
27	Do white cells matter in white matter damage?. Trends in Neurosciences, 2001, 24, 320-324.	4.2	71
28	Characterisation of gene expression changes following permanent MCAO in the rat using subtractive hybridisation. Molecular Brain Research, 2001, 93, 70-80.	2.5	39
29	Neuroprotection for Ischaemic Stroke. CNS Drugs, 2001, 15, 165-174.	2.7	51
30	Potential of anticytokine therapies in central nervous system ischaemia. Expert Opinion on Biological Therapy, 2001, 1, 227-237.	1.4	38
31	Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia. Journal of Neuroscience, 2001, 21, 2580-2588.	1.7	885
32	Cerebral ischemia and inflammation. Current Opinion in Neurology, 2001, 14, 89-94.	1.8	395
33	1 p38 MAP Kinase: Molecular Target for the Inhibition of Pro-inflammatory Cytokines. Progress in Medicinal Chemistry, 2001, 38, 1-60.	4.1	146
34	Relevance of Experimental Ischemia in Cats for Stroke Management: A Comparative Reevaluation. Cerebrovascular Diseases, 2001, 11, 73-81.	0.8	23
35	Reduction of Inflammatory Response in the Mouse Brain With Adenoviral-Mediated Transforming Growth Factor-β1 Expression. Stroke, 2001, 32, 544-552.	1.0	131
36	Systemic Complement Depletion Diminishes Perihematomal Brain Edema in Rats. Stroke, 2001, 32, 162-167.	1.0	119

#	Article	IF	CITATIONS
37	Evolution of Cerebral Tumor Necrosis Factor- $\hat{l}\pm$ Production During Human Ischemic Stroke. Stroke, 2001, 32, 1750-1758.	1.0	176
38	Cyclooxygenase-2 Inhibitor NS-398 Protects Neuronal Cultures From Lipopolysaccharide-Induced Neurotoxicity. Stroke, 2001, 32, 2370-2375.	1.0	123
39	Enoxaparin in Experimental Stroke. Stroke, 2001, 32, 993-999.	1.0	51
40	Cytokine network in acute stroke. Neurological Sciences, 2001, 22, 287-288.	0.9	3
41	Dynamic changes of magnetic resonance imaging abnormalities in relation to inflammation and glial responses after photothrombotic cerebral infarction in the rat brain. Acta Neuropathologica, 2001, 101, 114-122.	3.9	59
42	Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Medicinal Research Reviews, 2001, 21, 129-145.	5.0	252
43	Mitogen-Activated Protein Kinases and Cerebral Ischemia. Molecular Neurobiology, 2001, 23, 01-20.	1.9	191
44	Regulation of Blood—Brain Barrier Permeability. Microcirculation, 2001, 8, 89-104.	1.0	120
45	Neuroprotection in Ischemia–Reperfusion Injury: An Antiinflammatory Approach Using a Novel Broad-Spectrum Chemokine Inhibitor. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 683-689.	2.4	72
46	Stroke Genomics: Approaches to Identify, Validate, and Understand Ischemic Stroke Gene Expression. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 755-778.	2.4	85
47	Neuroprotective Effects of the CRF1 Antagonist R121920 after Permanent Focal Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1208-1214.	2.4	22
48	Chemokine Receptor Antagonist Peptide, Viral MIP-II, Protects the Brain against Focal Cerebral Ischemia in Mice. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1430-1435.	2.4	78
49	Cytokines and acute neurodegeneration. Nature Reviews Neuroscience, 2001, 2, 734-744.	4.9	994
50	Endothelial dysfunction in cirrhosis and portal hypertension. , 2001, 89, 273-293.		100
51	Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD8+ T-lymphocytes and activated microglia/macrophages. Journal of Neuroimmunology, 2001, 114, 232-241.	1.1	86
52	Depletion of systemic macrophages by liposome-encapsulated clodronate attenuates striatal macrophage invasion and neurodegeneration following local endotoxin infusion in gerbils. Brain Research, 2001, 892, 13-26.	1.1	27
53	Long-term neuroprotective effect of inhibiting poly(ADP-ribose) polymerase in rats with middle cerebral artery occlusion using a behavioral assessment. Brain Research, 2001, 915, 210-217.	1.1	69
54	Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radical Biology and Medicine, 2001, 31, 563-573	1.3	136

#	Article	IF	CITATIONS
55	L-selectin inhibition does not reduce injury in a rabbit model of transient focal cerebral ischemia. Neurological Research, 2001, 23, 72-78.	0.6	37
56	Potent Inhibition of Neutrophil Migration by Cryptococcal Mannoprotein-4-Induced Desensitization. Journal of Immunology, 2001, 167, 3988-3995.	0.4	49
57	A radical approach to stroke therapy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10989-10991.	3.3	32
58	Inflammation After Stroke. Archives of Neurology, 2001, 58, 669-72.	4.9	124
59	Extracellular Matrix Remodeling: Multiple Paradigms in Vascular Disease. Circulation Research, 2001, 88, 2-4.	2.0	121
60	Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1294-1299.	3.3	413
61	Characterization of the Microglial Response to Cerebral Ischemia in the Stroke-Prone Spontaneously Hypertensive Rat. Hypertension, 2001, 38, 116-122.	1.3	47
62	Quantitative Analysis of Gene Expressions Related to Inflammation in Canine Spastic Artery After Subarachnoid Hemorrhage. Stroke, 2001, 32, 212-217.	1.0	140
63	Inflammatory Mediators and Neonatal Brain Damage. Neonatology, 2001, 79, 224-227.	0.9	139
64	Flow Cytometric Analysis of Inflammatory Cells in Ischemic Rat Brain. Stroke, 2002, 33, 586-592.	1.0	243
65	Inflammatory Response and Glutathione Peroxidase in a Model of Stroke. Journal of Immunology, 2002, 168, 1926-1933.	0.4	63
66	Â-Amyloid precursor protein transgenic mice that harbor diffuse AÂ deposits but do not form plaques show increased ischemic vulnerability: Role of inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1610-1615.	3.3	151
67	Prereperfusion flushing of ischemic territory: a therapeutic study in which histological and behavioral assessments were used to measure ischemia—reperfusion injury in rats with stroke. Journal of Neurosurgery, 2002, 96, 310-319.	0.9	42
68	Adult Stroke and Perinatal Brain Damage: Like Grandparent, Like Grandchild?. Neuropediatrics, 2002, 33, 281-287.	0.3	15
69	Pharmacological interventions for stroke: failures and future. Expert Opinion on Investigational Drugs, 2002, 11, 603-614.	1.9	55
70	Neuroprotection in cerebral ischemia. , 2002, , 62-78.		0
71	The endocannabinoid system: function in survival of the embryo, the newborn and the neuron. NeuroReport, 2002, 13, 1833-1841.	0.6	37
72	Prereperfusion Saline Infusion Into Ischemic Territory Reduces Inflammatory Injury After Transient Middle Cerebral Artery Occlusion in Rats. Stroke, 2002, 33, 2492-2498.	1.0	115

#	Article	IF	CITATIONS
73	LEX032, A Novel Recombinant Serpin, Protects the Brain after Transient Focal Ischemia. Microvascular Research, 2002, 63, 327-334.	1.1	12
74	Improved Recovery and Delayed Cytokine Induction after Closed Head Injury in Mice with Central Overexpression of the Secreted Isoform of the Interleukin-1 Receptor Antagonist. Journal of Neurotrauma, 2002, 19, 939-951.	1.7	148
75	Combination Therapy for Ischemic Stroke. American Journal of Cardiovascular Drugs, 2002, 2, 303-313.	1.0	34
76	THE INFLAMMATORY RESPONSE IN CEREBRAL ISCHEMIA: FOCUS ON CYTOKINES IN STROKE PATIENTS. Clinical and Experimental Hypertension, 2002, 24, 535-542.	0.5	24
77	Identification of differentially expressed genes induced by transient ischemic stroke. Molecular Brain Research, 2002, 101, 12-22.	2.5	57
78	DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Molecular Brain Research, 2002, 108, 81-93.	2.5	101
79	Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience, 2002, 114, 1081-1090.	1.1	155
80	Cerebral ischemia and trauma—different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Research Reviews, 2002, 39, 55-73.	9.1	372
81	Excitotoxic injury induces production of monocyte chemoattractant protein-1 in rat cortico-striatal slice cultures. Neuroscience Letters, 2002, 328, 277-280.	1.0	15
82	Albumin Therapy of Transient Focal Cerebral Ischemia. Stroke, 2002, 33, 1077-1084.	1.0	189
83	Hypoxic-Ischemic Injury Induces Macrophage Inflammatory Protein-1α Expression in Immature Rat Brain. Stroke, 2002, 33, 795-801.	1.0	137
84	Target Depletion of Distinct Tumor Necrosis Factor Receptor Subtypes Reveals Hippocampal Neuron Death and Survival through Different Signal Transduction Pathways. Journal of Neuroscience, 2002, 22, 3025-3032.	1.7	233
85	Periventricular Leukomalacia: The Role of Inflammatory Mediators and Microglia in Pathogenesis. Neuroembryology, 2002, 1, 91-96.	1.1	5
86	Influence of Mild Hypothermia on Inducible Nitric Oxide Synthase Expression and Reactive Nitrogen Production in Experimental Stroke and Inflammation. Journal of Neuroscience, 2002, 22, 3921-3928.	1.7	176
87	Extracellular ATP and P2X7 receptors in neurodegeneration. European Journal of Pharmacology, 2002, 447, 261-269.	1.7	146
88	Neuroprotective efficacy of nimesulide against hippocampal neuronal damage following transient forebrain ischemia. European Journal of Pharmacology, 2002, 453, 189-195.	1.7	48
89	Ischemic preconditioning reduces infarct volume after subdural hematoma in the rat. Brain Research, 2002, 930, 200-205.	1.1	7
90	The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Research, 2002, 932, 110-119.	1.1	182

#	Article	IF	CITATIONS
91	The acute and sensitization effects of tumor necrosis factor-α: implications for immunotherapy as well as psychiatric and neurological conditions. Acta Neuropsychiatrica, 2002, 14, 322-335.	1.0	4
92	The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-α, IL-1β and IFN-γ. Journal of Neurochemistry, 2002, 81, 150-157.	2.1	227
93	Increase in glutamate-induced neurotoxicity by activated astrocytes involves stimulation of protein kinase C. Journal of Neurochemistry, 2002, 82, 504-515.	2.1	34
94	Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology, 2002, 22, 106-132.	0.7	325
95	Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia-reperfusion brain injury in the rat. European Journal of Neuroscience, 2002, 15, 1663-1668.	1.2	133
96	Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. European Journal of Neuroscience, 2002, 15, 1937-1952.	1.2	199
97	TNF-α–Induced Tolerance to Ischemic Injury Involves Differential Control of NF-κB Transactivation: The Role of NF-κB Association with p300 Adaptor. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 142-152.	2.4	137
98	Monocyte Chemoattractant Protein-1 Deficiency is Protective in a Murine Stroke Model. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 308-317.	2.4	271
99	Astrocytic Activation and Delayed Infarct Expansion after Permanent Focal Ischemia in Rats. Part I: Enhanced Astrocytic Synthesis of S-100β in the Periinfarct Area Precedes Delayed Infarct Expansion. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 711-722.	2.4	126
100	Astrocytic Activation and Delayed Infarct Expansion after Permanent Focal Ischemia in Rats. Part II: Suppression of Astrocytic Activation by a Novel Agent (R)-(â^')-2-propyloctanoic acid (ONO-2506) Leads to Mitigation of Delayed Infarct Expansion and Early Improvement of Neurologic Deficits. Journal of Cerebral Blood Flow and Metabolism. 2002, 22, 723-734.	2.4	134
101	Inflammation and Infection in Clinical Stroke. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1399-1419.	2.4	255
102	New concepts in the immunopathogenesis of multiple sclerosis. Nature Reviews Neuroscience, 2002, 3, 291-301.	4.9	517
103	DAPK catalytic activity in the hippocampus increases during the recovery phase in an animal model of brain hypoxic-ischemic injury. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1600, 128-137.	1.1	42
104	Glucocorticoids and Central Nervous System Inflammation. Journal of NeuroVirology, 2002, 8, 513-528.	1.0	32
105	Triggers and Mediators of Hemorrhagic Transformation in Cerebral Ischemia. Molecular Neurobiology, 2003, 28, 229-244.	1.9	184
106	New immunopathologic insights into multiple sclerosis. Current Neurology and Neuroscience Reports, 2003, 3, 246-255.	2.0	27
108	Interferon regulatory factor-1 immunoreactivity in neurons and inflammatory cells following ischemic stroke in rodents and humans. Acta Neuropathologica, 2003, 105, 420-424.	3.9	25
109	Broad-spectrum chemokine inhibitors (BSCIs) and their anti-inflammatory effects in vivo. Biochemical Pharmacology, 2003, 65, 1027-1034.	2.0	38

#	Article	IF	CITATIONS
110	l-Arginine increases ischemic injury in wild-type mice but not in iNOS-deficient mice. Brain Research, 2003, 966, 308-311.	1.1	42
111	Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. Journal of Neuroscience Research, 2003, 73, 537-544.	1.3	126
112	Neuronal overexpression of cyclooxygenase-2 increases cerebral infarction. Annals of Neurology, 2003, 54, 155-162.	2.8	161
113	Novel glucocorticoid effects on acute inflammation in the CNS. Journal of Neurochemistry, 2003, 84, 705-716.	2.1	153
114	Poly(ADPâ€ribose) polymeraseâ€1 activity promotes NFâ€îºBâ€driven transcription and microglial activation: implication for neurodegenerative disorders. Journal of Neurochemistry, 2003, 85, 306-317.	2.1	215
115	Gene therapy for cerebral vascular disease: update 2003. British Journal of Pharmacology, 2003, 139, 1-9.	2.7	16
116	Bradykinin B2 receptor antagonism: a new direction for acute stroke therapy?. British Journal of Pharmacology, 2003, 139, 1369-1371.	2.7	26
117	Neuroprotection by Complement (C1) Inhibitor in Mouse Transient Brain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 232-239.	2.4	116
118	Oligodendrocytes and Ischemic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 263-274.	2.4	286
119	Mild Hypothermia Inhibits Nuclear Factor-κB Translocation in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 589-598.	2.4	127
120	Overexpression of Monocyte Chemoattractant Protein 1 in the Brain Exacerbates Ischemic Brain Injury and is Associated with Recruitment of Inflammatory Cells. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 748-755.	2.4	242
121	Interferon-Beta Prevents Cytokine-Induced Neutrophil Infiltration and Attenuates Blood–Brain Barrier Disruption. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1060-1069.	2.4	109
122	Interferon-Beta Blocks Infiltration of Inflammatory Cells and Reduces Infarct Volume after Ischemic Stroke in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1029-1039.	2.4	122
123	Reduced Cerebral Injury in CRH-R1 Deficient Mice after Focal Ischemia: A Potential Link to Microglia and Atrocytes that Express CRH-R1. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1151-1159.	2.4	47
124	Mechanisms, challenges and opportunities in stroke. Nature Reviews Neuroscience, 2003, 4, 399-414.	4.9	1,584
125	Cellular and Molecular Determinants of Glial Scar Formation. Advances in Experimental Medicine and Biology, 2003, 513, 115-158.	0.8	30
126	Synergism between tumor necrosis factor-α and H2O2 enhances cell damage in rat PC12 cells. Neuroscience Letters, 2003, 353, 115-118.	1.0	8
127	Reduced inflammatory mediator expression by pre-reperfusion infusion into ischemic territory in rats: a real-time polymerase chain reaction analysis. Neuroscience Letters, 2003, 353, 173-176.	1.0	37

