Transplantability and therapeutic effects of bone marro children with osteogenesis imperfecta

Nature Medicine 5, 309-313 DOI: 10.1038/6529

Citation Report

#	Article	IF	CITATIONS
1	Human Mesenchymal Stem Cells Provide Stromal Support for Efficient CD34+Transduction. Journal of Hematotherapy and Stem Cell Research, 1999, 8, 515-523.	1.8	33
2	Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14482-14486.	3.3	879
3	Mesenchymal stem cells: No longer second class marrow citizens. Nature Medicine, 1999, 5, 262-264.	15.2	154
4	Osteogenesis imperfecta calls for caution-first letter. Nature Medicine, 1999, 5, 466-466.	15.2	21
5	Reply to osteogenesis imperfecta calls for caution. Nature Medicine, 1999, 5, 466-467.	15.2	4
6	Osteogenesis imperfecta calls for caution-second letter. Nature Medicine, 1999, 5, 466-466.	15.2	27
7	Heritable osteoarthritis. Diagnosis and possible modes of cell and gene therapy. Osteoarthritis and Cartilage, 1999, 7, 364-366.	0.6	9
8	Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Experimental Hematology, 1999, 27, 1460-1466.	0.2	261
9	Bone marrow–derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Experimental Hematology, 1999, 27, 1675-1681.	0.2	233
10	Is There Treatment for "Genetic―Disease?. Molecular Genetics and Metabolism, 1999, 68, 93-102.	0.5	8
11	The Monoclonal Antibody SH-2, Raised against Human Mesenchymal Stem Cells, Recognizes an Epitope on Endoglin (CD105). Biochemical and Biophysical Research Communications, 1999, 265, 134-139.	1.0	361
12	CD34-Negative Stem Cells. Transfusion Medicine and Hemotherapy, 1999, 26, 2-5.	0.7	0
13	The Osteogenic Compartment of Bone Marrow: Cell Biology and Clinical Application. Hematology, 1999, 4, 427-435.	0.7	24
14	Bone Marrow Transplantation for Non-Malignant Disease. Hematology American Society of Hematology Education Program, 2000, 2000, 319-338.	0.9	31
15	In Vivo Expression of Human Growth Hormone by Genetically Modified Murine Bone Marrow Stromal Cells and its Effect on the Cells in Vitro. Cell Transplantation, 2000, 9, 319-327.	1.2	17
16	Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system. Biochemical Society Transactions, 2000, 28, 341.	1.6	18
17	Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system. Biochemical Society Transactions, 2000, 28, 341-345.	1.6	44
18	Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Current Opinion in Hematology, 2000, 7, 358-363.	1.2	137

#	Article	IF	CITATIONS
19	Osteogenesis imperfecta: perspectives and opportunities. Current Opinion in Pediatrics, 2000, 12, 603-609.	1.0	50
21	Potential of Gene Therapy for Treating Osteogenesis Imperfecta. Clinical Orthopaedics and Related Research, 2000, 379, S126-S133.	0.7	16
22	Mesenchymal Stem Cells and Gene Therapy. Clinical Orthopaedics and Related Research, 2000, 379, S67-S70.	0.7	90
23	Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 2000, 61, 364-370.	1.3	2,260
24	Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 2000, 109, 235-242.	1.2	1,371
25	Intrastriatal Transplantation of Bone Marrow Nonhematopoietic Cells Improves Functional Recovery After Stroke in Adult Mice. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1311-1319.	2.4	481
26	In vivo selection using a cell-growth switch. Nature Genetics, 2000, 26, 64-66.	9.4	100
27	Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Medicine, 2000, 6, 1282-1286.	15.2	1,161
28	Immunobiology of allogeneic peripheral blood mononuclear cells mobilized with granulocyte-colony stimulating factor. Bone Marrow Transplantation, 2000, 26, 1-16.	1.3	43
29	Stem cell therapy and gene transfer for regeneration. Gene Therapy, 2000, 7, 451-457.	2.3	175
30	Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Experimental Hematology, 2000, 28, 382-390.	0.2	147
31	Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells. Experimental Hematology, 2000, 28, 707-715.	0.2	662
32	Mesenchymal stem cells. Experimental Hematology, 2000, 28, 875-884.	0.2	1,297
33	The Effects of Bone Marrow Transplantation on X-linked Hypophosphatemic Mice. Journal of Bone and Mineral Research, 2000, 15, 1451-1458.	3.1	29
34	Marrow stromal stem cells. Journal of Clinical Investigation, 2000, 105, 1663-1668.	3.9	512
35	Evidence of Peripheral Blood-Derived, Plastic-Adherent CD34â`'/lowHematopoietic Stem Cell Clones with Mesenchymal Stem Cell Characteristics. Stem Cells, 2000, 18, 252-260.	1.4	129
36	Characterization of Chemokine Receptors Expressed in Primitive Blood Cells During Human Hematopoietic Ontogeny. Stem Cells, 2000, 18, 374-381.	1.4	36
37	Limited engraftment capacity of bone marrow–derived mesenchymal cells following T-cell–depleted hematopoietic stem cell transplantation. Blood, 2000, 96, 3637-3643.	0.6	107

#	Article	IF	CITATIONS
38	Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood, 2000, 95, 3620-3627.	0.6	221
39	BONE REGENERATION THROUGH CELLULAR ENGINEERING. , 2000, , 683-696.		38
40	Biology and clinical utilization of mesenchymal progenitor cells. Brazilian Journal of Medical and Biological Research, 2000, 33, 881-887.	0.7	70
41	Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3213-3218.	3.3	811
42	Plasticity of Bone Marrow-Derived Stem Cells. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 957-960.	1.8	16
43	Physiologic Predictors of Lumbar Spine Bone Mass in Neonates. Pediatric Research, 2000, 48, 485-489.	1.1	25
44	Transient Production of Bone Morphogenetic Protein 2 by Allogeneic Transplanted Transduced Cells Induces Bone Formation. Human Gene Therapy, 2000, 11, 205-211.	1.4	61
45	Stable Marker Gene Transfer into Human Bone Marrow Stromal Cells and Their Progenitors Using Novel Herpesvirus Saimiri-Based Vectors. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 573-581.	1.8	24
46	Perspectives on the Morphology and Biology of CD34-Negative Stem Cells. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 783-793.	1.8	57
47	Glucocorticoid-Inducible Retrovector for Regulated Transgene Expression in Genetically Engineered Bone Marrow Stromal Cells. Human Gene Therapy, 2000, 11, 1837-1849.	1.4	35
48	Potential use of marrow stromal cells as therapeutic vectors for diseases of the central nervous system. Progress in Brain Research, 2000, 128, 293-297.	0.9	26
49	Multipotency of a Bone Marrow Stromal Cell Line, TBR31-2, Established from ts-SV40 T Antigen Gene Transgenic Mice. Biochemical and Biophysical Research Communications, 2000, 268, 450-455.	1.0	52
50	Human Bone Marrow Stromal Cell: Coexpression of Markers Specific for Multiple Mesenchymal Cell Lineages. Blood Cells, Molecules, and Diseases, 2000, 26, 234-246.	0.6	103
51	QUIESCENCE OF CD34-NEGATIVE HAEMATOPOIETIC STEM CELLS IS MEDIATED BY DOWNREGULATION OF CYCLIN B AND NO STAT ACTIVATION. Cytokine, 2000, 12, 1195-1204.	1.4	12
52	Osteogenesis Imperfecta: Prospects for Molecular Therapeutics. Molecular Genetics and Metabolism, 2000, 71, 225-232.	0.5	58
53	Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1–4. Bone, 2000, 27, 185-195.	1.4	118
55	Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mechanisms of Development, 2000, 92, 193-205.	1.7	398
56	Osteogenesis Imperfecta. Paediatric Drugs, 2000, 2, 465-488.	1.3	69

#	Article	IF	CITATIONS
57	Emerging strategies of bone and joint repair. Arthritis Research, 2000, 2, 433.	2.0	34
58	Isolation of Primary and Immortalized CD34â^'Hematopoietic and Mesenchymal Stem Cells from Various Sources. Stem Cells, 2000, 18, 1-9.	1.4	134
59	Differentiation of Osteoblasts andin VitroBone Formation from Murine Embryonic Stem Cells. Tissue Engineering, 2001, 7, 89-99.	4.9	381
60	The Dynamic in vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion. Cells Tissues Organs, 2001, 169, 12-20.	1.3	849
61	Identification of a Discrete Population of Human Bone Marrow-Derived Mesenchymal Cells Exhibiting Properties of Uncommitted Progenitors. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 749-758.	1.8	35
62	Bone Marrow Stromal Damage after Chemo/Radiotherapy: Occurrence, Consequences and Possibilities of Treatment. Leukemia and Lymphoma, 2001, 42, 863-870.	0.6	107
63	Stem cells for repair of cartilage and bone: the next challenge in osteoarthritis and rheumatoid arthritis. Annals of the Rheumatic Diseases, 2001, 60, 305-309.	0.5	58
64	Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy, 2001, 3, 393-396.	0.3	179
65	The SH-3 and SH-4 Antibodies Recognize Distinct Epitopes on CD73 from Human Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 2001, 289, 519-524.	1.0	226
66	Human Mesenchymal Stem Cells Persist, Demonstrate Site-Specific Multipotential Differentiation, and Are Present in Sites of Wound Healing and Tissue Regeneration after Transplantation into Fetal Sheep. Blood Cells, Molecules, and Diseases, 2001, 27, 601-604.	0.6	136
67	Osteogenesis and Bone-Marrow-Derived Cells. Blood Cells, Molecules, and Diseases, 2001, 27, 677-690.	0.6	125
69	Chondrogenic Differentiation of Mesenchymal Stem Cells from Bone Marrow: Differentiation-Dependent Gene Expression of Matrix Components. Experimental Cell Research, 2001, 268, 189-200.	1.2	884
71	Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine, 2001, 7, 259-264.	3.5	1,020
72	Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone, 2001, 29, 523-531.	1.4	249
74	Differentiation potential of adult stem cells. Current Opinion in Genetics and Development, 2001, 11, 575-580.	1.5	82
75	New cells from old. Lancet, The, 2001, 357, 329-330.	6.3	19
76	Highly efficient retroviral gene transfer into immortalized CD34– cells and organ distribution after transplantation into NOD/SCID mice. Cytotherapy, 2001, 3, 245-251.	0.3	16
77	The Molecular Genetics of Bone Formation. Molecular Diagnosis and Therapy, 2001, 1, 175-187.	3.3	22

#	Article	IF	CITATIONS
78	Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7841-7845.	3.3	832
79	Marrow mesenchymal cell transplantation for genetic disorders of bone. Cytotherapy, 2001, 3, 399-401.	0.3	15
80	Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy, 2001, 3, 403-405.	0.3	58
81	Born Again Bone: Tissue Engineering for Bone Repair. Physiology, 2001, 16, 208-213.	1.6	32
82	Treatment of Traumatic Brain Injury in Female Rats with Intravenous Administration of Bone Marrow Stromal Cells. Neurosurgery, 2001, 49, 1196-1204.	0.6	160
83	Transplantation hematopoiesis. Current Opinion in Hematology, 2001, 8, 331-336.	1.2	9
84	Stem cell and gene therapy approaches for skeletal disorders. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 268-276.	0.6	0
85	Severe osteogenesis imperfecta: new therapeutic options?. BMJ: British Medical Journal, 2001, 322, 63-64.	2.4	13
86	Adult Bone Marrow Transplantation after Stroke in Adult Rats. Cell Transplantation, 2001, 10, 31-40.	1.2	110
87	Mesenchymal Stem Cells. Experimental Biology and Medicine, 2001, 226, 507-520.	1.1	776
88	Treatment of Traumatic Brain Injury in Female Rats with Intravenous Administration of Bone Marrow Stromal Cells. Neurosurgery, 2001, 49, 1196-1204.	0.6	4
89	Bone graft substitutes for the promotion of spinal arthrodesis. Neurosurgical Focus, 2001, 10, 1-5.	1.0	16
90	A Controlled Study of the Effects of Alendronate in a Growing Mouse Model of Osteogenesis Imperfecta. Calcified Tissue International, 2001, 69, 94-101.	1.5	82
91	Host Origin of Marrow Mesenchymal Stem Cells Following Allogeneic Cord-Blood Stem-Cell Transplantation. International Journal of Hematology, 2001, 74, 235-236.	0.7	6
92	Correction of stromal cell defect after bone marrow transplantation in aplastic anaemia. British Journal of Haematology, 2001, 115, 642-652.	1.2	21
93	Stem cells in regenerative biology and medicine. Wound Repair and Regeneration, 2001, 9, 429-442.	1.5	79
95	Retroviral marking of human bone marrow fibroblasts: In vitro expansion and localization in calvarial sites after subcutaneous transplantation in vivo. Journal of Cellular Physiology, 2001, 186, 201-209.	2.0	23
96	Thirty-three novel COL1A1 and COL1A2 mutations in patients with osteogenesis imperfecta types I-IV.	1.1	42

#	Article	IF	CITATIONS
97	Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Human Mutation, 2001, 18, 319-326.	1.1	38
98	Transfer of pro?2(I) cDNA into cells of a murine model of human Osteogenesis Imperfecta restores synthesis of type I collagen comprised of ?1(I) and ?2(I) heterotrimers in vitro and in vivo. Journal of Cellular Biochemistry, 2001, 83, 84-91.	1.2	35
99	Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications. Stem Cells, 2001, 19, 180-192.	1.4	1,768
100	Multilineage Differentiation from Human Embryonic Stem Cell Lines. Stem Cells, 2001, 19, 193-204.	1.4	876
101	Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001, 98, 2396-2402.	0.6	1,235
102	Use of VSV-G Pseudotyped Retroviral Vectors to Target Murine Osteoprogenitor Cells. Virology, 2001, 284, 37-45.	1.1	47
104	Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplantation, 2001, 27, 235-239.	1.3	181
105	Stem cells in tissue engineering. Nature, 2001, 414, 118-121.	13.7	870
106	Osteogenesis imperfecta: lifelong management is imperative and feasible. Joint Bone Spine, 2001, 68, 125-129.	0.8	26
107	Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 2001, 29, 244-255.	0.2	393
108	Somatic stem cell plasticity. Experimental Hematology, 2001, 29, 1361-1370.	0.2	79
109	Intraarterial Injection of Muscle-Derived Cd34+Sca-1+ Stem Cells Restores Dystrophin in mdx Mice. Journal of Cell Biology, 2001, 152, 335-348.	2.3	248
110	Mesenchymal Differentiation and Organ Distribution of Established Human Stromal Cell Lines in NOD/SCID Mice. Acta Haematologica, 2001, 105, 159-165.	0.7	34
111	Application of Bone Marrow-Derived Stem Cells in Experimental Nephrology. Nephron Experimental Nephrology, 2001, 9, 444-450.	2.4	65
112	G156A MGMT-Transduced Human Mesenchymal Stem Cells Can Be Selectively Enriched byO6-Benzylguanine and BCNU. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 691-701.	1.8	16
113	Osteoporosis in Childhood: Bone Density of Children in Health and Disease. Journal of Pediatric Endocrinology and Metabolism, 2001, 14, 817-32.	0.4	58
114	Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology, 2001, 56, 1666-1672.	1.5	414
115	Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood, 2001, 97, 1227-1231.	0.6	540

#	Article	IF	CITATIONS
116	Implantation of Bone Marrow Mononuclear Cells Into Ischemic Myocardium Enhances Collateral Perfusion and Regional Function via Side Supply of Angioblasts, Angiogenic Ligands, and Cytokines. Circulation, 2001, 104, 1046-1052.	1.6	903
117	Neointimal and Tubulointerstitial Infiltration by Recipient Mesenchymal Cells in Chronic Renal-Allograft Rejection. New England Journal of Medicine, 2001, 345, 93-97.	13.9	259
118	Osteogenesis Imperfecta: Care and Management. Paediatric Nursing, 2001, 13, 38-42.	0.1	3
119	Marrow Stem Cells, Mesenchymal Progenitor Cells, and Stromal Progeny. Cancer Investigation, 2002, 20, 110-123.	0.6	15
120	Intracerebral Transplantation of Marrow Stromal Cells Cultured with Neurotrophic Factors Promotes Functional Recovery in Adult Rats Subjected to Traumatic Brain Injury. Journal of Neurotrauma, 2002, 19, 1609-1617.	1.7	166
121	Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8932-8937.	3.3	1,541
122	Mixed Bone Marrow or Mixed Stem Cell Transplantation for Prevention or Treatment of Lupus-Like Diseases in Mice. Nephron Experimental Nephrology, 2002, 10, 408-420.	2.4	7
123	Human Mesenchymal Stem Cells: Insights from a Surrogate in vivo Assay System. Cells Tissues Organs, 2002, 171, 90-95.	1.3	30
124	Procollagen with Skipping of α1(I) Exon 41 Has Lower Binding Affinity for α1(I) C-telopeptide, Impaired in Vitro Fibrillogenesis, and Altered Fibril Morphology. Journal of Biological Chemistry, 2002, 277, 4215-4222.	1.6	15
125	Peripheral nerve regeneration by bone marrow stromal cells. Neurological Research, 2002, 24, 634-638.	0.6	151
126	Bone healing and spinal fusion. Neurosurgical Focus, 2002, 13, 1-6.	1.0	59
127	Stem cells in bone formation growth and remodeling. Advances in Cell Aging and Gerontology, 2002, , 201-221.	0.1	1
128	A single amino acid substitution (D1441Y) in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I collagen results in a lethal variant of osteogenesis imperfecta with features of dense bone diseases. Journal of Medical Genetics, 2002, 39, 23-29.	1.5	42
129	Can Human Hematopoietic Stem Cells Become Skin, Gut, or Liver Cells?. New England Journal of Medicine, 2002, 346, 770-772.	13.9	41
130	Human cytidine deaminase as an ex vivo drug selectable marker in gene-modified primary bone marrow stromal cells. Gene Therapy, 2002, 9, 452-462.	2.3	35
131	Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Therapy, 2002, 9, 648-652.	2.3	102
132	Osteoblastic Response to the Defective Matrix in the Osteogenesis Imperfecta Murine (oim) Mouse. Endocrinology, 2002, 143, 1594-1601.	1.4	42
133	Plasticity of marrow-derived stem cells. Gene Therapy, 2002, 9, 754-758.	2.3	194

#	Article	IF	CITATIONS
134	Validation in mesenchymal progenitor cells of a mutation-independent ex vivo approach to gene therapy for osteogenesis imperfecta. Human Molecular Genetics, 2002, 11, 2201-2206.	1.4	32
136	Bone Marrow Stromal Cells as Targets for Gene Therapy. Current Gene Therapy, 2002, 2, 195-209.	0.9	81
137	Advances in Osteogenesis Imperfecta. Clinical Orthopaedics and Related Research, 2002, 401, 6-16.	0.7	55
138	Retrovirally mediated correction of bone marrow–derived mesenchymal stem cells from patients with mucopolysaccharidosis type I. Blood, 2002, 99, 1857-1859.	0.6	44
139	The therapeutic potential of stem cells from adults. BMJ: British Medical Journal, 2002, 325, 372-376.	2.4	74
140	Embryonic stem cells provide a powerful and versatile model system. Vitamins and Hormones, 2002, 64, 1-42.	0.7	21
141	Marrow Stromal Stem Cells for Repairing the Skeleton. Biotechnology and Genetic Engineering Reviews, 2002, 19, 84-104.	2.4	4
142	Hepatocytes and Epithelial Cells of Donor Origin in Recipients of Peripheral-Blood Stem Cells. New England Journal of Medicine, 2002, 346, 738-746.	13.9	750
143	Bone Tissue Engineering: Hope vs Hype. Biochemical and Biophysical Research Communications, 2002, 292, 1-7.	1.0	490
144	Expansion of Human Adult Stem Cells from Bone Marrow Stroma: Conditions that Maximize the Yields of Early Progenitors and Evaluate Their Quality. Stem Cells, 2002, 20, 530-541.	1.4	864
145	Virus-Based Gene Delivery Systems. Clinical Pharmacokinetics, 2002, 41, 901-911.	1.6	73
146	On the development of cell therapy for genetic disorders. Cytotherapy, 2002, 4, 511-512.	0.3	3
147	Human Mesenchymal Stem Cells Are Not of Donor Origin in Patients with Severe Aplastic Anemia Who Underwent Sex-Mismatched Allogeneic Bone Marrow Transplant. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 977-984.	1.8	33
148	Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncology, The, 2002, 3, 508-513.	5.1	149
149	Medical perspectives of adults and embryonic stem cells. Comptes Rendus - Biologies, 2002, 325, 1053-1058.	0.1	1
150	Protection and treatment of sensorineural hearing disorders caused by exogenous factors: experimental findings and potential clinical application. Hearing Research, 2002, 169, 169-178.	0.9	60
151	Adipose tissue: challenging the marrow monopoly. Cytotherapy, 2002, 4, 509-510.	0.3	5
152	Mesenchymal stem cells. A potential source for skeletal repair. Annals of the Rheumatic Diseases, 2002, 61, 29ii-31.	0.5	60

		CITATION REPOR	Г
#	Article	IF	CITATION
154	Three-Dimensional Approach to Stem Cell Therapy. Journal of Korean Medical Science, 2002,	17, 151. 1.1	6
155	Mesenchymal Stem Cells and Osteoblast Differentiation. , 2002, , 59-81.		49
156	Tissue engineering: advances in in vitro cartilage generation. Trends in Biotechnology, 2002, 2 351-356.	20, 4.9	234
157	Adult stem cells: assessing the case for pluripotency. Trends in Cell Biology, 2002, 12, 502-50)8. 3.6	296
158	Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibo Experimental Hematology, 2002, 30, 783-791.	odies. 0.2	507
159	Primate skeletal muscle contains cells capable of sustaining in vitro hematopoiesis. Experime Hematology, 2002, 30, 925-936.	ntal 0.2	22
160	GATA transcription in a small rhodamine 123lowCD34+ subpopulation of a peripheral bloodâ CD34â^ CD105+ mesenchymal cell line. Experimental Hematology, 2002, 30, 887-895.	€"derived 0.2	43
161	Osteogenic stem cells and orthopedic engineering: Summary and update. Journal of Biomedic Materials Research Part B, 2002, 63, 384-389.	cal 3.0	25
162	Mesenchymal stem cells: Will they have a role in the clinic?. Journal of Cellular Biochemistry, 2 85, 73-79.	2002, 1.2	118
163	Adult bone marrow stem cells for cell and gene therapies: Implications for greater use. Journa Cellular Biochemistry, 2002, 85, 20-28.	of 1.2	110
164	Cellular immunology in a historical perspective. Immunological Reviews, 2002, 185, 136-158.	2.8	32
165	The co-expression of CD117 (c-kit) and osteocalcin in activated bone marrow stem cells in dif diseases. British Journal of Haematology, 2002, 118, 305-312.	ferent 1.2	30
166	Cardiac stem cells. Journal of Pathology, 2002, 197, 468-478.	2.1	81
167	Adult stem cell plasticity. Journal of Pathology, 2002, 197, 441-456.	2.1	237
168	Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (and Hurler syndrome (MPS-IH). Bone Marrow Transplantation, 2002, 30, 215-222.	MLD) 1.3	587
169	CD34+ or CD34â^': which is the more primitive?. Leukemia, 2002, 16, 1603-1608.	3.3	60
170	The mesenchyme expresses T cell receptor mRNAs: relevance to cell growth control. Oncoger 21, 2029-2036.	ie, 2002, 2.6	20
171	Stem Cells and Regenerative Medicine. Human Cell, 2002, 15, 190-198.	1.2	11

		CITATION REPORT		
#	Article		IF	CITATIONS
172	Stem cells on the way to restorative medicine. Immunology Letters, 2002, 83, 1-12.		1.1	18
173	Isolation and Characterization of Size-Sieved Stem Cells from Human Bone Marrow. Stem 20, 249-258.	Cells, 2002,	1.4	258
174	Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft vivo. Experimental Hematology, 2002, 30, 42-48.	survival in	0.2	2,084
175	Can bone marrow differentiate into renal cells?. Pediatric Nephrology, 2002, 17, 790-794.		0.9	31
176	Isolation and therapeutic potential of human haemopoietic stem cells. Cytotechnology, 20)03, 41, 111-131.	0.7	9
177	Marrow Cell Transplantation for Infantile Hypophosphatasia. Journal of Bone and Mineral I 2003, 18, 624-636.	Research,	3.1	155
178	Cell Therapy for Bone Disease: A Review of Current Status. Stem Cells, 2003, 21, 610-619		1.4	141
179	Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion i nonhuman primates. Blood, 2003, 101, 2999-3001.	nto	0.6	683
181	Glass needle-mediated microinjection of macromolecules and transgenes into primary hur mesenchymal stem cells. Journal of Biomedical Science, 2003, 10, 328-336.	nan	2.6	40
182	The Human Umbilical Cord Blood: A Potential Source for Osteoblast Progenitor Cells. Calc International, 2003, 72, 135-142.	ified Tissue	1.5	147
183	Gene expression profile of mouse bone marrow stromal cells determined by cDNA microar Cell and Tissue Research, 2003, 311, 227-237.	ray analysis.	1.5	64
184	TGFβ1 limits the expansion of the osteoprogenitor fraction in cultures of human bone ma cells. Cell and Tissue Research, 2003, 311, 187-198.	rrow stromal	1.5	25
185	STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marro and their more differentiated progeny: a comparative investigation in vitro. Cell and Tissue 2003, 313, 281-290.	w stromal cells ? Research,	1.5	143
186	Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Experimental Hematology, 2003, 31, 413-420.		0.2	187
187	Stem cell plasticity: the growing potential of cellular therapy. Archives of Medical Research 600-606.	ı, 2003, 34,	1.5	66
188	Integrative molecular and developmental biology of adult stem cells. Biology of the Cell, 2 363-378.	003, 95,	0.7	24
189	Mesenchymal stem cells and rheumatoid arthritis. Joint Bone Spine, 2003, 70, 483-485.		0.8	24
190	Endothelial cells from hematopoietic stem cells are functionally different from those of hu umbilical vein. Journal of Cellular and Molecular Medicine, 2003, 7, 455-460.	man	1.6	10

