Sequence-dependent mechanics of single DNA molecule

Nature Structural Biology 6, 346-349

DOI: 10.1038/7582

Citation Report

#	ARTICLE	IF	Citations
1	Polymerization and mechanical properties of single RecA-DNA filaments. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10109-10114.	3.3	208
2	The micro-mechanics of single molecules studied with atomic force microscopy. Journal of Physiology, 1999, 520, 5-14.	1.3	68
3	Free Energy Calculations of Watsonâ^'Crick Base Pairing in Aqueous Solution. Journal of the American Chemical Society, 1999, 121, 9503-9508.	6.6	74
4	Dynamic force spectroscopy of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11277-11282.	3.3	561
5	DNA stretching and compression: large-scale simulations of double helical structures 1 1Edited by I. Tinoco. Journal of Molecular Biology, 1999, 289, 1301-1326.	2.0	132
6	How RNA folds. Journal of Molecular Biology, 1999, 293, 271-281.	2.0	888
7	Covalent Attachment of a Single Dextran Polymer Between the Tip of an Atomic Force Microscope and a Gold Surface. Materials Research Society Symposia Proceedings, 1999, 576, 171.	0.1	1
10	Stretching Single Molecules Along Unbinding and Unfolding Pathways with the Scanning Force Microscope. Chemistry - A European Journal, 2000, 6, 4249-4255.	1.7	10
11	Force Spectroscopy of Molecular Systemsâ€"Single Molecule Spectroscopy of Polymers and Biomolecules. Angewandte Chemie - International Edition, 2000, 39, 3212-3237.	7.2	407
12	Cisplatin Changes the Mechanics of Single DNA Molecules. Angewandte Chemie - International Edition, 2000, 39, 3912-3915.	7.2	58
13	DNA Handles for Single Molecule Experiments. Single Molecules, 2000, 1, 139-144.	1.7	20
14	The Mechanical Properties of Single Chromatin Fibers Under Tension. Single Molecules, 2000, 1, 185-192.	1.7	24
15	Force spectroscopy with single bio-molecules. Current Opinion in Chemical Biology, 2000, 4, 524-530.	2.8	388
16	Stretching single molecules into novel conformations using the atomic force microscope. Nature Structural Biology, 2000, 7, 719-724.	9.7	283
17	Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biology, 2000, 2, 313-317.	4.6	551
18	Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology, 2000, 10, 279-285.	2.6	755
19	Single molecule force spectroscopy in biology using the atomic force microscope. Progress in Biophysics and Molecular Biology, 2000, 74, 37-61.	1.4	348
20	Twisting and stretching single DNA molecules. Progress in Biophysics and Molecular Biology, 2000, 74, 115-140.	1.4	317

#	Article	IF	Citations
21	Title is missing!. Biotechnology Letters, 2000, 22, 893-903.	1.1	83
22	Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D Assembly Experiments. Journal of Biomolecular Structure and Dynamics, 2000, 17, 263-270.	2.0	92
23	Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 139-144.	3. 3	219
24	Recent Highlights from Atomic Force Microscopy of DNA. Journal of Biomolecular Structure and Dynamics, 2000, 17, 271-275.	2.0	13
25	Salt-Induced DNA-Histone Complexation. Physical Review Letters, 2000, 85, 4389-4392.	2.9	166
26	Replication by a single DNA polymerase of a stretched single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12002-12007.	3.3	275
27	Sequence-dependent elastic properties of DNA 1 1Edited by I. Tinoco. Journal of Molecular Biology, 2000, 299, 695-709.	2.0	149
28	Biomolecular Interactions Measured by Atomic Force Microscopy. Biophysical Journal, 2000, 79, 3267-3281.	0.2	226
29	Mechanical Stability of Single DNA Molecules. Biophysical Journal, 2000, 78, 1997-2007.	0.2	405
30	A Metal-Chelating Microscopy Tip as a New Toolbox for Single-Molecule Experiments by Atomic Force Microscopy. Biophysical Journal, 2000, 78, 3275-3285.	0.2	166
31	Single Molecule Force Spectroscopy of Modular Proteins in the Nervous System. Neuron, 2000, 27, 435-446.	3.8	50
32	Stress-Induced Structural Transitions in DNA and Proteins. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 523-543.	18.3	99
33	Hydrogen Bonding Governs the Elastic Properties of Poly(vinyl alcohol) in Water:Â Single-Molecule Force Spectroscopic Studies of PVA by AFM. Macromolecules, 2000, 33, 465-469.	2.2	151
34	Single Polymer Chain Elongation of Poly(N-isopropylacrylamide) and Poly(acrylamide) by Atomic Force Microscopy. Journal of Physical Chemistry B, 2000, 104, 10258-10264.	1.2	112
35	Stretch-Induced Hairpin-Coil Transitions in Designed Polynucleotide Chains. Physical Review Letters, 2001, 86, 356-359.	2.9	13
36	SURFACEBIOLOGY OFDNABYATOMICFORCEMICROSCOPY. Annual Review of Physical Chemistry, 2001, 52, 71-92.	4.8	276
37	Force and kinetic barriers to unzipping of the DNA double helix. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8608-8613.	3.3	156
38	New DNA Sequencing Methods. Annual Review of Biomedical Engineering, 2001, 3, 195-223.	5 . 7	104

#	ARTICLE	IF	Citations
39	Stretching Single-Stranded DNA: Interplay of Electrostatic, Base-Pairing, and Base-Pair Stacking Interactions. Biophysical Journal, 2001, 81, 1133-1143.	0.2	145
40	Force-Induced Denaturation of RNA. Biophysical Journal, 2001, 81, 1324-1332.	0.2	77
41	Effect of pH on the Overstretching Transition of Double-Stranded DNA: Evidence of Force-Induced DNA Melting. Biophysical Journal, 2001, 80, 874-881.	0.2	219
42	Force-Induced Melting of the DNA Double Helix 1. Thermodynamic Analysis. Biophysical Journal, 2001, 80, 882-893.	0.2	304
43	Entropy and Heat Capacity of DNA Melting from Temperature Dependence of Single Molecule Stretching. Biophysical Journal, 2001, 80, 1932-1939.	0.2	188
44	Atomic force microscopy of biomaterials surfaces and interfaces. Surface Science, 2001, 491, 303-332.	0.8	186
45	Stretching Cell Surface Macromolecules by Atomic Force Microscopy. Langmuir, 2001, 17, 3116-3119.	1.6	72
46	Exploitation of Reactivity and Selectivity in Cellulose Functionalization Using Unconventional Media for the Design of Products Showing New Superstructures. Biomacromolecules, 2001, 2, 1124-1132.	2.6	53
47	Study on Polymer Micelles of Hydrophobically Modified Ethyl Hydroxyethyl Cellulose Using Single-Molecule Force Spectroscopy. Langmuir, 2001, 17, 4799-4808.	1.6	21
48	Strongly Stretched Semiflexible Extensible Polyelectrolytes and DNA. Macromolecules, 2001, 34, 7522-7529.	2.2	52
49	Force-induced melting of a short DNA double helix. European Biophysics Journal, 2001, 30, 53-62.	1.2	77
50	Force spectroscopy on single passive biomolecules and single biomolecular bonds. Physics Reports, 2001, 346, 343-385.	10.3	120
51	A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I. Journal of Theoretical Biology, 2001, 213, 359-386.	0.8	9
52	A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: II. Journal of Theoretical Biology, 2001, 213, 387-412.	0.8	9
53	Mapping the Surface Characteristics of Polystyrene Microtiter Wells by a Multimode Scanning Force Microscopy Approach. Journal of Colloid and Interface Science, 2001, 242, 470-476.	5.0	7
54	Title is missing!. Biomedical Microdevices, 2001, 3, 9-18.	1.4	13
55	Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nature Biotechnology, 2001, 19, 248-252.	9.4	400
56	Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnology, 2001, 19, 636-639.	9.4	689

#	ARTICLE	IF	CITATIONS
57	Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12996-13001.	3.3	192
58	Reversible Unfolding of Single RNA Molecules by Mechanical Force. Science, 2001, 292, 733-737.	6.0	839
59	Single molecules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10527-10528.	3.3	18
60	Hairpin Formation and Elongation of Biomolecules. Physical Review Letters, 2001, 86, 2178-2181.	2.9	75
61	Dynamical Scaling of the DNA Unzipping Transition. Physical Review Letters, 2001, 88, 028102.	2.9	126
62	Pulling hairpinned polynucleotide chains: Does base-pair stacking interaction matter?. Journal of Chemical Physics, 2001, 114, 8694-8700.	1.2	16
63	Stretching Single Stranded DNA, a Model Polyelectrolyte. Physical Review Letters, 2002, 89, 248102.	2.9	183
64	Force and kinetic barriers to initiation of DNA unzipping. Physical Review E, 2002, 65, 041907.	0.8	49
65	Unzipping dynamics of long DNAs. Physical Review E, 2002, 66, 051914.	0.8	21
66	Optical tweezers system measuring the change in light momentum flux. Review of Scientific Instruments, 2002, 73, 2308-2316.	0.6	29
67	Force spectroscopy with a large dynamic range using small cantilevers and an array detector. Journal of Applied Physics, 2002, 91, 4739-4746.	1.1	32
68	Integrating suspended quantum dot circuits for applications in nanomechanics. Applied Physics Letters, 2002, 81, 280-282.	1.5	36
69	Analysis of RNA flexibility by scanning force spectroscopy. Nucleic Acids Research, 2002, 30, 81e-81.	6.5	37
70	DNA sequence from the unzipping force? One mutation problem. Journal of Physics A, 2002, 35, L349-L356.	1.6	15
71	Force-induced unfolding of a homopolymer on a fractal lattice: exact results versus mean-field predictions. Journal of Physics A, 2002, 35, L233-L240.	1.6	11
72	Structure and mechanics of single biomolecules: experiment and simulation. Journal of Physics Condensed Matter, 2002, 14, R383-R414.	0.7	88
74	Forced Unfolding of Single Proteins. Methods in Cell Biology, 2002, 68, 311-335.	0.5	1
75	Desorption Force of Poly(4-vinylpyridine) Layer Assemblies from Amino Groups Modified Substrates. Journal of Physical Chemistry B, 2002, 106, 12705-12708.	1.2	24

#	Article	IF	Citations
76	Chain Length and Concentration Dependence of β-Cyclodextrinâ^'Ferrocene Hostâ^'Guest Complex Rupture Forces Probed by Dynamic Force Spectroscopy. Langmuir, 2002, 18, 6988-6994.	1.6	90
77	Using Force Spectroscopy To Investigate the Binding of Complementary DNA in the Presence of Intercalating Agents. Langmuir, 2002, 18, 5333-5336.	1.6	10
78	Oxygen Bridge Inhibits Conformational Transition of 1,4-Linked α-d-Galactose Detected by Single-Molecule Atomic Force Microscopy. Macromolecules, 2002, 35, 871-876.	2.2	31
79	Force Spectroscopy Study on Poly(acrylamide) Derivatives:  Effects of Substitutes and Buffers on Single-Chain Elasticity. Nano Letters, 2002, 2, 1169-1172.	4.5	52
80	Conformations, Flexibility, and Interactions Observed on Individual Membrane Proteins by Atomic Force Microscopy. Methods in Cell Biology, 2002, 68, 257-299.	0.5	16
81	Discriminating small molecule DNA binding modes by single molecule force spectroscopy. FEBS Letters, 2002, 510, 154-158.	1.3	96
82	Stability of Bacteriorhodopsin \hat{l}_{\pm} -Helices and Loops Analyzed by Single-Molecule Force Spectroscopy. Biophysical Journal, 2002, 83, 3578-3588.	0.2	163
83	Unzipping DNA with Optical Tweezers: High Sequence Sensitivity and Force Flips. Biophysical Journal, 2002, 82, 1537-1553.	0.2	275
84	Salt Dependence of the Elasticity and Overstretching Transition of Single DNA Molecules. Biophysical Journal, 2002, 82, 3160-3169.	0.2	319
85	Study of statistical correlations in DNA sequences. Gene, 2002, 300, 105-115.	1.0	79
86	Single molecule statistics and the polynucleotide unzipping transition. Physical Review E, 2002, 65, 031917.	0.8	144
87	Cell Adhesion Measured by Force Spectroscopy on Living Cells. Methods in Cell Biology, 2002, 68, 91-114.	0.5	31
88	Force spectroscopy of single DNA and RNA molecules. Current Opinion in Structural Biology, 2002, 12, 330-336.	2.6	162
89	DNA Mechanics Affected by Small DNA Interacting Ligands. Single Molecules, 2002, 3, 91-96.	1.7	32
90	Invited Review Nano-mechanics of proteins with possible applications. Superlattices and Microstructures, 2002, 31, 43-62.	1.4	6
91	Biomolecular force measurements and the atomic force microscope. Current Opinion in Biotechnology, 2002, 13, 47-51.	3.3	127
92	Biointerface analysis on a molecular level. Colloids and Surfaces B: Biointerfaces, 2002, 23, 95-114.	2.5	41
93	Mechanical opening of DNA by micro manipulation and force measurements. Comptes Rendus Physique, 2002, 3, 585-594.	0.3	6