#	Article	IF	CITATIONS
128	Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Experimental Neurology, 2003, 183, 25-33.	2.0	319
129	Toward cell replacement therapy: promises and caveats. Experimental Neurology, 2003, 184, 61-77.	2.0	39
130	Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neuroscience Letters, 2003, 342, 93-96.	1.0	63
131	Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Brain Research Reviews, 2003, 41, 26-43.	9.1	71
132	Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. Brain Research Reviews, 2003, 42, 187-203.	9.1	43
133	Guidelines for the Early Management of Patients With Ischemic Stroke. Stroke, 2003, 34, 1056-1083.	1.0	1,037
134	Vascular Endothelial Growth Factor Regulates Focal Adhesion Assembly in Human Brain Microvascular Endothelial Cells through Activation of the Focal Adhesion Kinase and Related Adhesion Focal Tyrosine Kinase. Journal of Biological Chemistry, 2003, 278, 36661-36668.	1.6	127
135	Inhibitors of Cyclooxygenase-2, but Not Cyclooxygenase-1 Provide Structural and Functional Protection against Quinolinic Acid-Induced Neurodegeneration. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 218-228.	1.3	56
136	Human cellular inflammation in the pathology of acute cerebral ischaemia. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 1476-1484.	0.9	51
137	Neuroprotective Synergy ofN-Methyl-D-Aspartate Receptor Antagonist (MK801) and Protein Synthesis Inhibitor (Cycloheximide) on Spinal Cord Ischemia-Reperfusion Injury in Rats. Journal of Neurotrauma, 2003, 20, 195-206.	1.7	11
138	Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opinion on Therapeutic Targets, 2003, 7, 35-48.	1.5	126
139	Mild Hypothermia Inhibits Inflammation After Experimental Stroke and Brain Inflammation. Stroke, 2003, 34, 2495-2501.	1.0	151
140	Effects of FK506 on the translocation of protein kinase C and CaM kinase II in the gerbil hippocampal CA1 neurons. Neurological Research, 2003, 25, 522-527.	0.6	9
141	Stroke: Molecular Mechanisms and Potential Targets for Treatment. Current Molecular Medicine, 2003, 3, 361-372.	0.6	86
142	Neuroprotective Effect of Urinary Trypsin Inhibitor against Focal Cerebral Ischemia–Reperfusion Injury in Rats. Anesthesiology, 2003, 98, 465-473.	1.3	84
143	Statins as potential therapeutic agents in neuroinflammatory disorders. Current Opinion in Neurology, 2003, 16, 393-401.	1.8	97
144	The Temporal Profile of the Reaction of Microglia, Astrocytes, and Macrophages in the Delayed Onset Paraplegia After Transient Spinal Cord Ischemia in Rabbits. Anesthesia and Analgesia, 2003, 96, 1777-1784.	1.1	52
145	Statins as potential therapeutic agents in neuroinflammatory disorders. Current Opinion in Neurology, 2003, 16, 393-401.	1.8	78

#	Article	IF	CITATIONS
146	Decreased Levels of Plasma Vitamin C and Increased Concentrations of Inflammatory and Oxidative Stress Markers After Stroke. Stroke, 2004, 35, 163-168.	1.0	186
147	Defective transcription factor activation for proinflammatory gene expression in poly(ADP-ribose) polymerase 1-deficient glia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5087-5092.	3.3	59
148	Inhibition of Intercellular Adhesion Molecule-1 Protein Expression by Antisense Oligonucleotides Is Neuroprotective After Transient Middle Cerebral Artery Occlusion in Rat. Stroke, 2004, 35, 179-184.	1.0	119
149	Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13660-13665.	3.3	226
150	Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11839-11844.	3.3	594
151	Cysteinylâ€leukotriene receptor activation in brain inflammatory reactions and cerebral edema formation: a role for transcellular biosynthesis of cysteinyl leukotrienes. FASEB Journal, 2004, 18, 842-844.	0.2	66
152	Neuroprotection against transient cerebral ischemia by exercise pre-conditioning in rats. Neurological Research, 2004, 26, 404-408.	0.6	50
153	Extracellular proteolytic pathophysiology in the neurovascular unit after stroke. Neurological Research, 2004, 26, 854-861.	0.6	43
154	A Role for Interferon-Gamma in Focal Cerebral Ischemia in Mice. Journal of Neuropathology and Experimental Neurology, 2004, 63, 942-955.	0.9	65
155	Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain, 2004, 127, 315-320.	3.7	157
156	Neurotoxic effects of polymorphonuclear granulocytes on hippocampal primary cultures. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 331-336.	3.3	104
157	The Proapoptotic Gene SIVA Is a Direct Transcriptional Target for the Tumor Suppressors p53 and E2F1. Journal of Biological Chemistry, 2004, 279, 28706-28714.	1.6	73
158	In Vitro Ischemic Tolerance Involves Upregulation of Glutamate Transport Partly Mediated by the TACE/ADAM17-Tumor Necrosis Factor-Â Pathway. Journal of Neuroscience, 2004, 24, 1350-1357.	1.7	123
159	Rearrangement of the retino-collicular projection after partial optic nerve crush in the adult rat. European Journal of Neuroscience, 2004, 19, 247-257.	1.2	17
160	Pyrrolidine dithiocarbamate inhibits translocation of nuclear factor kappa-B in neurons and protects against brain ischaemia with a wide therapeutic time window. Journal of Neurochemistry, 2004, 91, 755-765.	2.1	80
161	Deleterious effects of minocycline in animal models of Parkinson's disease and Huntington's disease. European Journal of Neuroscience, 2004, 19, 3266-3276.	1.2	156
162	Amelioration of Hippocampal Neuronal Damage after Transient Forebrain Ischemia in Cyclooxygenase-2—Deficient Mice*. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 107-113.	2.4	94
163	Augmented Delayed Infarct Expansion and Reactive Astrocytosis after Permanent Focal Ischemia in Apolipoprotein E4 Knock-In Mice. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 646-656.	2.4	20

#	Article	IF	CITATIONS
164	Inflammatory Gene Profiling in the Developing Mouse Brain after Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1333-1351.	2.4	134
165	Inhibition of Toll-like Receptor and Cytokine Signaling—A Unifying Theme in Ischemic Tolerance. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1288-1304.	2.4	238
166	Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Research, 2004, 996, 55-66.	1.1	131
167	Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat. Brain Research, 2004, 1007, 98-108.	1.1	67
168	Multiple modes of action of tacrolimus (FK506) for neuroprotective action on ischemic damage after transient focal cerebral ischemia in rats. Brain Research, 2004, 1014, 120-130.	1.1	37
169	Neuroprotective effects of the free radical scavenger Edaravone (MCI-186) in mice permanent focal brain ischemia. Brain Research, 2004, 1029, 200-206.	1.1	112
170	Mechanisms of ischemic brain injury. Current Cardiology Reports, 2004, 6, 117-123.	1.3	117
171	Brain trauma induces Xâ€box protein 1 processing indicative of activation of the endoplasmic reticulum unfolded protein response. Journal of Neurochemistry, 2004, 88, 983-992.	2.1	38
172	Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia. Annals of Neurology, 2004, 56, 61-67.	2.8	65
173	Development of brain infarct volume as assessed by magnetic resonance imaging (MRI): Follow-up of diffusion-weighted MRI lesions. Journal of Magnetic Resonance Imaging, 2004, 20, 201-207.	1.9	49
174	Redox regulation of glial inflammatory response to lipopolysaccharide and interferon?. Journal of Neuroscience Research, 2004, 77, 540-551.	1.3	406
175	Nuclear Factor-l [®] B Contributes to Infarction After Permanent Focal Ischemia. Stroke, 2004, 35, 987-991.	1.0	261
176	Ischaemic preconditioning: therapeutic implications for stroke?. Expert Opinion on Therapeutic Targets, 2004, 8, 125-139.	1.5	26
177	Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurological Research, 2004, 26, 884-892.	0.6	266
178	Expression of proinflammatory cytokines and growth factors at the injured growth plate cartilage in young rats. Bone, 2004, 35, 1307-1315.	1.4	63
179	Injury severity and cell death mechanisms: effects of concomitant hypovolemic hypotension on spinal cord ischemia–reperfusion in rats. Experimental Neurology, 2004, 185, 120-132.	2.0	31
180	Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochemical and Biophysical Research Communications, 2004, 322, 440-446.	1.0	95
181	Combined proteomic approach with SELDI-TOF-MS and peptide mass fingerprinting identified the rapid increase of monomeric transthyretin in rat cerebrospinal fluid after transient focal cerebral ischemia. Molecular Brain Research, 2004, 129, 44-53.	2.5	27

#	Article	IF	CITATIONS
182	Increased mortality and spatial memory deficits in TNF-α-deficient mice in ceftriaxone-treated experimental pneumococcal meningitis. Neurobiology of Disease, 2004, 16, 133-138.	2.1	58
183	Temporal and topographic profiles of cyclooxygenase-2 expression during 24 h of focal brain ischemia in rats. Neuroscience Letters, 2004, 357, 219-222.	1.0	41
184	Mechanisms of oxygen glucose deprivation-induced glutamate release from cerebrocortical slice cultures. Neuroscience Research, 2004, 50, 179-187.	1.0	61
185	Endogenous Brain Protection: Models, Gene Expression, and Mechanisms. , 2005, 104, 105-184.		10
188	Introduction to Stroke Genomics. , 2005, 104, 003-016.		1
189	Effect of aprotinin on in vitro cerebral endothelial ICAM-1 expression induced by astrocyte-conditioned medium. European Journal of Anaesthesiology, 2005, 22, 277-282.	0.7	2
190	Activation of c-fos by lipopolysaccharide in glial cells via p38 mitogen-activated protein kinase-dependent activation of serum or cyclic AMP/calcium response element. Journal of Neurochemistry, 2005, 92, 915-924.	2.1	16
191	S-Nitrosoglutathione Reduces Inflammation and Protects Brain against Focal Cerebral Ischemia in a Rat Model of Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 177-192.	2.4	150
192	Cyclophilin C-Associated Protein and Cyclophilin C mRNA are Upregulated in Penumbral Neurons and Microglia after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 325-337.	2.4	25
193	Minocycline Protects against Permanent Cerebral Ischemia in Wild Type but Not in Matrix Metalloprotease-9-Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 460-467.	2.4	115
194	Modulation of Astrocytic Activation by Arundic Acid (ONO-2506) Mitigates Detrimental Effects of the Apolipoprotein E4 Isoform after Permanent Focal Ischemia in Apolipoprotein E Knock-in Mice. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 748-762.	2.4	20
195	Minocycline Confers Early but Transient Protection in the Immature Brain following Focal Cerebral Ischemia—Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1138-1149.	2.4	154
196	Current and future pharmacological interventions for the acute treatment of ischaemic stroke. Current Anaesthesia and Critical Care, 2005, 16, 99-109.	0.3	8
197	Diabetes increases expression of ICAM after a brief period of cerebral ischemia. Journal of Neuroimmunology, 2005, 161, 61-67.	1.1	36
198	Gradual changes in the apparent diffusion coefficient of water in selectively vulnerable brain regions following brief ischemia in the gerbil. Magnetic Resonance in Medicine, 2005, 53, 593-600.	1.9	6
199	Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathologica, 2005, 109, 237-246.	3.9	124
200	Mitogen-activated protein kinases (MAPKs) mediate SIN-1/glucose deprivation-induced death in rat primary astrocytes. Archives of Pharmacal Research, 2005, 28, 942-947.	2.7	13
201	Inflammation in the Brain after Experimental Subarachnoid Hemorrhage. Neurosurgery, 2005, , .	0.6	31

ARTICLE IF CITATIONS Gene Discovery Underlying Stroke., 2005, 18, 336-376. 202 0 Testosterone augments endotoxin-mediated cerebrovascular inflammation in male rats. American 1.5 54 Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1843-H1850. Targeting Kinin Receptors for the Treatment of Neurological Diseases. Current Pharmaceutical 204 0.9 46 Design, 2005, 11, 1313-1326. Effects of ketamine and propofol on inflammatory responses of primary glial cell cultures stimulated with lipopolysaccharide. British Journal of Anaesthesia, 2005, 95, 803-810. Activation of Nuclear Factor-ÂB via Endogenous Tumor Necrosis Factor Regulates Survival of 206 1.7 84 Axotomized Adult Sensory Neurons. Journal of Neuroscience, 2005, 25, 1682-1690. Poly(ADP-Ribose) Polymerase-1 Promotes Microglial Activation, Proliferation, and Matrix Metalloproteinase-9-Mediated Neuron Death. Journal of Immunology, 2005, 174, 2288-2296. 0.4 168 Postischemic Gene Transfer of Interleukin-10 Protects Against Both Focal and Global Brain Ischemia. 208 1.6 183 Circulation, 2005, 111, 913-919. Effect of Interleukin-1 on Traumatic Brain Injury–Induced Damage to Hippocampal Neurons. Journal of 209 1.7 Neurotrauma, 2005, 22, 885-895. Interaction Between a Rat Model of Cerebral Ischemia and Î²-Amyloid Toxicity. Stroke, 2005, 36, 107-112. 210 1.0 74 Nedd9 Protein, a Cas-L Homologue, Is Upregulated After Transient Global Ischemia in Rats. Stroke, 2005, 1.0 36, 2457-2462. Advances in Stroke Neuroprotection: Hyperoxia and Beyond. Neuroimaging Clinics of North America, 212 0.5 22 2005, 15, 697-720. Aging effect on myeloperoxidase in rat kidney and its modulation by calorie restriction. Free Radical 1.5 Research, 2005, 39, 283-289. Investigational anti-inflammatory agents for the treatment of ischaemic brain injury. Expert Opinion 214 1.9 57 on Investigational Drugs, 2005, 14, 393-409. Regulation of Inflammatory Response in Neural Cells in Vitro by Thiadiazolidinones Derivatives through Peroxisome Proliferator-activated Receptor \hat{I}^3 Activation. Journal of Biological Chemistry, 1.6 174 2005, 280, 21453-21462. Neuroprotection by neuregulin-1 following focal stroke is associated with the attenuation of 216 ischemia-induced pro-inflammatory and stress gene expression. Neurobiology of Disease, 2005, 19, 101 2.1461-470. Post-seizures amygdaloallocortical microvascular lesion leading to atrophy and memory impairment. 217 Neurobiology of Disease, 2005, 19, 479-489. Neuroglial activation in Niemannâ€"Pick Type C mice is suppressed by intracerebral transplantation of 218 1.0 37 bone marrow-derived mesenchymal stem cells. Neuroscience Letters, 2005, 381, 234-236. Interactions between Alzheimer's disease and cerebral ischemiaâ€"focus on inflammation. Brain 219 9.1 134 Research Reviews, 2005, 48, 240-250.

#	ARTICLE	IF	CITATIONS
" 220	Glucocorticoids worsen excitotoxin-induced expression of pro-inflammatory cytokines in hippocampal cultures. Experimental Neurology, 2005, 194, 376-383.	2.0	89
221	Monoclonal antibody against E selectin attenuates subarachnoid hemorrhage–induced cerebral vasospasm. World Neurosurgery, 2005, 64, 201-205.	1.3	66
222	Peroxisome proliferator-activated receptor-î ³ ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience, 2005, 130, 685-696.	1.1	260
223	Role of poly(ADP-ribose) glycohydrolase (PARG) in shock, ischemia and reperfusion. Pharmacological Research, 2005, 52, 100-108.	3.1	35
224	Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system. Biomedical Materials (Bristol), 2006, 1, R38-R44.	1.7	26
225	Ischemic Stroke: Basic Pathophysiology and Neuroprotective Strategies. , 2006, , 1-26.		0
226	Gene Expression in Blood Changes Rapidly in Neutrophils and Monocytes after Ischemic Stroke in Humans: A Microarray Study. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1089-1102.	2.4	298
227	Cerebral preconditioning using cortical application of hypertonic salt solutions: Upregulation of mRNAs encoding inhibitors of inflammation. Brain Research, 2006, 1097, 31-38.	1.1	3
228	Hypoxia/Reoxygenation Differentially Modulates NF-κB Activation and iNOS Expression in Astrocytes and Microglia. Antioxidants and Redox Signaling, 2006, 8, 911-918.	2.5	56
229	Pathophysiology of Acute Ischaemic Stroke: An Analysis of Common Signalling Mechanisms and Identification of New Molecular Targets. Pathobiology, 2006, 73, 159-175.	1.9	67
230	Soluble adhesion molecules and C-reactive protein in the progression of silent cerebral infarction in patients with type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2006, 55, 461-466.	1.5	41
231	Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophrenia Research, 2006, 84, 253-271.	1.1	119
232	Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. Cmaj, 2006, 174, 927-933.	0.9	184
233	Vascular Protection in Brain Ischemia. Cerebrovascular Diseases, 2006, 21, 21-29.	0.8	38
234	Splenic Atrophy in Experimental Stroke Is Accompanied by Increased Regulatory T Cells and Circulating Macrophages. Journal of Immunology, 2006, 176, 6523-6531.	0.4	367
235	Minocycline and intracerebral hemorrhage: influence of injury severity and delay to treatment. Experimental Neurology, 2006, 197, 189-196.	2.0	49
236	Prevention of inflammation is a mechanism of preconditioning-induced neuroprotection against focal cerebral ischemia. Neurochemistry International, 2006, 49, 127-135.	1.9	51
237	Influence of hypothermia on post-ischemic inflammation: Role of nuclear factor kappa B (NFκB). Neurochemistry International, 2006, 49, 164-169.	1.9	132