	CITATION RE	PORT	
			_
ARTICLE		IF	CITATIONS
Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge. Jos Cellular Physiology, 2003, 194, 45-53.	ation in urnal of	2.0	74
Developmental skeletal anomalies. Birth Defects Research Part C: Embryo Today Review 197-207.	ws, 2003, 69,	3.6	7
Cell-based therapies for birth defects: A role for adult stem cell plasticity?. Birth Defect Part C: Embryo Today Reviews, 2003, 69, 238-249.	's Research	3.6	13
Biology and clinical applications of mesenchymal stem cells. Birth Defects Research Pa Today Reviews, 2003, 69, 250-256.	rt C: Embryo	3.6	147
Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats Orthopaedic Research, 2003, 21, 44-53.	. Journal of	1.2	169
Bone marrow transplantation: it's not just about blood anymore!. Pediatric Transplant 56-58.	ation, 2003, 7,	0.5	6
Bone morphogenetic protein-2 regulates proliferation of human mesenchymal stem ce Repair and Regeneration, 2003, 11, 354-360.	lls. Wound	1.5	42
Constitution and telomere dynamics of bone marrow stromal cells in patients undergo bone marrow transplantation. Bone Marrow Transplantation, 2003, 32, 947-952.	bing allogeneic	1.3	16
A neovascularized organoid derived from retrovirally engineered bone marrow stroma prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocom Gene Therapy, 2003, 10, 478-489.	leads to 1petent mice.	2.3	52
Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic re Gene Therapy, 2003, 10, 621-629.	sponse in vivo.	2.3	200
Engineering mesenchymal stem cells for immunotherapy. Gene Therapy, 2003, 10, 928	3-931.	2.3	93
Primary murine MSC show highly efficient homing to the bone marrow but lose homin following culture. Leukemia, 2003, 17, 160-170.	g ability	3.3	521
Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient wi idiopathic aplastic anemia improves stroma. Leukemia, 2003, 17, 474-476.	th severe	3.3	169
Pluripotent Stem Cells Identified in Multiple Murine Tissues. Annals of the New York Ac Sciences, 2003, 996, 158-173.	cademy of	1.8	65

205	Mesenchymal Stem Cells and Hematopoietic Stem Cell Transplantation. Annals of the New York Academy of Sciences, 2003, 996, 235-244.	1.8	74
206	Clinical gene-marking of mesenchymal cells. Cytotherapy, 2003, 5, 194-196.	0.3	1
207	Functional and immunophenotypic characteristics of isolated CD105+ and fibroblast+ stromal cells from AML: implications for their plasticity along endothelial lineage. Cytotherapy, 2003, 5, 66-79.	0.3	22
208	Derivation of lung epithelium from bone marrow cells. Cytotherapy, 2003, 5, 169-173.	0.3	25

#

191

193

194

195

197

199

201

203

204

		CITATION REPORT		
#	Article		IF	CITATIONS
209	Mesenchymal stem cell: use and perspectives. The Hematology Journal, 2003, 4, 92-96		2.0	160
210	Adult Stem Cells for Tissue Repair — A New Therapeutic Concept?. New England Jour 2003, 349, 570-582.	nal of Medicine,	13.9	713
211	28. Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology, S745-S753.	2003, 111,	1.5	57
212	Repair of Calvarial Defects with Customized Tissue-Engineered Bone Grafts I. Evaluatio Osteogenesis in a Three-Dimensional Culture System. Tissue Engineering, 2003, 9, 113	n of 3-126.	4.9	121
213	Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a analytical study. Lancet, The, 2003, 361, 1084-1088.	a molecular	6.3	169
214	Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bond stromal cells via chondrosphere formation with expression profiling by large-scale cDN Experimental Cell Research, 2003, 288, 35-50.	e marrow A analysis.	1.2	73
215	Recent advances in the management of osteogenesis imperfecta. Current Paediatrics,	2003, 13, 151-157.	0.2	3
216	Transfer of drug resistance genes in hematopoietic progenitors for chemoprotection: i option?. Drug Resistance Updates, 2003, 6, 57-69.	s it still an	6.5	4
218	Multiorgan Engraftment and Multilineage Differentiation by Human Fetal Bone Marrov Flk1+/CD31-/CD34-Progenitors. Journal of Hematotherapy and Stem Cell Research, 200	v 03, 12, 603-613.	1.8	51
219	Repair of Calvarial Defects with Customised Tissue-Engineered Bone Grafts II. Evaluatic Efficiency and Efficacyin Vivo. Tissue Engineering, 2003, 9, 127-139.	on of Cellular	4.9	181
220	Regeneration of the Vocal Fold Using Autologous Mesenchymal Stem Cells. Annals of Rhinology and Laryngology, 2003, 112, 915-920.	Otology,	0.6	147
221	Evidence for transdifferentiation of human bone marrow-derived stem cells: recent pro controversies. Pathology, 2003, 35, 6-13.	gress and	0.3	20
222	Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogene Blood, 2003, 102, 3837-3844.	ic animals.	0.6	1,079
223	Short-limbed dwarfism with bowing, combined immune deficiency, and late onset apla caused by novel mutations in the RMPR gene. Journal of Medical Genetics, 2003, 40, 7	stic anaemia 61-766.	1.5	34
224	Human circulating CD14+monocytes as a source of progenitors that exhibit mesenchy differentiation. Journal of Leukocyte Biology, 2003, 74, 833-845.	'mal cell	1.5	275
225	Primitive adult hematopoietic stem cells can function as osteoblast precursors. Procee National Academy of Sciences of the United States of America, 2003, 100, 15877-158	dings of the 82.	3.3	159
226	Type I Collagen Triplet Duplication Mutation in Lethal Osteogenesis Imperfecta Shifts I Chains throughout the Helix and Disrupts Incorporation of Mutant Helices into Fibrils a Extracellular Matrix. Journal of Biological Chemistry, 2003, 278, 10006-10012.	Register of α and	1.6	29
228	Statistical significance analysis of longitudinal gene expression data. Bioinformatics, 20 1628-1635.	003, 19,	1.8	40

#	Article	IF	CITATIONS
229	Vascular Endothelial Growth Factor Principally Acts as the Main Angiogenic Factor in the Early Stage of Human Osteoblastogenesis. Journal of Biochemistry, 2003, 133, 633-639.	0.9	83
230	Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3305-3310.	3.3	205
231	Cellular origins of atherosclerosis: towards ontogenetic endgame?. FASEB Journal, 2003, 17, 592-597.	0.2	17
232	Immortalization of bone marrow-derived human mesenchymal stem cells by removable simian virus 40T antigen gene: Analysis of the ability to support expansion of cord blood hematopoietic progenitor cells. International Journal of Oncology, 2003, 23, 925.	1.4	4
233	Effects of Amifostine on Clonogenic Mesenchymal Progenitors and Hematopoietic Progenitors Exposed to Radiation. Journal of Pediatric Hematology/Oncology, 2003, 25, 19-26.	0.3	13
234	Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells. Clinical Orthopaedics and Related Research, 2003, 407, 102-118.	0.7	170
235	Stem cell plasticity: a new image of the bone marrow stem cell. Current Opinion in Pediatrics, 2003, 15, 32-37.	1.0	22
236	Stem-cell "plasticity― befuddled by the muddle. Current Opinion in Hematology, 2003, 10, 208-213.	1.2	92
237	Stem Cell Research and Pediatric Orthopedics. Journal of Pediatric Orthopaedics, 2003, 23, 423-424.	0.6	0
238	Multipotent Stromal Cells Derived From the Infrapatellar Fat Pad of the Knee. Clinical Orthopaedics and Related Research, 2003, 412, 196-212.	0.7	371
240	Realistic Prospects for Stem Cell Therapeutics. Hematology American Society of Hematology Education Program, 2003, 2003, 398-418.	0.9	69
241	Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood, 2003, 101, 2191-2198.	0.6	92
242	Stem cell therapies: a tale of caution. Medical Journal of Australia, 2003, 179, 164-166.	0.8	0
243	Stem Cells for the Heart, Are We There Yet?. Cardiology, 2003, 100, 176-185.	0.6	19
244	Braving New Worlds: To Conquer, to Endure. Physical Therapy, 2004, 84, 1056-1086.	1.1	9
245	Adult Bone-Marrow Stem Cells and Their Potential in Medicine. Journal of the Royal Society of Medicine, 2004, 97, 465-471.	1.1	27
246	Mesengenic Progenitor Cells Derived from Human Placenta. Tissue Engineering, 2004, 10, 1136-1147.	4.9	74
247	Stem cell bioengineering for regenerative medicine. Expert Opinion on Biological Therapy, 2004, 4, 631-644.	1.4	14

#	Article	IF	CITATIONS
248	Hematopoietic cells and osteoblasts are derived from a common marrow progenitor after bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11761-11766.	3.3	150
249	Adult bone-marrow stem cells and their potential in medicine. Journal of the Royal Society of Medicine, 2004, 97, 465-471.	1.1	36
250	Internalized Antigens Must Be Removed to Prepare Hypoimmunogenic Mesenchymal Stem Cells for Cell and Gene Therapy. Molecular Therapy, 2004, 9, 747-756.	3.7	448
251	Skeletal Stem Cells. , 2004, , 415-424.		29
252	Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. British Journal of Haematology, 2004, 124, 666-675.	1.2	71
253	Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. British Journal of Haematology, 2004, 127, 326-334.	1.2	132
254	Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Proliferation, 2004, 37, 55-65.	2.4	111
255	Stem cells in gynaecology. Australian and New Zealand Journal of Obstetrics and Gynaecology, 2004, 44, 380-386.	0.4	74
256	Progression and regression in renal vascular and glomerular fibrosis. International Journal of Experimental Pathology, 2004, 85, 1-11.	0.6	38
257	Adult stem cell plasticity: will engineered tissues be rejected?. International Journal of Experimental Pathology, 2004, 85, 115-124.	0.6	25
258	Transplantation of highly purified peripheral-blood CD34+ progenitor cells from related and unrelated donors in children with nonmalignant diseases. Bone Marrow Transplantation, 2004, 33, 25-32.	1.3	31
259	RNAi of COL1A1 in mesenchymal progenitor cells. European Journal of Human Genetics, 2004, 12, 864-866.	1.4	44
260	Light-activated gene transduction of recombinant adeno-associated virus in human mesenchymal stem cells. Gene Therapy, 2004, 11, 34-41.	2.3	44
261	Gene therapy approaches for osteogenesis imperfecta. Gene Therapy, 2004, 11, 408-416.	2.3	43
262	Dkk-1-mediated expansion of adult stem cells. Trends in Biotechnology, 2004, 22, 386-388.	4.9	20
263	Mesenchymal stem cells: paradoxes of passaging. Experimental Hematology, 2004, 32, 414-425.	0.2	466
264	Studies of the route of administration and role of conditioning with radiation on unrelated allogeneic mismatched mesenchymal stem cell engraftment in a nonhuman primate model. Experimental Hematology, 2004, 32, 494-501.	0.2	56
265	Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Experimental Hematology, 2004, 32, 1212-1225.	0.2	246

#	Article	IF	CITATIONS
266	In utero stem cell transplantation. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2004, 18, 941-958.	1.4	38
267	Mesenchymal stem cells from the bone marrow stroma: basic biology and potential for cell therapy. Current Anaesthesia and Critical Care, 2004, 15, 410-417.	0.3	13
268	Stem Cells: Properties and Prospective Medical Applications. Molecular Biology, 2004, 38, 469-481.	0.4	6
269	Limited Contribution of Circulating Cells to the Development and Maintenance of Nonhematopoietic Bovine Tissues. Stem Cells, 2004, 22, 12-20.	1.4	19
270	Mesenchymal Stem Cells Can Be Differentiated Into Endothelial Cells In Vitro. Stem Cells, 2004, 22, 377-384.	1.4	1,143
271	Critical Parameters for the Isolation of Mesenchymal Stem Cells from Umbilical Cord Blood. Stem Cells, 2004, 22, 625-634.	1.4	796
272	Study of Telomere Length Reveals Rapid Aging of Human Marrow Stromal Cells following In Vitro Expansion. Stem Cells, 2004, 22, 675-682.	1.4	662
273	Alveolar Bone Marrow as a Cell Source for Regenerative Medicine: Differences Between Alveolar and Iliac Bone Marrow Stromal Cells. Journal of Bone and Mineral Research, 2004, 20, 399-409.	3.1	262
274	Hematopoietic stem cell transplantation: more than just hematopoietic?. Journal of Cancer Research and Clinical Oncology, 2004, 130, 127-134.	1.2	7
275	Mesenchymal progenitor cells in the human umbilical cord. Annals of Hematology, 2004, 83, 733-738.	0.8	130
277	Gene therapy in orthopaedic surgery: the current status. ANZ Journal of Surgery, 2004, 74, 46-54.	0.3	17
278	Localex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. Journal of Gene Medicine, 2004, 6, 4-15.	1.4	59
279	Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials, 2004, 25, 3233-3243.	5.7	98
280	Tissue engineering through autologous mesenchymal stem cells. Current Opinion in Biotechnology, 2004, 15, 406-410.	3.3	150
281	Gene Targeting in Stem Cells from Individuals with Osteogenesis Imperfecta. Science, 2004, 303, 1198-1201.	6.0	271
282	Cell therapy for disc degeneration—potentials and pitfalls. Orthopedic Clinics of North America, 2004, 35, 85-93.	0.5	57
283	Stem cells today: B1. Bone marrow stem cells. Reproductive BioMedicine Online, 2004, 9, 541-583.	1.1	31
284	Haematopoietic stem cell transplantation for autoimmune disease: limits and future potential. Best Practice and Research in Clinical Haematology, 2004, 17, 359-374.	0.7	18

#	Article	IF	CITATIONS
285	Gene Delivery in Bone Tissue Engineering: Progress and Prospects Using Viral and Nonviral Strategies. Tissue Engineering, 2004, 10, 295-307.	4.9	102
286	Mesenchymal Stem Cells: Biological Characteristics and Potential Clinical Applications. Cloning and Stem Cells, 2004, 6, 369-374.	2.6	179
287	Stem cell regeneration of the nucleus pulposus. Spine Journal, 2004, 4, S348-S353.	0.6	52
288	Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy, 2004, 6, 372-379.	0.3	111
289	Oxysterols Regulate Differentiation of Mesenchymal Stem Cells: Pro-Bone and Anti-Fat. Journal of Bone and Mineral Research, 2004, 19, 830-840.	3.1	160
290	The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells. Molecular Therapy, 2004, 9, 955-963.	3.7	58
291	Tissue Restoration Through Regenerative Biology and Medicine. Advances in Anatomy, Embryology and Cell Biology, 2004, 176, III-VIII, 1-101, back cover.	1.0	10
292	Mesenchymal Stem Cells. , 2004, , 299-308.		8
293	Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Experimental Cell Research, 2004, 297, 313-313.	1.2	0
294	The Role of BMP-6, IL-6, and BMP-4 in Mesenchymal Stem Cell–Dependent Bone Development: Effects on Osteoblastic Differentiation Induced by Parathyroid Hormone and Vitamin D3. Stem Cells and Development, 2004, 13, 273-280.	1.1	87
295	Circulating mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 2004, 36, 585-597.	1.2	258
296	Mesenchymal stem cells: clinical applications and biological characterization. International Journal of Biochemistry and Cell Biology, 2004, 36, 568-584.	1.2	1,455
297	Replacement of recipient stromal/mesenchymal cells after bone marrow transplantation using bone fragments and cultured osteoblast-like cells. Biology of Blood and Marrow Transplantation, 2004, 10, 709-717.	2.0	38
298	Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental Cell Research, 2004, 295, 395-406.	1.2	363
299	Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Experimental Cell Research, 2004, 297, 313-328.	1.2	75
300	Fate of autologous dermal stem cells transplanted into the spinal cord after traumatic injury (TSCI). Neuroscience, 2004, 125, 179-189.	1.1	26
301	Stem cells in modern medicine: Reality or myth?. Journal of Surgical Research, 2004, 122, 280-291.	0.8	10
302	Mesenchymal Stem Cells: Potential Precursors for Tumor Stroma and Targeted-Delivery Vehicles for Anticancer Agents. Journal of the National Cancer Institute, 2004, 96, 1593-1603.	3.0	790

#	Article	IF	CITATIONS
303	High Proportion of Mutant Osteoblasts Is Compatible with Normal Skeletal Function in Mosaic Carriers of Osteogenesis Imperfecta**Presented as a platform presentation at the National Meeting of the American Society of Bone and Mineral Research (Late-Breaking Research Session), San Antonio, TX, September 2002 American Journal of Human Genetics, 2004, 74, 752-760.	2.6	48
304	Osteogenesis imperfecta. Lancet, The, 2004, 363, 1377-1385.	6.3	1,084
305	Transient Genetic Labeling of Human CD34-Positive Hematopoietic Stem Cells Using Nucleofection. Transfusion Medicine and Hemotherapy, 2004, 31, 136-141.	0.7	5
306	The stem cell in orthopaedic surgery. Journal of Bone and Joint Surgery: British Volume, 2004, 86-B, 159-164.	3.4	22
307	Marrow Stromal Cell Transplantation after Traumatic Brain Injury Promotes Cellular Proliferation within the Brain. Neurosurgery, 2004, 55, 1185-1193.	0.6	218
308	Dynamic of Distribution of Human Bone Marrow-Derived Mesenchymal Stem Cells After Transplantation into Adult Unconditioned Mice. Transplantation, 2004, 78, 503-508.	0.5	137
309	Advances in mesenchymal stem cell biology. Current Opinion in Orthopaedics, 2004, 15, 341-346.	0.3	12
310	Mesenchymal stem cells and haematopoietic stem cell transplantation. Best Practice and Research in Clinical Haematology, 2004, 17, 387-399.	0.7	22
311	Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood, 2004, 103, 3313-3319.	0.6	231
312	Little evidence of donor-derived epithelial cells in early digestive acute graft-versus-host disease. Blood, 2004, 103, 360-362.	0.6	25
313	Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood, 2004, 103, 2942-2949.	0.6	219
314	Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs. Blood, 2004, 104, 4311-4318.	0.6	75
315	A New "Platinum―Standard for Bone Grafting: Autogenous Stem Cells. Implant Dentistry, 2005, 14, 322-327.	1.7	31
316	Mesenchymal Stem Cells for the Treatment of Hematological Malignancies. , 2005, , 97-107.		0
317	Fetal Therapy for Single Gene Disorders. Clinical Obstetrics and Gynecology, 2005, 48, 885-896.	0.6	5
318	Future uses of mesenchymal stem cells in spine surgery. Neurosurgical Focus, 2005, 19, 1-5.	1.0	19
319	Fetal Mesenchymal Stem-Cell Engraftment in Bone after In Utero Transplantation in a Patient with Severe Osteogenesis Imperfecta. Transplantation, 2005, 79, 1607-1614.	0.5	397
320	Differentiation of Mesenchymal Stem Cells Transplanted to a Rabbit Degenerative Disc Model. Spine, 2005, 30, 2379-2387.	1.0	316

#	Article	IF	CITATIONS
321	Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leukemia Research, 2005, 29, 215-224.	0.4	139
322	Régénération du cartilage à partir de cellules souches mésenchymateuses. Revue Du Rhumatisme (Edition Francaise), 2005, 72, 360-364.	0.0	0
323	Effects of age on the repair ability of mesenchymal stem cells in rabbit tendon. Journal of Orthopaedic Research, 2005, 23, 287-293.	1.2	71
324	How Wnt Signaling Affects Bone Repair by Mesenchymal Stem Cells from the Bone Marrow. Annals of the New York Academy of Sciences, 2005, 1049, 97-106.	1.8	131
325	Stem Cell Plasticity: The Debate Begins to Clarify. Stem Cell Reviews and Reports, 2005, 1, 037-044.	5.6	21
326	Mesenchymal Stem Cells: Lineage, Plasticity, and Skeletal Therapeutic Potential. Stem Cell Reviews and Reports, 2005, 1, 169-178.	5.6	182
327	Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 2005, 7, 393-395.	0.3	1,661
328	Bone reconstruction: from bioceramics to tissue engineering. Expert Review of Medical Devices, 2005, 2, 87-101.	1.4	349
329	Mesenchymal Stem Cells in Stem Cell Transplant Recipients Are Damaged and Remain of Host Origin. International Journal of Hematology, 2005, 82, 152-158.	0.7	22
330	Human Umbilical Cord Perivascular (HUCPV) Cells: A Source of Mesenchymal Progenitors. Stem Cells, 2005, 23, 220-229.	1.4	751
331	Cartilage Engineering from Ovine Umbilical Cord Blood Mesenchymal Progenitor Cells. Stem Cells, 2005, 23, 958-964.	1.4	79
332	Three-Dimensional Perfusion Culture of Human Bone Marrow Cells and Generation of Osteoinductive Grafts. Stem Cells, 2005, 23, 1066-1072.	1.4	182
333	In Vitro Expansion of Human Mesenchymal Stem Cells: Choice of Serum Is a Determinant of Cell Proliferation, Differentiation, Gene Expression, and Transcriptome Stability. Stem Cells, 2005, 23, 1357-1366.	1.4	429
334	Review: Mesenchymal Stem Cells: Cell–Based Reconstructive Therapy in Orthopedics. Tissue Engineering, 2005, 11, 1198-1211.	4.9	728
335	High-Resolution Imaging of Bone Precursor Cells Within the Intact Bone Marrow Cavity of Living Mice. Molecular Therapy, 2005, 12, 33-41.	3.7	10
336	Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing. British Journal of Dermatology, 2005, 152, 616-622.	1.4	83
337	Establishment and properties of fetal dermis-derived mesenchymal stem cell lines: plasticity in vitro and hematopoietic protection in vivo. Bone Marrow Transplantation, 2005, 36, 355-365.	1.3	33
338	Functional intrinsic and extrinsic apoptotic pathways in human fetal mesenchymal stem cells. Cell Death and Differentiation, 2005, 12, 1439-1441.	5.0	24

#	Article	IF	CITATIONS
339	Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene, 2005, 24, 2441-2448.	2.6	71
340	Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Laboratory Investigation, 2005, 85, 962-971.	1.7	247
341	Involvement of bone marrow-derived cells in healing of experimental colitis in rats. Wound Repair and Regeneration, 2005, 13, 109-118.	1.5	53
342	Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair and Regeneration, 2005, 13, 434-440.	1.5	32
343	Perspective: fundamental and clinical concepts on stem cell homing and engraftment: a journey to niches and beyond. Experimental Hematology, 2005, 33, 9-19.	0.2	58
344	Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 2005, 33, 1402-1416.	0.2	1,126
345	Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood. Translational Research, 2005, 146, 271-278.	2.4	49
346	Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. Journal of Cellular Physiology, 2005, 205, 194-201.	2.0	257
347	Platelet lysates promote mesenchymal stem cell expansion: A safety substitute for animal serum in cell-based therapy applications. Journal of Cellular Physiology, 2005, 205, 228-236.	2.0	579
348	Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 2005, 35, 1482-1490.	1.6	637
349	Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis and Rheumatism, 2005, 52, 2521-2529.	6.7	1,314
350	Osteogenesis imperfecta, current and future medical treatment. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2005, 139C, 31-37.	0.7	59
351	Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology, 2005, 57, 874-882.	2.8	1,050
353	Comparison of Mesenchymal Stem Cells Obtained from Different Human Tissues. Bulletin of Experimental Biology and Medicine, 2005, 139, 504-509.	0.3	124
354	Efficiency of bone marrow-derived cells in regeneration of the stomach after induction of ethanol-induced ulcers in rats. Journal of Gastroenterology, 2005, 40, 591-599.	2.3	35
355	Multipotential differentiation of adipose tissue-derived stem cells. Keio Journal of Medicine, 2005, 54, 132-141.	0.5	793
356	Bone Marrow Cell Therapy for Genetic Disorders of Bone. , 2005, , 69-80.		1
357	Aspiration of Osteoprogenitor Cells for Augmenting Spinal Fusion. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2655-2661.	1.4	87