#	ARTICLE	IF	CITATIONS
94	Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping. Comptes Rendus Physique, 2002, 3, 569-584.	0.3	49
96	Elastic theories of single DNA molecules. Physica A: Statistical Mechanics and Its Applications, 2002, 306, 359-367.	1.2	3
97	AFM imaging in solution of protein–DNA complexes formed on DNA anchored to a gold surface. Ultramicroscopy, 2002, 90, 103-112.	0.8	30
98	The myosin coiled-coil is a truly elastic protein structure. Nature Materials, 2002, 1, 232-235.	13.3	231
99	Section: DNA, Chromatin and Chromosomes; Mechanics and imaging of single DNA molecules. Journal of Muscle Research and Cell Motility, 2002, 23, 367-375.	0.9	11
100	Stretching and imaging single DNA molecules and chromatin. Journal of Muscle Research and Cell Motility, 2002, 23, 377-395.	0.9	33
101	Probing complex RNA structures by mechanical force. European Physical Journal E, 2003, 12, 605-615.	0.7	52
102	Using DNA to Power Nanostructures. Genetic Programming and Evolvable Machines, 2003, 4, 111-122.	1.5	279
103	The elastic theory of a single DNA molecule. Pramana - Journal of Physics, 2003, 61, 353-360.	0.9	2
104	An Overlooked Riddle of Life's Origins: Energy-Dependent Nucleic Acid Unzipping. Journal of Molecular Evolution, 2003, 57, S182-S189.	0.8	9
105	Stretching DNA and RNA to probe their interactions with proteins. Current Opinion in Structural Biology, 2003, 13, 266-274.	2.6	92
106	Analysis of Metallo-Supramolecular Systems Using Single-Molecule Force Spectroscopy. Advanced Functional Materials, 2003, 13, 615-620.	7.8	73
107	Molecular nanosprings in spider capture-silk threads. Nature Materials, 2003, 2, 278-283.	13.3	342
108	Single molecule mechanochemistry of macromolecules. Progress in Polymer Science, 2003, 28, 1271-1295.	11.8	254
109	Desorption Force per Polystyrene Segment in Water. Macromolecules, 2003, 36, 3779-3782.	2.2	34
110	Simple Method to Isolate Single Polymer Chains for the Direct Measurement of the Desorption Force. Nano Letters, 2003, 3, 245-248.	4.5	59
111	Elasticity of Semiflexible Polymers with and without Self-Interactions. Macromolecules, 2003, 36, 10095-10102.	2.2	40
112	Equalities for the Nonequilibrium Work Transferred from an External Potential to a Molecular System. Analysis of Single-Molecule Extension Experiments. Journal of Physical Chemistry B, 2003, 107, 14007-14019.	1.2	33

#	Article	IF	CITATIONS
113	Chromatin Fibers, One-at-a-time. Journal of Molecular Biology, 2003, 331, 1-19.	2.0	70
114	Identification of Binding Mechanisms in Single Molecule–DNA Complexes. Biophysical Journal, 2003, 85, 1968-1973.	0.2	74
115	Cellular Manipulations. , 2003, , 407-482.		0
116	Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level. Biochemistry and Cell Biology, 2003, 81, 151-159.	0.9	58
117	One by one: Single molecule tools for genomics. Briefings in Functional Genomics & Proteomics, 2003, 1, 397-416.	3.8	11
118	Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules. Nucleic Acids Research, 2003, 31, 1311-1318.	6.5	135
119	Single-molecule detection of DNA hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7605-7610.	3.3	76
120	DNA unzipped under a constant force exhibits multiple metastable intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1694-1699.	3.3	147
121	Stretching of a Polymer below theî, Point. Physical Review Letters, 2003, 90, 088301.	2.9	66
122	Unzipping Kinetics of Double-Stranded DNA in a Nanopore. Physical Review Letters, 2003, 90, 238101.	2.9	273
123	Theory of high-force DNA stretching and overstretching. Physical Review E, 2003, 67, 051906.	0.8	175
124	DNA: A Programmable Force Sensor. Science, 2003, 301, 367-370.	6.0	167
125	Forcing Chromatin. Journal of Biological Chemistry, 2003, 278, 23213-23216.	1.6	7
126	A force-based protein biochip. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11356-11360.	3.3	59
127	Stretching of macromolecules and proteins. Reports on Progress in Physics, 2003, 66, 1-45.	8.1	230
129	Hairpin Formation in Polynucleotides: A Simple Folding Problem?. , 2004, , 99-147.		2
130	Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein. Spectroscopy, 2004, 18, 203-211.	0.8	24
131	Finite optical spot size and position corrections in thermal spring constant calibration. Nanotechnology, 2004, 15, 1344-1350.	1.3	209

#	Article	IF	CITATIONS
132	Reply to "Comment on â€Theory of high-force DNA stretching and overstretching' ― Physical Review 2004, 70, 013902.	v.E.s	2
133	Stretching an adsorbed polymer globule. Physical Review E, 2004, 70, 012801.	0.8	21
134	Unfolding and unzipping of single-stranded DNA by stretching. Physical Review E, 2004, 70, 051901.	0.8	5
135	Overstretching and force-driven strand separation of double-helix DNA. Physical Review E, 2004, 70, 011910.	0.8	146
136	Kinetic measurement of ribosome motor stalling force. Applied Physics Letters, 2004, 85, 4789-4791.	1.5	9
137	Single-chip mechatronic microsystem for surface imaging and force response studies. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17011-17015.	3.3	38
138	DNA base pair resolution by single molecule force spectroscopy. Nucleic Acids Research, 2004, 32, 4876-4883.	6.5	68
139	Simultaneous, coincident optical trapping and single-molecule fluorescence. Nature Methods, 2004, 1, 133-139.	9.0	218
140	Single-molecule manipulation of nucleic acids. Current Opinion in Structural Biology, 2004, 14, 368-373.	2.6	59
141	Double-chip protein arrays: force-based multiplex sandwich immunoassays with increased specificity. Analytical and Bioanalytical Chemistry, 2004, 379, 974-81.	1.9	19
142	Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials. Microscopy Research and Technique, 2004, 64, 415-434.	1,2	55
143	An AFM study of the elasticity of DNA molecules. Thin Solid Films, 2004, 464-465, 456-458.	0.8	23
144	Dynamics of a partially stretched protein molecule studied using an atomic force microscope. Biophysical Chemistry, 2004, 107, 51-61.	1.5	28
145	Elastic Properties of a Single-Stranded Charged Homopolymeric Ribonucleotide. Physical Review Letters, 2004, 93, 118102.	2.9	124
146	Single-Chain Elasticity of Poly(ferrocenyldimethylsilane) and Poly(ferrocenylmethylphenylsilane). Macromolecules, 2004, 37, 1839-1842.	2.2	45
147	Single Molecule Force Spectroscopy on Polyelectrolytes:Â Effect of Spacer on Adhesion Force and Linear Charge Density on Rigidity. Macromolecules, 2004, 37, 946-953.	2.2	67
148	Scanning probe microscopies beyond imaging. Journal of Materials Chemistry, 2004, 14, 1353-1366.	6.7	114
149	Single-Molecule Investigations of RNA Dissociation. Biophysical Journal, 2004, 86, 3811-3821.	0.2	33

#	Article	IF	CITATIONS
150	Dependence of DNA Polymerase Replication Rate on External Forces: A Model Based on Molecular Dynamics Simulations. Biophysical Journal, 2004, 87, 1478-1497.	0.2	30
151	Dynamics of the DNA Duplex Formation Studied by Single Molecule Force Measurements. Biophysical Journal, 2004, 87, 3388-3396.	0.2	17
152	Nanopore Unzipping of Individual DNA Hairpin Molecules. Biophysical Journal, 2004, 87, 3205-3212.	0.2	273
153	LexA-DNA Bond Strength by Single Molecule Force Spectroscopy. Biophysical Journal, 2004, 87, 2683-2690.	0.2	89
154	Mechanical Processes in Biochemistry. Annual Review of Biochemistry, 2004, 73, 705-748.	5.0	721
155	The physics of DNA stretching. Contemporary Physics, 2004, 45, 11-30.	0.8	29
156	The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology, 2004, 15, 1296-1301.	1.3	57
157	Scanning probe technology in metalloprotein and biomolecular electronics. IET Nanobiotechnology, 2004, 151, 37.	2.1	11
158	Pulling-Speed-Dependent Force-Extension Profiles for Semiflexible Chains. Biophysical Journal, 2004, 86, 2641-2649.	0.2	29
159	Single molecule force spectroscopy on ligand–DNA complexes: from molecular binding mechanisms to biosensor applications. Journal of Biotechnology, 2004, 112, 5-12.	1.9	38
161	Course 7 Introduction to single-DNA micromechanics. Les Houches Summer School Proceedings, 2005, , 211-270.	0.2	4
162	Scanning Force Microscopy and Scanning Force Spectroscopy of RNA. , 0, , 475-487.		0
163	A molecular delivery system by using AFM and nanoneedle. Biosensors and Bioelectronics, 2005, 20, 2120-2125.	5.3	103
164	Mapping enzymatic functionalities of mannuronan C-5 epimerases and their modular units by dynamic force spectroscopy. Carbohydrate Research, 2005, 340, 2782-2795.	1.1	16
165	Protein Unfolding and Refolding Under Force: Methodologies for Nanomechanics. ChemPhysChem, 2005, 6, 29-34.	1.0	40
166	Optical Characteristics of Atomic Force Microscopy Tips for Single-Molecule Fluorescence Applications. ChemPhysChem, 2005, 6, 976-983.	1.0	35
167	Simultaneous AFM Manipulation and Fluorescence Imaging of Single DNA Strands. ChemPhysChem, 2005, 6, 534-540.	1.0	35
168	A new interpolation formula for semiflexible polymers. Biophysical Chemistry, 2005, 115, 251-254.	1.5	19