#	Article	IF	CITATIONS
238	PPARÎ ³ as a therapeutic target in central nervous system diseases. Neurochemistry International, 2006, 49, 136-144.	1.9	97
239	Early increase in mRNA levels of pro-inflammatory cytokines and their interactions in the mouse hippocampus after transient global ischemia. Neuroscience Letters, 2006, 393, 122-126.	1.0	49
240	Delayed minocycline treatment reduces long-term functional deficits and histological injury in a rodent model of focal ischemia. Neuroscience, 2006, 141, 27-33.	1.1	68
241	Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain. Frontiers in Bioscience - Landmark, 2006, 11, 1289.	3.0	95
242	Inflammation and Stroke: Therapeutic Effects of Adenoviral Expression of Secretory Leukocyte Protease Inhibitor. Frontiers in Bioscience - Landmark, 2006, 11, 1750.	3.0	6
243	Tumor Necrosis Factor-α Increases in the Brain after Intracerebral Hemorrhage and Thrombin Stimulation. Neurosurgery, 2006, 58, 542-550.	0.6	117
244	ROSIGLITAZONE, A PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-? LIGAND, REDUCES INFARCTION VOLUME AND NEUROLOGICAL DEFICITS IN AN EMBOLIC MODEL OF STROKE. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1052-1058.	0.9	30
245	Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-Î ³ agonist rosiglitazone. Journal of Neurochemistry, 2006, 97, 435-448.	2.1	187
246	Acute Hypertension Induces Oxidative Stress in Brain Tissues. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 253-262.	2.4	88
247	Extended Therapeutic Window and Functional Recovery after Intraarterial Administration of Neuregulin-1 after Focal Ischemic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 527-535.	2.4	79
248	Experimental Stroke Induces Massive, Rapid Activation of the Peripheral Immune System. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 654-665.	2.4	483
249	Poly(ADP-ribose) Accumulation and Enhancement of Postischemic Brain Damage in 110-kDa Poly(ADP-ribose) Glycohydrolase Null Mice. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 684-695.	2.4	65
250	The etiology of poststroke depression: a review of the literature and a new hypothesis involving inflammatory cytokines. Molecular Psychiatry, 2006, 11, 984-991.	4.1	236
251	Allopregnanolone, a Progesterone Metabolite, Is More Effective Than Progesterone in Reducing Cortical Infarct Volume After Transient Middle Cerebral Artery Occlusion. Annals of Emergency Medicine, 2006, 47, 381-389.	0.3	158
252	The Onset of Brain Injury and Neurodegeneration Triggers the Synthesis of Docosanoid Neuroprotective Signaling. Cellular and Molecular Neurobiology, 2006, 26, 899-911.	1.7	82
253	Apoptotic cascades as possible targets for inhibiting cell death in Huntington's disease. Journal of Neurology, 2006, 253, 1137-1142.	1.8	32
254	Attenuation of brain inflammatory response after focal cerebral ischemia/reperfusion with Xuesaitong Injection in rats. Chinese Journal of Integrative Medicine, 2006, 12, 203-206.	0.7	6
255	Inflammation in adult and neonatal stroke. Clinical Neuroscience Research, 2006, 6, 293-313.	0.8	61

#	Article	IF	CITATIONS
256	Role of inflammation and cellular stress in brain injury and central nervous system diseases. Clinical Neuroscience Research, 2006, 6, 329-356.	0.8	16
257	NF- \hat{I}° B functions in the nervous system: From development to disease. Biochemical Pharmacology, 2006, 72, 1180-1195.	2.0	180
258	Neuroprotective effects of a postischemic treatment with a bradykinin B2 receptor antagonist in a rat model of temporary focal cerebral ischemia. Brain Research, 2006, 1069, 227-234.	1.1	20
259	Expression Analysis Systematic Explorer (EASE) analysis reveals differential gene expression in permanent and transient focal stroke rat models. Brain Research, 2006, 1071, 226-236.	1.1	77
260	The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Research, 2006, 1073-1074, 470-480.	1.1	74
261	Does neuroglobin protect neurons from ischemic insult? A quantitative investigation of neuroglobin expression following transient MCAo in spontaneously hypertensive rats. Brain Research, 2006, 1085, 19-27.	1.1	66
262	Neuroprotective effects of neuregulin-1 in rat models of focal cerebral ischemia. Brain Research, 2006, 1087, 180-185.	1.1	53
263	Post-ischemic hypothermia reduced IL-18 expression and suppressed microglial activation in the immature brain. Brain Research, 2006, 1121, 35-45.	1.1	40
264	Endotoxin preconditioning protects neurones from in vitro ischemia: Role of endogenous IL-1β and TNF-α. Journal of Neuroimmunology, 2006, 173, 108-116.	1.1	32
265	TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic–ischemic brain injury via inhibition of caspases and AIF. Neurobiology of Disease, 2006, 21, 358-371.	2.1	95
266	Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment. Neurobiology of Disease, 2006, 22, 445-451.	2.1	66
267	Anti-inflammatory treatment in oxygen–glucose-deprived hippocampal slice cultures is neuroprotective and associated with reduced cell proliferation and intact neurogenesis. Neurobiology of Disease, 2006, 23, 247-259.	2.1	32
268	Transplantation of hNT neurons into the ischemic cortex: Cell survival and effect on sensorimotor behavior. Journal of Neuroscience Research, 2006, 83, 1004-1014.	1.3	76
269	AUF-1 mediates inhibition by nitric oxide of lipopolysaccharide-induced matrix metalloproteinase-9 expression in cultured astrocytes. Journal of Neuroscience Research, 2006, 84, 360-369.	1.3	20
270	Cerebrovascular injury in stroke. Neurological Research, 2006, 28, 3-10.	0.6	9
271	A Novel Neuroprotectant Granulocyte-Colony Stimulating Factor. Stroke, 2006, 37, 1123-1128.	1.0	116
272	Spatiotemporal Pattern of Neuroinflammation After Impact-Acceleration Closed Head Injury in the Rat. Mediators of Inflammation, 2006, 2006, 1-6.	1.4	18
273	Exercise Preconditioning Reduces Brain Damage and Inhibits TNF-α Receptor Expression after Hypoxia/Reoxygenation: An In Vivo and In Vitro Study. Current Neurovascular Research, 2006, 3, 263-271.	0.4	46

#	Article	IF	CITATIONS
274	A Death-Promoting Role for Extracellular Signal-Regulated Kinase. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 991-997.	1.3	331
275	Administration of Hematopoietic Cytokines in the Subacute Phase After Cerebral Infarction Is Effective for Functional Recovery Facilitating Proliferation of Intrinsic Neural Stem/Progenitor Cells and Transition of Bone Marrow-Derived Neuronal Cells. Circulation, 2006, 113, 701-710.	1.6	205
276	Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. Journal of Leukocyte Biology, 2006, 80, 1272-1280.	1.5	99
277	Apoptosis: Future Targets for Neuroprotective Strategies. Cerebrovascular Diseases, 2006, 21, 9-20.	0.8	74
278	Proinflammatory Cytokines and Chemokines in Neonatal Brain Damage. Current Pediatric Reviews, 2006, 2, 3-15.	0.4	1
279	Microsomal prostaglandin E synthase-1 is a critical factor of stroke-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11790-11795.	3.3	132
280	Early circulating levels of endothelial cell activation markers in aneurysmal subarachnoid haemorrhage: associations with cerebral ischaemic events and outcome. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 77-83.	0.9	57
281	Brain Resuscitation in the Drowning Victim. , 2006, , 435-478.		0
282	Complement-Dependent P-Selectin Expression and Injury following Ischemic Stroke. Journal of Immunology, 2006, 177, 7266-7274.	0.4	81
283	Preconditioning Suppresses Inflammation in Neonatal Hypoxic Ischemia Via Akt Activation. Stroke, 2007, 38, 1017-1024.	1.0	101
284	Interleukin-8 and Monocyte Chemotactic Protein-1 mRNA Expression in Perinatally Infected and Asphyxiated Preterm Neonates. Neonatology, 2007, 91, 107-113.	0.9	12
285	Bumetanide administration attenuated traumatic brain injury through IL-1 overexpression. Neurological Research, 2007, 29, 404-409.	0.6	45
286	Magnetic resonance imaging (MRI) of inflammation in stroke. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4316-9.	0.5	1
287	Biology of the Heat Shock Response and Stress Conditioning. , 2007, , 7-35.		3
288	TRANSPLANTATION OF STEM CELLS FROM THE ADULT HUMAN BRAIN TO THE ADULT RAT BRAIN. Neurosurgery, 2007, 60, 1089-1099.	0.6	45
289	Induction of Cerebral Ischemic Tolerance by Erythromycin Preconditioning Reprograms the Transcriptional Response to Ischemia and Suppresses Inflammation. Anesthesiology, 2007, 106, 538-547.	1.3	30
290	Neuroprotection against surgically induced brain injury. World Neurosurgery, 2007, 67, 15-20.	1.3	64
291	PPARs in the brain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771,	1.2	273

#	Article	IF	CITATIONS
292	Therapeutic time window of tacrolimus (FK506) in a nonhuman primate stroke model: Comparison with tissue plasminogen activator. Experimental Neurology, 2007, 204, 138-146.	2.0	23
293	Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Experimental Neurology, 2007, 207, 227-237.	2.0	131
294	Evidence of the Peripheral Inflammatory Response in Patients With Transient Ischemic Attack. Journal of Stroke and Cerebrovascular Diseases, 2007, 16, 203-207.	0.7	58
295	Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochemistry International, 2007, 50, 1014-1027.	1.9	184
296	Effect of human embryonic stem cell-derived neuronal precursor cell transplantation into the cerebral infarct model of rat with exercise. Neuroscience Research, 2007, 58, 164-175.	1.0	34
297	Administration of hematopoietic cytokines increases the expression of anti-inflammatory cytokine (IL-10) mRNA in the subacute phase after stroke. Neuroscience Research, 2007, 58, 356-360.	1.0	36
298	Huperzine A protects C6 rat glioma cells against oxygen-glucose deprivation-induced injury. FEBS Letters, 2007, 581, 596-602.	1.3	39
299	Statins: Multiple Mechanisms of Action in the Ischemic Brain. Neuroscientist, 2007, 13, 208-213.	2.6	91
300	The Immune System of the Brain. NeuroImmune Biology, 2007, , 127-144.	0.2	2
301	Molecular Mechanisms of Ischemic Brain Disease. , 2007, , 177-186.		0
301 302	Molecular Mechanisms of Ischemic Brain Disease. , 2007, , 177-186. Different Degrees of Hypothermia After Experimental Stroke. Stroke, 2007, 38, 1585-1589.	1.0	0 98
301 302 303	Molecular Mechanisms of Ischemic Brain Disease. , 2007, , 177-186. Different Degrees of Hypothermia After Experimental Stroke. Stroke, 2007, 38, 1585-1589. NP031112, a Thiadiazolidinone Compound, Prevents Inflammation and Neurodegeneration under Excitotoxic Conditions: Potential Therapeutic Role in Brain Disorders. Journal of Neuroscience, 2007, 27, 5766-5776.	1.0	0 98 108
301 302 303 304	Molecular Mechanisms of Ischemic Brain Disease. , 2007, , 177-186. Different Degrees of Hypothermia After Experimental Stroke. Stroke, 2007, 38, 1585-1589. NP031112, a Thiadiazolidinone Compound, Prevents Inflammation and Neurodegeneration under Excitotoxic Conditions: Potential Therapeutic Role in Brain Disorders. Journal of Neuroscience, 2007, 27, 5766-5776. Inhibition of increased indoleamine 2,3-dioxygenase activity exacerbates neuronal cell death in various CNS disorders. International Congress Series, 2007, 1304, 314-323.	1.0 1.7 0.2	0 98 108 7
301 302 303 304	Molecular Mechanisms of Ischemic Brain Disease. , 2007, , 177-186. Different Degrees of Hypothermia After Experimental Stroke. Stroke, 2007, 38, 1585-1589. NP031112, a Thiadiazolidinone Compound, Prevents Inflammation and Neurodegeneration under Excitotoxic Conditions: Potential Therapeutic Role in Brain Disorders. Journal of Neuroscience, 2007, 27, 5766-5776. Inhibition of increased indoleamine 2,3-dioxygenase activity exacerbates neuronal cell death in various CNS disorders. International Congress Series, 2007, 1304, 314-323. The Interleukin-8 (IL-8/CXCL8) Receptor Inhibitor Reparixin Improves Neurological Deficits and Reduces Long-term Inflammation in Permanent and Transient Cerebral Ischemia in Rats. Molecular Medicine, 2007, 13, 125-133.	1.0 1.7 0.2 1.9	0 98 108 7
 301 302 303 304 305 306 	Molecular Mechanisms of Ischemic Brain Disease. , 2007, , 177-186. Different Degrees of Hypothermia After Experimental Stroke. Stroke, 2007, 38, 1585-1589. NP031112, a Thiadiazolidinone Compound, Prevents Inflammation and Neurodegeneration under Excitotoxic Conditions: Potential Therapeutic Role in Brain Disorders. Journal of Neuroscience, 2007, 27, 5766-5776. Inhibition of increased indoleamine 2,3-dioxygenase activity exacerbates neuronal cell death in various CNS disorders. International Congress Series, 2007, 1304, 314-323. The Interleukin-8 (IL-8/CXCL8) Receptor Inhibitor Reparixin Improves Neurological Deficits and Reduces Long-term Inflammation in Permanent and Transient Cerebral Ischemia in Rats. Molecular Medicine, 2007, 13, 125-133. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. Journal of Neuroscience Research, 2007, 85, 1647-1655.	1.0 1.7 0.2 1.9	0 98 108 7 77 55
 301 302 303 304 305 306 307 	Molecular Mechanisms of Ischemic Brain Disease. , 2007, , 177-186. Different Degrees of Hypothermia After Experimental Stroke. Stroke, 2007, 38, 1585-1589. NP031112, a Thiadiazolidinone Compound, Prevents Inflammation and Neurodegeneration under Excitotoxic Conditions: Potential Therapeutic Role in Brain Disorders. Journal of Neuroscience, 2007, 27, 5766-5776. Inhibition of increased indolearnine 2,3-dioxygenase activity exacerbates neuronal cell death in various CNS disorders. International Congress Series, 2007, 1304, 314-323. The Interleukin-8 (IL-8/CXCL8) Receptor Inhibitor Reparixin Improves Neurological Deficits and Reduces Long-term Inflammation in Permanent and Transient Cerebral Ischemia in Rats. Molecular Medicine, 2007, 13, 125-133. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. Journal of Neuroscience Research, 2007, 85, 1647-1655. Decreased focal inflammatory response by G-CSF may improve stroke outcome after transient middle cerebral artery occlusion in rats. Journal of Neuroscience Research, 2007, 85, 2167-2174.	1.0 1.7 0.2 1.9 1.3	0 98 108 7 77 55
 301 302 303 304 305 306 307 308 	Molecular Mechanisms of Ischemic Brain Disease., 2007, , 177-186. Different Degrees of Hypothermia After Experimental Stroke. Stroke, 2007, 38, 1585-1589. NP031112, a Thiadiazolidinone Compound, Prevents Inflammation and Neurodegeneration under Excitotoxic Conditions: Potential Therapeutic Role in Brain Disorders. Journal of Neuroscience, 2007, 27, 5766-5776. Inhibition of increased indoleamine 2,3-dioxygenase activity exacerbates neuronal cell death in various CNS disorders. International Congress Series, 2007, 1304, 314-323. The Interleukin-8 (IL-8/CXCL8) Receptor Inhibitor Reparixin Improves Neurological Deficits and Reduces Long-term Inflammation in Permanent and Transient Cerebral Ischemia in Rats. Molecular Medicine, 2007, 13, 125-133. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. Journal of Neuroscience Research, 2007, 85, 1647-1655. Decreased focal inflammatory response by G-CSF may Improve stroke outcome after transient middle cerebral artery occlusion in rats. Journal of Neuroscience Research, 2007, 85, 2167-2174. Inflammatory Cell Infiltration after Endothelin-1-Induced Cerebral Ischemia: Histochemical and Myeloperoxidase Correlation with Temporal Changes in Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 100-114.	1.0 1.7 0.2 1.9 1.3 1.3 2.4	0 98 108 7 7 77 55 55 49 129

#		IF	CITATIONS
Ŧ	T- and B-Cell-Deficient Mice with Experimental Stroke have Reduced Lesion Size and Inflammation.	II	CHATIONS
310	Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1798-1805.	2.4	341
311	Altered kynurenine metabolism correlates with infarct volume in stroke. European Journal of Neuroscience, 2007, 26, 2211-2221.	1.2	135
312	Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. Journal of Neurochemistry, 2007, 100, 1108-1120.	2.1	104
313	Caffeic acid phenethyl ester reduces neurovascular inflammation and protects rat brain following transient focal cerebral ischemia. Journal of Neurochemistry, 2007, 102, 365-377.	2.1	97
314	Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism. Journal of Neurochemistry, 2007, 102, 1488-1496.	2.1	74
315	High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration <i>in vitro</i> and <i>in vivo</i> . Journal of Neurochemistry, 2007, 103, 590-603.	2.1	204
316	Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats. Journal of Pineal Research, 2007, 42, 138-146.	3.4	46
317	Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. Journal of Pineal Research, 2007, 42, 297-309.	3.4	131
318	Minocycline inhibits 5-lipoxygenase activation and brain inflammation after focal cerebral ischemia in rats. Acta Pharmacologica Sinica, 2007, 28, 763-772.	2.8	64
319	Neuron death and inflammation in a rat model of intracerebral hemorrhage: Effects of delayed minocycline treatment. Brain Research, 2007, 1136, 208-218.	1.1	98
320	EndothelinA receptor antagonist BSF-208075 causes immune modulation and neuroprotection after stroke in gerbils. Brain Research, 2007, 1157, 138-145.	1.1	15
321	Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Research, 2007, 1180, 140-154.	1.1	137
322	Postischemic administration of HMG CoA reductase inhibitor inhibits infarct expansion after transient middle cerebral artery occlusion. Brain Research, 2007, 1181, 125-129.	1.1	16
323	Neuroprotection by neuregulin-1 in a rat model of permanent focal cerebral ischemia. Brain Research, 2007, 1184, 277-283.	1.1	74
324	Suppression of inflammatory cell recruitment by histamine receptor stimulation in ischemic rat brains. European Journal of Pharmacology, 2007, 557, 236-244.	1.7	40
325	The inflammatory response in stroke. Journal of Neuroimmunology, 2007, 184, 53-68.	1.1	1,042
326	Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. Journal of Neuroimmunology, 2007, 190, 101-111.	1.1	190
327	The Evolving Paradigm for Blood Cellâ€Endothelial Cell Interactions in the Cerebral Microcirculation. Microcirculation, 2007, 14, 667-681.	1.0	55