#	Article	IF	CITATIONS
358	Potential application for mesenchymal stem cells in the treatment of cardiovascular diseases. Canadian Journal of Physiology and Pharmacology, 2005, 83, 529-539.	0.7	17
359	Increased Circulating Endothelial Progenitor Cells Are Associated with Survival in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 854-860.	2.5	214
361	Correction of a mineralization defect by overexpression of a wild-type cDNA for COL1A1 in marrow stromal cells (MSCs) from a patient with osteogenesis imperfecta: a strategy for rescuing mutations that produce dominant-negative protein defects. Gene Therapy, 2005, 12, 1119-1125.	2.3	54
362	STEM CELLS AND CLINICAL APPLICATION. , 2005, , 221-232.		0
363	Stem cell therapy for osteonecrosis of the femoral head. Expert Opinion on Biological Therapy, 2005, 5, 437-442.	1.4	88
364	Development of mammalian artificial chromosomes for the treatment of genetic diseases: Sandhoff and Krabbe diseases. Expert Opinion on Biological Therapy, 2005, 5, 195-206.	1.4	7
365	Cardiac Stem Cells and Mechanisms of Myocardial Regeneration. Physiological Reviews, 2005, 85, 1373-1416.	13.1	400
366	Reduced Intensity Conditioning Compared to Standard Conditioning Preserves the In Vitro Growth Capacity of Bone Marrow Stroma, Which Remains of Host Origin. Stem Cells and Development, 2005, 14, 213-222.	1.1	14
367	Skeletal Stem Cells in Regenerative Medicine. Current Topics in Developmental Biology, 2005, 67, 305-323.	1.0	10
368	Postnatal stem cell survival: does the niche, a rare harbor where to resist the ebb tide of differentiation, also provide lineage-specific instructions?. Journal of Leukocyte Biology, 2005, 78, 836-844.	1.5	19
369	Stem cells. Lancet, The, 2005, 366, 592-602.	6.3	142
370	Isolation of Rat Bone Marrow Stem Cells. , 2006, 320, 265-272.		7
371	Non-hematopoietic bone marrow stem cells: Molecular control of expansion and differentiation. Experimental Cell Research, 2005, 306, 330-335.	1.2	256
373	Characterization of Multipotent Mesenchymal Stem Cells from the Bone Marrow of Rhesus Macaques. Stem Cells and Development, 2005, 14, 440-451.	1.1	91
374	HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood, 2005, 106, 59-66.	0.6	210
375	Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005, 105, 2821-2827.	0.6	1,026
376	Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development (Cambridge), 2005, 132, 1127-1136.	1.2	139
377	Emerging therapeutic approaches for osteogenesis imperfecta. Trends in Molecular Medicine, 2005, 11, 299-305.	3.5	35

#	Article	IF	CITATIONS
378	Adult stem cell lines in regenerative medicine and reconstructive surgery. Journal of Surgical Research, 2005, 124, 201-208.	0.8	92
379	Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochemical and Biophysical Research Communications, 2005, 329, 25-31.	1.0	55
380	Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts. Biochemical and Biophysical Research Communications, 2005, 332, 297-303.	1.0	157
381	The transplantation of neural stem cells and predictive factors in hematopoietic recovery in irradiated mice. Transfusion and Apheresis Science, 2005, 32, 157-166.	0.5	6
383	Influence of hypoxia on the domiciliation of Mesenchymal Stem Cells after infusion into rats: possibilities of targeting pulmonary artery remodeling via cells therapies?. Respiratory Research, 2005, 6, 125.	1.4	80
384	Mesenchymal Stem Cells Derived from CD133-Positive Cells in Mobilized Peripheral Blood and Cord Blood: Proliferation, Oct4 Expression, and Plasticity. Stem Cells, 2005, 23, 1105-1112.	1.4	390
385	Cell-based therapy for disc repair. Spine Journal, 2005, 5, S297-S303.	0.6	53
386	Role of Adult Mesenchymal Stem Cells in Bone Tissue Engineering Applications: Current Status and Future Prospects. Tissue Engineering, 2005, 11, 787-802.	4.9	240
387	High-Potential Human Mesenchymal Stem Cells. Stem Cells and Development, 2005, 14, 70-80.	1.1	38
388	Bone marrow-derived mesenchymal stem cells. Leukemia and Lymphoma, 2005, 46, 1531-1544.	0.6	151
389	Mesenchymal stem cells: progress toward promise. Cytotherapy, 2005, 7, 36-45.	0.3	249
391	Comparative Characterization of Hair Follicle Dermal Stem Cells and Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 2006, 15, 49-60.	1.1	142
392	Mesenchymal Stem Cells Inhibit Generation and Function of Both CD34+-Derived and Monocyte-Derived Dendritic Cells. Journal of Immunology, 2006, 177, 2080-2087.	0.4	663
393	Therapeutic Potential of Vasculogenesis and Osteogenesis Promoted by Peripheral Blood CD34-Positive Cells for Functional Bone Healing. American Journal of Pathology, 2006, 169, 1440-1457.	1.9	204
394	In vitro transfection of plasmid DNA by cationized gelatin prepared from different amine compounds. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 645-658.	1.9	24
395	Expression of neural markers on bone marrow–derived canine mesenchymal stem cells. American Journal of Veterinary Research, 2006, 67, 1921-1928.	0.3	49
396	Mesenchymal stem cells for tissue engineering and regenerative medicine. Biomedical Materials (Bristol), 2006, 1, 63-71.	1.7	54
397	Presence of Mesenchymal Stem Cells in Human Bone Marrow After Exposure to Chemotherapy: Evidence of Resistance to Apoptosis Induction. Stem Cells, 2006, 24, 2753-2765.	1.4	88

	CHATION	REPORT	
#	Article	IF	Citations
398	Fibrous Dysplasia as a Stem Cell Disease. Journal of Bone and Mineral Research, 2006, 21, P125-P131.	3.1	103
399	Fibrin glues of human origin. Best Practice and Research in Clinical Haematology, 2006, 19, 191-203.	0.7	44
400	Isolation, Characterization, Gene Modification, and Nuclear Reprogramming of Porcine Mesenchymal Stem Cells1. Biology of Reproduction, 2006, 74, 46-57.	1.2	150
401	Postnatal Skeletal Stem Cells. Methods in Enzymology, 2006, 419, 117-148.	0.4	142
402	Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochemical and Biophysical Research Communications, 2006, 347, 12-21.	1.0	194
403	Regenerative and immunomodulatory potential of mesenchymal stem cells. Current Opinion in Pharmacology, 2006, 6, 435-441.	1.7	162
404	Do Autologous Mesenchymal Stem Cells Augment Bone Growth and Contact to Massive Bone Tumor Implants?. Tissue Engineering, 2006, 12, 1617-1626.	4.9	32
405	Mesenchymal stem cells in bone and cartilage repair: current status. Regenerative Medicine, 2006, 1, 589-604.	0.8	75
406	Wound Repair by Bone Marrow Stromal Cells through Growth Factor Production. Journal of Surgical Research, 2006, 136, 336-341.	0.8	77
407	The Stem State: Mesenchymal Plasticity as a Paradigm. Current Stem Cell Research and Therapy, 2006, 1, 95-102.	0.6	39
408	Mesenchymal Stem Cells as Vehicles for Genetic Targeting of Tumors. , 2006, , 157-175.		0
411	Hematopoietic origin of fibroblasts/myofibroblasts: its pathophysiologic implications. Blood, 2006, 108, 2893-2896.	0.6	127
412	Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006, 108, 3938-3944.	0.6	500
413	Mesenchymal Stem Cells and the Treatment of Cardiac Disease. Experimental Biology and Medicine, 2006, 231, 39-49.	1.1	121
414	Diagnosis and Minimally Invasive Treatment of Lumbar Discogenic Pain – A Review of the Literature. Clinical Journal of Pain, 2006, 22, 468-481.	0.8	76
415	Bone Marrow Stromal Cells for Repair of the Spinal Cord: Towards Clinical Application. Cell Transplantation, 2006, 15, 563-577.	1.2	96
416	Repair of Injured Articular and Growth Plate Cartilage Using Mesenchymal Stem Cells and Chondrogenic Gene Therapy. Current Stem Cell Research and Therapy, 2006, 1, 213-229.	0.6	69
417	Earlier Onset of Syngeneic Tumors in the Presence of Mesenchymal Stem Cells. Transplantation, 2006, 82, 1060-1066.	0.5	122

#	Article	IF	CITATIONS
418	Stem cells and kidney injury. Current Opinion in Nephrology and Hypertension, 2006, 15, 238-244.	1.0	13
419	Good Manufacturing Practices: Clinical-Scale Production of Mesenchymal Stem Cells. , 2006, , 91-105.		2
420	Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair and Regeneration, 2006, 14, 471-478.	1.5	214
421	Stem Cell Plasticity in Muscle and Bone Marrow. Annals of the New York Academy of Sciences, 2001, 938, 208-220.	1.8	172
422	Bone marrow stromal stem cells for tissue engineering. Periodontology 2000, 2006, 41, 188-195.	6.3	56
423	Stem cell properties of human periodontal ligament cells. Journal of Periodontal Research, 2006, 41, 303-310.	1.4	290
424	Engraftment capacity of mesenchymal cells following hematopoietic stem cell transplantation in patients receiving reduced-intensity conditioning regimen. Leukemia, 2006, 20, 329-335.	3.3	42
425	The role of mesenchymal stem cells in haemopoiesis. Blood Reviews, 2006, 20, 161-171.	2.8	304
426	Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials, 2006, 27, 335-345.	5.7	341
427	Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leukemia Research, 2006, 30, 1493-1498.	0.4	36
428	Interleukin-17A: A T-Cell-Derived Growth Factor for Murine and Human Mesenchymal Stem Cells. Stem Cells, 2006, 24, 1512-1518.	1.4	56
429	Epidermal Growth Factor as a Candidate for Ex Vivo Expansion of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells, 2006, 24, 686-695.	1.4	245
430	Nucleofection Is an Efficient Nonviral Transfection Technique for Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells, 2006, 24, 454-461.	1.4	123
431	Local Irradiation Not Only Induces Homing of Human Mesenchymal Stem Cells at Exposed Sites but Promotes Their Widespread Engraftment to Multiple Organs: A Study of Their Quantitative Distribution After Irradiation Damage. Stem Cells, 2006, 24, 1020-1029.	1.4	330
432	Human Bone Marrow Stromal Cells Express a Distinct Set of Biologically Functional Chemokine Receptors. Stem Cells, 2006, 24, 1030-1041.	1.4	600
433	Progenitors Systemically Transplanted into Neonatal Mice Localize to Areas of Active Bone Formation In Vivo: Implications of Cell Therapy for Skeletal Diseases. Stem Cells, 2006, 24, 1869-1878.	1.4	44
434	Osteogenic Differentiation of Noncultured Immunoisolated Bone Marrow-Derived CD105+Cells. Stem Cells, 2006, 24, 1728-1737.	1.4	215
435	Enhanced Engraftment of Mesenchymal Stem Cells in a Cutaneous Wound Model by Culture in Allogenic Species-Specific Serum and Administration in Fibrin Constructs. Stem Cells, 2006, 24, 2232-2243.	1.4	73

P

#	Article	IF	CITATIONS
436	X Inactivation Patterns of Closely, but Not Distantly, Related Cells Are Highly Correlated: Little Evidence for Stem Cell Plasticity in Normal Females. Stem Cells, 2006, 24, 2398-2405.	1.4	1
437	Mesenchymal Stem Cell Engineering and Transplantation. , 2006, , 1-44.		10
438	Stem Cells: Potential Therapy for Age-Related Diseases. Annals of the New York Academy of Sciences, 2006, 1067, 436-442.	1.8	62
439	Mesenchymal stem cells: Sources, phenotype, and differentiation potential. Biology Bulletin, 2006, 33, 2-18.	0.1	15
440	Long-term cryopreserved amniocytes retain proliferative capacity and differentiate to ectodermal and mesodermal derivatives in vitro. Molecular Reproduction and Development, 2006, 73, 1463-1472.	1.0	15
441	Efficient adenoviral-mediated gene delivery into porcine mesenchymal stem cells. Molecular Reproduction and Development, 2006, 73, 1393-1403.	1.0	36
442	The mesenchyme in cancer therapy as a target tumor component, effector cell modality and cytokine expression vehicle. Cancer and Metastasis Reviews, 2006, 25, 459-467.	2.7	18
443	Osteogenesis induced by autologous bone marrow cells transplant in the pediatric skull. Child's Nervous System, 2006, 22, 1158-1166.	0.6	23
445	Lentiviral Transduction of Human Postnatal Skeletal (Stromal, Mesenchymal) Stem Cells: In Vivo Transplantation and Gene Silencing. Calcified Tissue International, 2006, 78, 372-384.	1.5	29
446	Treatment of children with osteogenesis imperfecta. Current Osteoporosis Reports, 2006, 4, 159-164.	1.5	39
447	The heterogeneity of human mesenchymal stem cell preparations—Evidence from simultaneous analysis of proteomes and transcriptomes. Experimental Hematology, 2006, 34, 536-548.	0.2	177
448	Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation. Experimental Hematology, 2006, 34, 934-942.	0.2	42
449	Adult mesenchymal stem cells rescue dorsal root ganglia neurons from dying. Brain Research, 2006, 1116, 75-81.	1.1	41
450	Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. Journal of Cellular Biochemistry, 2006, 97, 744-754.	1.2	289
451	Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt's lymphoma in a murine model. Journal of Gene Medicine, 2006, 8, 253-264.	1.4	49
452	Nonadherent cell population of human marrow culture is a complementary source of mesenchymal stem cells (MSCs). Journal of Orthopaedic Research, 2006, 24, 21-28.	1.2	48
453	Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model. Journal of Orthopaedic Research, 2006, 24, 610-618.	1.2	106
454	Pluripotency in Adult Stem Cells: State of the Art. Seminars in Reproductive Medicine, 2006, 24, 379-388.	0.5	34

#	Article	IF	CITATIONS
455	In Utero Stem Cell Transplantation. Seminars in Reproductive Medicine, 2006, 24, 348-357.	0.5	23
456	Regenerative Medicine of Musculoskeletal Tissues. , 2006, , 251-281.		1
458	Clinical Trials of Human Mesenchymal Stem Cells to Support Hematopoietic Stem Cell Transplantation. , 2006, , 151-162.		2
460	Pediatric Hematopoietic Stem Cell Transplantation. , 0, , .		2
461	Tissue Stem Cells. , 0, , .		6
463	The potential of stem cells in orthopaedic surgery. Journal of Bone and Joint Surgery: British Volume, 2006, 88-B, 841-851.	3.4	95
464	The Prevention of Vocal Fold Scarring Using Autologous Adipose Tissue-Derived Stromal Cells. Cells Tissues Organs, 2006, 184, 198-204.	1.3	55
466	Murine Mesenchymal Stem Cells Transplanted to the Central Nervous System of Neonatal Versus Adult Mice Exhibit Distinct Engraftment Kinetics and Express Receptors That Guide Neuronal Cell Migration. Stem Cells and Development, 2006, 15, 437-447.	1.1	45
467	Recovery of Function Following Grafting of Human Bone Marrow-Derived Stromal Cells into the Injured Spinal Cord. Neurorehabilitation and Neural Repair, 2006, 20, 278-296.	1.4	202
468	Endogenous Bone Marrow–Derived Cells Express Retinal Pigment Epithelium Cell Markers and Migrate to Focal Areas of RPE Damage. , 2007, 48, 4321.		46
469	Phenotypical and Functional Characterization of Freshly Isolated Adipose Tissue-Derived Stem Cells. Stem Cells and Development, 2007, 16, 91-104.	1.1	273
470	Human Bone Marrow–Derived Mesenchymal Stem Cells Do Not Undergo Transformation after Long-term <i>In vitro</i> Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Research, 2007, 67, 9142-9149.	0.4	649
471	Comprehensive Analysis of Chemotactic Factors for Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 2007, 16, 119-130.	1.1	186
472	Biochemical Heterogeneity of Mesenchymal Stem Cell Populations: Clues to their Therapeutic Efficacy. Cell Cycle, 2007, 6, 2884-2889.	1.3	204
473	Stem Cell Therapy: A Hope for Dying Hearts. Stem Cells and Development, 2007, 16, 517-536.	1.1	31
474	Blood Stem Cells and non-Hematological Clinical Practice: Pragmatics Before Therapeutics. Current Pharmaceutical Biotechnology, 2007, 8, 51-56.	0.9	3
475	The Role of Transfusion Medicine in Cellular Therapies. , 2007, , 780-786.		0
476	The craniofacial characteristics of osteogenesis imperfecta patients. European Journal of Orthodontics, 2007, 29, 232-237.	1.1	37

		CITATION REPORT		
#	Article		IF	CITATIONS
477	Mesenchymal stem cells for the treatment of heart disease. Regenerative Medicine, 20	07, 2, 107-109.	0.8	4
478	Humanized system to propagate cord blood-derived multipotent mesenchymal stroma clinical application. Regenerative Medicine, 2007, 2, 371-382.	I cells for	0.8	147
479	Microchimerism and Stem Cell Transplantation in Multiple Sclerosis. International Revie Neurobiology, 2007, 79, 173-202.	ew of	0.9	7
480	Selection of Common Markers for Bone Marrow Stromal Cells from Various Bones Usir RT-PCR: Effects of Passage Number and Donor Age. Tissue Engineering, 2007, 13, 240	ng Real-Time 5-2417.	4.9	47
481	Bespoke Human Hypertrophic Chondrocytic Cell Lines Provide the Osteoinductive Sigr for Vascularized Bone Formation. Tissue Engineering, 2007, 13, 133-145.	nals Required	4.9	7
482	Regulation of MHC Class II Expression and Antigen Processing in Murine and Human M Stromal Cells by IFN-γ, TGF-β, and Cell Density. Journal of Immunology, 2007, 179, 154	lesenchymal 49-1558.	0.4	200
483	MT1-MMP Down-regulates the Glucose 6-Phosphate Transporter Expression in Marrow Journal of Biological Chemistry, 2007, 282, 8142-8149.	[,] Stromal Cells.	1.6	31
484	MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesend differential regulation by inflammatory cytokines. Blood, 2007, 109, 4055-4063.	chymal stem cells:	0.6	466
485	Donor-derived DNA in fingernails among recipients of allogeneic hematopoietic stem-c Blood, 2007, 110, 2231-2234.	ell transplants.	0.6	44
486	Nerve bioengineering. , 2007, , 466-496.			0
487	Potential of mesenchymal stem cell therapy. Current Opinion in Oncology, 2007, 19, 6	50-655.	1.1	101
488	Mesenchymal Stromal Cells from Umbilical Cord Blood. Current Stem Cell Research an 2007, 2, 310-323.	d Therapy,	0.6	135
489	The Participation of Mesenchymal Stem Cells in Tumor Stroma Formation and Their Ap Targeted-Gene Delivery Vehicles. Handbook of Experimental Pharmacology, 2007, , 26	plication as 3-283.	0.9	169
490	Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury behavioural deficits in mice. Behavioural Brain Research, 2007, 183, 95-100.	induced	1.2	103
491	Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ector formation in mice. Biochemical and Biophysical Research Communications, 2007, 354,	opic bone , 453-458.	1.0	125
492	Stable gene expression by self-complementary adeno-associated viruses in human MSC and Biophysical Research Communications, 2007, 360, 573-579.	Cs. Biochemical	1.0	19
493	Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells. Bone, 2007, 41, 575-583.	2	1.4	86
494	Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. Jo Pediatric Surgery, 2007, 42, 974-980.	purnal of	0.8	108

#	Article	IF	CITATIONS
495	Mesenchymal stem cells: a new strategy for immunosuppression?. Trends in Immunology, 2007, 28, 219-226.	2.9	424
497	A Rapid and Efficient Method for Expansion of Human Mesenchymal Stem Cells. Tissue Engineering, 2007, 13, 3-9.	4.9	158
498	Multipotent mesenchymal stromal cells and immune tolerance. Leukemia and Lymphoma, 2007, 48, 1283-1289.	0.6	129
499	Bone Marrow Stem Cell Therapy for Renal Regeneration After Acute Tubular Necrosis: A Dream or a Reality?. Tzu Chi Medical Journal, 2007, 19, 115-126.	0.4	0
500	Human Mesenchymal Stem Cells Derived from Bone Marrow Display a Better Chondrogenic Differentiation Compared with Other Sources. Connective Tissue Research, 2007, 48, 132-140.	1.1	110
501	UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy, 2007, 9, 717-726.	0.3	102
502	Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Research and Therapy, 2007, 9, 301.	1.6	150
504	Immune Plasticity of Bone Marrow-Derived Mesenchymal Stromal Cells. Handbook of Experimental Pharmacology, 2007, , 45-66.	0.9	51
505	Mesenchymal Stem Cells: Molecular Targets for Tissue Engineering. Stem Cells and Development, 2007, 16, 7-24.	1.1	157
506	Role of image-guided vascular intervention in therapeutic angiogenesis translational research. Expert Review of Cardiovascular Therapy, 2007, 5, 903-915.	0.6	0
507	Identification of Cord Blood-Derived Mesenchymal Stem/stromal Cell Populations with Distinct Growth Kinetics, Differentiation Potentials, and Gene Expression Profiles. Stem Cells and Development, 2007, 16, 53-74.	1.1	100
509	Screening of genes responsible for differentiation of mouse mesenchymal stromal cells by DNA micro-array analysis of C3H10T1/2 and C3H10T1/2-derived cell lines. Cytotherapy, 2007, 9, 80-90.	0.3	13
511	In Vivo Distribution of Human Adipose-Derived Mesenchymal Stem Cells in Novel Xenotransplantation Models. Stem Cells, 2007, 25, 220-227.	1.4	157
513	Transplantation of Mesenchymal Stem Cells Is an Optimal Approach for Plastic Surgery. Stem Cells, 2007, 25, 1021-1028.	1.4	62
514	Angiogenic Effects of Human Multipotent Stromal Cell Conditioned Medium Activate the PI3K-Akt Pathway in Hypoxic Endothelial Cells to Inhibit Apoptosis, Increase Survival, and Stimulate Angiogenesis. Stem Cells, 2007, 25, 2363-2370.	1.4	382
515	Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 2007, 25, 2739-2749.	1.4	2,109
516	Distribution of Single-Cell Expanded Marrow Derived Progenitors in a Developing Mouse Model of Osteogenesis Imperfecta Following Systemic Transplantation. Stem Cells, 2007, 25, 3183-3193.	1.4	56
517	Use of stem cells for the treatment of multiple sclerosis. Expert Review of Neurotherapeutics, 2007, 7, 1189-1201.	1.4	20

#	Article	IF	CITATIONS
518	Phenotypic and Functional Comparison of Mesenchymal Stem Cells Derived from the Bone Marrow of Normal Adults and Patients with Hematologic Malignant Diseases. Stem Cells and Development, 2007, 16, 637-648.	1.1	52
519	Mesenchymal stromal cells, from indifferent spectators to principal actors. Are we going to witness a revolution in the scenario of allograft and immune-mediated disorders?. Haematologica, 2007, 92, 872-877.	1.7	37
520	Generation of Insulin-Producing Human Mesenchymal Stem Cells Using Recombinant Adeno-Associated Virus. Yonsei Medical Journal, 2007, 48, 109.	0.9	15
521	Co-transplantation of Human Mesenchymal Stem Cells Promotes Human CD34+ Cells Engraftment in a Dose-dependent Fashion in NOD/SCID Mice. Journal of Korean Medical Science, 2007, 22, 412.	1.1	13
522	Human bone marrow-derived mesenchymal stem cells. Libyan Journal of Medicine, 2007, 2, 190-201.	0.8	12
524	Bone and Cartilage Regenerative Engineering. , 0, , 906-963.		0
525	Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnology and Bioengineering, 2007, 96, 584-595.	1.7	187
526	A non-contact suspension culture approach to the culture of osteogenic cells derived from a CD49elow subpopulation of human bone marrow-derived cells. Biotechnology and Bioengineering, 2007, 98, 1195-1208.	1.7	37
527	Lessons from musculoskeletal stem cell research: The key to successful regenerative medicine development. Arthritis and Rheumatism, 2007, 56, 714-721.	6.7	11
528	Fundamentals of Culture and Characterization of Mesenchymal Stem/Progenitor Cells (MSCs) from Bone Marrow Stroma. , 0, , 207-232.		13
529	In vitro multipotentiality and characterization of human unfractured traumatic hemarthrosis-derived progenitor cells: A potential cell source for tissue repair. Journal of Cellular Physiology, 2007, 210, 561-566.	2.0	49
530	Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: Further insights in the search for a fetal calf serum substitute. Journal of Cellular Physiology, 2007, 211, 121-130.	2.0	258
531	From the laboratory bench to the patient's bedside: An update on clinical trials with mesenchymal stem cells. Journal of Cellular Physiology, 2007, 211, 27-35.	2.0	578
532	Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. Journal of Cellular Physiology, 2007, 213, 18-26.	2.0	250
533	Adult bone marrow–derived stem cells for organ regeneration and repair. Developmental Dynamics, 2007, 236, 3321-3331.	0.8	123
534	Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clinical Biochemistry, 2007, 40, 893-899.	0.8	251
535	A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials, 2007, 28, 4240-4250.	5.7	465
536	Self-assembled collagen–human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials, 2007, 28, 4652-4666.	5.7	158