#	Article	IF	CITATIONS
169	DNA Nanodevices. Small, 2005, 1, 284-299.	5.2	225
170	Progressing single biomolecule force spectroscopy measurements for the screening of DNA binding agents. Nanotechnology, 2005, 16, 2325-2333.	1.3	19
171	A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule. Journal of Micromechanics and Microengineering, 2005, 15, 109-117.	1.5	42
172	Highly Stretched Single Polymers: Atomic-Force-Microscope Experiments VersusAb-InitioTheory. Physical Review Letters, 2005, 94, 048301.	2.9	165
173	Versatile low-temperature atomic force microscope with in situ piezomotor controls, charge-coupled device vision, and tip-gated transport measurement capability. Review of Scientific Instruments, 2005, 76, 093701.	0.6	9
174	Peeling off an elastica from a smooth attractive substrate. Physical Review E, 2005, 71, 036611.	0.8	48
175	Course 6 Single-molecule studies of DNA mechanics and DNA/Protein interactions. Les Houches Summer School Proceedings, 2005, , $161-209$.	0.2	0
176	Probing Protein-Protein Interactions by Dynamic Force Correlation Spectroscopy. Physical Review Letters, 2005, 95, 168302.	2.9	21
177	Radial compression elasticity of single DNA molecules studied by vibrating scanning polarization force microscopy. Physical Review E, 2005, 71, 062901.	0.8	19
178	Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6484-6489.	3.3	112
179	Structure and energy of a DNA dodecamer under tensile load. Nucleic Acids Research, 2005, 33, 7029-7038.	6.5	43
180	CMOS monolithic mechatronic microsystem for surface imaging and force response studies. IEEE Journal of Solid-State Circuits, 2005, 40, 951-959.	3.5	11
181	Zipper-like properties of [poly(l-lysine)+ poly(l-glutamic acid)] \hat{l}^2 -pleated molecular self-assembly. Chemical Communications, 2005, , 5557.	2.2	10
182	Single-Chain Mechanical Property of Poly(N-vinyl-2-pyrrolidone) and Interaction with Small Molecules. Journal of Physical Chemistry B, 2005, 109, 14807-14812.	1.2	44
183	Influence of Surface Interactions on Folding and Forced Unbinding of Semiflexible Chains. Journal of Physical Chemistry B, 2005, 109, 21979-21988.	1.2	7
184	Force Spectroscopy on Dendronized Poly(p-phenylene)s:  Revealing the Chain Elasticity and the Interfacial Interaction. Macromolecules, 2005, 38, 861-866.	2.2	24
185	Mechanochemistry:  The Mechanical Activation of Covalent Bonds. Chemical Reviews, 2005, 105, 2921-2948.	23.0	1,106
186	Single Molecule Studies of Antibody–Antigen Interaction Strength Versus Intra-molecular Antigen Stability. Journal of Molecular Biology, 2005, 347, 597-606.	2.0	106

#	ARTICLE	IF	CITATIONS
187	Force spectroscopy of polymers: Beyond single chain mechanics. Current Opinion in Solid State and Materials Science, 2005, 9, 140-148.	5.6	36
188	Molecular Dynamics Simulations of Duplex Stretching Reveal the Importance of Entropy in Determining the Biomechanical Properties of DNA. Biophysical Journal, 2005, 88, 1684-1691.	0.2	97
189	Monte Carlo Simulation for Single RNA Unfolding by Force. Biophysical Journal, 2005, 88, 76-84.	0.2	18
190	Dual Binding Modes for an HMG Domain from Human HMGB2 on DNA. Biophysical Journal, 2005, 89, 353-364.	0.2	70
191	Molecular Mechanisms and Kinetics between DNA and DNA Binding Ligands. Biophysical Journal, 2005, 88, 404-411.	0.2	169
192	Mechanical Studies of Single Ribosome/mRNA Complexes. Biophysical Journal, 2005, 89, 1909-1919.	0.2	48
193	Measuring Single-Bond Rupture Forces Using High Electric Fields in Microfluidic Channels and DNA Oligomers as Force Tags. Biophysical Journal, 2005, 89, L19-L21.	0.2	7
195	AFM: a versatile tool in biophysics. Measurement Science and Technology, 2005, 16, R65-R92.	1.4	343
196	Conformational Transitions of Nongrafted Polymers near an Absorbing Substrate. Physical Review Letters, 2005, 95, 058102.	2.9	87
197	Enumeration of DNA Molecules Bound to a Nanomechanical Oscillator. Nano Letters, 2005, 5, 925-929.	4.5	253
198	Calculation of thermal noise in an atomic force microscope with a finite optical spot size. Nanotechnology, 2005, 16, 664-670.	1.3	55
199	Direct Force Measurements between Cellulose Surfaces and Colloidal Silica Particles. Biomacromolecules, 2005, 6, 3057-3066.	2.6	52
201	Force Unfolding Single RNAs. Biophysical Journal, 2006, 90, 1895-1902.	0.2	8
202	Mapping the Energy Landscape of Biomolecules Using Single Molecule Force Correlation Spectroscopy: Theory and Applications. Biophysical Journal, 2006, 90, 3827-3841.	0.2	23
203	Single-molecule experiments in biological physics: methods and applications. Journal of Physics Condensed Matter, 2006, 18, R531-R583.	0.7	315
204	Atomic force microscopy in biology: technology and techniques. Biotechnic and Histochemistry, 2006, 81, 87-97.	0.7	76
205	Sequencing DNA by Dynamic Force Spectroscopy:Â Limitations and Prospects. Nano Letters, 2006, 6, 1483-1486.	4.5	18
206	Weakly Bound Water Molecules Shorten Single-Stranded DNA. Journal of the American Chemical Society, 2006, 128, 6636-6639.	6.6	73

#	Article	IF	Citations
210	Dynamic Force Microscopy and Spectroscopy. Nanoscience and Technology, 2006, , 143-164.	1.5	O
211	Determination of thermodynamics and kinetics of RNA reactions by force. Quarterly Reviews of Biophysics, 2006, 39, 325-360.	2.4	85
212	Equilibrium and irreversible unzipping of DNA in a nanopore. Europhysics Letters, 2006, 73, 128-134.	0.7	49
213	Probing DNA–peptide interaction forces at the single-molecule level. Journal of Peptide Science, 2006, 12, 836-842.	0.8	17
214	Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods, 2006, 3, 347-355.	9.0	963
215	Experimental techniques for single cell and single molecule biomechanics. Materials Science and Engineering C, 2006, 26, 1278-1288.	3.8	127
216	Unfolding Barriers in Bacteriorhodopsin Probed from the Cytoplasmic and the Extracellular Side by AFM. Structure, 2006, 14, 521-527.	1.6	65
217	Nanopore Detector based analysis of single-molecule conformational kinetics and binding interactions. BMC Bioinformatics, 2006, 7, S21.	1.2	16
218	Modelling the biomechanical properties of DNA using computer simulation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 3319-3334.	1.6	12
219	Sequence-dependent gating of an ion channel by DNA hairpin molecules. Nucleic Acids Research, 2006, 34, 6425-6437.	6.5	43
220	Adsorption and combing of DNA on HOPG surfaces of bulk crystals and nanosheets: application to the bridging of DNA between HOPG/Si heterostructures. Nanotechnology, 2006, 17, 3325-3332.	1.3	11
221	Stretching a self-interacting semiflexible polymer. Europhysics Letters, 2006, 75, 818-824.	0.7	10
222	Differential analysis of biomolecular rupture forces. Journal of Physics Condensed Matter, 2006, 18, S581-S599.	0.7	15
223	The mechanical opening of DNA and the sequence content. AIP Conference Proceedings, 2006, , .	0.3	0
224	Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6190-6195.	3.3	397
225	Probing the Mechanical Unzipping of DNA. Physical Review Letters, 2006, 96, 248101.	2.9	44
226	Molecular-Scale Studies on Biopolymers Using Atomic Force Microscopy. , 0, , 123-172.		9
227	Mechanical characteristic of ssDNAâ^•dsDNA molecule under external loading. Applied Physics Letters, 2006, 88, 023902.	1.5	10

#	Article	IF	CITATIONS
228	Scaling Exponent and Kuhn Length of Pinned Polymers by Single Molecule Force Spectroscopy. Physical Review Letters, 2006, 97, 218301.	2.9	39
230	Topology and nanomechanics of polyethylene networks. Nanotechnology, 2007, 18, 044013.	1.3	1
231	Humidity Effects on Imaging and Nanomanipulation of Individual DNA Molecules on HOPG Surface. Chinese Physics Letters, 2007, 24, 2692-2695.	1.3	3
232	Numerical simulation on the mechanical characteristics of double-stranded DNA under axial stretching and lateral unzipping. Journal of Applied Physics, 2007, 101, 074702.	1.1	1
233	Nanomechanical interactions of phenylalanine–glycine nucleoporins studied by single molecule force–volume spectroscopy. Journal of Structural Biology, 2007, 159, 277-289.	1.3	43
234	Single molecule î»-DNA stretching studied by microfluidics and single particle tracking. Journal of Applied Physics, 2007, 102, 074703.	1.1	14
235	Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles. Lab on A Chip, 2007, 7, 1263.	3.1	91
236	Passive Waterâ^Lipid Peptide Translocators with Conformational Switches:  From Single-Molecule Probe to Cellular Assay. Journal of Physical Chemistry B, 2007, 111, 13987-13992.	1.2	0
237	Quantifying the Surface Coverage of Conjugate Molecules on Functionalized Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 17155-17157.	1.5	62
238	Force-Induced DNA Slippage. Biophysical Journal, 2007, 92, 2491-2497.	0.2	44
239	Pulling Geometry-Induced Errors in Single Molecule Force Spectroscopy Measurements. Biophysical Journal, 2007, 92, L76-L78.	0.2	33
240	B-S Transition in Short Oligonucleotides. Biophysical Journal, 2007, 93, 2400-2409.	0.2	73
241	Elasticity of Short DNA Molecules: Theory and Experiment for Contour Lengths of 0.6–7μm. Biophysical Journal, 2007, 93, 4360-4373.	0.2	122
242	Print your atomic force microscope. Review of Scientific Instruments, 2007, 78, 075105.	0.6	10
243	Sizing Trinucleotide Repeat Sequences by Singleâ€Molecule Analysis of Fluorescence Brightness. ChemPhysChem, 2007, 8, 1618-1621.	1.0	11
244	Interrogation of Single Synthetic Polymer Chains and Polysaccharides by AFMâ€Based Force Spectroscopy. ChemPhysChem, 2007, 8, 2290-2307.	1.0	126
245	Past, present and future of atomic force microscopy in life sciences and medicine. Journal of Molecular Recognition, 2007, 20, 418-431.	1.1	165
246	Solvating, manipulating, damaging, and repairing DNA in a computer. International Journal of Quantum Chemistry, 2007, 107, 279-291.	1.0	3

#	Article	IF	CITATIONS
247	Nanomechanical Fingerprints of UV Damage To DNA. Small, 2007, 3, 809-813.	5 . 2	11
248	Direct Measurements of Base Stacking Interactions in DNA by Single-Molecule Atomic-Force Spectroscopy. Physical Review Letters, 2007, 99, 018302.	2.9	129
249	Monomer dynamics in single- and double-stranded DNA coils. European Physical Journal E, 2007, 24, 61-67.	0.7	10
250	The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function. Physics of Life Reviews, 2007, 4, 157-188.	1.5	19
251	Force-induced structural transitions in cross-linked DNA films. European Biophysics Journal, 2008, 37, 749-757.	1.2	3
252	Pulling single molecules of titin by AFM—recent advances and physiological implications. Pflugers Archiv European Journal of Physiology, 2008, 456, 101-115.	1.3	96
253	Atomic force microscopy in bionanotechnology. Nano Today, 2008, 3, 12-19.	6.2	74
254	Stimulation of nitric oxide mechanotransduction in single osteoblasts using atomic force microscopy. Journal of Orthopaedic Research, 2008, 26, 513-521.	1.2	20
255	Force spectroscopy of the fibrin(ogen)–fibrinogen interaction. Biopolymers, 2008, 89, 292-301.	1.2	10
256	Multiscale modeling of nucleic acids: Insights into DNA flexibility. Biopolymers, 2008, 89, 722-731.	1.2	30
257	Mimicking mussel adhesion to improve interfacial properties in composites. Composites Science and Technology, 2008, 68, 2042-2048.	3.8	64
258	Potentials of bionanotechnology in the study and manufacturing of self-assembled biopolymer complexes and gels. Food Hydrocolloids, 2008, 22, 2-11.	5 . 6	7
259	Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology, 2008, 19, 384005.	1.3	76
260	A fluorescence energy transferâ€based mechanical stress sensor for specific proteins ⟨i⟩in situ⟨/i⟩. FEBS Journal, 2008, 275, 3072-3087.	2.2	144
261	Molecular Basis of Fibrin Clot Elasticity. Structure, 2008, 16, 449-459.	1.6	119
262	AFM: A Nanotool in Membrane Biology. Biochemistry, 2008, 47, 7986-7998.	1.2	227
263	Stretching chimeric DNA: A test for the putative S-form. Journal of Chemical Physics, 2008, 129, 205101.	1.2	16
264	There and (Slowly) Back Again: Entropy-Driven Hysteresis in a Model of DNA Overstretching. Biophysical Journal, 2008, 94, 2452-2469.	0.2	50