	CHAI		
#	Article	IF	Citations
328	Role of PACAP in Ischemic Neural Death. Journal of Molecular Neuroscience, 2008, 36, 16-25.	1.1	105
329	Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 463-482.	2.2	187
330	Antiinflammatory effect of the ethanol extract of <i>Berberis koreana</i> in a gerbil model of cerebral ischemia/reperfusion. Phytotherapy Research, 2008, 22, 1527-1532.	2.8	41
331	The spleen contributes to strokeâ€induced neurodegeneration. Journal of Neuroscience Research, 2008, 86, 2227-2234.	1.3	253
332	Japanese encephalitis virus differentially modulates the induction of multiple proâ€inflammatory mediators in human astrocytoma and astroglioma cellâ€lines. Cell Biology International, 2008, 32, 1506-1513.	1.4	36
333	Melatonin and ischemia–reperfusion injury of the brain. Journal of Pineal Research, 2008, 45, 1-7.	3.4	82
334	Adenosine Modulates ERK1/2, PI3K/Akt, and p38MAPK Activation in the Brain of the Anoxia-Tolerant Turtle Trachemys Scripta. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1469-1477.	2.4	21
335	Apolipoprotein D is Elevated in Oligodendrocytes in the Peri-Infarct Region after Experimental Stroke: Influence of Enriched Environment. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 551-562.	2.4	46
336	The Novel Antioxidant Edaravone: From Bench to Bedside. Cardiovascular Therapeutics, 2008, 26, 101-114.	1.1	192
337	Simvastatin prevents the inflammatory process and the dopaminergic degeneration induced by the intranigral injection of lipopolysaccharide. Journal of Neurochemistry, 2008, 105, 445-459.	2.1	81
338	lschemic postâ€conditioning protects brain and reduces inflammation in a rat model of focal cerebral ischemia/reperfusion. Journal of Neurochemistry, 2008, 105, 1737-1745.	2.1	75
339	Gene transfer of PEDF attenuates ischemic brain damage in the rat middle cerebral artery occlusion model. Journal of Neurochemistry, 2008, 106, 1841-1854.	2.1	29
340	Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathology and Applied Neurobiology, 2008, 34, 379-393.	1.8	60
341	Transient blockage of the CD11d/CD18 integrin reduces contusion volume and macrophage infiltration after traumatic brain injury in rats. Brain Research, 2008, 1207, 155-163.	1.1	41
342	The influence of dexmedetomidine on ischemic rat hippocampus. Brain Research, 2008, 1218, 250-256.	1.1	72
343	Anti-inflammatory treatment with the p38 mitogen-activated protein kinase inhibitor SB239063 is neuroprotective, decreases the number of activated microglia and facilitates neurogenesis in oxygen–glucose-deprived hippocampal slice cultures. European Journal of Pharmacology, 2008, 592, 55-61.	1.7	54
344	Interleukin-1 and Ischemic Brain Injury in the Newborn: Development of a Small Molecule Inhibitor of IL-1 Receptor. Seminars in Perinatology, 2008, 32, 325-333.	1.1	14
345	Detection of apoptosis in a rat model of focal cerebral ischemia using a homing peptide selected from in vivo phage display. Journal of Controlled Release, 2008, 131, 167-172.	4.8	64

#	Article	IF	CITATIONS
346	Reduction of ischemic stroke in rat brain by alpha melanocyte stimulating hormone. Neuropeptides, 2008, 42, 331-338.	0.9	27
347	Nimesulide as a promising neuroprotectant in brain ischemia: New experimental evidences. Pharmacological Research, 2008, 57, 266-273.	3.1	43
348	Reoxygenation stress on blood–brain barrier paracellular permeability and edema in the rat. Microvascular Research, 2008, 75, 91-96.	1.1	57
349	Neuromedin U inhibits inflammation-mediated memory impairment and neuronal cell-death in rodents. Neuroscience Research, 2008, 61, 113-119.	1.0	38
350	Neuroprotection for ischemic stroke: Past, present and future. Neuropharmacology, 2008, 55, 363-389.	2.0	672
351	Methylprednisolone treatment delays remote cell death after focal brain lesion. Neuroscience, 2008, 154, 1267-1282.	1.1	34
352	Serum inflammatory adhesion molecules and high-sensitivity C-reactive protein correlates with delayed ischemic neurologic deficits after subarachnoid hemorrhage. World Neurosurgery, 2008, 69, 592-596.	1.3	48
353	Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in neurodegeneration after optic nerve crush in rats. Experimental Eye Research, 2008, 87, 242-250.	1.2	56
354	SB 234551 selective ETA receptor antagonism: Perfusion/Diffusion MRI used to define treatable stroke model, time to treatment and mechanism of protection. Experimental Neurology, 2008, 212, 53-62.	2.0	43
355	Conditional expression of microRNA against E-selectin inhibits leukocyte–endothelial adhesive interaction under inflammatory condition. Biochemical and Biophysical Research Communications, 2008, 371, 747-751.	1.0	12
356	Matrix metalloproteinases and inflammatory diseases of the central nervous system. , 2008, , 123-152.		0
357	Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain, 2008, 131, 616-629.	3.7	412
358	Chapter 6 Reperfusion injury after stroke: neurovascular proteases and the blood–brain barrier. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 92, 117-136.	1.0	10
359	Cytokines and Brain Injury: Invited Review. Journal of Intensive Care Medicine, 2008, 23, 236-249.	1.3	117
360	Imaging of the inflammatory response in reperfusion injury after transient cerebral ischemia in rats: correlation of superparamagnetic iron oxide-enhanced magnetic resonance imaging with histopathology. Acta Radiologica, 2008, 49, 580-588.	0.5	26
361	Mechanisms of Microglia-Mediated Neurotoxicity in a New Model of the Stroke Penumbra. Journal of Neuroscience, 2008, 28, 2221-2230.	1.7	302
362	Cell adhesion molecules and ischemic stroke. Neurological Research, 2008, 30, 783-793.	0.6	246
363	CD36/Fatty Acid Translocase, An Inflammatory Mediator, Is Involved in Hyperlipidemia-Induced Exacerbation in Ischemic Brain Injury. Journal of Neuroscience, 2008, 28, 4661-4670.	1.7	79

ARTICLE IF CITATIONS # Chapter 9 Ischemic tolerance as an active and intrinsic neuroprotective mechanism. Handbook of 1.0 19 364 Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 92, 171-195. Inflammatory Mediators in the Frontal Lobe of Patients with Mixed and Vascular Dementia. Dementia and Geriatric Cognitive Disorders, 2008, 25, 278-286. Role of microglial IKKÎ² in kainic acid-induced hippocampal neuronal cell death. Brain, 2008, 131, 367 3.7 149 3019-3033. In Vivo Imaging of the Inflammatory Receptor CD40 After Cerebral Ischemia Using a Fluorescent 368 54 Antibody. Štroke, 2008, 39, 2845-2852. Characterization of Acute Brain Injuries and Neurobehavioral Profiles in a Rabbit Model of Germinal 369 1.0 97 Matrix Hemorrhage. Stroke, 2008, 39, 3378-3388. Chemokine detection in the cerebral tissue of patients with posttraumatic brain contusions. Journal of Neurosurgery, 2008, 108, 958-962. Monocyte chemoattractant protein–1 predicts outcome and vasospasm following aneurysmal 371 0.9 54 subarachnoid hemorrhage. Journal of Neurosurgery, 2008, 109, 38-43. Oxidation-responsiveness of nanomaterials for targeting inflammatory reactions. Pure and Applied Chemistry, 2008, 80, 1703-1718. Antioxidants and Neuroprotection in the Adult and Developing Central Nervous System. Current 373 1.2 85 Medicinal Chemistry, 2008, 15, 3068-3080. Small Molecule Selectin Inhibitor in Global Cerebral Ischemia and Controlled Hemorrhagic Shock. 374 2.3 Journal of Trauma, 2008, 65, 678-684. Kinetic Changes of COX-2 Expression during Reperfusion Period after Ischemic Preconditioning Play a Role in Protection Against Ischemic Damage in Rat Brain. Korean Journal of Physiology and 375 2 0.6 Pharmacology, 2008, 12, 275. Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and 2.2 28 Hippocampus. Marine Drugs, 2008, 6, 25-38. Thrombin and secondary brain damage following intracerebral hemorrhage., 0,, 206-216. 377 1 Translational Medicine for Stroke Drug Discovery: The Pharmaceutical Industry Perspective. Stroke, 378 1.0 44 2009, 40, S121-S125. 379 Pharmacologic Interventions for Stroke. Stroke, 2009, 40, e558-63. 1.0 78 Magnetic Resonance Imaging Assessment of Macrophage Accumulation in Mouse Brain after 380 Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 1509-1519. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition 381 0.6 67 of apoptosis and inflammation. Neurological Research, 2009, 31, 167-172. Stroke: Injury Mechanisms., 2009, , 579-585.

#	Article	IF	CITATIONS
383	Excitotoxic Death of Retinal Neurons <i>In Vivo</i> Occurs via a Non-Cell-Autonomous Mechanism. Journal of Neuroscience, 2009, 29, 5536-5545.	1.7	167
384	Existence of the Diffusion-Perfusion Mismatch within 24 Hours after Onset of Acute Stroke: Dependence on Proximal Arterial Occlusion. Radiology, 2009, 250, 878-886.	3.6	94
385	IL-17 potentiates neuronal injury induced by oxygen–glucose deprivation and affects neuronal IL-17 receptor expression. Journal of Neuroimmunology, 2009, 212, 17-25.	1.1	67
386	Genomic response of the rat brain to global ischemia and reperfusion. Brain Research, 2009, 1252, 1-14.	1.1	29
387	Zocor Forte® (simvastatin) has a neuroprotective effect against LPS striatal dopaminergic terminals injury, whereas against MPP+ does not. European Journal of Pharmacology, 2009, 609, 58-64.	1.7	18
388	The value of leukocyte adhesion molecules in patients after ischemic stroke. Journal of Neurology, 2009, 256, 1296-1302.	1.8	46
389	C-reactive protein in the very early phase of acute ischemic stroke: association with poor outcome and death. Journal of Neurology, 2009, 256, 2003-2008.	1.8	109
390	Protective Effect of Granulocyte Colony-stimulating Factor on Intracerebral Hemorrhage in Rat. Neurochemical Research, 2009, 34, 1317-1323.	1.6	15
391	Timosaponin B-II inhibits pro-inflammatory cytokine induction by lipopolysaccharide in BV2 cells. Archives of Pharmacal Research, 2009, 32, 1301-1308.	2.7	64
392	NF-κB induces PGE2-synthesizing enzymes in neurons. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 380, 153-160.	1.4	8
393	Reduction of ischemia-induced cerebral injury by all-trans-retinoic acid. Experimental Brain Research, 2009, 193, 581-589.	0.7	24
394	Effect of mild hypothermia on blood brain barrier disruption induced by oleic acid in rats. Genes and Genomics, 2009, 31, 89-98.	0.5	6
395	Ambivalent Aspects of Interleukin-6 in Cerebral Ischemia: Inflammatory versus Neurotrophic Aspects. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 464-479.	2.4	200
397	Inhibition of NADPH Oxidase is Neuroprotective after Ischemia—Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1262-1272.	2.4	266
398	Enhanced Cerebral Expression of MCT1 and MCT2 in a Rat Ischemia Model Occurs in Activated Microglial Cells. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1273-1283.	2.4	88
399	Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharmacologica Sinica, 2009, 30, 879-888.	2.8	98
400	Melatonin improves presynaptic protein, SNAPâ€25, expression and dendritic spine density and enhances functional and electrophysiological recovery following transient focal cerebral ischemia in rats. Journal of Pineal Research, 2009, 47, 260-270.	3.4	41
401	Postâ€ischemic brain damage: targeting PARPâ€1 within the ischemic neurovascular units as a realistic avenue to stroke treatment. FEBS Journal, 2009, 276, 36-45.	2.2	36

#	Article	IF	CITATIONS
402	Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical periâ€infarction zone. Neuropathology, 2009, 29, 410-421.	0.7	32
403	Selective PARPâ€⊋ inhibitors increase apoptosis in hippocampal slices but protect cortical cells in models of postâ€ischaemic brain damage. British Journal of Pharmacology, 2009, 157, 854-862.	2.7	44
404	Interleukin-1β is increased in the cerebrospinal fluid of patients with small infarcts. European Journal of Neurology, 2009, 16, 858-863.	1.7	8
405	Etiological mechanisms of post-stroke depression: a review. Neurological Research, 2009, 31, 904-909.	0.6	83
406	Therapeutic Benefit of Human Umbilical Cord Derived Mesenchymal Stromal Cells in Intracerebral Hemorrhage Rat: Implications of Anti-inflammation and Angiogenesis. Cellular Physiology and Biochemistry, 2009, 24, 307-316.	1.1	131
407	Monocytes Are Major Players in the Prognosis and Risk of Infection After Acute Stroke. Stroke, 2009, 40, 1262-1268.	1.0	168
408	CD47 gene knockout protects against transient focal cerebral ischemia in mice. Experimental Neurology, 2009, 217, 165-170.	2.0	52
409	Neuroprotective effects of the anti-inflammatory compound triflusal on ischemia-like neurodegeneration in mouse hippocampal slice cultures occur independent of microglia. Experimental Neurology, 2009, 218, 11-23.	2.0	12
410	The complexity of neurobiological processes in acute ischemic stroke. Clinical Neurology and Neurosurgery, 2009, 111, 483-495.	0.6	447
411	Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression. Neuroscience, 2009, 158, 1098-1111.	1.1	173
412	Systemic Administration of Interleukin-10 Attenuates Early Ischemic Response Following Spinal Cord Ischemia Reperfusion Injury in Rats. Journal of Surgical Research, 2009, 155, 345-356.	0.8	18
413	The constituents of Anisomeles indica and their anti-inflammatory activities. Journal of Ethnopharmacology, 2009, 121, 292-296.	2.0	80
414	Inflammatory and Neuroimmunomodulatory Changes in Acute Cerebral Ischemia. Cerebrovascular Diseases, 2009, 27, 48-64.	0.8	108
415	Inflammatory mechanisms in ischemic stroke: therapeutic approaches. Journal of Translational Medicine, 2009, 7, 97.	1.8	888
416	IL-20 Is Regulated by Hypoxia-Inducible Factor and Up-Regulated after Experimental Ischemic Stroke. Journal of Immunology, 2009, 182, 5003-5012.	0.4	65
417	Hypothermia during Ischemia Protects against Neuronal Death but Not Acute Brain Edema following Transient Forebrain Ischemia in Mice. Biological and Pharmaceutical Bulletin, 2009, 32, 1957-1961.	0.6	9
418	Neuronal Injury Induces Cytokine-Induced Neutrophil Chemoattractant-1 (CINC-1) Production in Astrocytes. Journal of Pharmacological Sciences, 2009, 109, 88-93.	1.1	31
419	Disease Outcome, Alexithymia and Depression are Differently Associated with Serum IL-18 Levels in Acute Stroke. Current Neurovascular Research, 2009, 6, 163-170.	0.4	50