#	Article	IF	CITATIONS
537	Expansion of human bone marrow stromal cells on poly-(dl-lactide-co-glycolide) (PDLLGA) hollow fibres designed for use in skeletal tissue engineering. Biomaterials, 2007, 28, 5332-5343.	5.7	46
538	A sub-population of high proliferative potential-quiescent human mesenchymal stem cells is under the reversible control of interferon $\hat{I}\pm/\hat{I}^2$. Leukemia, 2007, 21, 714-724.	3.3	35
539	A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer. Leukemia, 2007, 21, 2181-2191.	3.3	45
540	Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine, 2007, 262, 509-525.	2.7	648
541	Recent advances into the understanding of mesenchymal stem cell trafficking. British Journal of Haematology, 2007, 137, 491-502.	1.2	277
542	Mesenchymal content of fresh bone marrow: a proposed quality control method for cell therapy. British Journal of Haematology, 2007, 139, 312-320.	1.2	54
543	Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation, 2007, 40, 75-90.	2.4	212
544	Inhibition of platelet-derived growth factor receptor? by imatinib mesylate suppresses proliferation and alters differentiation of human mesenchymal stem cells in vitro. Cell Proliferation, 2007, 40, 355-366.	2.4	91
545	Mesenchymal Stem Cells Stimulate Antibody Secretion in Human B Cells. Scandinavian Journal of Immunology, 2007, 65, 336-343.	1.3	261
546	Bone marrowâ€derived stem cells in wound healing: a review. Wound Repair and Regeneration, 2007, 15, S18-26.	1.5	245
547	Two steps to functional mesenchymal stromal cells for clinical application. Transfusion, 2007, 47, 1426-1435.	0.8	114
548	Protection of dopamine neurons by bone marrow stromal cells. Brain Research, 2007, 1186, 48-55.	1.1	40
549	Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells. Experimental Cell Research, 2007, 313, 698-706.	1.2	32
550	Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Experimental Cell Research, 2007, 313, 1008-1023.	1.2	85
551	Bone mineral content and collagen defects in osteogenesis imperfecta. Acta Paediatrica, International Journal of Paediatrics, 1999, 88, 1083-1088.	0.7	23
552	Stem cell differentiation and expansion for clinical applications of tissue engineering. Journal of Cellular and Molecular Medicine, 2007, 11, 935-944.	1.6	96
553	Advances in Cell-Based Therapy for Structural Heart Disease. Progress in Cardiovascular Diseases, 2007, 49, 387-395.	1.6	33
554	Human parvovirus B19, varicella zoster virus, and human herpesvirus-6 in mesenchymal stem cells of patients with osteoarthritis: analysis with quantitative real-time polymerase chain reaction. Osteoarthritis and Cartilage, 2007, 15, 475-478.	0.6	30

#	Article	IF	CITATIONS
555	Bone Regeneration Is Regulated by Wnt Signaling. Journal of Bone and Mineral Research, 2007, 22, 1913-1923.	3.1	202
556	Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 2007, 109, 4245-4248.	0.6	245
557	Sarcoma Derived from Cultured Mesenchymal Stem Cells. Stem Cells, 2007, 25, 371-379.	1.4	601
558	Concise Review: Multipotent Mesenchymal Stromal Cells in Blood. Stem Cells, 2007, 25, 69-77.	1.4	247
559	Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism. Stem Cells, 2007, 25, 2025-2032.	1.4	562
560	Mesenchymal Stem Cells in Cancer: Tumor-Associated Fibroblasts and Cell-Based Delivery Vehicles. International Journal of Hematology, 2007, 86, 8-16.	0.7	159
561	New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regenerative Medicine, 2007, 2, 785-794.	0.8	252
562	Biological treatment strategies for disc degeneration: potentials and shortcomings. European Spine Journal, 2007, 16, 447-468.	1.0	120
563	The Wnt Signal Transduction Pathway in Stem Cells and Cancer Cells: Influence on Cellular Invasion. Stem Cell Reviews and Reports, 2007, 3, 18-29.	5.6	113
564	Effects of growth factors and kinase inhibitors on the properties of human adipose-stromal cells in different culture conditions. Cell Biology International, 2008, 32, 784-791.	1.4	5
565	Osteogenesis Imperfecta: Update on presentation and management. Reviews in Endocrine and Metabolic Disorders, 2008, 9, 153-160.	2.6	139
566	Application of stem cells in bone repair. Skeletal Radiology, 2008, 37, 601-608.	1.2	48
567	Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson's disease. In Vitro Cellular and Developmental Biology - Animal, 2008, 44, 169-177.	0.7	45
568	Dental Pulp Stem Cells: A Promising Tool for Bone Regeneration. Stem Cell Reviews and Reports, 2008, 4, 21-26.	5.6	272
569	A New Approach to Evaluation of Osteogenic Potential of Mesenchymal Stromal Cells. Bulletin of Experimental Biology and Medicine, 2008, 146, 534-539.	0.3	9
570	Characterization of EGFP-labeled mesenchymal stem cells and redistribution of allogeneic cells after subcutaneous implantation. Archives of Orthopaedic and Trauma Surgery, 2008, 128, 751-759.	1.3	7
571	Renal repair: role of bone marrow stem cells. Pediatric Nephrology, 2008, 23, 851-861.	0.9	27
572	Updates on stem cells and their applications in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 169-183.	1.3	291

#	Article	IF	CITATIONS
573	Transplantation of human fetal mesenchymal stem cells improves glomerulopathy in a collagen type Iα2â€deficient mouse. Journal of Pathology, 2008, 214, 627-636.	2.1	41
574	Generation of dopamine neurons from embryonic stem cells in the presence of the neuralizing activity of bone marrow stromal cells derived from adult mice. Journal of Neuroscience Research, 2008, 86, 2829-2838.	1.3	13
575	Stretching the limits: Stem cells in regeneration science. Developmental Dynamics, 2008, 237, 3648-3671.	0.8	65
576	Accumulation of magnetically labeled rat mesenchymal stem cells using an external magnetic force, and their potential for bone regeneration. Journal of Biomedical Materials Research - Part A, 2008, 85A, 597-604.	2.1	17
577	Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 2008, 217, 789-799.	2.0	42
578	A biomarkerâ€based mathematical model to predict boneâ€forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis and Rheumatism, 2008, 58, 240-250.	6.7	116
579	Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials, 2008, 29, 4195-4204.	5.7	190
580	Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunology Letters, 2008, 115, 50-58.	1.1	243
581	Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogenâ€stimulated Bâ€cell immunoglobulin production <i>in vitro</i> . Cell Biology International, 2008, 32, 384-393.	1.4	153
582	In Search of the In Vivo Identity of Mesenchymal Stem Cells. Stem Cells, 2008, 26, 2287-2299.	1.4	953
583	Lentiviral-Transduced Human Mesenchymal Stem Cells Persistently Express Therapeutic Levels of Enzyme in a Xenotransplantation Model of Human Disease. Stem Cells, 2008, 26, 1713-1722.	1.4	88
584	CD105-Positive Cells in Pulmonary Arterial Blood of Adult Human Lung Cancer Patients Include Mesenchymal Progenitors. Stem Cells, 2008, 26, 2523-2530.	1.4	16
585	Human NK cells: from HLA class Iâ€specific killer Igâ€like receptors to the therapy of acute leukemias. Immunological Reviews, 2008, 224, 58-69.	2.8	112
586	Treatment with bone marrowâ€derived stromal cells accelerates wound healing in diabetic rats. International Wound Journal, 2008, 5, 453-463.	1.3	165
587	Therapeutic potential of genetically modified mesenchymal stem cells. Gene Therapy, 2008, 15, 711-715.	2.3	132
588	Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 2008, 8, 726-736.	10.6	3,028
589	Human mesenchymal stem cells: from basic biology to clinical applications. Gene Therapy, 2008, 15, 109-116.	2.3	330
590	Effects of Oxygen Transport on 3-D Human Mesenchymal Stem Cell Metabolic Activity in Perfusion and Static Cultures: Experiments and Mathematical Model. Biotechnology Progress, 2008, 21, 1269-1280.	1.3	112

ARTICLE IF CITATIONS Multilineage differentiation potential of equine blood-derived fibroblast-like cells. Differentiation, 591 1.0 84 2008, 76, 118-129. Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell 1.0 109 sources. Differentiation, 2008, 76, 946-957. Exogenous bone marrow cells do not rescue nonâ€irradiated mice from acute renal tubular damage 593 caused by HgCl₂, despite establishment of chimaerism and cell proliferation in bone 2.4 17 marrow and spleen. Cell Proliferation, 2008, 41, 592-606. Tissue engineering for bone defect healing: An update on a multi-component approach. Injury, 2008, 39, 594 184 S9-S20. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to 595 1.1 23 express sFlt-1 in mouse tumor model. BMC Cancer, 2008, 8, 306. Transplantable marrow osteoprogenitors engraft in discrete saturable sites in the marrow microenvironment. Experimental Hematology, 2008, 36, 360-368. 0.2 Optimization of mesenchymal stem cell expansion procedures by cell separation and culture 597 0.2 143 conditions modification. Experimental Hematology, 2008, 36, 1014-1021. MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-Î³ 598 0.2 110 challenge. Experimental Hematology, 2008, 36, 1545-1555. 599 Osteogenesis imperfecta. Best Practice and Research in Clinical Rheumatology, 2008, 22, 85-100. 1.4 146 The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell 1.4 proliferation but not its effector function. Cellular Immunology, 2008, 251, 131-136. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. Journal 601 129 1.6 of Cellular and Molecular Medicine, 2008, 12, 2552-2565. Role of mesenchymal stromal cells in solid organ transplantation. Transplantation Reviews, 2008, 22, 1.2 262-273. Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with 603 0.6 36 hematological malignant diseases. Leukemia and Lymphoma, 2008, 49, 2187-2195. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): A proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative 604 0.3 178 diseases. Journal of the Neurological Sciences, 2008, 265, 131-135. Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in 605 442 1.4 the Bone Marrow Niche. Stem Cells, 2008, 26, 151-162. Circulating Bone Marrow-Derived Osteoblast Progenitor Cells Are Recruited to the Bone-Forming 606 1.4 260 Site by the CXCR4/Stromal Cell-Derived Factor-1 Pathway. Stem Cells, 2008, 26, 223-234. Stem cells as potential novel therapeutic strategy for inflammatory bowel disease. Journal of Crohn's 607 0.6 22 and Colitis, 2008, 2, 99-106. Bone Marrow Stromal Cells and Their Use in Regenerating Bone. Novartis Foundation Symposium, 609 1.2 2008, , 133-147.

#	Article	IF	CITATIONS
610	Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells. Arthritis Research and Therapy, 2008, 10, R83.	1.6	97
611	Chondrogenic differentiation of human umbilical cord blood-derived multilineage progenitor cells in atelocollagen. Cytotherapy, 2008, 10, 165-173.	0.3	21
612	Characterization of mesenchymal stromal cells derived from full-term umbilical cord blood. Cytotherapy, 2008, 10, 54-68.	0.3	55
613	Producing MSC according GMP: Process and controls. Bio-Medical Materials and Engineering, 2008, 18, 173-177.	0.4	6
614	Mesenchymal Stem Cells. , 2008, , 318-343.		1
615	Cell and gene therapy using mesenchymal stem cells (MSCs). Journal of Autoimmunity, 2008, 30, 121-127.	3.0	135
616	Gene Expression Analysis at the Single Cell Level Using the Human Bone Marrow Stromal Cell as a Model: Sample Preparation Methods. , 2008, 449, 117-132.		2
617	Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opinion on Biological Therapy, 2008, 8, 255-268.	1.4	149
618	Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone, 2008, 43, 434-439.	1.4	139
619	Systemic Administration of Multipotent Mesenchymal Stromal Cells Reverts Hyperglycemia and Prevents Nephropathy in Type 1 Diabetic Mice. Biology of Blood and Marrow Transplantation, 2008, 14, 631-640.	2.0	297
620	The potential use of stem cells in multiple sclerosis: An overview of the preclinical experience. Clinical Neurology and Neurosurgery, 2008, 110, 889-896.	0.6	51
621	Rapid Large-Scale Expansion of Functional Mesenchymal Stem Cells from Unmanipulated Bone Marrow Without Animal Serum. Tissue Engineering - Part C: Methods, 2008, 14, 185-196.	1.1	169
622	How do mesenchymal stromal cells exert their therapeutic benefit?. Cytotherapy, 2008, 10, 771-774.	0.3	126
623	Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica, 2008, 93, 1457-1465.	1.7	113
624	Collection, Cryopreservation, and Characterization of Human Dental Pulp–Derived Mesenchymal Stem Cells for Banking and Clinical Use. Tissue Engineering - Part C: Methods, 2008, 14, 149-156.	1.1	216
625	Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncology, The, 2008, 9, 376-384.	5.1	130
626	Immunogenicity of umbilical cord tissue–derived cells. Blood, 2008, 111, 430-438.	0.6	205
627	Bone Marrow-Derived Stromal Cells (BMSCs) Interact with Fibroblasts in Accelerating Wound Healing. Journal of Investigative Surgery, 2008, 21, 270-279.	0.6	6

#	Article	IF	CITATIONS
628	Dissimilar Differentiation of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, and Adipose Tissue. Experimental Biology and Medicine, 2008, 233, 901-913.	1.1	357
629	Cell source. , 2008, , 279-306.		1
630	Mesenchymal Stem Cells and Osteoblast Differentiation. , 2008, , 85-107.		52
631	Differentiation of Osteoblasts and Osteocytes from Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2008, 3, 131-145.	0.6	180
632	Homing of Mesenchymal Stem Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 7-7.	0.7	37
633	From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera?. International Journal of Developmental Biology, 2008, 52, 1023-1032.	0.3	104
634	Successful vitrification of human amnion-derived mesenchymal stem cells. Human Reproduction, 2008, 23, 1760-1770.	0.4	67
635	Mesenchymal Stem Cells: An Emerging Tool for Cancer Targeting and Therapy. Current Stem Cell Research and Therapy, 2008, 3, 32-42.	0.6	73
636	In vivo Differentiation Potential of Mesenchymal Stem Cells: Prenatal and Postnatal Model Systems. Transfusion Medicine and Hemotherapy, 2008, 35, 239-247.	0.7	24
637	Changes of the Functional Capacity of Mesenchymal Stem Cells due to Aging or Age-Associated Disease – Implications for Clinical Applications and Donor Recruitment. Transfusion Medicine and Hemotherapy, 2008, 35, 299-305.	0.7	18
638	Targeting the Bone Marrow with Activin A-Overexpressing Embryonic Multipotent Stromal Cells Specifically Modifies B Lymphopoiesis. Stem Cells and Development, 2008, 17, 93-106.	1.1	7
639	Mesenchymal Stem Cell Therapy in Joint Disease. Novartis Foundation Symposium, 2008, , 86-102.	1.2	73
640	Distribution of Murine Adipose-Derived Mesenchymal Stem Cells in vivo Following Transplantation in Developing Mice. Stem Cells and Development, 2008, 17, 303-314.	1.1	23
641	Articular Cartilage. , 2008, , 766-781.		1
642	Stem cell myths. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 9-22.	1.8	21
643	Neo-Organoid of Marrow Mesenchymal Stromal Cells Secreting Interleukin-12 for Breast Cancer Therapy. Cancer Research, 2008, 68, 4810-4818.	0.4	79
644	The Use of Mesenchymal Stem Cells for Bone and Cartilage Repair. , 2008, , 269-294.		0
645	Mesenchymal Progenitor Cell Research: Limitations and Recommendations. Proceedings of the American Thoracic Society, 2008, 5, 707-710.	3.5	24

.

#	Article	IF	CITATIONS
646	Mesenchymal Stem Cells as Vectors for Lung Disease. Proceedings of the American Thoracic Society, 2008, 5, 711-716.	3.5	37
647	Gene Targeting of Mutant COL1A2 Alleles in Mesenchymal Stem Cells From Individuals With Osteogenesis Imperfecta. Molecular Therapy, 2008, 16, 187-193.	3.7	78
648	Comparative analysis of highly defined proteases for the isolation of adipose tissue-derived stem cells. Regenerative Medicine, 2008, 3, 705-715.	0.8	46
649	A Brief Introduction to Different Cell Types. , 2008, , 15-41.		0
650	Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 2008, 111, 2436-2443.	0.6	91
651	Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood, 2008, 111, 1717-1725.	0.6	165
652	Donor cell–derived osteopoiesis originates from a self-renewing stem cell with a limited regenerative contribution after transplantation. Blood, 2008, 111, 4386-4391.	0.6	53
653	Gardos pathway to sickle cell therapies?. Blood, 2008, 111, 3918-3919.	0.6	11
654	Osteopoietic stem cells: transplantable, but regeneratively limited. Blood, 2008, 111, 3917-3918.	0.6	0
656	Regenerating musculoskeletal tissues: possibilities for rheumatoid diseases. Future Rheumatology, 2008, 3, 183-197.	0.2	0
657	Biologic Characteristics of Mesenchymal Stromal Cells and Their Clinical Applications in Pediatric Patients. Journal of Pediatric Hematology/Oncology, 2008, 30, 301-309.	0.3	21
658	Breast Cancer Cell-Derived Fibroblast Growth Factor 2 and Vascular Endothelial Growth Factor Are Chemoattractants for Bone Marrow Stromal Stem Cells. Annals of Surgery, 2008, 247, 310-314.	2.1	35
659	Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. Journal of Clinical Investigation, 2008, 118, 491-504.	3.9	202
660	Defining the expression of marker genes in equine mesenchymal stromal cells. Stem Cells and Cloning: Advances and Applications, 2008, Volume 1, 1-9.	2.3	41
663	Fibrogenic Potential of Human Multipotent Mesenchymal Stromal Cells in Injured Liver. PLoS ONE, 2009, 4, e6657.	1.1	98
664	Bone Marrow Stem Cells Expressing Keratinocyte Growth Factor via an Inducible Lentivirus Protects against Bleomycin-Induced Pulmonary Fibrosis. PLoS ONE, 2009, 4, e8013.	1.1	148
665	Osteogenic and Adipogenic Cell Fractions Isolated from Postnatal Mouse Calvaria. Cells Tissues Organs, 2009, 190, 150-157.	1.3	8
666	Baculovirus Transduction of Mesenchymal Stem Cells Triggers the Toll-Like Receptor 3 Pathway. Journal of Virology, 2009, 83, 10548-10556.	1.5	60
#	Article	IF	CITATIONS
-----	---	-----	-----------
667	Gene and protein expression profile of naive and osteo-chondrogenically differentiated rat bone marrow-derived mesenchymal progenitor cells. International Journal of Molecular Medicine, 2009, 23, 745-55.	1.8	23
668	Editorial. Journal of Neurosurgery, 2009, 110, 1186-1188.	0.9	8
669	Intravenous mesenchymal stem cell therapy for traumatic brain injury. Journal of Neurosurgery, 2009, 110, 1189-1197.	0.9	237
670	Immuno-Therapeutic Potential of Haematopoietic and Mesenchymal Stem Cell Transplantation in MS. Results and Problems in Cell Differentiation, 2009, 51, 237-257.	0.2	11
671	Stem Cell and Gene Therapeutic Strategies for the Treatment of Multiple Sclerosis. Current Molecular Medicine, 2009, 9, 992-1016.	0.6	14
672	Tissue engineering of bone and cartilage. IBMS BoneKEy, 2009, 6, 405-419.	0.1	22
673	Primary Osteoporosis. Endocrine Development, 2009, 16, 157-169.	1.3	9
674	Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology, 2009, 48, 1057-1064.	0.9	77
675	Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging. Physiological Genomics, 2009, 37, 23-34.	1.0	42
676	Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype–phenotype relationships. Human Molecular Genetics, 2009, 18, 463-471.	1.4	107
677	Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis and Cartilage, 2009, 17, 714-722.	0.6	128
678	New Bone Formation by Allogeneic Mesenchymal Stem Cell Transplantation in a Patient with Perinatal Hypophosphatasia. Journal of Pediatrics, 2009, 154, 924-930.	0.9	60
679	Mesenchymal stem cellâ€based therapy: a new paradigm in regenerative medicine. Journal of Cellular and Molecular Medicine, 2009, 13, 4385-4402.	1.6	235
680	Infusion of Mesenchymal Stem Cells and Rapamycin Synergize to Attenuate Alloimmune Responses and Promote Cardiac Allograft Tolerance. American Journal of Transplantation, 2009, 9, 1760-1772.	2.6	234
681	Hematopoietic stem cell origin of human fibroblasts: Cell culture studies of female recipients of gender-mismatched stem cell transplantation and patients with chronic myelogenous leukemia. Experimental Hematology, 2009, 37, 1464-1471.	0.2	20
682	Mesenchymal Stem Cell Allograft in Revision Foot and Ankle Surgery: A Clinical and Radiographic Analysis. Journal of Foot and Ankle Surgery, 2009, 48, 163-169.	0.5	46
684	<i>In vivo</i> imaging of hematopoietic stem cells and their microenvironment. Journal of Biophotonics, 2009, 2, 619-631.	1.1	85
685	Selection of highly osteogenic and chondrogenic cells from bone marrow stromal cells in biocompatible polymerâ€coated plates. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1273-1282.	2.1	7

#	Article	IF	CITATIONS
686	The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: Current status and future perspectives. Journal of Cellular Physiology, 2009, 218, 9-12.	2.0	78
687	The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. Journal of Cellular Physiology, 2009, 218, 237-245.	2.0	294
688	Shortening of human cell life span by induction of p16ink4a through the plateletâ€derived growth factor receptor β. Journal of Cellular Physiology, 2009, 221, 335-342.	2.0	4
689	Relaxation effects of ferucarbotranâ€labeled mesenchymal stem cells at 1.5T and 3T: Discrimination of viable from lysed cells. Magnetic Resonance in Medicine, 2009, 62, 325-332.	1.9	48
690	Stem cells and solid cancers. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2009, 455, 1-13.	1.4	23
691	Human mesenchymal stem cells implantation into the degenerated coccygeal disc of the rat. Cytotechnology, 2009, 59, 55-64.	0.7	46
692	Genomic Profiling of Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2009, 5, 36-50.	5.6	66
693	Direct Evidence of Mesenchymal Stem Cell Tropism for Tumor and Wounding Microenvironments Using In Vivo Bioluminescent Imaging. Stem Cells, 2009, 27, 2614-2623.	1.4	577
694	Direct Imaging of Immune Rejection and Memory Induction by Allogeneic Mesenchymal Stromal Cells. Stem Cells, 2009, 27, 2865-2874.	1.4	230
695	Trafficking Mesenchymal Stem Cell Engraftment and Differentiation in Tumor-Bearing Mice by Bioluminescence Imaging. Stem Cells, 2009, 27, 1548-1558.	1.4	206
696	Human tissue-engineered bone produced in clinically relevant amounts using a semi-automated perfusion bioreactor system: a preliminary study. Journal of Tissue Engineering and Regenerative Medicine, 2009, 4, n/a-n/a.	1.3	36
697	Why are MSCs therapeutic? New data: new insight. Journal of Pathology, 2009, 217, 318-324.	2.1	996
698	Enhancing epithelial engraftment of rat mesenchymal stem cells restores epithelial barrier integrity. Journal of Pathology, 2009, 218, 350-359.	2.1	78
699	Identification of mesenchymal stem cell (MSC)â€transcription factors by microarray and knockdown analyses, and signature moleculeâ€marked MSC in bone marrow by immunohistochemistry. Genes To Cells, 2009, 14, 407-424.	0.5	108
700	The immunomodulatory activity of human umbilical cord bloodâ€derived mesenchymal stem cells <i>in vitro</i> . Immunology, 2009, 126, 220-232.	2.0	223
701	Isolation and characterization of multipotent stem cells from human cruciate ligaments. Cell Proliferation, 2009, 42, 448-460.	2.4	80
702	TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine, 2009, 15, 757-765.	15.2	1,001
703	Glycosyltransferaseâ€programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration. Immunological Reviews, 2009, 230, 51-74.	2.8	75