#	Article	IF	CITATIONS
265	Effects of Multiple-Bond Ruptures on Kinetic Parameters Extracted from Force Spectroscopy Measurements: Revisiting Biotin-Streptavidin Interactions. Biophysical Journal, 2008, 95, 3964-3976.	0.2	66
266	Splice Site Recognition in DNA Sequences Using K-mer Frequency Based Mapping for Support Vector Machine with Power Series Kernel. , 2008, , .		5
268	Single-Molecule Atomic Force Spectroscopy Reveals that DnaD Forms Scaffolds and Enhances Duplex Melting. Journal of Molecular Biology, 2008, 377, 706-714.	2.0	39
269	Nanoparticle Self-Assembly on a DNA-Scaffold Written by Single-Molecule Cut-and-Paste. Nano Letters, 2008, 8, 3692-3695.	4.5	51
270	Single-Molecule Cut-and-Paste Surface Assembly. Science, 2008, 319, 594-596.	6.0	259
271	The Longest (A+T) and (G+C) Blocks in the Human and Other Genomes. Journal of Biomolecular Structure and Dynamics, 2008, 25, 337-345.	2.0	7
272	Analysis of binary feature mapping rules for promoter recognition in imbalanced DNA sequence datasets using Support Vector Machine. , 2008, , .		5
273	Revisiting atomic force microscopy force spectroscopy sensitivity for single molecule studies. Journal of Applied Physics, 2008, 104, 114504.	1.1	3
274	Stretching and unzipping nucleic acid hairpins using a synthetic nanopore. Nucleic Acids Research, 2008, 36, 1532-1541.	6.5	65
275	Fully automated single-molecule force spectroscopy for screening applications. Nanotechnology, 2008, 19, 384020.	1.3	32
276	Ashkin–Teller Formalism for Elastic Response of DNA Molecule to External Force and Torque. Communications in Theoretical Physics, 2008, 49, 525-528.	1.1	24
277	Interaction of cationic surfactants with DNA: a single-molecule study. Nucleic Acids Research, 2008, 36, 1443-1449.	6.5	69
278	DNA as Building Block for Self-Assembly of Micro-components. , 2008, , .		0
279	Strain Softening in Stretched DNA. Physical Review Letters, 2008, 101, 118101.	2.9	42
280	Melting of persistent double-stranded polymers. Physical Review E, 2008, 78, 051910.	0.8	13
281	Translating Mechanical Force into Discrete Biochemical Signal Changes. , 0, , 286-338.		0
282	Detailed scaling analysis of low-force polyelectrolyte elasticity. Physical Review E, 2009, 80, 041803.	0.8	42
283	Stretching of a single-stranded DNA: Evidence for structural transition. Physical Review E, 2009, 79, 031930.	0.8	31

#	Article	IF	CITATIONS
284	Velocity convergence of free energy surfaces from single-molecule measurements using Jarzynski's equality. Physical Review E, 2009, 79, 041912.	0.8	13
285	Polymers in crowded environment under stretching force: Globule-coil transitions. Physical Review E, 2009, 80, 051805.	0.8	8
286	Nonlinear Low-Force Elasticity of Single-Stranded DNA Molecules. Physical Review Letters, 2009, 102, 068301.	2.9	130
287	Statistical Properties of Metastable Intermediates in DNA Unzipping. Physical Review Letters, 2009, 103, 248106.	2.9	21
288	The structure of DNA overstretched from the 5'5' ends differs from the structure of DNA overstretched from the 3'3' ends. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13196-13201.	3.3	66
289	Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18231-18236.	3.3	258
290	Peeling back the mystery of DNA overstretching. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18047-18048.	3.3	39
291	Thermal equivalence of DNA duplexes for probe design. Journal of Physics Condensed Matter, 2009, 21, 034106.	0.7	30
292	Force induced DNA melting. Journal of Physics Condensed Matter, 2009, 21, 034113.	0.7	43
293	Stretching and twisting of the DNA duplexes in coarse-grained dynamical models. Journal of Physics Condensed Matter, 2009, 21, 474221.	0.7	21
294	Switching the mechanics of dsDNA by Cu salicylic aldehyde complexation. Nanotechnology, 2009, 20, 434002.	1.3	11
295	Can re-entrance be observed in force-induced transitions?. Europhysics Letters, 2009, 85, 38003.	0.7	6
296	Using stochastic models calibrated from nanosecond nonequilibrium simulations to approximate mesoscale information. Journal of Chemical Physics, 2009, 130, 144908.	1.2	15
297	Dependence on temperature and guanine-cytosine content of bubble length distributions in DNA. Journal of Chemical Physics, 2009, 130, 235104.	1.2	26
298	Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore. Nucleic Acids Research, 2009, 37, 4170-4179.	6.5	39
299	Force and function: probing proteins with AFM-based force spectroscopy. Current Opinion in Structural Biology, 2009, 19, 605-614.	2.6	239
300	Have the primary structures of biomacromolecules been selected in a Darwinian fashion to adapt to the surrounding environments of our planet?. IUBMB Life, 2009, 61, 860-863.	1.5	3
301	Analyzing singleâ€molecule manipulation experiments. Journal of Molecular Recognition, 2009, 22, 356-362.	1.1	17

#	Article	IF	CITATIONS
302	Modeling single chain elasticity of single-stranded DNA: A comparison of three models. Polymer, 2009, 50, 930-935.	1.8	50
303	Nonlinearity in DNA and its Relation to Specific Functions. Journal of Biological Physics, 2009, 35, 31-41.	0.7	6
304	Optical Tweezers Study of Topoisomerase Inhibition. Small, 2009, 5, 1269-1272.	5.2	5
305	Singleâ€Molecule Wires Get a Lift. Small, 2009, 5, 1927-1930.	5.2	1
306	Effects of magnesium salt concentrations on B-DNA overstretching transition. European Physical Journal E, 2009, 29, 45-49.	0.7	12
307	Overstretching of a 30 bp DNA duplex studied with steered molecular dynamics simulation: Effects of structural defects on structure and force-extension relation. European Physical Journal E, 2009, 30, 325-32.	0.7	15
308	The theory of viscoelastic characteristics of a highly stretched macromolecule in single molecule AFM. Polymer Science - Series A, 2009, 51, 940-956.	0.4	2
309	Single Molecular Pair Interactions between Hydrophobically Modified Hydroxyethyl Cellulose and Amylose Determined by Dynamic Force Spectroscopy. Langmuir, 2009, 25, 10174-10182.	1.6	14
310	Extracting Kinetic and Stationary Distribution Information from Short MD Trajectories via a Collection of Surrogate Diffusion Models. Journal of Chemical Theory and Computation, 2009, 5, 47-58.	2.3	8
311	Quantifying DNA melting transitions using single-molecule force spectroscopy. Journal of Physics Condensed Matter, 2009, 21, 034114.	0.7	43
312	Quantifying Multiscale Noise Sources in Single-Molecule Time Series. Journal of Physical Chemistry B, 2009, 113, 138-148.	1.2	20
313	Segmented Nanofibrils of Spiral Silk in Uloborus walckenaerius Spider. Journal of Physical Chemistry B, 2009, 113, 5092-5097.	1.2	5
314	Sequence-specific physical properties of African green monkey alpha-satellite DNA contribute to centromeric heterochromatin formation. Journal of Structural Biology, 2009, 167, 36-46.	1.3	11
315	Microscopic Mechanics of Hairpin DNA Translocation through Synthetic Nanopores. Biophysical Journal, 2009, 96, 593-608.	0.2	84
316	DNA Sequence-Directed Organization of Chromatin: Structure-Based Computational Analysis of Nucleosome-Binding Sequences. Biophysical Journal, 2009, 96, 2245-2260.	0.2	65
317	A New Computational Approach for Mechanical Folding Kinetics of RNA Hairpins. Biophysical Journal, 2009, 96, 4024-4034.	0.2	11
318	Quantitative Detection of Small Molecule/DNA Complexes Employing a Force-Based and Label-Free DNA-Microarray. Biophysical Journal, 2009, 96, 4661-4671.	0.2	19
319	Force-Driven Separation of Short Double-Stranded DNA. Biophysical Journal, 2009, 97, 3158-3167.	0.2	29

#	Article	IF	CITATIONS
320	Directed Hybridization and Melting of DNA Linkers using Counterion-Screened Electric Fields. Nano Letters, 2009, 9, 3521-3526.	4.5	61
321	Detecting Solvent-Driven Transitions of poly(A) to Double-Stranded Conformations by Atomic Force Microscopy. Biophysical Journal, 2009, 96, 2918-2925.	0.2	14
322	Phase diagrams for DNA denaturation under stretching forces. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, L04001.	0.9	11
323	Facile Method for Constructing Metallic Nanoarrays on a Solid Surface. Analytical Sciences, 2009, 25, 1387-1396.	0.8	9
324	Gene Classification and Quantitative Analysis of Gene Regulation in Bacteria Using Single Cell Atomic Force Microscopy and Single Molecule Force Spectroscopy. , 0, , 19-37.		0
325	The possible roles of water in the prebiotic chemical evolution of DNA. Physical Chemistry Chemical Physics, 2010, 12, 10147.	1.3	18
326	DNA Structural Changes Under Different Stretching Methods Studied By Molecular Dynamics Simulations. ChemPhysChem, 2010, 11, 2146-2151.	1.0	9
327	Investigating the thermodynamics of small biosystems with optical tweezers. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 666-671.	1.3	9
328	Biomolecules under mechanical force. Physics Reports, 2010, 486, 1-74.	10.3	211
329	Biophysical characterization of DNA binding from single molecule force measurements. Physics of Life Reviews, 2010, 7, 299-341.	1.5	158
330	Microscopic implications of competing pictures of DNA overstretching. Physics of Life Reviews, 2010, 7, 348-349.	1.5	3
331	Wonderful world of single biopolymer thermodynamics. Physics of Life Reviews, 2010, 7, 355-357.	1.5	1
332	Development of a novel method to detect intrinsic mRNA in a living cell by using a molecular beacon-immobilized nanoneedle. Biosensors and Bioelectronics, 2010, 26, 1449-1454.	5.3	33
333	Mapping between the order of thermal denaturation and the shape of the critical line of mechanical unzipping in one-dimensional DNA models. Chemical Physics Letters, 2010, 484, 315-320.	1.2	5
334	Electrically induced bonding of DNA to gold. Nature Chemistry, 2010, 2, 745-749.	6.6	27
335	Electrically controlled DNA adhesion. Nature Nanotechnology, 2010, 5, 154-159.	15.6	54
336	Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. Nature Nanotechnology, 2010, 5, 788-791.	15.6	59
337	Different pulling modes in DNA overstretching: A theoretical analysis. Physical Review E, 2010, 81, 051926.	0.8	14