#	Article	IF	CITATIONS
420	Human Mesenchymal Stromal Cells and their Derivative, SB623 Cells, Rescue Neural Cells via Trophic Support following in Vitro Ischemia. Cell Transplantation, 2010, 19, 973-984.	1.2	73
421	Evolution of Inflammation and White Matter Injury in a Model of Transient Focal Ischemia. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1-15.	0.9	60
423	Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Improve Neurological Abnormalities of Niemann-Pick Type C Mouse by Modulation of Neuroinflammatory Condition. Journal of Veterinary Medical Science, 2010, 72, 709-717.	0.3	18
424	Effect of chronic treatment of carvedilol on oxidative stress in an intracerebroventricular streptozotocin induced model of dementia in rats. Journal of Pharmacy and Pharmacology, 2010, 61, 1665-1672.	1.2	11
425	A novel finding of a low-molecular-weight compound, SMTP-7, having thrombolytic and anti-inflammatory effects in cerebral infarction of mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 245-253.	1.4	43
426	Microglial Activation in Stroke: Therapeutic Targets. Neurotherapeutics, 2010, 7, 378-391.	2.1	328
427	Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell and Tissue Research, 2010, 340, 357-369.	1.5	30
428	Administration of a Sigma Receptor Agonist Delays MCAO-Induced Neurodegeneration and White Matter Injury. Translational Stroke Research, 2010, 1, 135-145.	2.3	24
429	Inflammation After Stroke: Mechanisms and Therapeutic Approaches. Translational Stroke Research, 2010, 1, 74-84.	2.3	79
430	Predictive molecular profiling in blood of healthy vasospastic individuals: clue to targeted prevention as personalised medicine to effective costs. EPMA Journal, 2010, 1, 263-272.	3.3	46
431	Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms. Neurobiology of Disease, 2010, 37, 711-722.	2.1	76
432	Exacerbation of systemic inflammation and increased cerebral infarct volume with cardiopulmonary bypass after focal cerebral ischemia in the rat. Journal of Thoracic and Cardiovascular Surgery, 2010, 140, 660-666.e1.	0.4	10
433	Delayed neuronal cell death in brainstem after transient brainstem ischemia in gerbils. BMC Neuroscience, 2010, 11, 115.	0.8	5
434	Neuroprotective effect of 5,7,3′,4′,5′-pentahydroxy dihdroflavanol-3-O-(2″-O-galloyl)-β-d-glucopyranc polyphenolic compound in focal cerebral ischemia in rat. European Journal of Pharmacology, 2010, 626, 205-212.	side, a 1.7	25
435	Acute pathophysiological processes after ischaemic and traumatic brain injury. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2010, 24, 495-509.	1.7	97
436	Cholinergic anti-inflammatory pathway in intracerebral hemorrhage. Brain Research, 2010, 1309, 164-171.	1.1	65
437	Age-dependent modifications in the mRNA levels of the rat excitatory amino acid transporters (EAATs) at 48 hour reperfusion following global ischemia. Brain Research, 2010, 1358, 11-19.	1.1	10
438	Textures in magnetic resonance images of the ischemic rat brain treated with an anti-inflammatory agent. Clinical Imaging, 2010, 34, 7-13.	0.8	5

#	Article	IF	CITATIONS
439	Age and energy intake interact to modify cell stress pathways and stroke outcome. Annals of Neurology, 2010, 67, 41-52.	2.8	225
440	Visualization of the ischemic core on native human brain slices by potassium staining method. Journal of Neuroscience Methods, 2010, 192, 17-21.	1.3	1
441	Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools. Experimental & Translational Stroke Medicine, 2010, 2, 8.	3.2	5
442	Microsomal prostaglandin E synthaseâ€1 and cyclooxygenaseâ€2 are both required for ischaemic excitotoxicity. British Journal of Pharmacology, 2010, 159, 1174-1186.	2.7	34
443	Microsomal prostaglandin E synthase″ contributes to ischaemic excitotoxicity through prostaglandin E ₂ EP ₃ receptors. British Journal of Pharmacology, 2010, 160, 847-859.	2.7	38
444	Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. British Journal of Pharmacology, 2010, 161, 668-679.	2.7	118
445	AMPA receptor downregulation induced by ischaemia/reperfusion is attenuated by age and blocked by meloxicam. Neuropathology and Applied Neurobiology, 2010, 36, 436-447.	1.8	13
446	Human Urinary Kallidinogenase Suppresses Cerebral Inflammation in Experimental Stroke and Downregulates Nuclear Factor-κB. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1356-1365.	2.4	61
447	Effect of Cold Irritation on Peripheral White Blood Cells and ICAM-1, IL-1β Expression in Brain Tissue of Rat. Neurosurgery Quarterly, 2010, 20, 292-296.	0.1	0
448	Estradiol and G1 Reduce Infarct Size and Improve Immunosuppression after Experimental Stroke. Journal of Immunology, 2010, 184, 4087-4094.	0.4	117
449	Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB Journal, 2010, 24, 788-798.	0.2	148
450	EAAC1 Gene Deletion Alters Zinc Homeostasis and Exacerbates Neuronal Injury after Transient Cerebral Ischemia. Journal of Neuroscience, 2010, 30, 15409-15418.	1.7	43
451	THE RATIONALE FOR NEUROPROTECTION IN EPILEPSY: STEPS FORWARD FOR NEW THERAPEUTIC AND PREVENTIVE STRATEGIES. Journal of Integrative Neuroscience, 2010, 09, 65-102.	0.8	0
452	High-Mobility Group Box 1 Promotes Metalloproteinase-9 Upregulation Through Toll-Like Receptor 4 After Cerebral Ischemia. Stroke, 2010, 41, 2077-2082.	1.0	165
453	Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology, 2010, 87, 779-789.	1.5	1,281
454	The Ca2+ activated SK3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro. Journal of Neuroinflammation, 2010, 7, 4.	3.1	69
455	The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. Journal of Neuroinflammation, 2010, 7, 74.	3.1	268
456	Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacologica Sinica, 2010, 31, 1523-1531.	2.8	111

#	Article	IF	CITATIONS
457	Silver Nanoparticle Induced Blood-Brain Barrier Inflammation and Increased Permeability in Primary Rat Brain Microvessel Endothelial Cells. Toxicological Sciences, 2010, 118, 160-170.	1.4	300
458	Age and meloxicam attenuate the ischemia/reperfusion-induced down-regulation in the NMDA receptor genes. Neurochemistry International, 2010, 56, 878-885.	1.9	18
459	Escin attenuates cognitive deficits and hippocampal injury after transient global cerebral ischemia in mice via regulating certain inflammatory genes. Neurochemistry International, 2010, 57, 119-127.	1.9	69
460	JNK inhibition and inflammation after cerebral ischemia. Brain, Behavior, and Immunity, 2010, 24, 800-811.	2.0	80
461	Post-stroke pharmacological intervention: Promoting brain recovery from injury in the future. Neuropharmacology, 2010, 59, 650-653.	2.0	14
462	The protective effect of avocado soybean unsaponifilables on brain ischemia/reperfusion injury in rat prefrontal cortex. British Journal of Neurosurgery, 2011, 25, 701-706.	0.4	11
463	Brain microvessel endothelial cells responses to gold nanoparticles: <i>In vitro</i> pro-inflammatory mediators and permeability. Nanotoxicology, 2011, 5, 479-492.	1.6	49
464	The Ischemic Penumbra: Correlates in Imaging and Implications for Treatment of Ischemic Stroke. Cerebrovascular Diseases, 2011, 32, 307-320.	0.8	137
465	Combination treatment with low-dose Niaspan and tissue plasminogen activator provides neuroprotection after embolic stroke in rats. Journal of the Neurological Sciences, 2011, 309, 96-101.	0.3	10
466	Ischemic Stroke: Basic Pathophysiology and Neuroprotective Strategies. , 2011, , 1-24.		4
467	Neuroprotective effects of progesterone and allopregnanolone on long-term cognitive outcome after global cerebral ischemia. Restorative Neurology and Neuroscience, 2011, 29, 1-15.	0.4	34
468	C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Research Bulletin, 2011, 86, 42-52.	1.4	72
469	Capsaicin prevents kainic acid-induced epileptogenesis in mice. Neurochemistry International, 2011, 58, 634-640.	1.9	49
470	The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sciences, 2011, 88, 521-528.	2.0	86
471	Isolation and identification of anti-inflammatory constituents from Ligusticum chuanxiong and their underlying mechanisms of action on microglia. Neuropharmacology, 2011, 60, 823-831.	2.0	86
472	The association between serum adhesion molecules and outcome in acute spontaneous intracerebral hemorrhage. Critical Care, 2011, 15, R284.	2.5	22
473	Therapeutic Hypothermia in Stroke. Stroke Research and Treatment, 2011, 2011, 1-1.	0.5	6
474	Cerebral Ischemia and Inflammation. , 2011, , 138-153.		3

#	Article	IF	CITATIONS
475	Mild Hypothermia Attenuates Intercellular Adhesion Molecule-1 Induction via Activation of Extracellular Signal-Regulated Kinase-1/2 in a Focal Cerebral Ischemia Model. Stroke Research and Treatment, 2011, 2011, 1-9.	0.5	39
476	Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Frontiers in Bioscience - Elite, 2011, E3, 604-615.	0.9	47
477	FTY720 Reduces Post-Ischemic Brain Lymphocyte Influx but Does Not Improve Outcome in Permanent Murine Cerebral Ischemia. PLoS ONE, 2011, 6, e21312.	1.1	92
478	Polyphenols and Neuroprotection against Ischemia and Neurodegeneration. Mini-Reviews in Medicinal Chemistry, 2011, 11, 1222-1238.	1.1	16
479	Gene Therapy as a Novel Pharmaceutical Intervention for Stroke. Current Pharmaceutical Design, 2011, 17, 424-433.	0.9	13
480	Hypothermia after Reperfusion Suppresses Aggravation of Acute Brain Edema following Transient Forebrain Ischemia in Mice. Journal of Health Science, 2011, 57, 82-85.	0.9	3
482	Vascular Adhesion Protein-1 Inhibition Provides Antiinflammatory Protection after an Intracerebral Hemorrhagic Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 881-893.	2.4	85
483	NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiology of Disease, 2011, 42, 341-348.	2.1	110
484	Inhibition of prostaglandin E2 EP3 receptors improves stroke injury via anti-inflammatory and anti-apoptotic mechanisms. Journal of Neuroimmunology, 2011, 238, 34-43.	1.1	47
485	A global transcriptomic view of the multifaceted role of glutathione peroxidase-1 in cerebral ischemic–reperfusion injury. Free Radical Biology and Medicine, 2011, 50, 736-748.	1.3	20
486	Effects of acute post-treatment with dipyridamole in a rat model of focal cerebral ischemia. Brain Research, 2011, 1373, 211-220.	1.1	24
487	Relationship between inflammatory reaction and ischemic injury of caudate-putamen in rats: inflammatory reaction and brain ischemia. Anatomical Science International, 2011, 86, 86-97.	0.5	12
488	Peroxisome Proliferator-Activated Receptor-Î ³ (PPAR-Î ³) Activation Confers Functional Neuroprotection in Global Ischemia. Neurotoxicity Research, 2011, 19, 462-471.	1.3	17
489	Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease. Molecular Neurodegeneration, 2011, 6, 45.	4.4	206
490	The protective effects of plasma gelsolin on stroke outcome in rats. Experimental & Translational Stroke Medicine, 2011, 3, 13.	3.2	26
491	CXCL10/CXCR3 signaling in glia cells differentially affects NMDAâ€induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus, 2011, 21, 220-232.	0.9	49
492	T33, a novel peroxisome proliferator-activated receptor γ/α agonist, exerts neuroprotective action via its anti-inflammatory activities. Acta Pharmacologica Sinica, 2011, 32, 1100-1108.	2.8	5
493	Vascular PPARδ Protects Against Stroke-Induced Brain Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 574-581.	1.1	48

#	Article	IF	CITATIONS
494	Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons. ISRN Neurology, 2011, 2011, 1-16.	1.5	36
495	Pharmacogenetic Effect of the Stromelysin (MMP3) Polymorphism on Stroke Risk in Relation to Antihypertensive Treatment. Stroke, 2011, 42, 330-335.	1.0	26
496	Lithium and its Neuroprotective and Neurotrophic Effects: Potential Treatment for Post-Ischemic Stroke Sequelae. Current Drug Targets, 2011, 12, 243-255.	1.0	37
497	Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain, 2011, 134, 704-720.	3.7	346
498	Acute Effect of Ghrelin on Ischemia/Reperfusion Injury in the Rat Spinal Cord. International Journal of Molecular Sciences, 2012, 13, 9864-9876.	1.8	36
499	Efficacy of minocycline in acute ischemic stroke: A single-blinded, placebo-controlled trial. Neurology India, 2012, 60, 23.	0.2	89
500	Anti-Inflammatory Effect of Triterpene Saponins Isolated from Blue Cohosh (<i>Caulophyllum) Tj ETQq0 0 0 rgBT</i>	Overlock 0.5	10 Tf 50 502 18
501	Ischemic Postconditioning Alleviates Neuronal Injury Caused by Relief of Carotid Stenosis in a Rat Model of Cerebral Hypoperfusion. International Journal of Molecular Sciences, 2012, 13, 13338-13351.	1.8	7
502	Post-Ischemic Inflammation in the Brain. Frontiers in Immunology, 2012, 3, 132.	2.2	173
503	Associations of cytokine gene polymorphisms with post-stroke depression. World Journal of Biological Psychiatry, 2012, 13, 579-587.	1.3	58
504	Roles of Chemokine CXCL12 and its Receptors in Ischemic Stroke. Current Drug Targets, 2012, 13, 166-172.	1.0	92
505	Time course of inflammatory cytokines in acute ischemic stroke patients and their relation to inter-alfa trypsin inhibitor heavy chain 4 and outcome. Annals of Indian Academy of Neurology, 2012, 15, 181.	0.2	46
506	Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage–induced secondary brain injury and as potential targets for intervention. Neurosurgical Focus, 2012, 32, E8.	1.0	152
507	Delivery of Neurotherapeutics Across the Blood Brain Barrier in Stroke. Current Pharmaceutical Design, 2012, 18, 3704-3720.	0.9	10
508	Delayed Granulocyte Colony-Stimulating Factor Treatment Promotes Functional Recovery in Rats With Severe Contusive Spinal Cord Injury. Spine, 2012, 37, 10-17.	1.0	25
509	Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurological Research, 2012, 34, 331-337.	0.6	53
510	The ischemic penumbra: how does tissue injury evolve?. Annals of the New York Academy of Sciences, 2012, 1268, 26-34.	1.8	117
511	Midkine Gene Transfer in Brain Infarction. , 2012, , 153-163.		0

#	Article	IF	CITATIONS
512	Neuroprotective effect of fucoidin on lipopolysaccharide accelerated cerebral ischemic injury through inhibition of cytokine expression and neutrophil infiltration. Journal of the Neurological Sciences, 2012, 318, 25-30.	0.3	30
513	Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague–Dawley rats. Food and Chemical Toxicology, 2012, 50, 4239-4245.	1.8	73
514	Magnesium Sulfate and Nimesulide Have Synergistic Effects on Rescuing Brain Damage after Transient Focal Ischemia. Journal of Neurotrauma, 2012, 29, 1518-1529.	1.7	25
515	6-Shogaol, a ginger product, modulates neuroinflammation: A new approach to neuroprotection. Neuropharmacology, 2012, 63, 211-223.	2.0	181
516	The importance of early brain injury after subarachnoid hemorrhage. Progress in Neurobiology, 2012, 97, 14-37.	2.8	475
517	Imaging of Stroke: Part 2, Pathophysiology at the Molecular and Cellular Levels and Corresponding Imaging Changes. American Journal of Roentgenology, 2012, 198, 63-74.	1.0	61
518	The prognostic value of serial leukocyte adhesion molecules in post-aneurysmal subarachnoid hemorrhage. Clinica Chimica Acta, 2012, 413, 411-416.	0.5	11
519	Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia. Journal of Neuroinflammation, 2012, 9, 44.	3.1	59
520	The PPAR-gamma agonist pioglitazone protects cortical neurons from inflammatory mediators via improvement in peroxisomal function. Journal of Neuroinflammation, 2012, 9, 63.	3.1	73
521	Differential effect of transient global ischaemia on the levels of γâ€aminobutyric acid type A (GABA _A) receptor subunit mRNAs in young and older rats. Neuropathology and Applied Neurobiology, 2012, 38, 710-722.	1.8	6
522	Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. Journal of Neurochemistry, 2012, 123, 29-38.	2.1	124
523	The inhibitory effect of Sâ€nitrosoglutathione on blood–brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. Journal of Neurochemistry, 2012, 123, 86-97.	2.1	62
524	Postâ€ischemic vascular adhesion proteinâ€1 inhibition provides neuroprotection in a rat temporary middle cerebral artery occlusion model. Journal of Neurochemistry, 2012, 123, 116-124.	2.1	30
525	Tissue plasminogen activator treatment of stroke in type-1 diabetes rats. Neuroscience, 2012, 222, 326-332.	1.1	47
526	Effects of the Sigma-1 Receptor Agonist 1-(3,4-Dimethoxyphenethyl)-4-(3-Phenylpropyl)-Piperazine Dihydro-Chloride on Inflammation after Stroke. PLoS ONE, 2012, 7, e45118.	1.1	41
527	Very early-initiated physical rehabilitation protects against ischemic brain injury. Frontiers in Bioscience - Elite, 2012, E4, 2476-2489.	0.9	37
528	Transplantation of mouse embryonic stem cell after middle cerebral artery occlusion. Acta Cirurgica Brasileira, 2012, 27, 333-339.	0.3	21
529	Ligusticum chuanxiong and Its Decoctions. Advances in Botanical Research, 2012, 62, 315-341.	0.5	3