#	Article	IF	CITATIONS
704	Potential of mesenchymal stem cells as immune therapy in solid-organ transplantation. Transplant International, 2009, 22, 365-376.	0.8	77
705	Mesenchymal Stromal Cells. Annals of the New York Academy of Sciences, 2009, 1176, 101-117.	1.8	269
706	Generation and characterization of mesenchymal stromal cells for clinical application. ISBT Science Series, 2009, 4, 31-36.	1.1	2
707	Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG: an International Journal of Obstetrics and Gynaecology, 2009, 116, 166-172.	1.1	86
708	Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect <i>in vivo</i> . Journal of Neurochemistry, 2009, 110, 1674-1684.	2.1	169
709	A Novel Method of Dynamic Culture Surface Expansion Improves Mesenchymal Stem Cell Proliferation and Phenotype. Stem Cells, 2009, 27, 200-209.	1.4	62
710	Reciprocal Interactions Between Human Mesenchymal Stem Cells and <i>γδ</i> T Cells Or Invariant Natural Killer T Cells. Stem Cells, 2009, 27, 693-702.	1.4	150
711	Spherically Symmetric Mesenchymal Stromal Cell Bodies Inherent with Endogenous Extracellular Matrices for Cellular Cardiomyoplasty. Stem Cells, 2009, 27, 724-732.	1.4	79
712	Restoration of Bone Mass and Strength in Glucocorticoid-Treated Mice by Systemic Transplantation of CXCR4 and Cbfa-1 Co-Expressing Mesenchymal Stem Cells. Journal of Bone and Mineral Research, 2009, 24, 837-848.	3.1	85
713	BMP-6 and mesenchymal stem cell differentiation. Cytokine and Growth Factor Reviews, 2009, 20, 441-448.	3.2	121
714	Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone, 2009, 45, 918-924.	1.4	90
715	Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2009, 381, 676-681.	1.0	90
716	Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6. Cell Stem Cell, 2009, 5, 54-63.	5.2	1,607
718	When stem cells meet immunoregulation. International Immunopharmacology, 2009, 9, 596-598.	1.7	26
719	Marrow stromal cell transplantation in stroke and traumatic brain injury. Neuroscience Letters, 2009, 456, 120-123.	1.0	203
720	Transpedicular aspiration of osteoprogenitor cells from the vertebral body: progenitor cell concentrations affected by serial aspiration. Spine Journal, 2009, 9, 995-1002.	0.6	20
721	Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy, 2009, 11, 503-515.	0.3	163
722	Pulmonary Passage is a Major Obstacle for Intravenous Stem Cell Delivery: The Pulmonary First-Pass Effect. Stem Cells and Development, 2009, 18, 683-692.	1.1	1,014

#	Article	IF	Citations
723	CD133 Identifies a Human Bone Marrow Stem/Progenitor Cell Sub-population With a Repertoire of Secreted Factors That Protect Against Stroke. Molecular Therapy, 2009, 17, 1938-1947.	3.7	79
724	Cell-free and cell-based approaches for bone regeneration. Nature Reviews Rheumatology, 2009, 5, 685-697.	3.5	235
725	The Role of Mesenchymal Stem Cells in the Functional Improvement of Chronic Renal Failure. Stem Cells and Development, 2009, 18, 521-530.	1.1	147
726	Mesenchymal Stem Cells. , 2009, , 243-248.		4
727	Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nature Reviews Rheumatology, 2009, 5, 392-399.	3.5	278
728	Stem Cells in Regenerative Medicine. Methods in Molecular Biology, 2009, , .	0.4	8
729	Stem Cell Sources for Regenerative Medicine. Methods in Molecular Biology, 2009, 482, 55-90.	0.4	46
730	Repair of Tissues by Adult Stem/Progenitor Cells (MSCs): Controversies, Myths, and Changing Paradigms. Molecular Therapy, 2009, 17, 939-946.	3.7	524
731	Cellular Biology of Hematopoiesis. , 0, , 72-87.		0
732	Biology of Stem Cells and the Molecular Basis of the Stem State. , 2009, , .		18
733	Mesenchymal Stem Cells for Bone Repair and Metabolic Bone Diseases. Mayo Clinic Proceedings, 2009, 84, 893-902.	1.4	175
734	Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells. Cytotherapy, 2009, 11, 129-136.	0.3	69
735	Selection of CD271+ cells and human AB serum allows a Large expansion of mesenchymal stromal cells from human bone marrow. Cytotherapy, 2009, 11, 153-162.	0.3	66
736	Mesenchymal Stromal Cells Expanded in Human Allogenic Cord Blood Serum Display Higher Self-Renewal and Enhanced Osteogenic Potential. Stem Cells and Development, 2009, 18, 559-572.	1.1	55
737	XXVIII Italian Society for the Study of Connective Tissues (SISC) Meeting, Pavia, Italy, 6–7 November 2008. Connective Tissue Research, 2009, 50, 65-97.	1.1	1
738	Human Umbilical Cord Mesenchymal Stem Cells Reduce Fibrosis of Bleomycin-Induced Lung Injury. American Journal of Pathology, 2009, 175, 303-313.	1.9	315
739	Cellular-Based Therapy for Osteonecrosis. Orthopedic Clinics of North America, 2009, 40, 213-221.	0.5	33
741	Impaired differentiation potential of human trabecular bone mesenchymal stromal cells from elderly patients. Cytotherapy, 2009, 11, 584-594.	0.3	63

#	Article	IF	CITATIONS
742	Adipocyte differentiation defect in mesenchymal stromal cells of patients with malignant infantile osteopetrosis. Cytotherapy, 2009, 11, 392-402.	0.3	22
743	Cell therapy for disorders of bone. Cytotherapy, 2009, 11, 3-17.	0.3	30
744	Fetal Tissue Engineering. Clinics in Perinatology, 2009, 36, 473-488.	0.8	32
745	Stem Cells in Sepsis. Annals of Surgery, 2009, 250, 19-27.	2.1	36
746	Stem Cell-Based Therapies for Spinal Cord Injury. Journal of Spinal Cord Medicine, 2009, 32, 105-114.	0.7	110
747	Fetal stem cell therapy. , 0, , 83-100.		0
748	Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors. Haematologica, 2009, 94, 1649-1660.	1.7	111
749	The CD34-like protein PODXL and $\hat{l}\pm 6$ -integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood, 2009, 113, 816-826.	0.6	169
750	In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood, 2009, 114, 459-468.	0.6	93
751	Potential implications of cell therapy for osteogenesis imperfecta. International Journal of Clinical Rheumatology, 2009, 4, 57-66.	0.3	26
752	Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restorative Neurology and Neuroscience, 2009, 27, 151-161.	0.4	144
753	Mesenchymal Stem Cells for Therapeutic Purposes. Transplantation, 2009, 87, S49-S53.	0.5	87
754	In Vivo MRI Stem Cell Tracking Requires Balancing of Detection Limit and Cell Viability. Cell Transplantation, 2010, 19, 431-441.	1.2	53
755	Stem cells in sepsis and acute lung injury. Critical Care Medicine, 2010, 38, 2379-2385.	0.4	64
756	Fetal Mesenchymal Stem Cells. , 2010, , 339-367.		0
757	Serumâ€free medium with osteogenic supplements induces adipogenesis in rat bone marrow stromal cells. Cell Biology International, 2010, 34, 615-620.	1.4	4
758	Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica, 2010, 95, 867-874.	1.7	120
759	Interaction of human mesenhymal stromal with immune cells. Human Physiology, 2010, 36, 590-598.	0.1	9

#	Article	IF	CITATIONS
760	Lentivirus-modified human umbilical cord mesenchymal stem cells maintain their pluripotency. Biotechnology and Applied Biochemistry, 2010, 55, 53-62.	1.4	13
761	A Mesenchymal Stem Cell Potency Assay. Methods in Molecular Biology, 2010, 677, 221-231.	0.4	34
762	Human Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: A User's Guide. Stem Cells and Development, 2010, 19, 1449-1470.	1.1	297
763	Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Advanced Drug Delivery Reviews, 2010, 62, 1156-1166.	6.6	188
764	Mesenchymal Stem Cell–Encapsulated Collagen Microspheres for Bone Tissue Engineering. Tissue Engineering - Part C: Methods, 2010, 16, 225-235.	1.1	109
765	Secretory Profiles and Wound Healing Effects of Human Amniotic Fluid–Derived Mesenchymal Stem Cells. Stem Cells and Development, 2010, 19, 887-902.	1.1	175
768	ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatric Surgery International, 2010, 26, 3-10.	0.6	66
769	Regeneration potential and mechanism of bone marrow mesenchymal stem cell transplantation for treating intervertebral disc degeneration. Journal of Orthopaedic Science, 2010, 15, 707-719.	0.5	26
770	Proliferation and osteoblastic differentiation of bone marrow stem cells: comparison of vertebral body and iliac crest. European Spine Journal, 2010, 19, 1753-1760.	1.0	24
771	A Consensus Statement Addressing Mesenchymal Stem Cell Transplantation for Multiple Sclerosis: It's Time!. Stem Cell Reviews and Reports, 2010, 6, 500-506.	5.6	30
772	Hematopoietic stem cell origin of mesenchymal cells: opportunity for novel therapeutic approaches. International Journal of Hematology, 2010, 91, 353-359.	0.7	15
773	Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Research and Treatment, 2010, 121, 293-300.	1.1	101
774	Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: A pilot study. Journal of Neuroimmunology, 2010, 227, 185-189.	1.1	311
775	Optimizing the success of cell transplantation therapy for stroke. Neurobiology of Disease, 2010, 37, 275-283.	2.1	175
776	Hematopoietic stem cell origin of connective tissues. Experimental Hematology, 2010, 38, 540-547.	0.2	21
777	Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation: Microcomputed tomography studies. Experimental Hematology, 2010, 38, 593-602.	0.2	35
778	Osteopoietic engraftment after bone marrow transplantation: Effect of inbred strain of mice. Experimental Hematology, 2010, 38, 836-844.	0.2	6
779	Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). Journal of Cellular and Molecular Medicine, 2010, 14, 2190-2199.	1.6	232

#	Article	IF	CITATIONS
780	Recent highlights on bone stem cells: a report from Bone Stem Cells 2009, and not only…. Journal of Cellular and Molecular Medicine, 2010, 14, 2614-2621.	1.6	6
781	The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR in Biomedicine, 2010, 23, 514-522.	1.6	62
782	Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. Journal of Biotechnology, 2010, 148, 83-90.	1.9	83
783	Defining human mesenchymal stem cell efficacy in vivo. Journal of Inflammation, 2010, 7, 51.	1.5	67
784	Les cellules souches mésenchymateuses : des cellules pour la médecine régénérative du futur ?. Revue Francophone Des Laboratoires, 2010, 2010, 47-59.	0.0	0
785	An Inducible Caspase 9 Suicide Gene to Improve the Safety of Mesenchymal Stromal Cell Therapies. Stem Cells, 2010, 28, 1107-1115.	1.4	80
786	Concise Review: Hitting the Right Spot with Mesenchymal Stromal Cells Â. Stem Cells, 2010, 28, 1446-1455.	1.4	348
787	Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 374-386.	1.3	54
788	Human mesenchymal stem cells promote growth of osteosarcoma: Involvement of interleukinâ€6 in the interaction between human mesenchymal stem cells and Saosâ€2. Cancer Science, 2010, 101, 2554-2560.	1.7	77
789	Cell cycle and tissue of origin contribute to the migratory behaviour of human fetal and adult mesenchymal stromal cells. British Journal of Haematology, 2010, 148, 428-440.	1.2	30
790	Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective singleâ€step plasticâ€adherent method. Cell Proliferation, 2010, 43, 235-248.	2.4	28
791	Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Research, 2010, 20, 510-518.	5.7	471
792	Restoration of cellular function of mesenchymal stem cells from a hypophosphatasia patient. Gene Therapy, 2010, 17, 494-502.	2.3	19
793	Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Therapy, 2010, 17, 692-708.	2.3	69
794	Hepatocytes of donor origin in recipient liver after hematopoietic SCT in β-thalassemia major patients. Bone Marrow Transplantation, 2010, 45, 694-698.	1.3	3
795	L'ingéniérie cutanée pour le traitement des brûlures graves. Bulletin De L'Academie Nationale De Medecine, 2010, 194, 1339-1351.	0.0	1
796	A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 2010, 36, 7.	0.3	3
798	Current and emerging treatments for the management of osteogenesis imperfecta. Therapeutics and Clinical Risk Management, 2010, 6, 367.	0.9	87

#	ARTICLE	IF	CITATIONS
799	Human Mesenchymal Stem Cells as Mediators of Breast Carcinoma Tumorigenesis and Progression. Scientific World Journal, The, 2010, 10, 1084-1087.	0.8	2
800	Mesenchymal stem cells: Molecular characteristics and clinical applications. World Journal of Stem Cells, 2010, 2, 67.	1.3	176
801	The myofibroblast in connective tissue repair and regeneration. , 2010, , 39-80.		10
802	Lnk-dependent axis of SCF–cKit signal for osteogenesis in bone fracture healing. Journal of Experimental Medicine, 2010, 207, 2207-2223.	4.2	25
803	Safety and Immunological Effects of Mesenchymal Stem Cell Transplantation in Patients With Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 1187-94.	4.9	806
804	Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian Journal of Transfusion Science, 2010, 4, 14.	0.1	74
805	Optimization of Genetic Engineering and Homologous Recombination of Collagen Type I Genes in Rat Bone Marrow Mesenchymal Stem Cells (MSC). Cellular Reprogramming, 2010, 12, 275-282.	0.5	11
806	"Mesenchymal―Stem Cells in Human Bone Marrow (Skeletal Stem Cells): A Critical Discussion of Their Nature, Identity, and Significance in Incurable Skeletal Disease. Human Gene Therapy, 2010, 21, 1057-1066.	1.4	154
807	Short-Time Survival and Engraftment of Bone Marrow Stromal Cells in an Ectopic Model of Bone Regeneration. Tissue Engineering - Part A, 2010, 16, 489-499.	1.6	77
808	Multipotent mesenchymal stromal cell therapy in renal disease and kidney transplantation. Nephrology Dialysis Transplantation, 2010, 25, 17-24.	0.4	83
810	Potential of mesenchymal stem cells for the therapy of autoimmune diseases. Expert Review of Clinical Immunology, 2010, 6, 211-218.	1.3	33
811	Epidermal Growth Factor (EGF) Treatment on Multipotential Stromal Cells (MSCs). Possible Enhancement of Therapeutic Potential of MSC. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	113
812	Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L760-L770.	1.3	169
813	Generation of an Osteogenic Graft From Human Placenta and Placenta-Derived Mesenchymal Stem Cells. Reproductive Sciences, 2010, 17, 1006-1015.	1.1	24
815	Hypoxia Preconditioned Mesenchymal Stem Cells Improve Vascular and Skeletal Muscle Fiber Regeneration After Ischemia Through a Wnt4-dependent Pathway. Molecular Therapy, 2010, 18, 1545-1552.	3.7	156
816	Cell therapy in bone healing disorders. Orthopedic Reviews, 2010, 2, e20.	0.3	49
817	Human umbilical cord blood-derived stromal cells: Multifaceted regulators of megakaryocytopoiesis. Cell Cycle, 2010, 9, 1342-1353.	1.3	10
818	The Balance of WNT and FGF Signaling Influences Mesenchymal Stem Cell Fate During Skeletal Development. Science Signaling, 2010, 3, ra40.	1.6	106

#	Article	IF	CITATIONS
819	Stem cells and regenerative medicine: accomplishments to date and future promise. Therapeutic Delivery, 2010, 1, 693-705.	1.2	32
820	Biomaterials and Mesenchymal Stem Cells for Regenerative Medicine. Recent Patents on Biotechnology, 2010, 4, 1-22.	0.4	82
821	Low Oxygen Tension and Synthetic Nanogratings Improve the Uniformity and Stemness of Human Mesenchymal Stem Cell Layer. Molecular Therapy, 2010, 18, 1010-1018.	3.7	43
822	Hypoxic/Normoxic Preconditioning Increases Endothelial Differentiation Potential of Human Bone Marrow CD133+ Cells. Tissue Engineering - Part C: Methods, 2010, 16, 1069-1081.	1.1	40
824	CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica, 2010, 95, 651-659.	1.7	151
825	Mesenchymal Stem Cells as Therapeutics. Annual Review of Biomedical Engineering, 2010, 12, 87-117.	5.7	672
826	The Negative Co-Signaling Molecule B7-H4 Is Expressed by Human Bone Marrow–Derived Mesenchymal Stem Cells and Mediates its T-Cell Modulatory Activity. Stem Cells and Development, 2010, 19, 27-38.	1.1	80
827	Mesenchymal Stem Cell Mechanics from the Attached to the Suspended State. Biophysical Journal, 2010, 99, 2479-2487.	0.2	146
828	Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk. Molecular Cancer, 2010, 9, 295.	7.9	89
829	Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. Journal of Translational Medicine, 2010, 8, 131.	1.8	77
830	The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Multiple Sclerosis Journal, 2010, 16, 503-510.	1.4	212
831	The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application. Bone, 2010, 47, 41-48.	1.4	27
832	Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta. Bone, 2010, 47, 546-555.	1.4	47
833	Immunohematologic Reconstitution in Pediatric Patients after T Cell-Depleted HLA-Haploidentical Stem Cell Transplantation for Thalassemia. Biology of Blood and Marrow Transplantation, 2010, 16, 1557-1566.	2.0	19
834	Allogeneic administration of fetal membrane-derived mesenchymal stem cells attenuates acute myocarditis in rats. Journal of Molecular and Cellular Cardiology, 2010, 49, 753-761.	0.9	30
836	Modulating Endochondral Ossification of Multipotent Stromal Cells for Bone Regeneration. Tissue Engineering - Part B: Reviews, 2010, 16, 385-395.	2.5	82
837	Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields. Nanomedicine, 2011, 6, 43-54.	1.7	32
838	Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Research and Therapy, 2011, 2, 14.	2.4	145

#	Article	IF	CITATIONS
839	Angiogenic Activity of Mesenchymal Stem Cells in Multiple Myeloma. Cancer Investigation, 2011, 29, 37-41.	0.6	27
840	TAp63α Mediates Chemotherapeutic Agent-Induced Apoptosis in Human Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 2011, 20, 1319-1326.	1.1	14
841	The Science and Ethics of Induced Pluripotency: What Will Become of Embryonic Stem Cells?. Mayo Clinic Proceedings, 2011, 86, 634-640.	1.4	48
842	Characterization of boneâ€marrowâ€derived rat mesenchymal stem cells depending on donor age. Cell Biology International, 2011, 35, 1055-1062.	1.4	27
843	Human Embryonic Stem Cell-Derived Mesenchymal Progenitors: An Overview. Methods in Molecular Biology, 2011, 690, 163-174.	0.4	37
844	Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue. Cytotherapy, 2011, 13, 933-943.	0.3	61
845	Biologic Foundations for Skeletal Tissue Engineering. Synthesis Lectures on Tissue Engineering, 2011, 3, 1-220.	0.3	10
846	Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions. Expert Opinion on Biological Therapy, 2011, 11, 893-909.	1.4	106
847	Molecular Mediators of Mesenchymal Stem Cell Biology. Vitamins and Hormones, 2011, 87, 39-59.	0.7	8
849	Growth Factors, Stem Cells and Bronchopulmonary Dysplasia. Neonatology, 2011, 99, 326-337.	0.9	16
850	Low-Intensity Ultrasound Increased Colony Forming Unit-Fibroblasts of Mesenchymal Stem Cells During Primary Culture. Tissue Engineering - Part C: Methods, 2011, 17, 517-526.	1.1	26
853	Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: A double-blind, randomized, controlled trial. Diabetes Research and Clinical Practice, 2011, 92, 26-36.	1.1	407
854	Ex vivo expansion of mesenchymal stromal cells. Best Practice and Research in Clinical Haematology, 2011, 24, 73-81.	0.7	76
855	The Potential Utility of Bone Marrow or Umbilical Cord Blood Transplantation For the Treatment of Type I Diabetes Mellitus. Biology of Blood and Marrow Transplantation, 2011, 17, 455-464.	2.0	11
856	Remestemcel-L: human mesenchymal stem cells as an emerging therapy for Crohn's disease. Expert Opinion on Biological Therapy, 2011, 11, 1249-1256.	1.4	48
857	Safe and effective gene transfer by adeno-associated virus of neonatal thymus-derived mesenchymal stromal cells. Tissue and Cell, 2011, 43, 108-114.	1.0	3
859	Human Cytokine Expression Profile in Various Conditioned Media for In Vitro Expansion Bone Marrow and Umbilical Cord Blood Immunophenotyped Mesenchymal Stem Cells. Transplantation Proceedings, 2011, 43, 639-643.	0.3	27
860	Cytokine-induced osteopoietic differentiation of transplanted marrow cells. Blood, 2011, 118, 2358-2361.	0.6	3

	СІТАПО	N REPORT	
#	ARTICLE	IF	Citations
861	Imaging Devices for Use in Small Animals. Seminars in Nuclear Medicine, 2011, 41, 151-165.	2.5	42
862	Recent Studies Assessing the Proliferative Capability of a Novel Adult Stem Cell Identified in Menstrual Blood. Open Stem Cell Journal, 2011, 3, 4-10.	2.0	80
863	The Prospect of Stem Cells as Multi-Faceted Purveyors of Immune Modulation, Repair and Regeneration in Multiple Sclerosis. Current Stem Cell Research and Therapy, 2011, 6, 50-62.	0.6	32
864	Expansion of hMSCs and Their Application. , 2011, , 425-436.		0
865	Hutchinson-Gilford progeria syndrome cardiovascular disease and oxidative stress. Frontiers in Bioscience - Scholar, 2011, S3, 1285-1297.	0.8	1
867	Mesenchymal stem cell transplantation to treat multiple sclerosis. , 0, , 520-534.		2
868	Transplanted Bone Marrow derived Cells Differentiated toTooth, Bone and Connective Tissues in Mice. Journal of Hard Tissue Biology, 2011, 20, 147-152.	0.2	11
869	Mesenchymal Stem Cell-Based Bone Engineering for Bone Regeneration. , 0, , .		5
870	Mesenchymal Stem Cells: Immunology and Therapeutic Benefits. , 0, , .		4
872	Mesenchymal stem cells in transplantation and tissue regeneration. Frontiers in Immunology, 2011, 2, 84.	2.2	9
873	Stem Cell Therapy: A New Treatment for Burns?. Pharmaceuticals, 2011, 4, 1355-1380.	1.7	54
875	Epigenetic Regulation of Mesenchymal Stem Cells: A Focus on Osteogenic and Adipogenic Differentiation. Stem Cells International, 2011, 2011, 1-18.	1.2	92
876	The Antidiabetic Effect of MSCs Is Not Impaired by Insulin Prophylaxis and Is Not Improved by a Second Dose of Cells. PLoS ONE, 2011, 6, e16566.	1.1	25
877	Transformation of Human Mesenchymal Cells and Skin Fibroblasts into Hematopoietic Cells. PLoS ONE, 2011, 6, e21250.	1.1	32
878	Degenerate Wave and Capacitive Coupling Increase Human MSC Invasion and Proliferation While Reducing Cytotoxicity in an In Vitro Wound Healing Model. PLoS ONE, 2011, 6, e23404.	1.1	52
879	Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction. PLoS ONE, 2011, 6, e23891.	1.1	47
880	Epithelial Cells Derived from Swine Bone Marrow Express Stem Cell Markers and Support Influenza Virus Replication In Vitro. PLoS ONE, 2011, 6, e29567.	1.1	13
881	Stem Cells in Sepsis and Acute Lung Injury. American Journal of the Medical Sciences, 2011, 341, 325-332.	0.4	21

#	Article	IF	CITATIONS
882	Platelet Lysate Consisting of a Natural Repair Proteome Supports Human Mesenchymal Stem Cell Proliferation and Chromosomal Stability. Cell Transplantation, 2011, 20, 797-812.	1.2	194
883	Inhibition of T-Cell Proliferation by Murine Multipotent Mesenchymal Stromal Cells is Mediated by CD39 Expression and Adenosine Generation. Cell Transplantation, 2011, 20, 1221-1230.	1.2	74
884	Mesenchymal Stem Cells in the Umbilical Cord: Phenotypic Characterization, Secretome and Applications in Central Nervous System Regenerative Medicine. Current Stem Cell Research and Therapy, 2011, 6, 221-228.	0.6	90
885	Bone Marrow Mesenchymal Stem Cells: Agents of Immunomodulation and Neuroprotection. Current Stem Cell Research and Therapy, 2011, 6, 63-68.	0.6	92
886	The role of multipotent marrow stromal cells (MSCs) in tissue regeneration. Organogenesis, 2011, 7, 96-100.	0.4	32
887	Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood, 2011, 117, 459-469.	0.6	329
888	Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood, 2011, 117, 1053-1060.	0.6	78
889	Expression of blood group genes by mesenchymal stem cells. British Journal of Haematology, 2011, 153, 520-528.	1.2	31
890	Knockdown of p21 ^{Cip1/Waf1} enhances proliferation, the expression of stemness markers, and osteogenic potential in human mesenchymal stem cells. Aging Cell, 2011, 10, 349-361.	3.0	73
891	Mesenchymal Stromal Cells: Past, Present, and Future. Veterinary Surgery, 2011, 40, 129-139.	0.5	62
892	Human embryonic stem cell–derived mesenchymal stromal cells. Transfusion, 2011, 51, 138S-144S.	0.8	18
893	Gimme shelter: the immune system during pregnancy. Immunological Reviews, 2011, 241, 20-38.	2.8	206
894	The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 2011, 12, 126-131.	16.1	544
895	Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. Journal of Cellular and Molecular Medicine, 2011, 15, 1266-1286.	1.6	116
896	Regenerative Medicine. Current Problems in Surgery, 2011, 48, 148-212.	0.6	30
897	Mesenchymal stem cells and bone regeneration: Current status. Injury, 2011, 42, 562-568.	0.7	160
898	Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Experimental Hematology, 2011, 39, 360-374.e5.	0.2	73
899	Mesenchymal Stem Cells: Mechanisms of Inflammation. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 457-478.	9.6	715