#	Article	IF	Citations
338	Direct Observation of Multiple Pathways of Single-Stranded DNA Stretching. Physical Review Letters, 2010, 105, 218104.	2.9	36
339	Microscopic implications of S-DNA. Physical Review E, 2010, 82, 021907.	0.8	9
340	Two distinct overstretched DNA states. Nucleic Acids Research, 2010, 38, 5594-5600.	6.5	91
341	Force spectroscopy and fluorescence microscopy of dsDNA-YOYO-1 complexes: implications for the structure of dsDNA in the overstretching region. Nucleic Acids Research, 2010, 38, 3423-3431.	6.5	47
342	Moving interfaces in rod-like macromolecules. Europhysics Letters, 2010, 91, 28003.	0.7	8
343	Study of force induced melting of dsDNA as a function of length and conformation. Journal of Physics Condensed Matter, 2010, 22, 414106.	0.7	6
344	An improved measurement of dsDNA elasticity using AFM. Nanotechnology, 2010, 21, 075101.	1.3	23
345	Unraveling Single-Stranded DNA in a Solid-State Nanopore. Nano Letters, 2010, 10, 1414-1420.	4.5	103
346	Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations. Biophysical Journal, 2010, 98, 101-110.	0.2	19
347	A Three-State Model with Loop Entropy for the Overstretching Transition of DNA. Biophysical Journal, 2010, 99, 578-587.	0.2	6
348	The Nature of the Force-Induced Conformation Transition of dsDNA Studied by Using Single Molecule Force Spectroscopy. Langmuir, 2010, 26, 9491-9496.	1.6	23
349	"Seeing and Counting―Individual Antigens Captured on a Microarrayed Spot with Force-Based Atomic Force Microscopy. Analytical Chemistry, 2010, 82, 5189-5194.	3.2	32
350	Evaluation of the Radial Deformability of Poly(dG)â^Poly(dC) DNA and G4-DNA Using Vibrating Scanning Polarization Force Microscopy. Langmuir, 2010, 26, 7523-7528.	1.6	8
351	Reduction of the Damping on an AFM Cantilever in Fluid by the Use of Micropillars. Langmuir, 2010, 26, 1002-1007.	1.6	7
352	Pulling Genetic RNA out of Tobacco Mosaic Virus Using Single-Molecule Force Spectroscopy. Journal of the American Chemical Society, 2010, 132, 11036-11038.	6.6	59
353	Theory of Biopolymer Stretching at High Forces. Macromolecules, 2010, 43, 4394-4400.	2.2	35
354	Biology on the NanoscaleBiology on the nanoscale. , 2010, , 527-614.		0
355	Monte Carlo simulation of mechanical unfolding of proteins based on a simple two-state model. International Journal of Biological Macromolecules, 2010, 46, 159-166.	3.6	11

#	Article	IF	CITATIONS
356	P-Splines Using Derivative Information. Multiscale Modeling and Simulation, 2010, 8, 1562-1580.	0.6	7
357	Single-molecule derivation of salt dependent base-pair free energies in DNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15431-15436.	3 . 3	215
358	Rate theories for biologists. Quarterly Reviews of Biophysics, 2010, 43, 219-293.	2.4	120
359	Stretching single stranded DNA. Soft Matter, 2011, 7, 4595.	1.2	11
360	Interactive Configuration through Force Analysis of GM1 Pentasaccharide- <i>Vibrio cholera</i> Interaction. Analytical Chemistry, 2011, 83, 6011-6017.	3.2	9
361	Extracting a Single Polyethylene Oxide Chain from a Single Crystal by a Combination of Atomic Force Microscopy Imaging and Single-Molecule Force Spectroscopy: Toward the Investigation of Molecular Interactions in Their Condensed States. Journal of the American Chemical Society, 2011, 133, 3226-3229.	6.6	122
362	Improved High-Force Magnetic Tweezers for Stretching and Refolding of Proteins and Short DNA. Biophysical Journal, 2011, 100, 517-523.	0.2	156
363	Mechanical Properties of High-Gâ«C Content DNA with A-Type Base-Stacking. Biophysical Journal, 2011, 100, 1996-2005.	0.2	20
364	Structural Rigidity of Paranemic Crossover and Juxtapose DNA Nanostructures. Biophysical Journal, 2011, 101, 1393-1402.	0.2	27
365	Nano-scale Force Spectroscopy Applied to Biological Samples. , 2011, , 23-43.		0
366	EMSA and Single-Molecule Force Spectroscopy Study of Interactions between <i>Bacillus subtilis</i> Single-Stranded DNA-Binding Protein and Single-Stranded DNA. Langmuir, 2011, 27, 15008-15015.	1.6	23
367	Salt Species-Dependent Electrostatic Effects on ssDNA Elasticity. Macromolecules, 2011, 44, 2328-2333.	2.2	63
368	Direct observation of single flexible polymers using single stranded DNA. Soft Matter, 2011, 7, 8005.	1.2	32
369	Overstretching DNA at 65 pN Does Not Require Peeling from Free Ends or Nicks. Journal of the American Chemical Society, 2011, 133, 3219-3221.	6.6	78
370	PH- and salt-dependent molecular combing of DNA: experiments and phenomenological model. Nanotechnology, 2011, 22, 035304.	1.3	30
371	Tip-Based Nanofabrication. , 2011, , .		24
372	A high throughput molecular force assay for protein–DNA interactions. Lab on A Chip, 2011, 11, 856.	3.1	18
373	Nano-Bio-Sensing., 2011, , .		7

#	Article	IF	CITATIONS
374	Single Molecule Analysis. Methods in Molecular Biology, 2011, , .	0.4	10
375	B-DNA to Zip-DNA: Simulating a DNA Transition to a Novel Structure with Enhanced Charge-Transport Characteristics. Journal of Physical Chemistry A, 2011, 115, 9377-9391.	1.1	25
376	Feedback-induced instability in tapping mode atomic force microscopy: theory and experiment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1801-1822.	1.0	24
377	A Structurally Variable Hinged Tetrahedron Framework from DNA Origami. Journal of Nucleic Acids, 2011, 2011, 1-9.	0.8	26
378	Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy, 2011, 111, 1659-1669.	0.8	110
379	Phase boundaries as agents of structural change in macromolecules. Journal of the Mechanics and Physics of Solids, 2011, 59, 2044-2069.	2.3	15
380	Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: Implications for DNA hybridization. European Physical Journal E, 2011, 34, 55.	0.7	8
381	Salt-modulated structure of polyelectrolyte-macroion complex fibers. European Physical Journal E, 2011, 34, 72.	0.7	10
382	The atomistic simulation of DNA. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 590-600.	6.2	37
383	Simultaneous topography and recognition imaging on endothelial cells. Journal of Molecular Recognition, 2011, 24, 788-794.	1.1	13
384	Forcing a connection: Impacts of singleâ€molecule force spectroscopy on in vivo tension sensing. Biopolymers, 2011, 95, 332-344.	1.2	26
385	Analysis of the fluctuations of a single-tethered, quantum-dot labeled DNA molecule in shear flow. Journal of Physics Condensed Matter, 2011, 23, 184119.	0.7	5
386	Statistical mechanics of stretching of biopolymers. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P05019.	0.9	4
387	Effect of shear force on the separation of double-stranded DNA. Physical Review E, 2011, 84, 032903.	0.8	12
388	Secondary structure of double-stranded DNA under stretching: Elucidation of the stretched form. Physical Review E, 2011, 83, 031903.	0.8	19
389	Shear unzipping of double-stranded DNA. Physical Review E, 2011, 84, 031905.	0.8	9
390	Thermal and mechanical denaturation properties of a DNA model with three sites per nucleotide. Journal of Chemical Physics, 2011, 135, 085105.	1.2	14
391	Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching. Nucleic Acids Research, 2011, 39, 3473-3481.	6.5	82

#	Article	IF	CITATIONS
392	Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Research, 2012, 40, 2862-2868.	6.5	327
393	A Novel Batch Fabrication of Micro Parts Using DNA Pattern Recognition. Key Engineering Materials, 0, 523-524, 598-603.	0.4	1
394	Spin-oscillator model for the unzipping of biomolecules by mechanical force. Physical Review E, 2012, 86, 021919.	0.8	9
395	Wrapping transition and wrapping-mediated interactions for discrete binding along an elastic filament: An exact solution. Journal of Chemical Physics, 2012, 137, 144904.	1.2	7
397	Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8103-8108.	3.3	117
398	Atomic force microscopy: A versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chemistry and Physics of Lipids, 2012, 165, 845-860.	1.5	89
399	An elastica model of the buckling of a nanoscale sheet perpendicular to a rigid substrate. International Journal of Solids and Structures, 2012, 49, 3681-3692.	1.3	0
400	PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNASequencing by Synthesis. Scientific Reports, 2012, 2, 684.	1.6	109
401	Segmentation of time series with long-range fractal correlations. European Physical Journal B, 2012, 85, 1.	0.6	26
402	Mesoscopic models for DNA stretching under force: New results and comparison with experiments. European Physical Journal E, 2012, 35, 110.	0.7	13
403	Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics. Chemical Reviews, 2012, 112, 5412-5487.	23.0	346
404	Long Lifetime of Hydrogen-Bonded DNA Basepairs by Force Spectroscopy. Biophysical Journal, 2012, 102, 2381-2390.	0.2	19
405	Single-Molecule Force-Clamp Experiments Reveal Kinetics of Mechanically Activated Silyl Ester Hydrolysis. ACS Nano, 2012, 6, 1314-1321.	7.3	33
406	Routine and Timely Sub-picoNewton Force Stability and Precision for Biological Applications of Atomic Force Microscopy. Nano Letters, 2012, 12, 3557-3561.	4.5	68
407	Understanding the physics of DNA using nanoscale single-molecule manipulation. Frontiers of Physics, 2012, 7, 576-581.	2.4	12
409	Hysteresis in Pressure-Driven DNA Denaturation. PLoS ONE, 2012, 7, e33789.	1.1	3
410	Intramolecular Folding in Human ILPR Fragment with Three C-Rich Repeats. PLoS ONE, 2012, 7, e39271.	1.1	26
411	GFP's Mechanical Intermediate States. PLoS ONE, 2012, 7, e46962.	1.1	25

#	Article	IF	CITATIONS
412	Excellent Cycle Life of Lithiumâ€Metal Anodes in Lithiumâ€Ion Batteries with Musselâ€Inspired Polydopamineâ€Coated Separators. Advanced Energy Materials, 2012, 2, 645-650.	10.2	410
413	Feeling Interâ€or Intramolecular Interactions with the Polymer Chain as Probe: Recent Progress in SMFS Studies on Macromolecular Interactions. ChemPhysChem, 2012, 13, 2238-2256.	1.0	18
414	Statistical Mechanics of Force-Induced Transitions of Biopolymers. , 2012, , 239-258.		0
415	Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy. Soft Matter, 2012, 8, 1234-1242.	1.2	5
416	Advances in Manufacturing of Molded Tips for Scanning Probe Microscopy. Journal of Microelectromechanical Systems, 2012, 21, 431-442.	1.7	9
417	Nonspecific interactions in AFM force spectroscopy measurements. Journal of Molecular Recognition, 2012, 25, 53-56.	1.1	25
418	Multiscale mechanobiology: mechanics at the molecular, cellular, and tissue levels. Cell and Bioscience, 2013, 3, 25.	2.1	15
419	Analysis of DNA interactions using single-molecule force spectroscopy. Amino Acids, 2013, 44, 1457-1475.	1.2	28
420	Atomic force microscopy with sub-picoNewton force stability for biological applications. Methods, 2013, 60, 131-141.	1.9	27
421	Simple Approaches for Constructing Metallic Nanoarrays on a Solid Surface., 2013,, 845-872.		0
422	Single-Molecule Force Spectroscopy Study on the Mechanism of RNA Disassembly in Tobacco Mosaic Virus. Biophysical Journal, 2013, 105, 2790-2800.	0.2	18
423	Pulling of double-stranded DNA by atomic force microscopy: a simulation in atomistic details. RSC Advances, 2013, 3, 10516.	1.7	15
424	DNA for Self-Assembly. , 2013, , 383-409.		0
425	Adhesion and Nanomechanics of Pili from the Probiotic Lactobacillus rhamnosus GG. ACS Nano, 2013, 7, 3685-3697.	7.3	148
426	Musselâ€Inspired Adhesive Binders for Highâ€Performance Silicon Nanoparticle Anodes in Lithiumâ€Ion Batteries. Advanced Materials, 2013, 25, 1571-1576.	11.1	532
427	Well-Defined and Sequence-Specific Noncovalent Binding Forces of DNA. Journal of Physical Chemistry B, 2013, 117, 7554-7558.	1.2	29
428	Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy. Nanoscale, 2013, 5, 3673.	2.8	38
429	Sorting Short Fragments of Single-Stranded DNA with an Evolving Electric Double Layer. Journal of Physical Chemistry B, 2013, 117, 2267-2272.	1.2	7