#	Article	IF	Citations
530	Neuroprotection in Animal Models of Global Cerebral Ischemia. , 2012, , .		4
531	Assessments of Inflammation After Focal Cerebral Ischemia. Springer Protocols, 2012, , 139-148.	0.1	0
532	Age-Related Comparisons of Evolution of the Inflammatory Response After Intracerebral Hemorrhage in Rats. Translational Stroke Research, 2012, 3, 132-146.	2.3	78
533	Acacetin Attenuates Neuroinflammation via Regulation the Response to LPS Stimuli In Vitro and In Vivo. Neurochemical Research, 2012, 37, 1560-1567.	1.6	61
534	Purine nucleosides: endogenous neuroprotectants in hypoxic brain. Journal of Neurochemistry, 2012, 121, 329-342.	2.1	46
535	Stress and social isolation increase vulnerability to stroke. Experimental Neurology, 2012, 233, 33-39.	2.0	55
536	Ameliorative effects of Diammonium Glycyrrhizinate on inflammation in focal cerebral ischemic-reperfusion injury. Brain Research, 2012, 1447, 20-27.	1.1	30
537	Experienceâ€dependent brain plasticity after stroke: effect of ibuprofen and poststroke delay. European Journal of Neuroscience, 2012, 36, 2632-2639.	1.2	16
538	Evaluation of acetylcholinesterase and adenosine deaminase activities in brain and erythrocytes and proinflammatory cytokine levels in rats submitted to neonatal hypoxia-ischemia model. Molecular and Cellular Biochemistry, 2013, 378, 247-255.	1.4	6
539	Glycogen Synthase Kinase-3 Inhibitors as Potent Therapeutic Agents for the Treatment of Parkinson Disease ACS Chemical Neuroscience, 2013, 4, 350-360.	1.7	69
540	Acute Ischemic Stroke Patient: Evidence-Based Endovascular Treatment. , 2013, , 189-205.		0
541	Unfolded protein response to global ischemia following 48Âh of reperfusion in the rat brain: the effect of age and meloxicam. Journal of Neurochemistry, 2013, 127, 701-710.	2.1	23
542	Systemic immune activation shapes stroke outcome. Molecular and Cellular Neurosciences, 2013, 53, 14-25.	1.0	67
543	Increased expression of T cell immunoglobulin and mucin domain 3 aggravates brain inflammation via regulation of the function of microglia/macrophages after intracerebral hemorrhage in mice. Journal of Neuroinflammation, 2013, 10, 141.	3.1	30
544	Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. European Journal of Pharmacology, 2013, 699, 118-123.	1.7	75
545	Neutrophil Lymphocyte Ratio as a Predictor of Stroke. Journal of Stroke and Cerebrovascular Diseases, 2013, 22, 1169-1174.	0.7	170
546	Neuroprotective effect of suppression of astrocytic activation by arundic acid on brain injuries in rats with acute subdural hematomas. Brain Research, 2013, 1519, 127-135.	1.1	20
547	The immunomodulatory effect of bone marrow stromal cells (BMSCs) on interleukin (IL)-23/IL-17-mediated ischemic stroke in mice. Journal of Neuroimmunology, 2013, 257, 28-35.	1.1	41

#	ARTICLE	IF	Citations
548	Inflammation and stroke. Neuroscience Letters, 2013, 548, 1-3.	1.0	14
549	Does Piroxicam really protect ischemic neurons and influence neuronal firing in cerebral ischemia? An exploration towards therapeutics. Medical Hypotheses, 2013, 81, 429-435.	0.8	4
550	Brain Ischemia Activates β- and γ-Secretase Cleavage of Amyloid Precursor Protein: Significance in Sporadic Alzheimer's Disease. Molecular Neurobiology, 2013, 47, 425-434.	1.9	103
551	Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy, 2013, 15, 434-448.	0.3	110
552	Intravenous administration of human umbilical cord blood-mononuclear cells dose-dependently relieve neurologic deficits in rat intracerebral hemorrhage model. Annals of Anatomy, 2013, 195, 39-49.	1.0	11
553	All-Trans-Retinoic Acid Rescues Neurons After Global Ischemia by Attenuating Neuroinflammatory Reactions. Neurochemical Research, 2013, 38, 2604-2615.	1.6	25
554	Role of Inflammation and Its Mediators in Acute Ischemic Stroke. Journal of Cardiovascular Translational Research, 2013, 6, 834-851.	1.1	351
555	CXCR4 Antagonist AMD3100 Protects Blood–Brain Barrier Integrity and Reduces Inflammatory Response After Focal Ischemia in Mice. Stroke, 2013, 44, 190-197.	1.0	182
556	Emerging experimental therapies for intracerebral hemorrhage: targeting mechanisms of secondary brain injury. Neurosurgical Focus, 2013, 34, E9.	1.0	65
557	Computed microtomography visualization and quantification of mouse ischemic brain lesion by nonionic radio contrast agents. Croatian Medical Journal, 2013, 54, 3-11.	0.2	18
558	KLF11 mediates PPARÎ ³ cerebrovascular protection in ischaemic stroke. Brain, 2013, 136, 1274-1287.	3.7	78
559	Triggering Receptor Expressed on Myeloid Cells-2 Correlates to Hypothermic Neuroprotection in Ischemic Stroke. Therapeutic Hypothermia and Temperature Management, 2013, 3, 189-198.	0.3	27
560	Acetylpuerarin increases cell viability and reduces apoptosis in rat hippocampal neurons following oxygen-glucose deprivation/reperfusion. Molecular Medicine Reports, 2013, 8, 1453-1459.	1.1	11
561	Blockade of CXCR1/2 chemokine receptors protects against brain damage in ischemic stroke in mice. Clinics, 2013, 68, 391-394.	0.6	33
562	The Efficacy of Edaravone (Radicut), a Free Radical Scavenger, for Cardiovascular Disease. International Journal of Molecular Sciences, 2013, 14, 13909-13930.	1.8	87
563	Dipyridamole decreases inflammatory metalloproteinase-9 expression and release by human monocytes. Thrombosis and Haemostasis, 2013, 109, 280-289.	1.8	18
564	Inflammatory Mechanisms as Potential Therapeutic Targets in Stroke. Advances in Neuroimmune Biology, 2014, 5, 199-216.	0.7	11
565	A Decade of Research on TLR2 Discovering Its Pivotal Role in Glial Activation and Neuroinflammation in Neurodegenerative Diseases. Experimental Neurobiology, 2014, 23, 138-147.	0.7	66

#	Article	IF	CITATIONS
566	Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype. Cell Death and Disease, 2014, 5, e1331-e1331.	2.7	27
567	Human umbilical cord blood mesenchymal stem cell transplantation suppresses inflammatory responses and neuronal apoptosis during early stage of focal cerebral ischemia in rabbits. Acta Pharmacologica Sinica, 2014, 35, 585-591.	2.8	42
568	NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Annals of Neurology, 2014, 75, 209-219.	2.8	244
569	Delayed, Long-Term Administration of the Caspase Inhibitor Q-VD-OPh Reduced Brain Injury Induced by Neonatal Hypoxia-Ischemia. Developmental Neuroscience, 2014, 36, 64-72.	1.0	37
570	Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metabolism Reviews, 2014, 46, 224-231.	1.5	46
571	The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review. , 2014, 5, 307-26.		67
572	Regulatory T cells influence blood flow recovery in experimental hindlimb ischaemia in an IL-10-dependent manner. Cardiovascular Research, 2014, 103, 585-596.	1.8	23
573	Alpha 1-Antitrypsin Therapy Mitigated Ischemic Stroke Damage in Rats. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, e355-e363.	0.7	32
574	Biphasic activation of nuclear factor kappa B and expression of p65 and c-Rel after traumatic brain injury in rats. Inflammation Research, 2014, 63, 109-115.	1.6	33
575	Anti-inflammatory and Antiapoptotic Effect of Interleukine-18 Binding Protein on the Spinal Cord Ischemia-Reperfusion Injury. Inflammation, 2014, 37, 917-923.	1.7	19
576	Protective Effect of Shikonin in Experimental Ischemic Stroke: Attenuated TLR4, p-p38MAPK, NF-κB, TNF-α and MMP-9 Expression, Up-Regulated Claudin-5 Expression, Ameliorated BBB Permeability. Neurochemical Research, 2014, 39, 97-106.	1.6	71
577	Immunological Mechanisms and Therapies in Brain Injuries and Stroke. , 2014, , .		4
578	Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Progress in Neurobiology, 2014, 114, 58-83.	2.8	164
579	Adenosine Receptors in Cerebral Ischemia. International Review of Neurobiology, 2014, 119, 309-348.	0.9	46
580	Anti-Inflammatory Activity of Iridoid and Catechol Derivatives from <i>Eucommia ulmoides</i> Oliver. ACS Chemical Neuroscience, 2014, 5, 855-866.	1.7	32
581	Anti-apoptotic and Anti-oxidative Roles of Quercetin After Traumatic Brain Injury. Cellular and Molecular Neurobiology, 2014, 34, 797-804.	1.7	83
582	Neamine induces neuroprotection after acute ischemic stroke in type one diabetic rats. Neuroscience, 2014, 257, 76-85.	1.1	18
583	The Effects of Exercise Preconditioning on Cerebral Blood Flow Change and Endothelin-1 Expression after Cerebral Ischemia in Rats. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 1696-1702.	0.7	32

#	Article	IF	CITATIONS
584	Chemokines after human ischemic stroke: From neurovascular unit to blood using protein arrays. Translational Proteomics, 2014, 3, 1-9.	1.2	18
585	Neurobiology of microglial action in CNS injuries: Receptor-mediated signaling mechanisms and functional roles. Progress in Neurobiology, 2014, 119-120, 60-84.	2.8	108
586	Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury. Stem Cell Research and Therapy, 2014, 5, 129.	2.4	91
587	Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies. Canadian Journal of Neurological Sciences, 2015, 42, 213-220.	0.3	22
588	Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. British Journal of Pharmacology, 2015, 172, 5009-5023.	2.7	73
589	The Effects of Octreotide Acetate on Spinal Cord Ischemia/Reperfusion Injury. Neurosurgery Quarterly, 2015, 25, 541-546.	0.1	1
590	Computer modeling of ischemic stroke. Scholarpedia Journal, 2015, 10, 32015.	0.3	6
591	Bystander Effect Fuels Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells to Quickly Attenuate Early Stage Neurological Deficits After Stroke. Stem Cells Translational Medicine, 2015, 4, 841-851.	1.6	98
592	The March of Thrombolytic Therapy for Acute Ischemic Stroke to Clinical Trials: Pre-clinical Thrombolysis and Adjuncts to Thrombolysis Research. , 2015, , 27-64.		0
593	Selenium-Functionalized Molecules (SeFMs) as Potential Drugs and Nutritional Supplements. Topics in Medicinal Chemistry, 2015, , 119-153.	0.4	2
594	A novel treatment strategy for glioblastoma multiforme and glioma associated seizures: Increasing glutamate uptake with PPARÎ ³ agonists. Journal of Clinical Neuroscience, 2015, 22, 21-28.	0.8	10
595	Flavones and Flavonols in Brain and Disease. , 2015, , 229-236.		8
596	Silencing phosphodiesterase 7B gene by lentiviral-shRNA interference attenuates neurodegeneration and motor deficits in hemiparkinsonian mice. Neurobiology of Aging, 2015, 36, 1160-1173.	1.5	29
597	Longitudinal Assessment of Imatinib's Effect on the Blood–Brain Barrier After Ischemia/Reperfusion Injury with Permeability MRI. Translational Stroke Research, 2015, 6, 39-49.	2.3	41
598	Comparison of the effects of human dental pulp stem cells and human bone marrowâ€derived mesenchymal stem cells on ischemic human astrocytes in vitro. Journal of Neuroscience Research, 2015, 93, 973-983.	1.3	51
599	Expression of interleukin-9 and its upstream stimulating factors in rats with ischemic stroke. Neurological Sciences, 2015, 36, 913-920.	0.9	7
600	The Neuroprotective Effect of Glycyrrhizic Acid on an Experimental Model of Focal Cerebral Ischemia in Rats. Inflammation, 2015, 38, 1581-1588.	1.7	30
601	Bosentan protects the spinal cord from ischemia reperfusion injury in rats through vascular endothelial growth factor receptors. Spinal Cord, 2015, 53, 19-23.	0.9	11

#	Article	IF	CITATIONS
602	Neuroinflammation and Neuroimmune Dysregulation after Acute Hypoxic-Ischemic Injury of Developing Brain. Frontiers in Pediatrics, 2014, 2, 144.	0.9	88
603	Neuroprotective effects of pioglitazone against transient cerebral ischemic reperfusion injury in diabetic rats: Modulation of antioxidant, anti-inflammatory, and anti-apoptotic biomarkers. Pharmacological Reports, 2015, 67, 901-906.	1.5	31
604	TLR2-induced astrocyte MMP9 activation compromises the blood brain barrier and exacerbates intracerebral hemorrhage in animal models. Molecular Brain, 2015, 8, 23.	1.3	72
605	Cilostazol Attenuates Spinal Cord Ischemia-Reperfusion Injury in Rabbits. Journal of Cardiothoracic and Vascular Anesthesia, 2015, 29, 351-359.	0.6	16
606	Association of early inflammatory parameters after subarachnoid hemorrhage with functional outcome: A prospective cohort study. Clinical Neurology and Neurosurgery, 2015, 138, 177-183.	0.6	38
607	Hydrogen sulphide and mild hypothermia activate the CREB signaling pathway and prevent ischemia-reperfusion injury. BMC Anesthesiology, 2015, 15, 119.	0.7	19
608	Computational modeling of cytokine signaling in microglia. Molecular BioSystems, 2015, 11, 3332-3346.	2.9	20
609	Neuroprotection by JM-20 against oxygen-glucose deprivation in rat hippocampal slices: Involvement of the Akt/GSK-3β pathway. Neurochemistry International, 2015, 90, 215-223.	1.9	30
611	Anti-Inflammation of Natural Components from Medicinal Plants at Low Concentrations in Brain via Inhibiting Neutrophil Infiltration after Stroke. Mediators of Inflammation, 2016, 2016, 1-12.	1.4	7
612	Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood. Frontiers in Neural Circuits, 2016, 10, 68.	1.4	4
613	lsothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson's Disease. International Journal of Molecular Sciences, 2016, 17, 1454.	1.8	43
614	Activation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to the immunosuppression of mice infected with Angiostrongylus cantonensis. Journal of Neuroinflammation, 2016, 13, 266.	3.1	28
615	Inflammatory mechanisms involved in brain injury following cardiac arrest and cardiopulmonary resuscitation. Biomedical Reports, 2016, 5, 11-17.	0.9	33
616	Current Opinion of Bone Marrow Stromal Cell Transplantation for Ischemic Stroke. Neurologia Medico-Chirurgica, 2016, 56, 293-301.	1.0	8
617	Electric stimulation of the ears ameliorated learning and memory impairment in rats with cerebral ischemia-reperfusion injury. Scientific Reports, 2016, 6, 20381.	1.6	25
618	The Blook-Brain Barrier in Health and Disease. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2016, 8, i-67.	0.3	2
619	Blood Leukocytes as Prognostic Parameter in Stroke Thrombectomy. Cerebrovascular Diseases, 2016, 42, 32-40.	0.8	15
620	Effects of <i>Aloe Vera</i> on Spinal Cord Ischemia–Reperfusion Injury of Rats. Journal of Investigative Surgery, 2016, 29, 389-398.	0.6	21

ARTICLE IF CITATIONS Atypical Elements in Drug Design. Topics in Medicinal Chemistry, 2016, , . 0.4 9 621 Microglia: A Double-Sided Sword in Stroke. Springer Series in Translational Stroke Research, 2016, , 0.1 133-150. Neoechinulin A induced memory improvements and antidepressant-like effects in mice. Progress in 623 2.512 Neuro-Psychopharmacology and Biological Psychiatry, 2016, 71, 155-161. Neuroprotection by intravenous transplantation of bone marrow mononuclear cells from 624 5-fluorouracil pre-treated rats in a model of ischemic stroke. Neurological Research, 2016, 38, 921-928. Propofol protects hippocampal neurons from apoptosis in ischemic brain injury by increasing GLT-1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway. International 625 1.8 23 Journal of Molecular Medicine, 2016, 38, 943-950. Potential dual role of nuclear factor-kappa B in experimental subarachnoid hemorrhage-induced early brain injury in rabbits. Inflammation Research, 2016, 65, 975-984. 1.6 Helium preconditioning protects the brain against hypoxia/ischemia injury via improving the 627 1.2 12 neurovascular niche in a neonatal rat model. Behavioural Brain Research, 2016, 314, 165-172. Urodilatin reverses the detrimental influence of bradykinin in acute ischemic stroke. Experimental 628 2.0 Neurology, 2016, 284, 1-10. Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational 629 0.1 1 Stroke Research, 2016, , . Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate 1.4 and Nox-derived ROS in rat hippocampal slices. NeuroToxicology, 2016, 57, 61-68. Neurons Differentiated from Transplanted Stem Cells Respond Functionally to Acoustic Stimuli in the 631 2.9 15 Awake Monkey Brain. Cell Reports, 2016, 16, 1016-1025. Regnase-1 in microglia negatively regulates high mobility group box 1-mediated inflammation and 1.6 neuronal injury. Scientific Reports, 2016, 6, 24073. Crosstalk between miRNAs and their regulated genes network in stroke. Scientific Reports, 2016, 6, 633 1.6 8 20429. Alternatively activated brain-infiltrating macrophages facilitate recovery from collagenase-induced 634 1.3 intracerebral hemorrhage. Molecular Brain, 2016, 9, 42. 1 H NMR-based metabonomics revealed protective effect of Naodesheng bioactive extract on ischemic 635 2.0 21 stroke rats. Journal of Ethnopharmacology, 2016, 186, 257-269. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial 3.1 pentose-phosphate pathway via the Keap1/Nrf2 system. Journal of Neuroinflammation, 2016, 13, 99. Remote Ischemic Preconditioning Reduces Cerebral Oxidative Stress Following Hypothermic 637 Circulatory Arrest in a Porcine Model. Seminars in Thoracic and Cardiovascular Surgery, 2016, 28, 0.4 7 92-102. Acute neuroinflammation in a clinically relevant focal cortical ischemic stroke model in rat: longitudinal positron emission tomography and immunofluorescent tracking. Brain Structure and 1.2 Function, 2016, 221, 1279-1290.