#	Article	IF	CITATIONS
900	Genetically Modified Mesenchymal Stem Cells for Improved Islet Transplantation. Molecular Pharmaceutics, 2011, 8, 1458-1470.	2.3	18
901	Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. Journal of Materials Science: Materials in Medicine, 2011, 22, 1343-1356.	1.7	36
902	Kidney repair and stem cells: a complex and controversial process. Pediatric Nephrology, 2011, 26, 1427-1434.	0.9	36
903	Multiplex Analysis of Cytokines, Chemokines, Growth Factors, MMP-9 and TIMP-1 Produced by Human Bone Marrow, Adipose Tissue, and Placental Mesenchymal Stromal Cells. Bulletin of Experimental Biology and Medicine, 2011, 151, 133-141.	0.3	27
904	The role of stem cells in fracture healing and nonunion. International Orthopaedics, 2011, 35, 1587-1597.	0.9	129
905	Death and inflammation following somatic cell transplantation. Seminars in Immunopathology, 2011, 33, 535-550.	2.8	46
907	Bone Marrow Mesenchymal Cells: How Do They Contribute to Tissue Repair and Are They Really Stem Cells?. Archivum Immunologiae Et Therapiae Experimentalis, 2011, 59, 369-378.	1.0	82
908	Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporosis International, 2011, 22, 1469-1479.	1.3	33
909	The Potential of Adipose Stem Cells in Regenerative Medicine. Stem Cell Reviews and Reports, 2011, 7, 269-291.	5.6	386
910	Bone Marrow Mesenchymal Stem Cells: Biological Properties and Their Role in Hematopoiesis and Hematopoietic Stem Cell Transplantation. Stem Cell Reviews and Reports, 2011, 7, 569-589.	5.6	160
911	Using living cells to transport therapeutic genes for cancer treatment. Clinical and Translational Oncology, 2011, 13, 10-17.	1.2	7
912	Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Frontiers of Medicine, 2011, 5, 94-100.	1.5	177
913	Human Placenta-Derived Adherent Cells Prevent Bone loss, Stimulate Bone formation, and Suppress Growth of Multiple Myeloma in Bone. Stem Cells, 2011, 29, 263-273.	1.4	71
914	Concise Review: Induced Pluripotent Stem Cells and Lineage Reprogramming: Prospects for Bone Regeneration. Stem Cells, 2011, 29, 555-563.	1.4	52
915	Concise Review: Adipose-Derived Stromal Cells for Skeletal Regenerative Medicine. Stem Cells, 2011, 29, 576-582.	1.4	176
916	Persistence of intracellular and extracellular changes after incompletely suppressing expression of the R789C (p.R989C) and R992C (p.R1192C) collagen II mutants. Human Mutation, 2011, 32, 794-805.	1.1	10
917	Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. Journal of Cellular Biochemistry, 2011, 112, 3491-3501.	1.2	410
919	Chemical Control of Stem Cell Fate and Developmental Potential. Angewandte Chemie - International Edition, 2011, 50, 200-242.	7.2	124

#	Article	IF	CITATIONS
920	Clonal analysis of the proliferation potential of human bone marrow mesenchymal stem cells as a function of potency. Biotechnology and Bioengineering, 2011, 108, 2716-2726.	1.7	70
921	Osteogenesis Imperfecta: A Review with Clinical Examples. Molecular Syndromology, 2011, 2, 1-20.	0.3	159
922	Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Upregulate Myelin Basic Protein in Shiverer Mice. Stem Cells and Development, 2011, 20, 881-891.	1.1	9
923	Terminal differentiation is not a major determinant for the success of stem cell therapy - cross-talk between muscle-derived stem cells and host cells. Stem Cell Research and Therapy, 2011, 2, 31.	2.4	65
924	Stem cells in bone diseases: current clinical practice. British Medical Bulletin, 2011, 99, 199-210.	2.7	29
925	BMSC enhance the survival of paclitaxel treated squamous cell carcinoma cells in vitro. Cancer Biology and Therapy, 2011, 11, 349-357.	1.5	51
926	Biologic Characteristics of Bone Marrow Mesenchymal Stem Cells in Myelodysplastic Syndromes. Current Stem Cell Research and Therapy, 2011, 6, 122-130.	0.6	20
927	Immunomodulatory Activity of Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2011, 6, 297-316.	0.6	64
928	Effects of Inflammatory Factors on Mesenchymal Stem Cells and Their Role in the Promotion of Tumor Angiogenesis in Colon Cancer. Journal of Biological Chemistry, 2011, 286, 25007-25015.	1.6	162
929	Effects of human placental serum on proliferation and morphology of human adipose tissue-derived stem cells. Bone Marrow Transplantation, 2011, 46, 1464-1471.	1.3	20
930	Mesenchymal Stem Cells: Angels or Demons?. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	119
931	T Cell-Depleted HIA-Haploidentical Stem Cell Transplantation in Thalassemia Young Patients. Mental Illness, 2011, 3, e13.	0.8	38
932	Sources of Mesenchymal Stem Cells: Current and Future Clinical Use. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 267-286.	0.6	5
933	Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. Reproduction, 2012, 143, 455-468.	1.1	97
934	Future Roles for Stem Cells in Respiratory Medicine. Clinical Pulmonary Medicine, 2012, 19, 34-38.	0.3	1
935	Theoretical Model For Bone Graft Success. Implant Dentistry, 2012, 21, 295-301.	1.7	3
936	Mesenchymal stem cells. Current Opinion in Organ Transplantation, 2012, 17, 55-62.	0.8	47
937	Bone marrow mesenchymal progenitor and stem cell biology and therapy. , 2012, , 345-390.		0

#	Article	IF	CITATIONS
938	The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis. Immunotherapy, 2012, 4, 529-547.	1.0	49
939	Science to Practice: Can Macrophage Infiltration Serve as a Surrogate Marker for Stem Cell Viability?. Radiology, 2012, 264, 619-620.	3.6	6
940	The Utility of Allograft Mesenchymal Stem Cells for Spine Fusion: A Literature Review. Global Spine Journal, 2012, 2, 109-114.	1.2	1
941	Bone marrow and the control of immunity. Cellular and Molecular Immunology, 2012, 9, 11-19.	4.8	256
942	Nuclear Receptors <i>Nur77</i> and <i>Nurr1</i> Modulate Mesenchymal Stromal Cell Migration. Stem Cells and Development, 2012, 21, 228-238.	1.1	56
943	Human mesenchymal stem cells overexpressing therapeutic genes: From basic science to clinical applications for articular cartilage repair. Bio-Medical Materials and Engineering, 2012, 22, 197-208.	0.4	19
944	Proliferation of Rat Mesenchymal Stem Cells in Collagen Sponges Reinforced with Poly(Ethylene) Tj ETQq0 0 0 rg 2012, 23, 1741-1753.	BT /Overlo 1.9	ock 10 Tf 50 5 2
945	Bone Marrow Mesenchymal Stem Cells in Patients with Beta Thalassemia Major: Molecular Analysis with Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy Study as a Novel Method. Stem Cells and Development, 2012, 21, 2000-2011.	1.1	23
946	Journey of Mesenchymal Stem Cells for Homing: Strategies to Enhance Efficacy and Safety of Stem Cell Therapy. Stem Cells International, 2012, 2012, 1-11.	1.2	193
947	Osteogenesis Imperfecta and Bone Marrow Transplant. Journal of Pediatric Oncology Nursing, 2012, 29, 37-44.	1.5	1
948	Upregulating CXCR4 in Human Fetal Mesenchymal Stem Cells Enhances Engraftment and Bone Mechanics in a Mouse Model of Osteogenesis Imperfecta. Stem Cells Translational Medicine, 2012, 1, 70-78.	1.6	53
949	Plerixafor, a CXCR4 Antagonist, Mitigates Skin Radiation-Induced Injury in Mice. Radiation Research, 2012, 178, 202-206.	0.7	24
950	Fetal stem cell transplantation. , 0, , 407-416.		0
951	Update on Cancer Related Issues of Mesenchymal Stem Cell-Based Therapies. Current Stem Cell Research and Therapy, 2012, 7, 370-380.	0.6	10
952	Intravenous Mesenchymal Stem Cells Improve Survival and Motor Function in Experimental Amyotrophic Lateral Sclerosis. Molecular Medicine, 2012, 18, 794-804.	1.9	135
953	Microvesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Stimulated by Hypoxia Promote Angiogenesis Both In Vitro and In Vivo. Stem Cells and Development, 2012, 21, 3289-3297.	1.1	222
954	Effect of Mechanical Stimulation on the Differentiation of Cord Stem Cells. Connective Tissue Research, 2012, 53, 149-159.	1.1	31
955	Differentiating human stem cells into neurons and glial cells for neural repair. Frontiers in Bioscience - Landmark, 2012, 17, 65.	3.0	40

#	Article	IF	CITATIONS
956	Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders. Annals of the New York Academy of Sciences, 2012, 1266, 107-117.	1.8	100
957	Stem cell therapy: from bench to bedside. Radiation Protection Dosimetry, 2012, 151, 633-639.	0.4	15
958	A Technique for Systemic Mesenchymal Stem Cell Transplantation in Newborn Rat Pups. Journal of Investigative Surgery, 2012, 25, 405-414.	0.6	8
959	Comparative study of equine bone marrow and adipose tissueâ€derived mesenchymal stromal cells. Equine Veterinary Journal, 2012, 44, 33-42.	0.9	52
960	Platelet lysate suppresses the expression of lipocalin-type prostaglandin D2 synthase that positively controls adipogenic differentiation of human mesenchymal stromal cells. Experimental Cell Research, 2012, 318, 2284-2296.	1.2	21
961	Cell-Based Strategies to Reconstitute Lung Function in Infants with Severe Bronchopulmonary Dysplasia. Clinics in Perinatology, 2012, 39, 703-725.	0.8	27
962	Mesenchymal stem cells in tumor development. Cell Adhesion and Migration, 2012, 6, 220-230.	1.1	172
963	Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head. Stem Cell Research and Therapy, 2012, 3, 7.	2.4	83
964	Fate of Intravenously Injected Mesenchymal Stem Cells and Significance for Clinical Application. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 19-37.	0.6	26
965	Banking Human Umbilical Cord-Derived Mesenchymal Stromal Cells for Clinical Use. Cell Transplantation, 2012, 21, 207-216.	1.2	61
967	Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1003-L1013.	1.3	278
968	Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood, 2012, 120, 1933-1941.	0.6	118
969	Comparison of microCT and an inverse finite element approach for biomechanical analysis: Results in a mesenchymal stem cell therapeutic system for fracture healing. Journal of Biomechanics, 2012, 45, 2164-2170.	0.9	7
970	The characteristics and immunoregulatory functions of regulatory dendritic cells induced by mesenchymal stem cells derived from bone marrow of patient with chronic myeloid leukaemia. European Journal of Cancer, 2012, 48, 1884-1895.	1.3	30
971	Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration?. Clinical and Translational Medicine, 2012, 1, 30.	1.7	41
972	Mesenchymal stem cell-educated macrophages. Transplantation Research, 2012, 1, 12.	1.5	144
973	Mesenchymal Stromal Cell Migration: Possibilities to Improve Cellular Therapy. Stem Cells and Development, 2012, 21, 19-29.	1.1	80
974	Mesenchymal stromal cell therapy: a revolution in Regenerative Medicine?. Bone Marrow Transplantation, 2012, 47, 164-171.	1.3	131

#	Article	IF	CITATIONS
975	Human Bone Marrow-Derived Mesenchymal Stem Cells produced TGFbeta Contributes to Progression and Metastasis of Prostate Cancer. Cancer Investigation, 2012, 30, 513-518.	0.6	68
976	Differentiating multipotent mesenchymal stromal cells generate factors that exert paracrine activities on exogenous MSCs: Implications for paracrine activities in bone regeneration. Biochemical and Biophysical Research Communications, 2012, 426, 475-479.	1.0	26
977	Therapeutic approaches to myeloma bone disease: An evolving story. Cancer Treatment Reviews, 2012, 38, 787-797.	3.4	25
978	Interpreted gene expression of human dermal fibroblasts after adipo-, chondro- and osteogenic phenotype shifts. Differentiation, 2012, 84, 305-313.	1.0	8
980	Imaging Stem Cell Differentiation for Cell-Based Tissue Repair. Methods in Enzymology, 2012, 506, 247-263.	0.4	10
981	Mesenchymal stem cells in osteoarticular pediatric diseases: an update. Pediatric Research, 2012, 71, 452-458.	1.1	33
982	Regenerative Therapy Using Blood-Derived Stem Cells. , 2012, , .		2
983	Mesenchymal stromal cells: a novel and effective strategy for facilitating engraftment and accelerating hematopoietic recovery after transplantation?. Bone Marrow Transplantation, 2012, 47, 323-329.	1.3	33
984	Differences in Surface Marker Expression and Chondrogenic Potential among Various Tissue-Derived Mesenchymal Cells from Elderly Patients with Osteoarthritis. Cells Tissues Organs, 2012, 196, 231-40.	1.3	30
985	Lung Injury in Preterm Neonates: The Role and Therapeutic Potential of Stem Cells. Antioxidants and Redox Signaling, 2012, 17, 1013-1040.	2.5	25
986	Recommendations and Considerations for the Use of Biologics in Orthopedic Surgery. BioDrugs, 2012, 26, 245-256.	2.2	66
987	SSEA-4 is a Marker of Human Deciduous Periodontal Ligament Stem Cells. Journal of Dental Research, 2012, 91, 955-960.	2.5	24
988	Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow. Cytotechnology, 2012, 64, 497-509.	0.7	20
989	Musculoskeletal Tissue Injury and Repair. , 2012, , 881-897.		3
990	The multi-differentiation potential of peripheral blood mononuclear cells. Stem Cell Research and Therapy, 2012, 3, 48.	2.4	68
991	Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Research and Therapy, 2012, 3, 6.	2.4	124
992	Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering. Biologics: Targets and Therapy, 2012, 6, 47.	3.0	28
993	Human Stem Cells and Articular Cartilage Regeneration. Cells, 2012, 1, 994-1009.	1.8	28

#	Article	IF	CITATIONS
994	Recommendations and Considerations for the Use of Biologics in Orthopedic Surgery. BioDrugs, 2012, 26, 245-256.	2.2	38
995	Electrophysiological Properties and Synaptic Function of Mesenchymal Stem Cells during Neurogenic Differentiation – a Mini-Review. International Journal of Artificial Organs, 2012, 35, 323-337.	0.7	23
996	Treatment of critical defects produced in calvaria of mice with mesenchymal stem cells. Anais Da Academia Brasileira De Ciencias, 2012, 84, 841-851.	0.3	10
998	Concise Review: Induced Pluripotent Stem Cellâ€Đerived Mesenchymal Stem Cells: Progress Toward Safe Clinical Products. Stem Cells, 2012, 30, 42-47.	1.4	242
999	Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 49-59.	1.3	27
1000	The Antidiabetic Effect of Mesenchymal Stem Cells Is Unrelated to Their Transdifferentiation Potential But to Their Capability to Restore Th1/Th2 Balance and to Modify the Pancreatic Microenvironment. Stem Cells, 2012, 30, 1664-1674.	1.4	138
1001	Multipotent Mesenchymal Stromal Cells: Clinical Applications and Cancer Modeling. Advances in Experimental Medicine and Biology, 2012, 741, 187-205.	0.8	32
1002	Mesenchymal stromal cells and fibroblasts: a case of mistaken identity?. Cytotherapy, 2012, 14, 516-521.	0.3	137
1003	Chemical biology in stem cell research. Archives of Pharmacal Research, 2012, 35, 281-297.	2.7	7
1004	Co-culture of mesenchymal stem cells with umbilical vein endothelial cells under hypoxic condition. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 173-180.	1.0	26
1005	Fetal Liver-Derived Mesenchymal Stem Cell Engraftment After Allogeneic In Utero Transplantation into Rabbits. Stem Cells and Development, 2012, 21, 284-295.	1.1	13
1006	Expansion of Mesenchymal Stem/Stromal Cells under Xenogenic-Free Culture Conditions. Advances in Biochemical Engineering/Biotechnology, 2012, 129, 33-57.	0.6	41
1007	Effective, safe nonviral gene transfer to preserve the chondrogenic differentiation potential of human mesenchymal stem cells. Journal of Gene Medicine, 2012, 14, 501-511.	1.4	35
1008	Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth. Journal of Bone and Mineral Research, 2012, 27, 1635-1648.	3.1	34
1009	Chemokines Stimulate Bidirectional Migration of Human Mesenchymal Stem Cells Across Bone Marrow Endothelial Cells. Stem Cells and Development, 2012, 21, 476-486.	1.1	66
1010	Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer. Stem Cells and Development, 2012, 21, 2355-2363.	1.1	45
1011	Recessive osteogenesis imperfecta: Clinical, radiological, and molecular findings. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2012, 160C, 175-189.	0.7	53
1012	Mesenchymal Stem Cells in Hematopoietic Stem Cell Transplantation. , 2012, , 101-115.		3

#	Article	IF	CITATIONS
1013	Response as an end point in treatment trials for acute GVHD. Bone Marrow Transplantation, 2012, 47, 161-163.	1.3	7
1014	Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration. Frontiers of Medicine, 2012, 6, 41-47.	1.5	31
1015	Pyrvinium, a potent small molecule <scp>Wnt</scp> inhibitor, increases engraftment and inhibits lineage commitment of mesenchymal stem cells (<scp>MSCs</scp>). Wound Repair and Regeneration, 2012, 20, 185-193.	1.5	25
1016	The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials, 2012, 33, 2656-2672.	5.7	138
1017	Clinical utility of stem cells for periodontal regeneration. Periodontology 2000, 2012, 59, 203-227.	6.3	187
1018	Proteomic analysis of bone marrowâ€adherent cells in rheumatoid arthritis and osteoarthritis. International Journal of Rheumatic Diseases, 2012, 15, 169-178.	0.9	5
1019	Chromosomal variability of human mesenchymal stem cells cultured under hypoxic conditions. Journal of Cellular and Molecular Medicine, 2012, 16, 72-82.	1.6	57
1020	Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. Journal of Cellular and Molecular Medicine, 2012, 16, 1114-1124.	1.6	80
1021	Basic fibroblast growth factor modulates cell cycle of human umbilical cordâ€derived mesenchymal stem cells. Cell Proliferation, 2012, 45, 132-139.	2.4	43
1022	The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell and Bioscience, 2012, 2, 8.	2.1	78
1023	Pathophysiology of stroke and strokeâ€induced retinal ischemia: Emerging role of stem cells. Journal of Cellular Physiology, 2012, 227, 1269-1279.	2.0	22
1024	Imaging of human mesenchymal stromal cells: homing to human brain tumors. Journal of Neuro-Oncology, 2012, 107, 257-267.	1.4	27
1025	Effect of high glucose on extensive culturing of mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow. Cell Biochemistry and Function, 2013, 31, 20-29.	1.4	28
1026	A new platelet cryoprecipitate glue promoting bone formation after ectopic mesenchymal stromal cell-loaded biomaterial implantation in nude mice. Stem Cell Research and Therapy, 2013, 4, 1.	2.4	90
1027	The Role of Bone Marrow-Derived Cells During the Bone Healing Process in the GFP Mouse Bone Marrow Transplantation Model. Calcified Tissue International, 2013, 92, 296-306.	1.5	12
1028	Skeletal diseases caused by mutations that affect collagen structure and function. International Journal of Biochemistry and Cell Biology, 2013, 45, 1556-1567.	1.2	39
1029	Mesenchymal stem cells in the treatment of pediatric diseases. World Journal of Pediatrics, 2013, 9, 197-211.	0.8	20
1031	Manufacturing mesenchymal stromal cells for phase I clinical trials. Cytotherapy, 2013, 15, 416-422.	0.3	49

#	Article	IF	Citations
1032	Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence?. Stem Cell Research, 2013, 11, 1348-1364.	0.3	138
1034	The Key Regulatory Roles of the PI3K/Akt Signaling Pathway in the Functionalities of Mesenchymal Stem Cells and Applications in Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2013, 19, 516-528.	2.5	193
1035	Mesenchymal Stem Cells - Basics and Clinical Application II. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	2
1036	Concise review: Combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells, 2013, 31, 2296-2303.	1.4	50
1037	Effect of F68 on Cryopreservation of Mesenchymal Stem Cells Derived from Human Tooth Germ. Applied Biochemistry and Biotechnology, 2013, 171, 1819-1831.	1.4	19
1038	Brief Report: Long-Term Functional Engraftment of Mesenchymal Progenitor Cells in a Mouse Model of Accelerated Aging. Stem Cells, 2013, 31, 607-611.	1.4	22
1039	Enhancing <i>ex vivo</i> expansion of cord bloodâ€derived unrestricted somatic stem cells for clinical applications. Cell Proliferation, 2013, 46, 628-636.	2.4	4
1040	Comparative analysis of protein expression of three stem cell populations: Models of cytokine delivery system in vivo. International Journal of Pharmaceutics, 2013, 440, 72-82.	2.6	42
1041	The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nature Medicine, 2013, 19, 35-42.	15.2	1,032
1042	Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy, 2013, 15, 292-306.	0.3	93
1043	Mesenchymal stem cells as treatment for MS – progress to date. Multiple Sclerosis Journal, 2013, 19, 515-519.	1.4	62
1044	Mesenchymal Stem Cells for Treatment and Prevention of Graft-Versus-Host Disease and Graft Failure After Hematopoietic Stem Cell Transplantation and Future Challenges. , 2013, , 173-205.		4
1045	Genetically Engineered Mesenchymal Stem Cells for Cell and Gene Therapy. , 2013, , 321-354.		0
1046	Small Molecule–Based Approaches to Adult Stem Cell Therapies. Annual Review of Pharmacology and Toxicology, 2013, 53, 107-125.	4.2	27
1047	Manufacturing and banking of mesenchymal stem cells. Expert Opinion on Biological Therapy, 2013, 13, 673-691.	1.4	78
1048	Human mesenchymal stem cells: From immunophenotyping by flow cytometry to clinical applications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 48-61.	1.1	114
1049	Mesenchymal stem cell transplantation to the mouse cochlea as a treatment for childhood sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 936-942.	0.4	32
1050	Improved isolation and expansion of bone marrow mesenchymal stromal cells using a novel marrow filter device. Cytotherapy, 2013, 15, 146-153.	0.3	52