#	Article	IF	CITATIONS
430	Origin of Overstretching Transitions in Single-Stranded Nucleic Acids. Physical Review Letters, 2013, 111, 188302.	2.9	13
431	Exploring the Folding Pattern of a Polymer Chain in a Single Crystal by Combining Single-Molecule Force Spectroscopy and Steered Molecular Dynamics Simulations. Langmuir, 2013, 29, 3853-3857.	1.6	20
432	Denaturation transition of stretched DNA. Biochemical Society Transactions, 2013, 41, 639-645.	1.6	5
433	Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein. Nucleic Acids Research, 2013, 41, 924-932.	6.5	39
434	Magnetic tweezers measurements of the nanomechanical stability of DNA against denaturation at various conditions of pH and ionic strength. Nucleic Acids Research, 2013, 41, 2009-2019.	6.5	42
435	Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3859-3864.	3.3	147
436	Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3865-3870.	3.3	124
438	Noninvasive Measurement of the Mechanical Force Generated by Motor Protein EFâ€G during Ribosome Translocation. Angewandte Chemie - International Edition, 2013, 52, 14041-14044.	7.2	26
439	Investigating Receptor-ligand Systems of the Cellulosome with AFM-based Single-molecule Force Spectroscopy. Journal of Visualized Experiments, 2013, , e50950.	0.2	21
440	Uncovering Ultrastructural Defences in Daphnia magna – An Interdisciplinary Approach to Assess the Predator-Induced Fortification of the Carapace. PLoS ONE, 2013, 8, e67856.	1.1	40
441	Determination of Average Internucleotide Distance in Variable Density ssDNA Nanobrushes in the Presence of Different Cations Species. Macromolecules, 2014, 47, 8748-8753.	2.2	18
444	Extracting a kinetic relation from the dynamics of a bistable chain. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 045004.	0.8	8
445	Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Research, 2014, 42, 2064-2074.	6.5	126
446	Electronic detection of dsDNA transition from helical to zipper conformation using graphene nanopores. Nanotechnology, 2014, 25, 445105.	1.3	13
447	Energetically Biased DNA Motor Containing a Thermodynamically Stable Partial Strand Displacement State. Langmuir, 2014, 30, 14073-14078.	1.6	7
448	The transition mechanism of DNA overstretching: a microscopic view using molecular dynamics. Journal of the Royal Society Interface, 2014, 11, 20140399.	1.5	11
449	Mechanical transition in a highly stretched and torsionally constrained DNA. Physical Review E, 2014, 89, 020701.	0.8	6
450	Single molecule mechanical manipulation for studying biological properties of proteins, <scp>DNA</scp> , and sugars. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 211-229.	3.3	34

#	Article	IF	Citations
451	Sensing Viruses by Mechanical Tension of DNA in Responsive Hydrogels. Physical Review X, 2014, 4, .	2.8	21
452	A computational study of dsDNA pairs and vibrational resonance in separating water. Systems and Synthetic Biology, 2014, 8, 329-335.	1.0	0
453	Amperometry. , 2014, , 65-73.		2
454	Mechanosensation. Progress in Molecular Biology and Translational Science, 2014, 126, 75-102.	0.9	25
455	Force-induced melting of DNAâ€"evidence for peeling and internal melting from force spectra on short synthetic duplex sequences. Nucleic Acids Research, 2014, 42, 8083-8091.	6.5	22
456	Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking. Biophysical Journal, 2014, 106, 659-666.	0.2	66
458	Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nature Protocols, 2014, 9, 1113-1130.	5.5	95
459	Microarrays and single molecules: an exciting combination. Soft Matter, 2014, 10, 931.	1.2	20
460	Interconversion between Three Overstretched DNA Structures. Journal of the American Chemical Society, 2014, 136, 16073-16080.	6.6	35
461	Improved Single Molecule Force Spectroscopy Using Micromachined Cantilevers. ACS Nano, 2014, 8, 4984-4995.	7.3	70
462	Probing molecular pathways for DNA orientational trapping, unzipping and translocation in nanopores by using a tunable overhang sensor. Nanoscale, 2014, 6, 11372-11379.	2.8	36
463	Investigation on the folding mode of a polymer chain in a spiral crystal by single molecule force spectroscopy. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1149-1157.	2.0	11
464	Global analysis of the ground-state wrapping conformation of a charged polymer on an oppositely charged nano-sphere. European Physical Journal E, 2014, 37, 21.	0.7	11
465	Improving single molecule force spectroscopy through automated real-time data collection and quantification of experimental conditions. Ultramicroscopy, 2014, 136, 7-14.	0.8	12
466	Protein–DNA Chimeras for Nano Assembly. ACS Nano, 2014, 8, 6551-6555.	7.3	37
467	Sequence and Chiral Selectivity of Drug–DNA Interactions Revealed by Force Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 14135-14138.	7.2	13
468	Yoctoliter Thermometry for Singleâ€Molecule Investigations: A Generic Beadâ€onâ€aâ€Tip Temperatureâ€Control Module. Angewandte Chemie - International Edition, 2014, 53, 3470-3474.	7.2	13
469	Laser Actuation of Cantilevers for Picometre Amplitude Dynamic Force Microscopy. Scientific Reports, 2014, 4, 5567.	1.6	25

#	Article	IF	CITATIONS
471	Equilibrium large-scale conformational properties of DNA., 0,, 72-136.		1
472	Investigating Single Molecule Adhesion by Atomic Force Spectroscopy. Journal of Visualized Experiments, 2015, , e52456.	0.2	1
473	Câ€5 Propynyl Modifications Enhance the Mechanical Stability of DNA. ChemPhysChem, 2015, 16, 2085-2090.	1.0	6
474	DNA under Force: Mechanics, Electrostatics, and Hydration. Nanomaterials, 2015, 5, 246-267.	1.9	28
476	Disturbance-free rapid solution exchange for magnetic tweezers single-molecule studies. Nucleic Acids Research, 2015, 43, e113-e113.	6.5	35
477	A nano-scale probing system with a gold nano-dot array for measurement of a single biomolecular interaction force. RSC Advances, 2015, 5, 105727-105730.	1.7	1
478	Study of PNA–DNA hybridization by AFM-based single-molecule force spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 46-51.	2.3	14
479	Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it?. Reports on Progress in Physics, 2015, 78, 024101.	8.1	10
480	Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility. Cell, 2015, 160, 1135-1144.	13.5	261
481	Determination of Base Binding Strength and Base Stacking Interaction of DNA Duplex Using Atomic Force Microscope. Scientific Reports, 2015, 5, 9143.	1.6	26
482	Multimodal scanning probe imaging: nanoscale chemical analysis from biology to renewable energy. Analytical Methods, 2015, 7, 7106-7127.	1.3	18
483	Automation of a single-DNA molecule stretching device. Review of Scientific Instruments, 2015, 86, 063702.	0.6	7
484	Linearisation of \hat{l} » DNA molecules by instantaneous variation of the trapping electrode voltage inside a micro-channel. Journal Physics D: Applied Physics, 2015, 48, 135402.	1.3	3
485	Reconstructing Multiple Free Energy Pathways of DNA Stretching from Single Molecule Experiments. Journal of Physical Chemistry B, 2015, 119, 5132-5135.	1.2	10
486	Investigation of the binding modes between AIE-active molecules and dsDNA by single molecule force spectroscopy. Nanoscale, 2015, 7, 8939-8945.	2.8	25
487	The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chemical Society Reviews, 2015, 44, 3617-3638.	18.7	131
488	Distinguishing between productive and abortive promoters using a random forest classifier in Mycoplasma pneumoniae. Nucleic Acids Research, 2015, 43, 3442-3453.	6.5	19
489	Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy. Topics in Current Chemistry, 2015, 369, 97-134.	4.0	18

#	Article	IF	CITATIONS
490	Free-Energy Landscape and Characteristic Forces for the Initiation of DNA Unzipping. Biophysical Journal, 2015, 108, 1727-1738.	0.2	8
491	Measuring the Elasticity of Ribonucleotide(s)-Containing DNA Molecules Using AFM. Methods in Molecular Biology, 2015, 1297, 43-57.	0.4	8
492	Single-Molecule Force Spectroscopy of an Artificial DNA Duplex Comprising a Silver(I)-Mediated Base Pair. Langmuir, 2015, 31, 11305-11310.	1.6	26
493	Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments. Integrative Biology (United Kingdom), 2015, 7, 967-986.	0.6	53
494	Perspective: Single polymer mechanics across the force regimes. Journal of Chemical Physics, 2015, 142, 194902.	1.2	40
495	Stable Stretched Suspended DNA Molecules. Advancements in Genetic Engineering, 2016, 05, .	0.1	1
496	DNA Molecules Mechanical Properties and Models. , 2016, , 1-37.		0
497	Dynamics of single-stranded DNA tethered to a solid. Nanotechnology, 2016, 27, 255701.	1.3	3
498	The mechanism of the emergence of distinct overstretched DNA states. Journal of Chemical Physics, 2016, 144, 024901.	1.2	6
499	Principles and Applications of Force Spectroscopy Using Atomic Force Microscopy. Bulletin of the Korean Chemical Society, 2016, 37, 1895-1907.	1.0	12
500	Unravelling the structural plasticity of stretched DNA under torsional constraint. Nature Communications, 2016, 7, 11810.	5.8	22
501	Multiplexed single-molecule force spectroscopy using a centrifuge. Nature Communications, 2016, 7, 11026.	5.8	78
502	Molecular Combing of Single DNA Molecules on the 10 Megabase Scale. Scientific Reports, 2016, 6, 19636.	1.6	35
503	Physics of base-pairing dynamics in DNA. Physics Reports, 2016, 631, 1-41.	10.3	46
504	Single molecule investigation of the onset and minimum size of the calcium-mediated junction zone in alginate. Carbohydrate Polymers, 2016, 148, 52-60.	5.1	28
505	Comparing Charge Transport in Oligonucleotides: RNA:DNA Hybrids and DNA Duplexes. Journal of Physical Chemistry Letters, 2016, 7, 1888-1894.	2.1	29
506	Single-molecule dissection of stacking forces in DNA. Science, 2016, 353, .	6.0	180
507	Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6749-E6756.	3.3	46

#	Article	IF	CITATIONS
508	Dynamic Melting Properties of Photoswitch-Modified DNA: Shearing versus Unzipping. Journal of Physical Chemistry B, 2016, 120, 10706-10713.	1.2	9
509	The kinetics of force-dependent hybridization and strand-peeling of short DNA fragments. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	8
510	Quantifying the Interactions between PEI and Double-Stranded DNA: Toward the Understanding of the Role of PEI in Gene Delivery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21055-21062.	4.0	21
511	Statistical mechanics of polymers subject to a force. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 343001.	0.7	17
513	Probing of miniPEGγ-PNA–DNA Hybrid Duplex Stability with AFM Force Spectroscopy. Biochemistry, 2016, 55, 1523-1528.	1.2	16
514	Mechanism of Reversible Peptide–Bilayer Attachment: Combined Simulation and Experimental Single-Molecule Study. Langmuir, 2016, 32, 810-821.	1.6	15
515	Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. Journal of Structural Biology, 2017, 197, 26-36.	1.3	77
516	Statistical Mechanics of Force-Induced Transitions of Biopolymers. , 2017, , 397-419.		0
517	The collective behavior of spring-like motifs tethered to a DNA origami nanostructure. Nanoscale, 2017, 9, 4486-4496.	2.8	11
518	Structural transitions in torsionally constrained DNA and their dependence on solution electrostatics. Acta Biomaterialia, 2017, 55, 214-225.	4.1	4
519	Counterion accumulation effects on a suspension of DNA molecules: Equation of state and pressure-driven denaturation. Journal of Chemical Physics, 2017, 146, 164902.	1.2	4
520	Single-stranded nucleic acid elasticity arises from internal electrostatic tension. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5095-5100.	3.3	51
521	Mg ²⁺ â€Dependent High Mechanical Anisotropy of Threeâ€Wayâ€Junction pRNA as Revealed by Singleâ€Molecule Force Spectroscopy. Angewandte Chemie, 2017, 129, 9504-9508.	1.6	4
522	Mg ²⁺ â€Dependent High Mechanical Anisotropy of Threeâ€Wayâ€Junction pRNA as Revealed by Singleâ€Molecule Force Spectroscopy. Angewandte Chemie - International Edition, 2017, 56, 9376-9380.	7.2	20
523	Measurement of the unwinding force of a DNA double helix. Journal of Structural Chemistry, 2017, 58, 315-339.	0.3	2
524	Single-Molecule DNA and RNA Mechanics. , 2017, , 133-145.		1
525	Steering chemical reactions with force. Nature Reviews Chemistry, 2017, 1, .	13.8	95
526	Directional mechanical stability of Bacteriophage φ29 motor's 3WJ-pRNA: Extraordinary robustness along portal axis. Science Advances, 2017, 3, e1601684.	4.7	17