#	Article	IF	CITATIONS
639	A human neural stem cell line provides neuroprotection and improves neurological performance by early intervention of neuroinflammatory system. Brain Research, 2016, 1631, 194-203.	1.1	33
640	Inflammation and Immune Response. , 2016, , 129-140.e5.		0
641	Blocking B7-1/CD28 Pathway Diminished Long-Range Brain Damage by Regulating the Immune and Inflammatory Responses in a Mouse Model of Intracerebral Hemorrhage. Neurochemical Research, 2016, 41, 1673-1683.	1.6	10
642	Synthesis, molecular properties prediction and anticancer, antioxidant evaluation of new edaravone derivatives. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2562-2568.	1.0	32
643	lschemic, traumatic and neurodegenerative brain inflammatory changes. Future Neurology, 2016, 11, 77-96.	0.9	8
644	Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. , 2016, 157, 84-104.		463
645	Poststroke Inflammasome Expression and Regulation in the Peri-Infarct Area by Gonadal Steroids after Transient Focal Ischemia in the Rat Brain. Neuroendocrinology, 2016, 103, 460-475.	1.2	96
646	Organotypic Hippocampal Slices as Models for Stroke and Traumatic Brain Injury. Molecular Neurobiology, 2016, 53, 4226-4237.	1.9	43
647	Ischemic brain injury: New insights on the protective role of melatonin. Free Radical Biology and Medicine, 2017, 104, 32-53.	1.3	80
648	Cell Therapy for Ischemic Stroke with Bone Marrow Stromal Cells. , 2017, , 15-25.		1
649	YAMATO Study (Tissue-Type Plasminogen Activator and Edaravone Combination Therapy). Stroke, 2017, 48, 712-719.	1.0	34
650	Exercise rehabilitation immediately following ischemic stroke exacerbates inflammatory injury. Neurological Research, 2017, 39, 530-537.	0.6	53
651	Mast cells in neuroinflammation and brain disorders. Neuroscience and Biobehavioral Reviews, 2017, 79, 119-133.	2.9	156
652	Identification of IL-17A-derived neural cell type and dynamic changes of IL-17A in serum/CSF of mice with ischemic stroke. Neurological Research, 2017, 39, 552-558.	0.6	15
653	Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis. Experimental and Therapeutic Medicine, 2017, 13, 799-809.	0.8	22
654	MicroRNA-15a/16-1 Antagomir Ameliorates Ischemic Brain Injury in Experimental Stroke. Stroke, 2017, 48, 1941-1947.	1.0	70
655	Network-Based Approach to Identify Potential Targets and Drugs that Promote Neuroprotection and Neurorepair in Acute Ischemic Stroke. Scientific Reports, 2017, 7, 40137.	1.6	38
656	Intake of potassium- and magnesium-enriched salt improves functional outcome after stroke: a randomized, multicenter, double-blind controlled trial. American Journal of Clinical Nutrition, 2017, 106, 1267-1273.	2.2	25

#	Article	IF	CITATIONS
657	Neuroprotective Effects of Trigeminal Nerve Stimulation in Severe Traumatic Brain Injury. Scientific Reports, 2017, 7, 6792.	1.6	44
658	Effect of Se-Yeon-Eum on nitric oxide and tumor necrosis factor-α production in C6 glial cells induced by recombinant interferon-γ and cigarette extract. Oriental Pharmacy and Experimental Medicine, 2017, 17, 239-244.	1.2	0
659	Inhibition of myeloid differentiation primary response protein 88 provides neuroprotection in early brain injury following experimental subarachnoid hemorrhage. Scientific Reports, 2017, 7, 15797.	1.6	17
660	Necroptosis and microglia activation after chronic ischemic brain injury in mice. European Journal of Inflammation, 2017, 15, 78-84.	0.2	4
661	The neuroprotective effects of Tao-Ren-Cheng-Qi Tang against embolic stroke in rats. Chinese Medicine, 2017, 12, 7.	1.6	4
662	Sameerpannag Ras Mixture (SRM) improved neurobehavioral deficits following acute ischemic stroke by attenuating neuroinflammatory response. Journal of Ethnopharmacology, 2017, 197, 147-156.	2.0	10
663	Secondary Hematoma Expansion and Perihemorrhagic Edema after Intracerebral Hemorrhage: From Bench Work to Practical Aspects. Frontiers in Neurology, 2017, 8, 74.	1.1	61
664	NOX Inhibitors - A Promising Avenue for Ischemic Stroke. Experimental Neurobiology, 2017, 26, 195-205.	0.7	40
665	Transcriptome Analysis Identifies Key Metabolic Changes in the Hooded Seal (Cystophora cristata) Brain in Response to Hypoxia and Reoxygenation. PLoS ONE, 2017, 12, e0169366.	1.1	31
666	Effects of pretreatment with methanol extract of Peucedani Radix on transient ischemic brain injury in mice. Chinese Medicine, 2017, 12, 30.	1.6	7
667	Mitogen-Activated Protein Kinase Signaling in Cerebrovascular Disease. , 2017, , 260-264.		1
668	ICAM-1null C57BL/6 Mice Are Not Protected from Experimental Ischemic Stroke. Translational Stroke Research, 2018, 9, 608-621.	2.3	15
669	Prevention of the Severity of Post-ischemic Inflammation and Brain Damage by Simultaneous Knockdown of Toll-like Receptors 2 and 4. Neuroscience, 2018, 373, 82-91.	1.1	18
670	What Do Experimental Models Teach Us About Comorbidities in Stroke?. Stroke, 2018, 49, 501-507.	1.0	18
671	Biphasic activation of nuclear factor-l°B and expression of p65 and c-Rel following traumatic neuronal injury. International Journal of Molecular Medicine, 2018, 41, 3203-3210.	1.8	9
672	Genetic Deletion of Krüppel-Like Factor 11 Aggravates Ischemic Brain Injury. Molecular Neurobiology, 2018, 55, 2911-2921.	1.9	32
673	Intranasal administration of neuromedin U derivatives containing cell-penetrating peptides and a penetration-accelerating sequence induced memory improvements in mice. Peptides, 2018, 99, 241-246.	1.2	15
674	Protective effects of dehydrocostuslactone on rat hippocampal slice injury induced by oxygen‑glucose deprivation/reoxygenation. International Journal of Molecular Medicine, 2018, 42, 1190-1198	1.8	14

		CITATION REPOR	т	
#	Article	IF	Сітаті	IONS
675	Militaryâ€related risk factors for dementia. Alzheimer's and Dementia, 2018, 14, 1651-1662.	0.4	l 18	
676	Muse Cell: A New Paradigm for Cell Therapy and Regenerative Homeostasis in Ischemic Stroke. Advances in Experimental Medicine and Biology, 2018, 1103, 187-198.	0.8	3 7	
677	Transplantation of a bone marrow mesenchymal stem cell line increases neuronal progenitor ce migration in a cerebral ischemia animal model. Scientific Reports, 2018, 8, 14951.	1.6	9 27	
678	Celecoxib Treatment Improves Neurologic Deficit and Reduces Selective Neuronal Loss and Glial Response in Rats after Transient Middle Cerebral Artery Occlusion. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 528-542.	1.3	17	
679	Dexamethasone does not prevent hydrocephalus after severe intraventricular hemorrhage in newborn rats. PLoS ONE, 2018, 13, e0206306.	1.1	. 7	
680	Leukemia inhibitory factor modulates the peripheral immune response in a rat model of emerge vessel occlusion. Journal of Neuroinflammation, 2018, 15, 288.	nt large 3.1	23	
681	Combined Gene Therapy to Reduce the Neuronal Damage in the Mouse Model of Focal Ischemic Journal of Molecular Neuroscience, 2018, 66, 180-187.	: Injury. 1.1	5	
682	Time-Course Changes and New Expressions of MIP-3α and Its Receptor, CCR6, in the Gerbil Hip CA1 Area Following Transient Global Cerebral Ischemia. Neurochemical Research, 2018, 43, 210	pocampal 1.6 2-2110.	8	
683	Granulocyte Colony-Stimulating Factor Alleviates Bacterial-Induced Neuronal Apoptotic Damage the Neonatal Rat Brain through Epigenetic Histone Modification. Oxidative Medicine and Cellula Longevity, 2018, 2018, 1-10.	≀in ır 1.9	11	
684	The effect of dexmedetomidine on inflammatory inhibition and microglial polarization in BV-2 ce Neurological Research, 2018, 40, 838-846.	ells. O.e	5 14	
685	<scp>CCL</scp> 2 and <scp>CXCL</scp> 10 are associated with poor outcome after intracereb hemorrhage. Annals of Clinical and Translational Neurology, 2018, 5, 962-970.	al 1.7	28	
686	Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641878934.	1.5	77	
687	Lysophosphatidic acid receptor 1 (LPA1) plays critical roles in microglial activation and brain dar after transient focal cerebral ischemia. Journal of Neuroinflammation, 2019, 16, 170.	nage 3.1	. 31	
688	Neuroinflammation: friend and foe for ischemic stroke. Journal of Neuroinflammation, 2019, 16	, 142. 3.1	. 796	
689	Polydatin Attenuates Neuronal Loss via Reducing Neuroinflammation and Oxidative Stress in Ra MCAO Models. Frontiers in Pharmacology, 2019, 10, 663.	t 1.6	52	
690	Inhibition of PI3KÎ ³ by AS605240 Protects tMCAO Mice by Attenuating Pro-Inflammatory Signal Cytokine Release in Reactive Astrocytes. Neuroscience, 2019, 415, 107-120.	ing and 1.1	6	
691	N2 neutrophils may participate in spontaneous recovery after transient cerebral ischemia by inh ischemic neuron injury in rats. International Immunopharmacology, 2019, 77, 105970.	ibiting 1.7	24	
692	The role of NOX inhibitors in neurodegenerative diseases. IBRO Reports, 2019, 7, 59-69.	0.3	3 58	

		15	2
#	ARTICLE Expression changes of CX3CL1 and CX3CR1 proteins in the hippocampal CA1 field of the gerbil	IF	CITATIONS
693	following transient global cerebral ischemia. International Journal of Molecular Medicine, 2019, 44, 939-948.	1.8	10
694	Transcriptome Sequencing Unravels Potential Biomarkers at Different Stages of Cerebral Ischemic Stroke. Frontiers in Genetics, 2019, 10, 814.	1.1	23
695	Alcohol dependence treating agent, acamprosate, prevents traumatic brain injury-induced neuron death through vesicular zinc depletion. Translational Research, 2019, 207, 1-18.	2.2	24
696	The spleen may be an important target of stem cell therapy for stroke. Journal of Neuroinflammation, 2019, 16, 20.	3.1	37
697	Inflammation, Oxidative Stress, and Cerebral Stroke: Basic Principles. , 2019, , 11-21.		1
698	Neuroprotective effects of andrographolide derivative CX-10 in transient focal ischemia in rat: Involvement of Nrf2/AE and TLR/NF-I®B signaling. Pharmacological Research, 2019, 144, 227-234.	3.1	50
699	Hollow Prussian Blue Nanozymes Drive Neuroprotection against Ischemic Stroke via Attenuating Oxidative Stress, Counteracting Inflammation, and Suppressing Cell Apoptosis. Nano Letters, 2019, 19, 2812-2823.	4.5	203
700	Angiogenesis in the ischemic core: A potential treatment target?. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 753-769.	2.4	89
701	Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. Neurochemistry International, 2019, 127, 94-102.	1.9	39
702	Neuroprotective Effects of Thymol, a Dietary Monoterpene Against Dopaminergic Neurodegeneration in Rotenone-Induced Rat Model of Parkinson's Disease. International Journal of Molecular Sciences, 2019, 20, 1538.	1.8	46
703	Brain-Derived Microparticles (BDMPs) Contribute to Neuroinflammation and Lactadherin Reduces BDMP Induced Neuroinflammation and Improves Outcome After Stroke. Frontiers in Immunology, 2019, 10, 2747.	2.2	17
704	Exploring the effects of <i>Gastrodia elata</i> Blume on the treatment of cerebral ischemia-reperfusion injury using UPLC-Q/TOF-MS-based plasma metabolomics. Food and Function, 2019, 10, 7204-7215.	2.1	18
705	A peptide mimetic of tyrosine phosphatase STEP as a potential therapeutic agent for treatment of cerebral ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1069-1084.	2.4	7
706	Effects of repetitive hyperbaric oxygen therapy on neuroprotection in middle cerebral artery occlusion rats. Brain Research, 2020, 1748, 147097.	1.1	5
707	The role of neutrophils in mediating stroke injury in the diabetic db/db mouse brain following hypoxia-ischemia. Neurochemistry International, 2020, 139, 104790.	1.9	13
708	Role of HMGB1 in the Interplay between NETosis and Thrombosis in Ischemic Stroke: A Review. Cells, 2020, 9, 1794.	1.8	59
709	Integration of ultra-high-pressure liquid chromatography–tandem mass spectrometry with machine learning for identifying fatty acid metabolite biomarkers of ischemic stroke. Chemical Communications, 2020, 56, 6656-6659.	2.2	7
710	Targeted role for sphingosine-1-phosphate receptor 1 in cerebrovascular integrity and inflammation during acute ischemic stroke. Neuroscience Letters, 2020, 735, 135160.	1.0	25

#	Article	IF	CITATIONS
711	The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics, 2020, 17, 414-435.	2.1	48
712	Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. Journal of the Neurological Sciences, 2020, 413, 116775.	0.3	15
713	Potent Natural Antioxidant Carveol Attenuates MCAO-Stress Induced Oxidative, Neurodegeneration by Regulating the Nrf-2 Pathway. Frontiers in Neuroscience, 2020, 14, 659.	1.4	35
714	Investigating the relationship between interleukinâ€6 serum levels and outcome in acute ischemic CVA. Brain and Behavior, 2020, 10, e01668.	1.0	5
715	Role of zinc dyshomeostasis in inflammasome formation in cultured cortical cells following lipopolysaccharide or oxygen-glucose deprivation/reperfusion exposure. Neurobiology of Disease, 2020, 137, 104771.	2.1	12
716	Pterostilbene induces Nrf2/HO-1 and potentially regulates NF-κB and JNK–Akt/mTOR signaling in ischemic brain injury in neonatal rats. 3 Biotech, 2020, 10, 192.	1.1	13
717	Sivelestat-loaded nanostructured lipid carriers modulate oxidative and inflammatory stress in human dental pulp and mesenchymal stem cells subjected to oxygen-glucose deprivation. Materials Science and Engineering C, 2021, 120, 111700.	3.8	12
718	Attenuation of the Induction of TLRs 2 and 4 Mitigates Inflammation and Promotes Neurological Recovery After Focal Cerebral Ischemia. Translational Stroke Research, 2021, 12, 923-936.	2.3	18
719	Acute Treatment With Fingolimod Does Not Confer Long-Term Benefit in a Mouse Model of Intracerebral Haemorrhage. Frontiers in Pharmacology, 2020, 11, 613103.	1.6	6
720	The Role of C-Reactive Protein and Fibrinogen in the Development of Intracerebral Hemorrhage: A Mendelian Randomization Study in European Population. Frontiers in Genetics, 2021, 12, 608714.	1.1	2
721	Hypothermia Protects Mice Against Ischemic Stroke by Modulating Macrophage Polarization Through Upregulation of Interferon Regulatory Factor-4. Journal of Inflammation Research, 2021, Volume 14, 1271-1281.	1.6	7
722	Therapeutic Potential of Cytokines in Demyelinating Lesions After Stroke. Journal of Molecular Neuroscience, 2021, 71, 2035-2052.	1.1	4
723	Effects of Different Seaweed Bioactive Compounds on Neurodegenerative Disorders, Potential Uses on Insomnia: A Mini-review. Food Reviews International, 2023, 39, 1137-1156.	4.3	0
724	Study Protocol for a Randomized, Double-Blind, Placebo-Controlled, Phase-II Trial: AdrenoMedullin for Ischemic Stroke Study. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105761.	0.7	4
725	C-Reactive Protein Levels and Clinical Prognosis in LAA-Type Stroke Patients: A Prospective Cohort Study. BioMed Research International, 2021, 2021, 1-8.	0.9	6
726	Nutritional Supplementation of Naturally Occurring Vitamin D to Improve Hemorrhagic Stroke Outcomes. Frontiers in Neurology, 2021, 12, 670245.	1.1	5
727	Role of Interleukin-1 Receptor-Like 1 (ST2) in Cerebrovascular Disease. Neurocritical Care, 2021, 35, 887-893.	1.2	6
728	Interleukin-6: A Novel Target for Cardio-Cerebrovascular Diseases. Frontiers in Pharmacology, 2021, 12, 745061.	1.6	53