#	Article	IF	CITATIONS
1051	Reconciling the effects of inflammatory cytokines on mesenchymal cell osteogenic differentiation. Journal of Surgical Research, 2013, 185, 278-285.	0.8	41
1053	Delayed Marrow Infusion in Mice Enhances Hematopoietic and Osteopoietic Engraftment by Facilitating Transient Expansion of the Osteoblastic Niche. Biology of Blood and Marrow Transplantation, 2013, 19, 1566-1573.	2.0	6
1054	Suppression of Androgen Receptor Enhances the Self-renewal of Mesenchymal Stem Cells Through Elevated Expression of EGFR. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1222-1234.	1.9	27
1055	Protective Effects of BDNF Overexpression Bone Marrow Stromal Cell Transplantation in Rat Models of Traumatic Brain Injury. Journal of Molecular Neuroscience, 2013, 49, 409-416.	1.1	35
1056	Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cellular and Molecular Biology Letters, 2013, 18, 75-88.	2.7	49
1057	Hematopoietic stem cells are pluripotent and not just "hematopoietic― Blood Cells, Molecules, and Diseases, 2013, 51, 3-8.	0.6	38
1058	Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy, 2013, 15, 140-145.	0.3	106
1059	Regenerative medicine for congenital malformations. Journal of Pediatric Surgery, 2013, 48, 273-280.	0.8	27
1060	Overview of Tissue Engineering Concepts and Applications. , 2013, , 1122-1137.		3
1061	Immunomodulatory Properties of MSCs. , 2013, , 107-134.		0
1061 1062	Immunomodulatory Properties of MSCs. , 2013, , 107-134. MSCs: Paracrine Effects. , 2013, , 145-167.		0
1061 1062 1063	Immunomodulatory Properties of MSCs., 2013, , 107-134. MSCs: Paracrine Effects., 2013, , 145-167. Isolation, Enumeration, and Expansion of Human Mesenchymal Stem Cells in Culture. Methods in Molecular Biology, 2013, 946, 315-334.	0.4	0 5 10
1061 1062 1063 1064	Immunomodulatory Properties of MSCs., 2013, , 107-134. MSCs: Paracrine Effects., 2013, , 145-167. Isolation, Enumeration, and Expansion of Human Mesenchymal Stem Cells in Culture. Methods in Molecular Biology, 2013, 946, 315-334. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnology Advances, 2013, 31, 1032-1046.	0.4	0 5 10 246
1061 1062 1063 1064	Immunomodulatory Properties of MSCs., 2013, , 107-134. MSCs: Paracrine Effects., 2013, , 145-167. Isolation, Enumeration, and Expansion of Human Mesenchymal Stem Cells in Culture. Methods in Molecular Biology, 2013, 946, 315-334. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnology Advances, 2013, 31, 1032-1046. Mesenchymal stem cell transplantation in multiple sclerosis. Journal of the Neurological Sciences, 2013, 33, 43-49.	0.4 6.0 0.3	0 5 10 246 110
1061 1062 1063 1064 1065	Immunomodulatory Properties of MSCs., 2013, , 107-134. MSCs: Paracrine Effects., 2013, , 145-167. Isolation, Enumeration, and Expansion of Human Mesenchymal Stem Cells in Culture. Methods in Molecular Biology, 2013, 946, 315-334. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnology Advances, 2013, 31, 1032-1046. Mesenchymal stem cell transplantation in multiple sclerosis. Journal of the Neurological Sciences, 2013, 333, 43-49. Towards Clinical Application of Mesenchymal Stem Cells for Treatment of Neurological Diseases of the Central Nervous System. Journal of NeuroImmune Pharmacology, 2013, 8, 1062-1076.	0.4 6.0 0.3 2.1	0 5 10 246 110 45
1061 1062 1063 1064 1065 1066	Immunomodulatory Properties of MSCs., 2013,, 107-134. MSCs: Paracrine Effects., 2013,, 145-167. Isolation, Enumeration, and Expansion of Human Mesenchymal Stem Cells in Culture. Methods in Molecular Biology, 2013, 946, 315-334. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnology Advances, 2013, 31, 1032-1046. Mesenchymal stem cell transplantation in multiple sclerosis. Journal of the Neurological Sciences, 2013, 333, 43-49. Towards Clinical Application of Mesenchymal Stem Cells for Treatment of Neurological Diseases of the Central Nervous System. Journal of NeuroImmune Pharmacology, 2013, 8, 1062-1076. Transplanted Murine Long-term Repopulating Hematopoietic Cells Can Differentiate to Osteoblasts in the Marrow Stem Cell Niche. Molecular Therapy, 2013, 21, 1224-1231.	0.4 6.0 0.3 2.1 3.7	0 5 10 246 110 45
1061 1062 1063 1064 1065 1066 1068	Immunomodulatory Properties of MSCs., 2013, , 107-134. MSCs: Paracrine Effects., 2013, , 145-167. Isolation, Enumeration, and Expansion of Human Mesenchymal Stem Cells in Culture. Methods in Molecular Biology, 2013, 946, 315-334. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnology Advances, 2013, 31, 1032-1046. Mesenchymal stem cell transplantation in multiple sclerosis. Journal of the Neurological Sciences, 2013, 333, 43-49. Towards Clinical Application of Mesenchymal Stem Cells for Treatment of Neurological Diseases of the Central Nervous System. Journal of NeuroImmune Pharmacology, 2013, 8, 1062-1076. Transplanted Murine Long-term Repopulating Hematopoietic Cells Can Differentiate to Osteoblasts in the Marrow Stem Cell Niche. Molecular Therapy, 2013, 21, 1224-1231. Microcarrier Culture for Efficient Expansion and Osteogenic Differentiation of Human Fetal Mesenchymal Stem Cells. BioResearch Open Access, 2013, 2, 84-97.	0.4 6.0 0.3 2.1 3.7 2.6	0 5 10 246 110 45 14 132

		CITATION RE	PORT	
#	Article		IF	Citations
1070	comparative analysis of reference gene stability in human mesenchymal stromal cells di osteogenic differentiation. Biotechnology Progress, 2013, 29, 1034-1042.	uring	1.3	15
1071	Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica, 2013	3, 34, 747-754.	2.8	758
1073	The Skeletal Stem Cell. , 2013, , 127-147.			3
1074	Profiling and semiquantitative analysis of the cell surface proteome in human mesenchy cells. Analytical and Bioanalytical Chemistry, 2013, 405, 5501-5517.	mal stem	1.9	5
1075	A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffo Reports, 2013, 3, 2243.	olds. Scientific	1.6	108
1076	Bone formation in calvarial defects by injectable nanoparticular scaffold loaded with ste Expert Opinion on Biological Therapy, 2013, 13, 1653-1662.	m cells.	1.4	21
1077	Interferon gamma and T cells inhibit osteogenesis induced by allogeneic mesenchymal s Journal of Orthopaedic Research, 2013, 31, 227-234.	stromal cells.	1.2	35
1078	Prospects of Gene Therapy. , 2013, , 133-150.			1
1079	Further Proof for an Unpopular Concept: A Single Cell From Bone Marrow Can Serve as for Both Hematopoiesis and Osteogenesis. Molecular Therapy, 2013, 21, 1116-1117.	a Stem Cell	3.7	6
1080	Cells, Stem Cells, and Cancer Stem Cells. Seminars in Reproductive Medicine, 2013, 31,	005-013.	O.5	34
1081	Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing infla inhibiting TGF-Î ² 1 signaling. Kidney International, 2013, 84, 297-307.	ammation and	2.6	104
1082	Human Mesenchymal Stromal Cells: Identifying Assays to Predict Potency for Therapeut Stem Cells Translational Medicine, 2013, 2, 151-158.	ic Selection.	1.6	60
1083	Dual Differentiation-Exogenous Mesenchymal Stem Cell Therapy for Traumatic Spinal C Repair in a Murine Hemisection Model. Stem Cells International, 2013, 2013, 1-6.	ord Injury	1.2	7
1084	Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine. Stem Cells 2013, 2013, 1-15.	International,	1.2	178
1085	Human Mesenchymal Stem Cells Provide Protection against Radiation-Induced Liver Inju Antioxidative Process, Vasculature Protection, Hepatocyte Differentiation, and Trophic I BioMed Research International, 2013, 2013, 1-14.	ıry by Effects.	0.9	64
1086	The role of mesenchymal stromal cells in chronic transplant rejection after solid organ transplantation. Current Opinion in Organ Transplantation, 2013, 18, 44-50.		0.8	19
1087	A Comparative Study on Culture Conditions and Routine Expansion of Amniotic Fluid-D Mesenchymal Progenitor Cells. Fetal Diagnosis and Therapy, 2013, 34, 225-235.	erived	0.6	10
1088	Platelet Lysate as Replacement for Fetal Bovine Serum in Mesenchymal Stromal Cell Cu Transfusion Medicine and Hemotherapy, 2013, 40, 326-335.	tures.	0.7	173

#	Article	IF	CITATIONS
1089	Influence of serum percentage on the behavior of Wharton's jelly mesenchymal stem cells in culture. Bio-Medical Materials and Engineering, 2013, 23, 273-280.	0.4	5
1090	Assessment of immunosuppressive activity of human mesenchymal stem cells using murine antigen specific CD4 and CD8 T cells in vitro. Stem Cell Research and Therapy, 2013, 4, 128.	2.4	23
1091	Mesenchymal Stem Cells Migration Homing and Tracking. Stem Cells International, 2013, 2013, 1-8.	1.2	328
1092	New Insights into Osteogenic and Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells and Their Potential Clinical Applications for Bone Regeneration in Pediatric Orthopaedics. Stem Cells International, 2013, 2013, 1-11.	1.2	71
1093	MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells International, 2013, 2013, 1-13.	1.2	346
1094	Mesenchymal stem cells of human placenta and umbilical cord suppress Tâ€cell proliferation at G ₀ phase of cell cycle. Cell Biology International, 2013, 37, 250-256.	1.4	18
1095	Enhanced chondrogenesis through specific growth factors in a buffalo embryonic stem cell model. Cell Biology International, 2013, 37, 1246-1258.	1.4	2
1096	Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, <scp>W</scp> harton's jelly and umbilical cord. Internal Medicine Journal, 2013, 43, 430-439.	0.5	57
1097	Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation. Chimerism, 2013, 4, 78-83.	0.7	21
1098	miR-146a-5p circuitry uncouples cell proliferation and migration, but not differentiation, in human mesenchymal stem cells. Nucleic Acids Research, 2013, 41, 9753-9763.	6.5	59
1099	Interaction between Adipose Tissue-Derived Mesenchymal Stem Cells and Regulatory T-Cells. Cell Transplantation, 2013, 22, 41-54.	1.2	58
1100	Mesenchymal stem cells seldomly fuse with hepatocellular carcinoma cells and are mainly distributed in the tumor stroma in mouse models. Oncology Reports, 2013, 29, 713-719.	1.2	28
1101	Clinical applications of mesenchymal stem cells. Korean Journal of Internal Medicine, 2013, 28, 387.	0.7	239
1102	The Therapeutic Effect of Human Adult Stem Cells Derived from Adipose Tissue in Endotoxemic Rat Model. International Journal of Medical Sciences, 2013, 10, 8-18.	1.1	57
1103	Autologous Bone-Marrow Mesenchymal Stem Cell Implantation and Endothelial Function in a Rabbit Ischemic Limb Model. PLoS ONE, 2013, 8, e67739.	1.1	24
1104	Mesenchymal Stem Cells from Human Umbilical Cord Express Preferentially Secreted Factors Related to Neuroprotection, Neurogenesis, and Angiogenesis. PLoS ONE, 2013, 8, e72604.	1.1	252
1105	Inverse Relationship between Tumor Proliferation Markers and Connexin Expression in a Malignant Cardiac Tumor Originating from Mesenchymal Stem Cell Engineered Tissue in a Rat in vivo Model. Frontiers in Pharmacology, 2013, 4, 42.	1.6	16
1107	A Therapeutic Role for Hematopoietic Stem Cells in Osteogenesis Imperfecta. , 0, , .		2

#	Article	IF	CITATIONS
1108	Ligament and Tendon Repair through Regeneration Using Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2014, 10, 84-88.	0.6	13
1109	Therapeutic Effect of TSG-6 Engineered iPSC-Derived MSCs on Experimental Periodontitis in Rats: A Pilot Study. PLoS ONE, 2014, 9, e100285.	1.1	61
1110	Derivation of iPSCs after Culture of Human Dental Pulp Cells under Defined Conditions. PLoS ONE, 2014, 9, e115392.	1.1	22
1111	Spinal Fusion in the Next Generation: Gene and Cell Therapy Approaches. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	18
1112	Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Frontiers in Cell and Developmental Biology, 2014, 2, 50.	1.8	47
1113	Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema. Tuberculosis and Respiratory Diseases, 2014, 77, 116.	0.7	36
1114	Mesenchymal Stem Cell Therapy in Type 1 Diabetes Mellitus and Its Main Complications: From Experimental Findings to Clinical Practice. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	13
1116	Pre- and Postnatal Transplantation of Fetal Mesenchymal Stem Cells in Osteogenesis Imperfecta: A Two-Center Experience. Stem Cells Translational Medicine, 2014, 3, 255-264.	1.6	162
1117	Advancing stem cell therapy from bench to bedside: lessons from drug therapies. Journal of Translational Medicine, 2014, 12, 243.	1.8	52
1118	Upregulation of miR-23b Enhances the Autologous Therapeutic Potential for Degenerative Arthritis by Targeting PRKACB in Synovial Fluid-Derived Mesenchymal Stem Cells from Patients. Molecules and Cells, 2014, 37, 449-456.	1.0	34
1119	Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta. Frontiers in Pharmacology, 2014, 5, 223.	1.6	34
1120	Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases. Stem Cells International, 2014, 2014, 1-11.	1.2	82
1121	Tissue Engineering Approaches in Skeletal Pediatric Disorders. European Journal of Pediatric Surgery, 2014, 24, 263-269.	0.7	9
1122	The Life and Fate of Mesenchymal Stem Cells. Frontiers in Immunology, 2014, 5, 148.	2.2	358
1123	Are Clinical Trials With Mesenchymal Stem/Progenitor Cells too Far Ahead of the Science? Lessons From Experimental Hematology. Stem Cells, 2014, 32, 3055-3061.	1.4	53
1124	Clinical Impact of Circulating CD34-Positive Cells on Bone Regeneration and Healing. Tissue Engineering - Part B: Reviews, 2014, 20, 190-199.	2.5	47
1125	PROLIFERATIVE EFFECT OF PLATELET-RICH FIBRIN ON CANINE BONE MARROW-DERIVED STROMAL CELLS. TÃjiwÄn ShòuyÄ«xué ZÃjzhì, 2014, 40, 151-161.	0.2	1
1127	Unveiling the role of TNF â€Î± in mesenchymal stromal cellâ€mediated immunosuppression. European Journal of Immunology, 2014, 44, 352-356.	1.6	10

#	Article	IF	CITATIONS
1128	A scalable approach to obtain mesenchymal stem cells with osteogenic potency on apatite microcarriers. Journal of Biomaterials Applications, 2014, 29, 93-103.	1.2	19
1129	Do Mesenchymal Stem Cells Have a Role to Play in Cutaneous Wound Healing?. Cell & Tissue Transplantation & Therapy, 2014, , 11.	0.0	3
1130	Effect of Cyclic Mechanical Stimulation on the Expression of Osteogenesis Genes in Human Intraoral Mesenchymal Stromal and Progenitor Cells. BioMed Research International, 2014, 2014, 1-10.	0.9	36
1131	Essential Components for <i>Ex Vivo</i> Proliferation of Mesenchymal Stromal Cells. Tissue Engineering - Part C: Methods, 2014, 20, 129-139.	1.1	44
1132	Stem cells, tissue engineering and periodontal regeneration. Australian Dental Journal, 2014, 59, 117-130.	0.6	138
1133	TSG-6 Released from Intradermally Injected Mesenchymal Stem Cells Accelerates Wound Healing and Reduces Tissue Fibrosis in Murine Full-Thickness Skin Wounds. Journal of Investigative Dermatology, 2014, 134, 526-537.	0.3	195
1134	Local transplantation is an effective method for cell delivery in the osteogenesis imperfecta murine model. International Orthopaedics, 2014, 38, 1955-1962.	0.9	20
1135	Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model. Diabetologia, 2014, 57, 522-531.	2.9	80
1136	The role of astrocytes in mediating exogenous cellâ€based restorative therapy for stroke. Glia, 2014, 62, 1-16.	2.5	74
1137	A comparative study of PKH67, Dil, and BrdU labeling techniques for tracing rat mesenchymal stem cells. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 656-663.	0.7	37
1138	Phage Nanofibers Induce Vascularized Osteogenesis in 3D Printed Bone Scaffolds. Advanced Materials, 2014, 26, 4961-4966.	11.1	204
1139	Improved Human Mesenchymal Stem Cell Isolation. Cell Transplantation, 2014, 23, 399-406.	1.2	19
1140	Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. Journal of Periodontal Research, 2014, 49, 333-345.	1.4	74
1141	A xenogeneicâ€free bioreactor system for the clinicalâ€scale expansion of human mesenchymal stem/stromal cells. Biotechnology and Bioengineering, 2014, 111, 1116-1127.	1.7	129
1142	Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation. Stem Cell Research, 2014, 13, 12-23.	0.3	23
1143	Unrelated Donor Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Hemoglobinopathies Using a Reduced-Intensity Conditioning Regimen and Third-Party Mesenchymal Stromal Cells. Biology of Blood and Marrow Transplantation, 2014, 20, 581-586.	2.0	54
1144	Concise Review: Androgen Receptor Differential Roles in Stem/Progenitor Cells Including Prostate, Embryonic, Stromal, and Hematopoietic Lineages. Stem Cells, 2014, 32, 2299-2308.	1.4	39
1145	Mesenchymal Stem Cells and Their Subpopulation, Pluripotent Muse Cells, in Basic Research and Regenerative Medicine. Anatomical Record, 2014, 297, 98-110.	0.8	46

		CITATION REPORT		
#	Article		IF	CITATIONS
1146	Cell Replacement Therapies: Is It Time to Reprogram?. Human Gene Therapy, 2014, 25	, 866-874.	1.4	5
1147	Update on the Evaluation and Treatment of Osteogenesis Imperfecta. Pediatric Clinics America, 2014, 61, 1243-1257.	of North	0.9	70
1148	From isolation to implantation: a concise review of mesenchymal stem cell therapy in l repair. Stem Cell Research and Therapy, 2014, 5, 51.	oone fracture	2.4	68
1149	A thermosensitive chitosan/corn starch/β-glycerol phosphate hydrogel containing TGF differentiation of MSCs into chondrocyte-like cells. Tissue Engineering and Regenerativ 2014, 11, 355-361.	-β1 promotes ve Medicine,	1.6	9
1150	The Gap Between the Physiological and Therapeutic Roles of Mesenchymal Stem Cells Research Reviews, 2014, 34, 1100-1126.	Medicinal	5.0	121
1151	Bone marrow derived stem cells in joint and bone diseases: a concise review. Internation Orthopaedics, 2014, 38, 1787-1801.	bnal	0.9	37
1152	"Mesenchymal―Stem Cells. Annual Review of Cell and Developmental Biology, 20)14, 30, 677-704.	4.0	345
1153	Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journa Science: Materials in Medicine, 2014, 25, 2445-2461.	l of Materials	1.7	791
1154	Ultrasound-Microbubble Transplantation of Bone Marrow Stromal Cells Improves Neur Function after Forebrain Ischemia in Adult Mice. Cell Biochemistry and Biophysics, 201	ological 4, 70, 499-504.	0.9	3
1155	COL1A1and miR-29b show lower expression levels during osteoblast differentiation of stromal cells from Osteogenesis Imperfecta patients. BMC Medical Genetics, 2014, 15	bone marrow , 45.	2.1	45
1156	Interferon-α-secreting mesenchymal stem cells exert potent antitumor effect in vivo. (33, 5047-5052.	Dncogene, 2014,	2.6	43
1157	Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Expansion System. Cytotherapy, 2014, 16, 1048-1058.	Quantum Cell	0.3	128
1158	Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enrich Experimental and Toxicologic Pathology, 2014, 66, 111-116.	ed medium.	2.1	5
1159	Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with r extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respi Medicine,the, 2014, 2, 108-122.	nultidrug and ratory	5.2	115
1160	Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain R 2014, 1573, 92-107.	esearch,	1.1	17
1161	Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clinical Experimental Medicine, 2014, 14, 13-24.	and	1.9	87
1163	In Vivo Differentiation of Undifferentiated Human Adipose Tissue-Derived Mesenchym Critical-Sized Calvarial Bone Defects. Annals of Plastic Surgery, 2014, 72, 225-233.	al Stem Cells in	0.5	24
1164	Preconditioning of mesenchymal stem cells for improved transplantation efficacy in re dystrophic epidermolysis bullosa. Stem Cell Research and Therapy, 2014, 5, 121.	cessive	2.4	39

#	Article	IF	CITATIONS
1165	Therapeutic effect of human umbilical cord mesenchymal stem cells modified by angiotensin-converting enzyme 2 gene on bleomycin-induced lung fibrosis injury. Molecular Medicine Reports, 2015, 11, 2387-2396.	1.1	61
1166	Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass. Scientific Reports, 2015, 5, 18572.	1.6	41
1167	Validation of suitable reference genes for quantitative polymerase chain reaction analysis in rabbit bone marrow mesenchymal stem cell differentiation. Molecular Medicine Reports, 2015, 12, 2961-2968.	1.1	12
1168	New frontiers for dominant osteogenesis imperfecta treatment: gene/cellular therapy approaches. Advances in Regenerative Biology, 2015, 2, 27964.	0.2	9
1169	Bone marrow derived mesenchymal stem cells: A unique cytotherapy for rescuing degenerated dopaminergic neurons. Neurochemical Journal, 2015, 9, 284-294.	0.2	0
1170	Intrauterine Bone Marrow Transplantation in Osteogenesis Imperfecta Mice Yields Donor Osteoclasts and Osteomacs but Not Osteoblasts. Stem Cell Reports, 2015, 5, 682-689.	2.3	12
1171	Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. Journal of Translational Medicine, 2015, 13, 219.	1.8	62
1172	Stem cell transplantation before birth – a realistic option for treatment of osteogenesis imperfecta?. Prenatal Diagnosis, 2015, 35, 827-832.	1.1	22
1173	Ex Vivo Expanded Allogeneic Mesenchymal Stem Cells with Bone Marrow Transplantation Improved Osteogenesis in Infants with Severe Hypophosphatasia. Cell Transplantation, 2015, 24, 1931-1943.	1.2	39
1174	Nitric oxide regulates cell behavior on an interactive cellâ€derived extracellular matrix scaffold. Journal of Biomedical Materials Research - Part A, 2015, 103, 3807-3814.	2.1	12
1175	Electrospun Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Hydroxyapatite Scaffold With Unrestricted Somatic Stem Cells for Bone Regeneration. ASAIO Journal, 2015, 61, 357-365.	0.9	20
1176	9. Zelltherapien in der Regenerativen Medizin. , 2015, , 291-341.		1
1177	Non-hematopoietic essential functions of bone marrow cells: a review of scientific and clinical literature and rationale for treating bone defects. Orthopedic Reviews, 2015, 7, 5691.	0.3	11
1178	Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1435-1449.	0.3	27
1179	The Therapeutic Effects of Optimal Dose of Mesenchymal Stem Cells in a Murine Model of an Elastase Induced-Emphysema. Tuberculosis and Respiratory Diseases, 2015, 78, 239.	0.7	29
1180	Purified Human Synovium Mesenchymal Stem Cells as a Good Resource for Cartilage Regeneration. PLoS ONE, 2015, 10, e0129096.	1.1	85
1181	Cell Adhesion and Long-Term Survival of Transplanted Mesenchymal Stem Cells: A Prerequisite for Cell Therapy. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-9.	1.9	187
1182	Intraarticular Injection of Allogenic Mesenchymal Stem Cells has a Protective Role for the Osteoarthritis. Chinese Medical Journal, 2015, 128, 2516-2523.	0.9	32

#	Article	IF	CITATIONS
1183	Prolonged Hypoxia Induces Monocarboxylate Transporter-4 Expression in Mesenchymal Stem Cells Resulting in a Secretome that is Deleterious to Cardiovascular Repair. Stem Cells, 2015, 33, 1333-1344.	1.4	25
1184	Effects of Tanshinone IIA on osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 1201-1209.	1.4	14
1185	Intramuscular injection of bone marrow mesenchymal stem cells with small gap neurorrhaphy for peripheral nerve repair. Neuroscience Letters, 2015, 585, 119-125.	1.0	20
1186	Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells. Artificial Cells, Nanomedicine and Biotechnology, 2015, 43, 112-116.	1.9	16
1187	Stem cells for amyotrophic lateral sclerosis modeling and therapy: Myth or fact?. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 197-211.	1.1	18
1188	Mesenchymal stromal cells and rheumatic diseases: new tools from pathogenesis to regenerative therapies. Cytotherapy, 2015, 17, 832-849.	0.3	19
1189	Primary Osteoporosis. Endocrine Development, 2015, 28, 162-175.	1.3	9
1190	Serum-free media formulations are cell line–specific and require optimization for microcarrier culture. Cytotherapy, 2015, 17, 1152-1165.	0.3	40
1191	Organ-specific migration of mesenchymal stromal cells: Who, when, where and why?. Immunology Letters, 2015, 168, 159-169.	1.1	55
1192	Cell engineering by the internalization of bioinstructive micelles for enhanced bone regeneration. Nanomedicine, 2015, 10, 1707-1721.	1.7	17
1193	Bone marrow mesenchymal stem cells suppress ascitogenous hepatoma progression in BALB/c mouse through reducing myeloid-derived suppressor cells. Bio-Medical Materials and Engineering, 2015, 25, 167-177.	0.4	4
1194	A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ. Biomaterials, 2015, 54, 21-33.	5.7	28
1195	RhoGDIÎ ² Inhibits Bone Morphogenetic Protein 4 (BMP4)-induced Adipocyte Lineage Commitment and Favors Smooth Muscle-like Cell Differentiation. Journal of Biological Chemistry, 2015, 290, 11119-11129.	1.6	16
1196	Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka. International Orthopaedics, 2015, 39, 807-817.	0.9	21
1198	Human Adipose Stem Cells: From Bench to Bedside. Tissue Engineering - Part B: Reviews, 2015, 21, 572-584.	2.5	121
1199	Raman spectroscopy for grading of live osteosarcoma cells. Stem Cell Research and Therapy, 2015, 6, 81.	2.4	16
1200	Differential properties of human stromal cells from bone marrow, adipose, liver and cardiac tissues. Cytotherapy, 2015, 17, 1514-1523.	0.3	15
1201	Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers. International Journal of Oral Science, 2015, 7, 213-219.	3.6	58