#	Article	IF	CITATIONS
527	A reporter system coupled with high-throughput sequencing unveils key bacterial transcription and translation determinants. Nature Communications, 2017, 8, 368.	5.8	35
528	Probing the mechanical stability of bridged DNA-H-NS protein complexes by single-molecule AFM pulling. Scientific Reports, 2017, 7, 15275.	1.6	10
529	Single Molecule Study of Force-Induced Rotation of Carbon–Carbon Double Bonds in Polymers. ACS Nano, 2017, 11, 194-203.	7.3	34
530	Molecular Force Sensors: From Fundamental Concepts toward Applications in Cell Biology. Advanced Materials Interfaces, 2017, 4, 1600441.	1.9	30
531	QCM-based rupture force measurement as a tool to study DNA dehybridization and duplex stability. Analytical and Bioanalytical Chemistry, 2017, 409, 891-901.	1.9	6
532	Overstretching of B-DNA with various pulling protocols: Appearance of structural polymorphism and S-DNA. Journal of Chemical Physics, 2017, 147, 225102.	1.2	13
533	DNA partitions into triplets under tension in the presence of organic cations, with sequence evolutionary age predicting the stability of the triplet phase. Quarterly Reviews of Biophysics, 2017, 50, e15.	2.4	15
534	Imaging of DNA molecules by atomic force microscope. , 2017, , .		1
535	Interactions between shape-persistent macromolecules as probed by AFM. Beilstein Journal of Organic Chemistry, 2017, 13, 938-951.	1.3	4
536	Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering. Journal of Functional Biomaterials, 2017, 8, 7.	1.8	96
537	Force-activated DNA substrates for probing individual proteins interacting with single-stranded DNA. Nucleic Acids Research, 2017, 45, 10775-10782.	6.5	9
538	Molecular mechanics of coiled coils loaded in the shear geometry. Chemical Science, 2018, 9, 4610-4621.	3.7	48
539	Mechanical Forces Guiding <i>Staphylococcus aureus</i> Cellular Invasion. ACS Nano, 2018, 12, 3609-3622.	7.3	56
540	The Work of Titin Protein Folding as a Major Driver in Muscle Contraction. Annual Review of Physiology, 2018, 80, 327-351.	5.6	66
541	Ultrashort Nucleic Acid Duplexes Exhibit Long Wormlike Chain Behavior with Force-Dependent Edge Effects. Physical Review Letters, 2018, 120, 068102.	2.9	12
542	DNA Mechanics. , 2018, , 3-40.		3
543	Lattice Mismatch in Crystalline Nanoparticle Thin Films. Nano Letters, 2018, 18, 579-585.	4.5	59
544	How Well Can DNA Rupture DNA? Shearing and Unzipping Forces inside DNA Nanostructures. ACS Omega, 2018, 3, 292-301.	1.6	14

#	Article	IF	CITATIONS
545	A Review of Nanoscale Characterizing Individual DNA Behaviors Using Atomic Force Microscopy. IEEE Nanotechnology Magazine, 2018, 17, 920-933.	1.1	9
546	Argonaute Facilitates the Lateral Diffusion of the Guide along Its Target and Prevents the Guide from Being Pushed Away by the Ribosome. Biochemistry, 2018, 57, 2179-2183.	1.2	8
547	Evolutionary advantage of directional symmetry breaking in self-replicating polymers. Journal of Theoretical Biology, 2018, 446, 128-136.	0.8	7
548	Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Letters, 2018, 414, 57-70.	3.2	56
549	RNA Unzipping and Force Measurements with a Dual Optical Trap. Methods in Molecular Biology, 2018, 1665, 25-41.	0.4	4
550	Detection of Membrane Mechanical Properties and Endocytosis by Single Molecule Force Spectroscopy., 2018,, 91-115.		0
551	Remarkable similarity of force induced dsRNA conformational changes to stretched dsDNA and their detection using electrical measurements. Physical Chemistry Chemical Physics, 2018, 20, 28920-28928.	1.3	15
552	Modelling DNA extension and fragmentation in contractive microfluidic devices: a Brownian dynamics and computational fluid dynamics approach. Soft Matter, 2018, 14, 8780-8791.	1.2	11
553	Atomic Force Microscopy in Molecular and Cell Biology. , 2018, , .		6
554	The Hyphenated Technique of High Speed Atomic Force Microscopy and Super Resolution Optical Detection System. , 2018, , 105-130.		1
555	Single molecule study on the mechanical response of the sixth domain of adseverin. Japanese Journal of Applied Physics, 2018, 57, 08NB06.	0.8	0
556	Direct observation of the wrapping/unwrapping of ssDNA around/from a SWCNT at the single-molecule level: towards tuning the binding mode and strength. Nanoscale, 2018, 10, 18586-18596.	2.8	22
557	Stochastic Binding Process of Blunt-End Stacking of DNA Molecules Observed by Atomic Force Microscopy. Langmuir, 2018, 34, 15078-15083.	1.6	20
558	Force-Induced Unravelling of DNA Origami. ACS Nano, 2018, 12, 6734-6747.	7.3	55
559	Stability of structurally entangled protein dimers. Proteins: Structure, Function and Bioinformatics, 2018, 86, 945-955.	1.5	12
560	Understanding the mechanism of DNA threshold elongation. Low Temperature Physics, 2018, 44, 701-710.	0.2	1
561	Calculations of free energy of surface interactions in crystalline polyethylene. Journal of Chemical Physics, 2018, 149, 014701.	1.2	6
562	Sequence-Dependent Three Interaction Site Model for Single- and Double-Stranded DNA. Journal of Chemical Theory and Computation, 2018, 14, 3763-3779.	2.3	46

#	Article	IF	CITATIONS
563	A single-molecule atomic force microscopy study reveals the antiviral mechanism of tannin and its derivatives. Nanoscale, 2019, 11, 16368-16376.	2.8	13
564	Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chemical Reviews, 2019, 119, 6326-6369.	23.0	506
565	Analytical results of the extensible freely jointed chain model. Physica A: Statistical Mechanics and Its Applications, 2019, 532, 121929.	1.2	9
566	Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments. Methods, 2019, 169, 57-68.	1.9	2
567	Temperature-dependent expression of different guanine-plus-cytosine content 16S rRNA genes in Haloarcula strains of the class Halobacteria. Antonie Van Leeuwenhoek, 2019, 112, 187-201.	0.7	5
568	Atomic force microscopy-based single-molecule force spectroscopy detects DNA base mismatches. Nanoscale, 2019, 11, 17206-17210.	2.8	13
569	High-yield fabrication of DNA and RNA constructs for single molecule force and torque spectroscopy experiments. Nucleic Acids Research, 2019, 47, e144-e144.	6.5	17
570	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	23.0	207
571	Tip-enhanced laser ablation and capture of DNA. Applied Surface Science, 2019, 476, 658-662.	3.1	3
572	Force spectroscopic detection of peptide cleavage by thrombin exploiting biotin–streptavidin interactions in a bio-sensing context. Analytical Methods, 2019, 11, 1102-1110.	1.3	5
573	Modular Design of Programmable Mechanofluorescent DNA Hydrogels. Nature Communications, 2019, 10, 528.	5.8	111
574	Interactions of nuclear transport factors and surface-conjugated FG nucleoporins: Insights and limitations. PLoS ONE, 2019, 14, e0217897.	1.1	9
576	S-DNA and RecA/RAD51-Mediated Strand Exchange <i>in Vitro</i> . Biochemistry, 2019, 58, 2009-2016.	1.2	7
577	Toward Precision Measurement and Manipulation of Singleâ€Molecule Reactions by a Confined Space. Small, 2019, 15, e1805426.	5.2	15
578	Nanomechanics of Diaminopurine-Substituted DNA. Biophysical Journal, 2019, 116, 760-771.	0.2	15
579	Regulatory-sequence mechanical biosensor: A versatile platform for investigation of G-quadruplex/label-free protein interactions and tunable protein detection. Analytica Chimica Acta, 2019, 1045, 1-9.	2.6	5
580	Direct Evidence for the Polymeric Nature of Polydopamine. Angewandte Chemie - International Edition, 2019, 58, 1077-1082.	7.2	148
581	Direct Evidence for the Polymeric Nature of Polydopamine. Angewandte Chemie, 2019, 131, 1089-1094.	1.6	44

#	Article	IF	Citations
582	Atomic Force Microscopy in Probing Tumor Physics for Nanomedicine. IEEE Nanotechnology Magazine, 2019, 18, 83-113.	1.1	24
583	DNA Origami Postâ€Processing by CRISPRâ€Cas12a. Angewandte Chemie - International Edition, 2020, 59, 3956-3960.	7.2	22
584	Long-Range Ordered Water Correlations between A–T/C–G Nucleotides. Matter, 2020, 3, 794-804.	5.0	8
585	Calibration of T-shaped atomic force microscope cantilevers using the thermal noise method. Review of Scientific Instruments, 2020, 91, 083703.	0.6	3
586	Glassy Dynamics and Memory Effects in an Intrinsically Disordered Protein Construct. Physical Review Letters, 2020, 125, 058001.	2.9	25
587	Nanomechanical Properties of a Supramolecular Helix Stabilized by Nonâ€Covalent Interactions. Macromolecular Rapid Communications, 2020, 41, 2000453.	2.0	4
588	Numerical modeling of the mechanics of the interaction of DNA nucleotides. Mechanics of Advanced Materials and Structures, 2020, , 1-7.	1.5	1
589	Rigid Double-Stranded DNA Linkers for Single Molecule Enzyme–Drug Interaction Measurements Using Molecular Recognition Force Spectroscopy. Langmuir, 2020, 36, 4174-4183.	1.6	8
590	Dynamic topology of double-stranded telomeric DNA studied by single-molecule manipulation in vitro. Nucleic Acids Research, 2020, 48, 6458-6470.	6.5	9
591	The emergence of sequence-dependent structural motifs in stretched, torsionally constrained DNA. Nucleic Acids Research, 2020, 48, 1748-1763.	6.5	21
592	DNA Origami Postâ€Processing by CRISPRâ€Cas12a. Angewandte Chemie, 2020, 132, 3984-3988.	1.6	3
593	Shear Stressâ€Responsive Polymersome Nanoreactors Inspired by the Marine Bioluminescence of Dinoflagellates. Angewandte Chemie, 2021, 133, 917-922.	1.6	7
594	Shear Stressâ€Responsive Polymersome Nanoreactors Inspired by the Marine Bioluminescence of Dinoflagellates. Angewandte Chemie - International Edition, 2021, 60, 904-909.	7.2	29
595	Elasticity of connected semiflexible quadrilaterals. Soft Matter, 2021, 17, 102-112.	1.2	4
596	Research progress of single molecule force spectroscopy technology based on atomic force microscopy in polymer materials: Structure, design strategy and probe modification. Nano Select, 2021, 2, 909-931.	1.9	7
597	Single-molecule stretching experiments of flexible (wormlike) chain molecules in different ensembles: Theory and a potential application of finite chain length effects to nick-counting in DNA. Journal of Chemical Physics, 2021, 154, 024903.	1,2	2
598	Mechanochemical properties of DNA origami nanosprings revealed by force jumps in optical tweezers. Nanoscale, 2021, 13, 8425-8430.	2.8	6
599	New Sensing Technologies: Atomic Force Microscopy. , 2023, , 556-571.		1