#	Article	IF	CITATIONS
730	Inflammatory Cytokines are in Action: Brain Plasticity and Recovery after Brain Ischemia Due to Delayed Melatonin Administration. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 106105.	0.7	3
731	Nitro-oleic acid-mediated blood-brain barrier protection reduces ischemic brain injury. Experimental Neurology, 2021, 346, 113861.	2.0	10
732	TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention. Channels, 2021, 15, 136-154.	1.5	14
734	Delayed profound local brain hypothermia markedly reduces interleukin-1Î ² gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. Acta Neurochirurgica Supplementum, 2006, 96, 177-182.	0.5	51
735	Mechanisms of Ischemic Cell Death in the Developing Brain. , 2007, , 209-233.		5
736	Inflammation as a Therapeutic Target after Subarachnoid Hemorrhage: Advances and Challenges. , 2014, , 249-274.		2
737	CD36: An Inflammatory Mediator in Acute Brain Injury. , 2014, , 321-347.		1
738	White Matter Injury After Experimental Intracerebral Hemorrhage. , 2014, , 219-256.		1
739	Interference of Cryptococcus Neoformans with Human Neutrophil Migration. Advances in Experimental Medicine and Biology, 2003, 531, 315-339.	0.8	3
740	Multiomic Signature of Glaucoma Predisposition in Flammer Syndrome Affected Individuals – Innovative Predictive, Preventive and Personalised Strategies in Disease Management. Advances in Predictive, Preventive and Personalised Medicine, 2019, , 79-104.	0.6	3
741	Interleukin-1 and IL-1 receptor antagonist in stroke: mechanisms and potential therapeutics. , 2001, , 173-180.		3
742	Inflammation in Stroke: The Good, the Bad, and the Unknown. , 2004, , 87-99.		27
743	Lessons from Stroke Trials Using Anti-inflammatory Approaches That Have Failed. , 2004, , 155-184.		7
744	Mice deficient in cytosolic phospholipase A2 are less susceptible to cerebral ischemia/reperfusion injury. , 2003, 86, 169-172.		54
745	Individual Predispositions in Healthy Vasospastic Individuals: Patient Profiling for Targeted Prevention of "Down-Stream―Pathologies as Cost-Effective Personalised Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 13-29.	0.6	4
746	Neuroprotective Effects of Selective Inhibition of Histone Deacetylase 3 in Experimental Stroke. Translational Stroke Research, 2020, 11, 1052-1063.	2.3	18
747	Cerebral Ischemia and Inflammation. , 2004, , 883-893.		11
748	Inflammation and Infection in Clinical Stroke. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1399-1419.	2.4	77

#	Article	IF	CITATIONS
749	Neuroprotection by Complement (C1) Inhibitor in Mouse Transient Brain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2003, , 232-239.	2.4	46
750	Oligodendrocytes and Ischemic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2003, , 263-274.	2.4	68
751	Inflammatory Gene Profiling in the Developing Mouse Brain After Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1333-1351.	2.4	88
752	Oxidative Stress and C-Reactive Protein in Patients with Cerebrovascular Accident (Ischaemic Stroke) : The Role of Ginkgo Biloba Extract. Sultan Qaboos University Medical Journal, 2012, 12, 197-205.	0.3	23
753	Arterially Perfused Neurosphere-Derived Cells Distribute Outside the Ischemic Core in a Model of Transient Focal Ischemia and Reperfusion In Vitro. PLoS ONE, 2008, 3, e2754.	1.1	20
755	Innate Inflammatory Responses in Stroke: Mechanisms and Potential Therapeutic Targets. Current Medicinal Chemistry, 2014, 21, 2076-2097.	1.2	210
756	Inflammatory Responses in Brain Ischemia. Current Medicinal Chemistry, 2015, 22, 1258-1277.	1.2	210
757	Adult Neural Stem Cells: Response to Stroke Injury and Potential for Therapeutic Applications. Current Stem Cell Research and Therapy, 2011, 6, 327-338.	0.6	72
758	Necroptosis: Who Knew There were so Many Interesting Ways to Die?. CNS and Neurological Disorders - Drug Targets, 2014, 13, 42-51.	0.8	57
759	Inflammation in Ischemic Stroke: Mechanisms, Consequences and Possible Drug Targets. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1378-1396.	0.8	81
760	Causes and Consequences of MicroRNA Dysregulation Following Cerebral Ischemia-Reperfusion Injury. CNS and Neurological Disorders - Drug Targets, 2019, 18, 212-221.	0.8	17
761	Imaging the ischemic penumbra and treatment effects by PET Keio Journal of Medicine, 2001, 50, 249-256.	0.5	19
762	T lymphocyte function in the delayed phase of ischemic brain injury. Inflammation and Regeneration, 2011, 31, 102-109.	1.5	2
763	Neuroprotective Effect of Granulocyte-Colony Stimulating Factor. Frontiers in Bioscience - Landmark, 2007, 12, 712.	3.0	69
764	Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Frontiers in Bioscience - Landmark, 2008, 13, 1813.	3.0	356
765	Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular hemorrhage. Korean Journal of Pediatrics, 2014, 57, 251.	1.9	33
766	Effects of ulinastatin, a urinary trypsin inhibitor, on synaptic plasticity and spatial memory in a rat model of cerebral ischemia/reperfusion injury. Chinese Journal of Physiology, 2011, 54, 435-42.	0.4	22
767	Ligustrazine monomer against cerebral ischemia-reperfusion injury. Neural Regeneration Research, 2015, 10, 832.	1.6	57

		CITATION REPORT	
#	Article	IF	Citations
768	Neuroimmunomodulatory effects of transcranial laser therapy combined with intravenous tPA administration for acute cerebral ischemic injury. Neural Regeneration Research, 2015, 10, 1186.	1.6	12
769	Vascular Dysfunction in Brain Hemorrhage: Translational Pathways to Developing New Treatments from Old Targets. Journal of Neurology & Neurophysiology, 2011, 01, .	5 0.1	11
770	Inflammation and stroke. Cardiovascular Medicine, 2009, 12, 143-150.	0.2	2
771	Alzheimer's Factors in Ischemic Brain Injury. , 0, , .		1
772	Moderating effect of ppar-Î ³ on the association of c-reactive protein and ischemic stroke in patien younger than 60. Gene, 2022, 809, 146029.	ts 1.0	2
773	Sequential analysis of adhesion molecules of circulating leukocytes(LFA-1) and endothelial cells(ICAM-1) in patients with cerebral infarction Nosotchu, 2000, 22, 487-494.	0.0	0
774	P38 Inhibition. , 2000, , .		0
775	Biphasic activity of tumor necrosis factor in stroke and brain trauma: interaction with reactive oxygen species. , 2001, , 163-172.		0
776	Expression of adhesion molecules of circulating lymphocytes (LFA-1, VLA-4) and endothelial cells (ICAM-1, VCAM-1) increases in patients with chronic cerebral infarction. Nosotchu, 2001, 23, 316	-324. 0.0	1
777	Cellular Components with Adaptive Responses Contributing to Expansion and Repair Process of Ischemic Brain Damages Caused by Major Vessel Occlusion. , 2001, , 181-187.		0
778	Inflammatory Mechanisms in Alzheimer's Disease: β-Amyloid-Stimulated Proinflammatory Res Blocked by PPARγ Agonists. Medical Science Symposia Series, 2002, , 163-168.	ponses are 0.0	0
779	Experimental Models in Focal Cerebral Ischemia: Are we there yet?. , 2002, 83, 55-59.		10
781	Key Mechanisms of Secondary Neuronal Damage After Brain Trauma. Update in Intensive Care and Emergency Medicine, 2002, , 327-338.	1 0.6	0
782	Stroke — acute interventions. , 2002, , 37-57.		5
783	Activated Microglia in Alzheimer's Disease and Stroke. , 2002, , 105-132.		9
784	Motor Dysfunction and Recovery. , 2002, , .		2
785	FK506 attenuates the post-ischemic perturbation of protein kinases and tyrosine phosphorylation the gerbil hippocampal CA1 sectors. , 2003, 86, 113-116.	in	2
786	Intracellular Signaling: Mediators and Protective Responses. , 2004, , 895-902.		0

~			_		
СП	ΓΑΤΙ	ON	' IC F	PO	RT

#	Article	IF	CITATIONS
787	Brain Genomic Responses to Ischemic Stroke, Hemorrhage, Seizures, Hypoglycemia and Hypoxia. , 2004, , 13-36.		0
788	Possible Detrimental Role of Astrocytic Activation during the Subacute Phase of Permanent Focal Cerebral Ischemia in the Rat. , 2004, , 279-298.		Ο
789	Effect of ibudilast on the expression of lymphocyte adhesion molecules (LFA-1 and VLA-4) and vascular endothelial cell adhesion molecules (ICAM-1 and VCAM-1) as well as on the serum cytokine levels in patients with chronic cerebral infarction. Nosotchu, 2005, 27, 304-310.	0.0	0
790	Expression of Neuronal Nitric Oxide Synthase (nNOS) on Ischemia/reperfusion Injury in Rat Spinal Cord. Daehan Macwi'gwa Haghoeji, 2007, 52, 449.	0.2	0
791	Minocycline in Cerebral Ischemia and Excitotoxicity. , 2007, , 255-267.		0
792	Pathology of the Blood–Brain Barrier. , 2007, , 91-98.		0
793	Herbal Treatment of Ischemia. Modern Nutrition, 2008, , 281-307.	0.1	0
796	Microsomal prostaglandin E synthase-1 is involved in the brain ischemic injury. Inflammation and Regeneration, 2010, 30, 26-33.	1.5	1
797	No effectiveness of synthetic anti-inflammatory tetrapeptides in a mouse model of ischemic stroke. Journal of Experimental Stroke & Translational Medicine, 2010, 3, 33-38.	0.2	0
798	Microfluidic Applications in Vascular Bioengineering. Advances in Bioinformatics and Biomedical Engineering Book Series, 2011, , 1-30.	0.2	0
800	Evaluation of tgf β1, il-8 and nitric oxide in the serum of diffuse axonal injury patients and its association with clinical status and outcome. Turkish Neurosurgery, 2012, 23, 151-4.	0.1	4
801	Identifying Vascular Targets to Treat Hemorrhagic Stroke. , 2012, , 37-55.		0
802	Cilostazol suppresses leukocyte rolling and adhesion on cerebral microvessels after ischemia/reperfusion. Microvascular Reviews and Communications, 2012, 5, 2-8.	0.0	0
803	Tolerance, Historical Review. , 2013, , 3-18.		0
804	Vascular Inflammation in Ischemic Stroke: Adhesion Receptors Controlling Leukocyte–Endothelial Interactions. , 2014, , 27-51.		0
806	Blood Vessel Remodeling After Stroke. , 2015, , 175-218.		0
807	Behavioral assessment of cell transplantation after focal cerebral ischemia in rats. Journal of Exercise Rehabilitation, 2015, 11, 140-144.	0.4	1
809	Immunology of Ischemic Stroke: Impact, Mechanisms, and Immunomodulatory Therapies. Translational Medicine Research, 2017, , 237-277.	0.0	0

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
810	The Effect of n-Butanol Extraction of Potentilla anserina L. on Hypoxia-Induced Inflammatory Factors Expression of Wistar Rat Cortical Neuron. MOJ Anatomy & Physiology, 2017, 3, .	0.2	0
811	Thiazolidinediones and ischemic stroke (literature review and reasoning for the new potential) Tj ETQq1 1 0.	784314 rgBT / 0.0	Overlock 10
813	Features ofÂtheÂinflammatory and metabolic profile ofÂpatients inÂtheÂacute period ofÂischemic stroke. Ukrainian Neurological Journal, 2020, .	0.0	0
814	Neuroprotective effect of poly(lactic-co-glycolic acid) nanoparticle-bound brain-derived neurotrophic factor in a permanent middle cerebral artery occlusion model of ischemia in rats. Acta Neurobiologiae Experimentalis, 2020, 80, 1-18.	0.4	5
817	Stroke and Cerebrovascular Disease. , 0, , 429-443.		3
818	Regional susceptibility to domoic acid in primary astrocyte cells cultured from the brain stem and hippocampus. Marine Drugs, 2008, 6, 25-38.	2.2	9
819	Proinflammatory cytokines in a mouse model of central retinal artery occlusion. Molecular Vision, 2009, 15, 885-94.	1.1	12
821	Vasospastic individuals demonstrate significant similarity to glaucoma patients as revealed by gene expression profiling in circulating leukocytes. Molecular Vision, 2009, 15, 2339-48.	1.1	27
825	The effects of increasing PGE2 on translocation of labeled albumin into rat brain. Research in Pharmaceutical Sciences, 2015, 10, 177-81.	0.6	2
828	The Kynurenine Pathway and Kynurenine 3-Monooxygenase Inhibitors. Molecules, 2022, 27, 273.	1.7	24
829	Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. Biology, 2022, 11, 147.	1.3	36
830	Role of uroguanylin's signalling pathway in the development of ischaemic stroke. European Journal of Neuroscience, 2022, 56, 3720-3737.	1.2	2
831	Chapter 2. Inflammatory Changes in Cerebral Ischemic Injury: Cellular and Molecular Involvement. RSC Drug Discovery Series, 0, , 15-33.	0.2	0
840	Pathophysiology of Brain Ischemia. , 0, , 31-72.		0
841	Intermittent hypoxia promotes the recovery of motor function in rats with cerebral ischemia by regulating mitochondrial function. Experimental Biology and Medicine, 2022, 247, 1364-1378.	1.1	6
842	Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	132
843	Chrysophanol facilitates long-term neurological recovery through limiting microglia-mediated neuroinflammation after ischemic stroke in mice. International Immunopharmacology, 2022, 112, 109220.	1.7	7
844	Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Frontiers in Neuroscience, 0, 16, .	1.4	14

#	Article	IF	CITATIONS
846	Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-31.	1.9	3
847	Carvacrol Inhibits Expression of Transient Receptor Potential Melastatin 7 Channels and Alleviates Zinc Neurotoxicity Induced by Traumatic Brain Injury. International Journal of Molecular Sciences, 2022, 23, 13840.	1.8	6
848	Quantitative Analyses and Validation of Phospholipids and Sphingolipids in Ischemic Rat Brains. Metabolites, 2022, 12, 1075.	1.3	2
850	Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Translational Stroke Research, 2024, 15, 53-68.	2.3	8
852	Pannexin1 Channel-Mediated Inflammation in Acute Ischemic Stroke. , 2023, .		0
853	Epigallocatechin gallate restores the reduction of protein phosphatase 2ÂA subunit B caused by middle cerebral artery occlusion. Laboratory Animal Research, 2023, 39, .	1.1	2
854	Insight into the transcription factors regulating Ischemic stroke and glioma in response to shared stimuli. Seminars in Cancer Biology, 2023, 92, 102-127.	4.3	3
855	Correlation Analysis of Neutrophil/Albumin Ratio and Leukocyte Count/ Albumin Ratio with Ischemic Stroke Severity. Cardiology and Cardiovascular Medicine, 2023, 07, .	0.1	3
856	Oral health and functional outcomes following mechanical thrombectomy for ischemic stroke. Journal of NeuroInterventional Surgery, 2023, 15, e409-e413.	2.0	0
857	Engineered Mesenchymal Stem Cells Over-Expressing BDNF Protect the Brain from Traumatic Brain Injury-Induced Neuronal Death, Neurological Deficits, and Cognitive Impairments. Pharmaceuticals, 2023, 16, 436.	1.7	5
858	Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nature Reviews Neuroscience, 2023, 24, 299-312.	4.9	14
865	Spatio-temporal Spread Variation through Myocardium in Supply and Demand Ischemia. , 2023, , .		0