#	Article	IF	CITATIONS
600	DNA origami nano-mechanics. Chemical Society Reviews, 2021, 50, 11966-11978.	18.7	39
602	DNA building blocks for AFM tip functionalization: An easy, fast and stable strategy. Methods, 2021, , .	1.9	3
603	DNA mechanics and its biological impact. Journal of Molecular Biology, 2021, 433, 166861.	2.0	31
604	Understanding transcription across scales: From base pairs to chromosomes. Molecular Cell, 2021, 81, 1601-1616.	4.5	10
605	Molecular Characterization of Polymer Networks. Chemical Reviews, 2021, 121, 5042-5092.	23.0	140
606	Elasticity of a DNA chain dotted with bubbles under force. Physical Review E, 2021, 103, 052412.	0.8	4
607	Numerical modeling of DNA nucleotides binding process mechanics considering oscillations. Mechanics of Advanced Materials and Structures, 2022, 29, 4373-4380.	1.5	1
608	Nonspecific Bindingâ€"Fundamental Concepts and Consequences for Biosensing Applications. Chemical Reviews, 2021, 121, 8095-8160.	23.0	113
609	Biopatterning: The Art of Patterning Biomolecules on Surfaces. Langmuir, 2021, 37, 9637-9651.	1.6	16
610	Intramolecular hydrogen bonds in a single macromolecule: Strength in high vacuum versus liquid environments. Nano Research, 2022, 15, 1517-1523.	5.8	16
612	Structural dynamics of DNA depending on methylation pattern. Physical Review E, 2021, 103, 012404.	0.8	4
613	Nanomechanics of self-assembled DNA building blocks. Nanoscale, 2021, 13, 9371-9380.	2.8	7
614	Stretching Single Molecules Along Unbinding and Unfolding Pathways with the Scanning Force Microscope. Chemistry - A European Journal, 2000, 6, 4249-4255.	1.7	24
616	Using DNA to Power the Nanoworld. , 2007, , 331-347.		4
617	Tip Functionalization: Applications to Chemical Force Spectroscopy., 2008, , 185-203.		10
618	Force Spectroscopy of Polymers: Beyond Single Chain Mechanics. , 2007, , 525-535.		2
619	Nanopore Force Spectroscopy: Insights from Molecular Dynamics Simulations. , 2011, , 335-356.		1
620	Electrical Manipulation of DNA on Metal Surfaces. , 2008, , 187-214.		1

#	Article	IF	CITATIONS
621	DNA Unzipping and Force Measurements with a Dual Optical Trap. Methods in Molecular Biology, 2011, 783, 45-61.	0.4	5
622	NanoMechanics: Elasticity in Nano-Objects. Nanoscience and Technology, 2007, , 219-254.	1.5	2
623	Single-Molecule Studies on Cells and Membranes Using the Atomic Force Microscope. Nanoscience and Technology, 2007, , 101-125.	1.5	1
624	Thermodynamics of Protein Folding from Coarse-Grained Models' Perspectives. , 2008, , 203-246.		8
625	Single molecule force spectroscopy in biology using the atomic force microscope., 2001,, 37-61.		2
626	Twisting and stretching single DNA molecules. , 2001, , 115-140.		1
627	INTERFACIAL AND MATERIALS ASPECTS OF THE IMMOBILIZATION OF BIOMOLECULES ONTO SOLID SURFACES. , 2001 , , $1\text{-}31$.		12
628	Conformational transitions of a DNA hairpin through transition path times. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 073411.	0.9	4
631	RNA STRUCTURE: Pulling on Hair(pins). Science, 2001, 292, 653-654.	6.0	21
632	Combined Recognition Imaging and Force Spectroscopy: A New Mode for Mapping and Studying Interaction Sites at Low Lateral Density. Science of Advanced Materials, 2017, 9, 128-134.	0.1	15
633	Characterization of Intermolecular and Intramolecular Interactions with the Atomic Force Microscope., 2014,, 466-477.		2
634	Parallel Force Assay for Protein-Protein Interactions. PLoS ONE, 2014, 9, e115049.	1.1	8
635	Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy. PLoS ONE, 2016, 11, e0154666.	1.1	3
636	Theoretical and Experimental Investigations of DNA Open States. Mathematical Biology and Bioinformatics, 2018, 13, t162-t267.	0.1	8
637	Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS Biophysics, 2018, 5, 194-216.	0.3	6
638	Empowering single-molecule analysis with self-assembled DNA nanostructures. Matter, 2021, 4, 3121-3145.	5.0	10
639	Strain-Dependent Fluorescence Correlation Spectroscopy: Proposing a New Measurement for Conformational Fluctuations of Biological Macromolecules. Springer Series in Chemical Physics, 2001, , 65-83.	0.2	0
640	Stretching and imaging single DNA molecules and chromatin. , 2003, , 377-395.		1

#	Article	IF	CITATIONS
642	Mechanics and imaging of single DNA molecules. , 2003, , 367-375.		3
643	Looking, touching and moving DNA molecules-Knowledge obtained from the method of visualization and measurement of biomolecules Seibutsu Butsuri Kagaku, 2005, 49, 1-3.	0.1	0
644	A Framework for Modeling DNA Based Molecular Systems. Lecture Notes in Computer Science, 2006, , 250-265.	1.0	4
645	Computer simulations of DNA stretching. , 2006, , 137-157.		0
646	Intermolecular and Intramolecular Interactions. Nanoscience and Technology, 2006, , 131-158.	1.5	0
647	Afm., 2008,, 63-75.		0
648	Direct Force Measurements of Receptor–Ligand Interactions on Living Cells. Nanoscience and Technology, 2009, , 1-31.	1.5	2
649	Chapter 6. Real-time Detection of DNA Unwinding by Escherichia coli RNAP: From Transcription Initiation to Termination. RSC Biomolecular Sciences, 2009, , 157-190.	0.4	0
650	Single-Molecule Studies on Cells and Membranes Using the Atomic Force Microscope. , 2010, , 479-503.		0
651	Direct Force Measurements of Receptor–Ligand Interactions on Living Cells. , 2010, , 115-145.		0
652	Mechanoenzymatics and Nanoassembly of Single Molecules. Springer Series in Chemical Physics, 2010, , 289-303.	0.2	0
654	Cell Adhesion Receptors Studied by AFM-Based Single-Molecule Force Spectroscopy. Nanoscience and Technology, 2011, , 197-215.	1.5	2
655	Nanomanipulation of Biological Macromolecules by AFM. , 2011, , 129-165.		0
656	Single-Molecule Methods to Study Cell Adhesion Molecules. Methods in Molecular Biology, 2011, 757, 139-155.	0.4	0
657	Simple Approaches for Constructing Metallic Nanoarrays on a Solid Surface., 2011, , 161-187.		0
658	Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells. Nanoscience and Technology, 2012, , 137-169.	1.5	2
659	Analyzing DNA Structure Quantitatively at a Single-Molecule Level by Atomic Force Microscopy. , 0, , .		0
660	The Possible Roles of Water in the Prebiotic Chemical Evolution of DNA: An Approach by Single Molecule Studies. , 2013, , 109-123.		0

#	Article	IF	Citations
661	Single-Molecule Mechanics of DNA. , 2013, , 87-112.		0
663	AFM Studies of Biomolecules. , 2014, , 15-21.		0
665	Characterization of Intermolecular and Intramolecular Interactions with the Atomic Force Microscope., 2014,, 445-456.		0
666	Statistical Mechanics of Force-Induced Transitions of Biopolymers. , 2015, , 1-23.		0
670	Force-Induced Unravelling of DNA Origami. Springer Theses, 2019, , 69-93.	0.0	0
674	Electrodynamic characteristics of î»-DNA molecule translocating through the microfluidic channel port studied with single molecular fluorescence imaging technology. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 168202.	0.2	0
677	Creation of functional micro/nano systems through top-down and bottom-up approaches. MCB Molecular and Cellular Biomechanics, 2009, 6, 1-55.	0.3	19
678	DNA supercoiling-mediated collective behavior of co-transcribing RNA polymerases. Nucleic Acids Research, 2022, 50, 1269-1279.	6.5	18
679	Loop-seq: A high-throughput technique to measure the mesoscale mechanical properties of DNA. Methods in Enzymology, 2021, 661, 305-326.	0.4	3
680	Mapping Mechanostable Pulling Geometries of a Therapeutic Anticalin/CTLA-4 Protein Complex. Nano Letters, 2022, 22, 179-187.	4.5	24
681	Mechanics and imaging of single DNA molecules. Journal of Muscle Research and Cell Motility, 2002, 23, 367-75.	0.9	1
682	Recent developments in DNA-based mechanical nanodevices. Chemical Communications, 2022, 58, 4700-4710.	2.2	7
683	Multivalent non-covalent interactions lead to strongest polymer adhesion. Nanoscale, 2022, 14, 3768-3776.	2.8	12
684	Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophysical Reviews, 2022, 14, 427-461.	1.5	8
685	The Importance of Entropic Factors in DNA Behaviour: Insights from Simulations. , 2006, , 537-558.		0
687	Stretching and Rupturing Single Covalent and Associating Macromolecules by AFM-Based Single-Molecule Force Spectroscopy., 0,, 403-427.		0
691	Force Mapping Reveals the Spatial Distribution of Individual Proteins in a Neuron. Nano Letters, 2022, 22, 3865-3871.	4.5	9
693	Observing Dynamic States of Single-Molecule DNA and Proteins Using Atomic Force Microscope. , 2022, , 97-110.		0

#	Article	IF	Citations
694	Quantification of a Neurological Protein in a Single Cell Without Amplification. ACS Omega, 2022, 7, 20165-20171.	1.6	1
695	A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. Micromachines, 2022, 13, 968.	1.4	3
696	Force-Coded Strategy for the Simultaneous Detection of Multiple Tumor-Related Proteins. Analytical Chemistry, 2022, 94, 8992-8998.	3.2	4
697	Force-Activated DNA Substrates for In Situ Generation of ssDNA and Designed ssDNA/dsDNA Structures in an Optical-Trapping Assay. Methods in Molecular Biology, 2022, , 273-312.	0.4	0
698	Molecular dynamics analysis of biomolecular systems including nucleic acids. Biophysics and Physicobiology, 2022, 19, n/a.	0.5	2
699	Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chemical Reviews, 2022, 122, 14594-14678.	23.0	74
700	Evaluating the predictive character of the method of constrained geometries simulate external force with density functional theory. Forces in Mechanics, 2022, 9, 100143.	1.3	4
701	The role of electrons' spin in DNA oxidative damage recognition. Cell Reports Physical Science, 2022, 3, 101157.	2.8	3
702	Single-Molecule Methods for Characterizing Different DNA Higher-Order Structures. Engineering, 2023, 24, 276-291.	3.2	0
703	Understanding protein diffusion on force-induced stretched DNA conformation. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0
704	Deciphering the mechanical code of the genome and epigenome. Nature Structural and Molecular Biology, 2022, 29, 1178-1187.	3.6	15
705	Mechanical DNA Origami to Investigate Biological Systems. Advanced Biology, 2023, 7, .	1.4	3
706	Siloxane Molecules: Nonlinear Elastic Behavior and Fracture Characteristics. Macromolecules, 2023, 56, 1303-1310.	2.2	1
707	Elastic traits of the extensible discrete wormlike chain model. Physical Review E, 2023, 107, .	0.8	1
709	Imaging and force detection of single deoxyribonucleic acid molecules by atomic force microscopy., 2023,, 43-73.		1
710	Weak tension accelerates hybridization and dehybridization of short oligonucleotides. Nucleic Acids Research, 0, , .	6.5	0
712	Stretching effects on non-adiabatic electron dynamic behavior in poly(dG)-poly(dC) DNA upon the proton irradiation. Journal of Physics Condensed Matter, 2023, 35, 285101.	0.7	0
718	RNA Multiscale Simulations asÂanÂInterplay ofÂElectrostatic, Mechanical Properties, andÂStructures Inside Viruses. Springer Series in Biophysics, 2023, , 27-56.	0.4	1

Article IF Citations