#	Article	IF	CITATIONS
1202	Modulatory effects of mesenchymal stem cells on leucocytes and leukemic cells: A double-edged sword?. Blood Cells, Molecules, and Diseases, 2015, 55, 351-357.	0.6	8
1203	Haploidentical hematopoietic stem cell transplant with umbilical cord-derived multipotent mesenchymal cell infusion for the treatment of high-risk acute leukemia in children. Leukemia and Lymphoma, 2015, 56, 1346-1352.	0.6	10
1204	Peripheral Blood-Derived Endothelial Progenitor Cells Enhance Vertical Bone Formation. Clinical Implant Dentistry and Related Research, 2015, 17, 83-92.	1.6	16
1205	Clucose-Dependent Insulinotropic Peptide Prevents Serum Deprivation-Induced Apoptosis in Human Bone Marrow-Derived Mesenchymal Stem Cells and Osteoblastic Cells. Stem Cell Reviews and Reports, 2015, 11, 841-851.	5.6	19
1206	The role of the microenvironment on the fate of adult stem cells. Science China Life Sciences, 2015, 58, 639-648.	2.3	15
1207	Plasticity of hematopoietic stem cells. Best Practice and Research in Clinical Haematology, 2015, 28, 73-80.	0.7	10
1209	Human bloodâ€derived endothelial progenitor cells augment vasculogenesis and osteogenesis. Journal of Clinical Periodontology, 2015, 42, 89-95.	2.3	19
1210	Multipotent Mesenchymal Stromal Cell-Based Therapies: Regeneration Versus Repair. , 2015, , 3-16.		1
1211	Immunophenotypic comparison of heterogenous non-sorted versus sorted mononuclear cells from human umbilical cord blood: a novel cell enrichment approach. Cytotechnology, 2015, 67, 107-114.	0.7	4
1212	Adenosine Triphosphate Prevents Serum Deprivation-Induced Apoptosis in Human Mesenchymal Stem Cells via Activation of the MAPK Signaling Pathways. Stem Cells, 2015, 33, 211-218.	1.4	23
1214	Placental Mesenchymal Stromal Cells Derived from Blood Vessels or Avascular Tissues: What Is the Better Choice to Support Endothelial Cell Function?. Stem Cells and Development, 2015, 24, 115-131.	1.1	40
1215	Stem cells and bone: A historical perspective. Bone, 2015, 70, 2-9.	1.4	41
1216	Stem cells and bone diseases: New tools, new perspective. Bone, 2015, 70, 55-61.	1.4	17
1217	Biotechnological and biomedical applications of mesenchymal stem cells as a therapeutic system. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 559-570.	1.9	28
1218	Liver Regenerating Potential of the Secretome Obtained from Adipose-derived Stem Cells Cultured under the Hypoxic Environment. The Journal of the Korean Society for Transplantation, 2016, 30, 13.	0.2	0
1219	Nature or Nurture. , 2016, , 227-240.		0
1220	The Current Perspectives of Stem Cell Therapy in Orthopedic Surgery. Archives of Trauma Research, 2016, 5, e37976.	0.9	34
1221	Mesenchymal stem cells and their relationship to pericytes. Frontiers in Bioscience - Landmark, 2016, 21, 130-156.	3.0	35

щ		IF	CITATIONS
#	Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to	IF	CHATIONS
1222	Mesenchymal Stem Cells. Stem Cells International, 2016, 2016, 1-22.	1.2	23
1223	Bone Regeneration in Implant Dentistry: Role of Mesenchymal Stem Cells. , 2016, , .		2
1224	Immunologic properties of differentiated and undifferentiated mesenchymal stem cells derived from umbilical cord blood. Journal of Veterinary Science, 2016, 17, 289.	0.5	17
1225	Leukocyte-Reduced Platelet-Rich Plasma Alters Protein Expression of Adipose Tissue–Derived Mesenchymal Stem Cells. Plastic and Reconstructive Surgery, 2016, 138, 397-408.	0.7	15
1226	Clinical Trials with Mesenchymal Stem Cells: An Update. Cell Transplantation, 2016, 25, 829-848.	1.2	1,107
1227	Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta. Proceedings of SPIE, 2016, , .	0.8	2
1228	Scaffold-free, stem cell-based cartilage repair. Journal of Clinical Orthopaedics and Trauma, 2016, 7, 157-163.	0.6	34
1229	Until Death Do Us Part: Necrosis and Oxidation Promote the Tumor Microenvironment. Transfusion Medicine and Hemotherapy, 2016, 43, 120-132.	0.7	26
1230	A physiologically based kinetic model for elucidating the in vivo distribution of administered mesenchymal stem cells. Scientific Reports, 2016, 6, 22293.	1.6	23
1237	Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy, 2016, 24, 1290-1301.	3.7	286
1238	Localization and functions of mesenchymal stromal cells in vivo. Biology Bulletin Reviews, 2016, 6, 1-10.	0.3	5
1239	Mesenchymal stem cells (MSCs) as skeletal therapeutics–an update. Journal of Biomedical Science, 2016, 23, 41.	2.6	60
1240	Fetal Stem Cells in Regenerative Medicine. Pancreatic Islet Biology, 2016, , .	0.1	6
1241	Fetal Tissue Engineering. Pancreatic Islet Biology, 2016, , 339-360.	0.1	0
1242	In Utero Stem Cell Transplantation. Pancreatic Islet Biology, 2016, , 317-337.	0.1	10
1243	Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB Journal, 2016, 30, 3905-3928.	0.2	67
1244	Hypoxic Conditioned Medium From Human Adipose-Derived Stem Cells Promotes Mouse Liver Regeneration Through JAK/STAT3 Signaling. Stem Cells Translational Medicine, 2016, 5, 816-825.	1.6	72
1245	Bone Material Properties in Osteogenesis Imperfecta. Journal of Bone and Mineral Research, 2016, 31, 699-708.	3.1	67

#	Article	IF	CITATIONS
1247	In Vivo Interleukin-13-Primed Macrophages Contribute to Reduced Alloantigen-Specific T Cell Activation and Prolong Immunological Survival of Allogeneic Mesenchymal Stem Cell Implants. Stem Cells, 2016, 34, 1971-1984.	1.4	17
1248	Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue. American Journal of Veterinary Research, 2016, 77, 779-788.	0.3	34
1249	Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis. Journal of Pharmacological Sciences, 2016, 132, 192-200.	1.1	58
1250	Experimental observation of human bone marrow mesenchymal stem cell transplantation into rabbit intervertebral discs. Biomedical Reports, 2016, 5, 357-360.	0.9	4
1251	Stem Cell Therapy for Epidermolysis Bullosa—Does It Work?. Journal of Investigative Dermatology, 2016, 136, 2119-2121.	0.3	18
1252	Intraperitoneal injection (IP), Intravenous injection (IV) or anal injection (AI)? Best way for mesenchymal stem cells transplantation for colitis. Scientific Reports, 2016, 6, 30696.	1.6	90
1253	Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model. Experimental and Molecular Medicine, 2016, 48, e266-e266.	3.2	26
1254	Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2016, 172, 367-383.	0.7	53
1255	Could stem cells be the future therapy for sepsis?. Blood Reviews, 2016, 30, 439-452.	2.8	11
1256	Protein phosphatase 2A plays an important role in migration of bone marrow stroma cells. Molecular and Cellular Biochemistry, 2016, 412, 173-180.	1.4	10
1257	Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biology, 2016, 51, 7-13.	1.5	79
1258	Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Research and Therapy, 2016, 7, 7.	2.4	276
1259	Implications of mesenchymal stem cells in regenerative medicine. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 749-757.	1.9	85
1260	Engraftability of Murine Bone Marrow-Derived Multipotent Mesenchymal Stem Cell Subpopulations in the Tissues of Developing Mice following Systemic Transplantation. Cells Tissues Organs, 2016, 201, 14-25.	1.3	9
1261	Bone marrow-derived mesenchymal stromal cells differ in their attachment to fibronectin-derived peptides from term placenta-derived mesenchymal stromal cells. Stem Cell Research and Therapy, 2016, 7, 29.	2.4	13
1262	Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?. Cell Death and Differentiation, 2016, 23, 1128-1139.	5.0	838
1263	Human Foetal Mesenchymal Stem Cells. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 31, 82-87.	1.4	9
1264	Chitosan-based core–shell structured particles for in vivo sustainable gene transfection. Journal of Materials Chemistry B, 2016, 4, 893-901.	2.9	9

#	Article	IF	CITATIONS
1265	The Use of Mesenchymal Stromal Cells for Treating Renal Injury and Promoting Allograft Survival after Renal Transplantation. , 2016, , 427-441.		0
1266	Recent advances in serum-free microcarrier expansion of mesenchymal stromal cells: Parameters to be optimized. Biochemical and Biophysical Research Communications, 2016, 473, 769-773.	1.0	27
1267	Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function. Journal of Bioscience and Bioengineering, 2016, 121, 213-219.	1.1	80
1268	Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology, 2016, 17, 267-279.	2.0	37
1269	Biomanufacturing of human mesenchymal stem cells in cell therapy: Influence of microenvironment on scalable expansion in bioreactors. Biochemical Engineering Journal, 2016, 108, 44-50.	1.8	26
1270	Biomimetics of Bone Implants: The Regenerative Road. BioResearch Open Access, 2017, 6, 1-6.	2.6	29
1271	Comparative characterization of mesenchymal stromal cells from multiple abdominal adipose tissues and enrichment of angiogenic ability via CD146 molecule. Cytotherapy, 2017, 19, 170-180.	0.3	25
1272	Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Experimental and Therapeutic Medicine, 2017, 13, 55-62.	0.8	31
1273	Bone regeneration in the stem cell era: safe play for the patient?. Clinical Rheumatology, 2017, 36, 745-752.	1.0	4
1274	Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation. European Journal of Medical Genetics, 2017, 60, 326-334.	0.7	10
1275	Isolation and characterization of equine dental pulp stem cells derived from Thoroughbred wolf teeth. Journal of Veterinary Medical Science, 2017, 79, 47-51.	0.3	6
1276	CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells. Stem Cell Reports, 2017, 8, 961-976.	2.3	71
1277	Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors. Cytotherapy, 2017, 19, 419-432.	0.3	55
1278	Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Translational Medicine, 2017, 6, 2173-2185.	1.6	502
1279	Hypoxia impairs mesenchymal stromal cell-induced macrophage M1 to M2 transition. Technology, 2017, 05, 81-86.	1.4	14
1280	Concise Review: Musculoskeletal Stem Cells to Treat Age-Related Osteoporosis. Stem Cells Translational Medicine, 2017, 6, 1930-1939.	1.6	49
1281	Long bone mesenchymal stem cells (Lb-MSCs): clinically reliable cells for osteo-diseases. Cell and Tissue Banking, 2017, 18, 489-500.	0.5	20
1282	Involvement of mTOR-autophagy in the selection of primitive mesenchymal stem cells in chitosan film 3-dimensional culture. Scientific Reports, 2017, 7, 10113.	1.6	14

#	Article	IF	CITATIONS
1283	Mesenchymal stem/stromal cell extracellular vesicles: From active principle to next generation drug delivery system. Journal of Controlled Release, 2017, 262, 104-117.	4.8	121
1285	Herbal pre-conditioning induces proliferation and delays senescence in Wharton's Jelly Mesenchymal Stem Cells. Biomedicine and Pharmacotherapy, 2017, 93, 772-778.	2.5	27
1286	Visualization and Modeling of the In Vivo Distribution of Mesenchymal Stem Cells. Current Protocols in Stem Cell Biology, 2017, 43, 2B.8.1-2B.8.17.	3.0	3
1287	Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence?. Cells Tissues Organs, 2017, 204, 59-83.	1.3	258
1288	Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 148.	2.4	80
1289	Modulation of oxidative phosphorylation and redox homeostasis in mitochondrial NDUFS4 deficiency via mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 150.	2.4	26
1290	Pharmacological targeting of bone marrow mesenchymal stromal/stem cells for the treatment of hematological disorders. Inflammation and Regeneration, 2017, 37, 7.	1.5	5
1291	Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-Î ³ Prelicensing is Context Dependent. Stem Cells, 2017, 35, 1437-1439.	1.4	23
1292	The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy, 2017, 19, 1-8.	0.3	112
1293	Concise Review: Mesenchymal Stem Cell Therapy for Pediatric Disease: Perspectives on Success and Potential Improvements. Stem Cells Translational Medicine, 2017, 6, 539-565.	1.6	44
1294	Isolation of equine peripheral blood stem cells from a Japanese native horse. Journal of Equine Science, 2017, 28, 153-158.	0.2	6
1295	Mesenchymal Stromal Cells: ClinicalÂExperience, Challenges, andÂFuture Directions. , 2017, , 309-334.		1
1296	Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. International Journal of Molecular Sciences, 2017, 18, 1190.	1.8	213
1297	Antitumor Activity of a Mesenchymal Stem Cell Line Stably Secreting a Tumor-Targeted TNF-Related Apoptosis-Inducing Ligand Fusion Protein. Frontiers in Immunology, 2017, 8, 536.	2.2	13
1298	Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering. BioMed Research International, 2017, 2017, 1-7.	0.9	7
1299	Isolation, Expansion and Application of Human Mesenchymal Stem Cells. , 2017, , 304-319.		0
1300	Effect of local bone marrow stromal cell administration on ligature-induced periodontitis in mice. Journal of Oral Science, 2017, 59, 629-637.	0.7	9
1301	Therapeutic Purposes and Risks of Ex Vivo Expanded Mesenchymal Stem/Stromal Cells. , 2017, , 551-587.		2

#	Article	IF	CITATIONS
1302	Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles. Stem Cell Investigation, 2017, 4, 84-84.	1.3	131
1303	Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease?. Thorax, 2018, 73, 565-574.	2.7	69
1304	Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Stem Cells and Development, 2018, 27, 579-589.	1.1	24
1305	Microfluidic label-free selection of mesenchymal stem cell subpopulation during culture expansion extends the chondrogenic potential <i>in vitro</i> . Lab on A Chip, 2018, 18, 878-889.	3.1	42
1306	MSCs—cells with many sides. Cytotherapy, 2018, 20, 273-278.	0.3	91
1307	Driving mesenchymal stem cell differentiation from self-assembled monolayers. RSC Advances, 2018, 8, 6551-6564.	1.7	13
1308	Therapies for genetic extracellular matrix diseases of the skin. Matrix Biology, 2018, 71-72, 330-347.	1.5	20
1309	High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression. Cellular Physiology and Biochemistry, 2018, 46, 1749-1767.	1.1	13
1310	Osteogenesis imperfecta and therapeutics. Matrix Biology, 2018, 71-72, 294-312.	1.5	75
1311	Thymus-Derived Mesenchymal Stem Cells for Tissue Engineering Clinical-Grade Cardiovascular Grafts. Tissue Engineering - Part A, 2018, 24, 794-808.	1.6	17
1312	Mesenchymal stem cells and their conditioned medium can enhance the repair of uterine defects in a rat model. Journal of the Chinese Medical Association, 2018, 81, 268-276.	0.6	27
1313	Microâ€Nanostructures of Celluloseâ€Collagen for Critical Sized Bone Defect Healing. Macromolecular Bioscience, 2018, 18, 1700263.	2.1	20
1314	Concise Review: Quantitative Detection and Modeling the In Vivo Kinetics of Therapeutic Mesenchymal Stem/Stromal Cells. Stem Cells Translational Medicine, 2018, 7, 78-86.	1.6	38
1315	Marine algae extract attenuated osteoporosis in OVX mice, enhanced osteogenesis on human mesenchymal stem cells and promoted OPG expression. Journal of Functional Foods, 2018, 40, 229-237.	1.6	5
1316	High expression of TRAIL by osteoblastic differentiated dental pulp stem cells affects myeloma cell viability. Oncology Reports, 2018, 39, 2031-2039.	1.2	13
1317	Fetal Tissue. , 2018, , 299-299.		0
1318	Aging of mesenchymal stem cells: Implication in regenerative medicine. Regenerative Therapy, 2018, 9, 120-122.	1.4	70
1319	Stem Cell and Advanced Nano Bioceramic Interactions. Advances in Experimental Medicine and Biology, 2018, 1077, 317-342.	0.8	16

		_	
	LON	DEDC	NDT.
CITA		NEPU	ואר

#	Article	IF	CITATIONS
1320	Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185, 194-204.	5.7	60
1321	Mesenchymal Stromal Cells Based Therapy in Systemic Sclerosis: Rational and Challenges. Frontiers in Immunology, 2018, 9, 2013.	2.2	36
1322	Mesenchymal Stem Cell Therapy for Bone Regeneration. Clinics in Orthopedic Surgery, 2018, 10, 271.	0.8	101
1323	Autologous Mesenchymal Stroma Cells Are Superior to Allogeneic Ones in Bone Defect Regeneration. International Journal of Molecular Sciences, 2018, 19, 2526.	1.8	15
1324	Systemic Injection of Substance P Promotes Murine Calvarial Repair Through Mobilizing Endogenous Mesenchymal Stem Cells. Scientific Reports, 2018, 8, 12996.	1.6	5
1325	Regenerative Medicine Applications of Mesenchymal Stem Cells. Advances in Experimental Medicine and Biology, 2018, 1089, 115-141.	0.8	34
1326	Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research and Therapy, 2018, 9, 131.	2.4	384
1327	Epiphyseal growth plate architecture is unaffected by early postnatal activation of the expression of R992C collagen II mutant. Bone, 2018, 112, 42-50.	1.4	4
1328	Bone Targeted Delivery of SDF-1 via Alendronate Functionalized Nanoparticles in Guiding Stem Cell Migration. ACS Applied Materials & Interfaces, 2018, 10, 23700-23710.	4.0	45
1329	Tissue Engineering of Large Full-Size Meniscus Defects by a Polyurethane Scaffold: Accelerated Regeneration by Mesenchymal Stromal Cells. Stem Cells International, 2018, 2018, 1-11.	1.2	36
1330	Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization. Stem Cells International, 2018, 2018, 1-13.	1.2	99
1331	Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice. FASEB Journal, 2018, 32, 3174-3183.	0.2	28
1332	In vivo tracking of intravenously injected mesenchymal stem cells in an Alzheimer's animal model. Cell Transplantation, 2018, 27, 1203-1209.	1.2	20
1333	Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review. Osteoarthritis and Cartilage, 2018, 26, 1583-1594.	0.6	22
1334	Mesenchymal Stromal Cells. , 2018, , 1559-1567.		1
1335	Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation. Stem Cell Research and Therapy, 2018, 9, 178.	2.4	29
1336	Treatment of Arsenite Intoxication-Induced Peripheral Vasculopathy with Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2018, 19, 1026.	1.8	5
1337	Mesenchymal Stem Cell Migration during Bone Formation and Bone Diseases Therapy. International Journal of Molecular Sciences, 2018, 19, 2343.	1.8	148

	Article	IF	CITATIONS
1338	Current Status of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Veterinary Medicine. Stem Cells International, 2018, 2018, 1-14.	1.2	19
1339	Novel Lipid Signaling Mediators for Mesenchymal Stem Cell Mobilization During Bone Repair. Cellular and Molecular Bioengineering, 2018, 11, 241-253.	1.0	7
1340	The Molecular Basis of Genetic Collagen Disorders and Its Clinical Relevance. Journal of Bone and Joint Surgery - Series A, 2018, 100, 976-986.	1.4	6
1341	Application of Bone Marrow Stem Cell Based Therapy in Bone Loss Diseases. Current Pharmaceutical Design, 2018, 23, 6288-6297.	0.9	2
1342	An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. Journal of Cellular Physiology, 2019, 234, 2705-2718.	2.0	35
1343	Peripheral Blood Stem Cells. , 2019, , 307-333.		0
1344	Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients. Molecular Biology Reports, 2019, 46, 5257-5272.	1.0	48
1345	Genetically Engineered-MSC Therapies for Non-unions, Delayed Unions and Critical-size Bone Defects. International Journal of Molecular Sciences, 2019, 20, 3430.	1.8	32
1346	Mesenchymal Stem Cells Reverse Diabetic Nephropathy Disease via Lipoxin A4 by Targeting Transforming Growth Factor β (TGF-β)/smad Pathway and Pro-Inflammatory Cytokines. Medical Science	0.5	62
	Monitor, 2019, 25, 3069-3076.		
1347	Monitor, 2019, 25, 3069-3076. Fetal Treatment of Genetic Disorders. , 2019, , 175-185.		0
1347 1348	Monitor, 2019, 25, 3069-3076. Fetal Treatment of Genetic Disorders. , 2019, , 175-185. Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Scientific Reports, 2019, 9, 14401.	1.6	0
1347 1348 1349	Monitor, 2019, 25, 3069-3076. Fetal Treatment of Genetic Disorders. , 2019, , 175-185. Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Scientific Reports, 2019, 9, 14401. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Frontiers in Bioengineering and Biotechnology, 2019, 7, 288.	1.6 2.0	0 16 36
1347 1348 1349 1350	Monitor, 2019, 25, 3069-3076. Fetal Treatment of Genetic Disorders. , 2019, , 175-185. Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Scientific Reports, 2019, 9, 14401. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Frontiers in Bioengineering and Biotechnology, 2019, 7, 288. Impact of the human mesenchymal stem cells donor on conditional medium composition. , 2019, , .	1.6 2.0	0 16 36 0
1347 1348 1349 1350 1351	Monitor, 2019, 25, 3069-3076. Fetal Treatment of Genetic Disorders. , 2019, , 175-185. Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Scientific Reports, 2019, 9, 14401. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Frontiers in Bioengineering and Biotechnology, 2019, 7, 288. Impact of the human mesenchymal stem cells donor on conditional medium composition. , 2019, , . Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 2019, 3, 90-104.	1.6 2.0 11.6	0 16 36 0
1347 1348 1349 1350 1351 1352	Monitor, 2019, 25, 3069-3076. Fetal Treatment of Genetic Disorders. , 2019, , 175-185. Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Scientific Reports, 2019, 9, 14401. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Frontiers in Bioengineering and Biotechnology, 2019, 7, 288. Impact of the human mesenchymal stem cells donor on conditional medium composition. , 2019, , . Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 2019, 3, 90-104. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines. Trends in Molecular Medicine, 2019, 25, 149-163.	1.6 2.0 11.6 3.5	0 16 36 0 245 288
1347 1348 1349 1350 1351 1352 1353	Monitor, 2019, 25, 3069-3076. Fetal Treatment of Genetic Disorders. , 2019, , 175-185. Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Scientific Reports, 2019, 9, 14401. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Frontiers in Bioengineering and Biotechnology, 2019, 7, 288. Impact of the human mesenchymal stem cells donor on conditional medium composition. , 2019, , . Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 2019, 3, 90-104. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Cuidelines. Trends in Molecular Medicine, 2019, 25, 149-163. <p>Porous Se@SiO₂ nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model</p> . International Journal of Nanomedicine, 2019, Volume 14, 3845-3860.	1.6 2.0 11.6 3.5 3.3	0 16 36 0 245 288
1347 1348 1349 1350 1351 1352 1353	Monitor, 2019, 25, 3069-3076. Fetal Treatment of Cenetic Disorders. , 2019, , 175-185. Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Scientific Reports, 2019, 9, 14401. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Frontiers in Bioengineering and Biotechnology, 2019, 7, 288. Impact of the human mesenchymal stem cells donor on conditional medium composition. , 2019, , . Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 2019, 3, 90-104. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Cuidelines. Trends in Molecular Medicine, 2019, 25, 149-163. & lt;p>Porous Se@SiO ₂ nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model. International Journal of Nanomedicine, 2019, Volume 14, 3845-3860. Collagen diseases. , 2019, , 293-319.	1.6 2.0 11.6 3.5 3.3	0 16 36 0 245 288 31
#	Article	IF	CITATIONS
------	--	-----	-----------
1356	Stem cells from human exfoliated deciduous teeth ameliorate type II diabetic mellitus in Goto-Kakizaki rats. Diabetology and Metabolic Syndrome, 2019, 11, 22.	1.2	10
1357	Perinatal Stem Cells. , 2019, , .		2
1358	Mechanism of Action of Icariin in Bone Marrow Mesenchymal Stem Cells. Stem Cells International, 2019, 2019, 1-12.	1.2	33
1359	Long-Term Outcomes of BMMSC Compared with BMMNC for Treatment of Critical Limb Ischemia and Foot Ulcer in Patients with Diabetes. Cell Transplantation, 2019, 28, 645-652.	1.2	36
1360	Current and Emerging Therapeutic Options for the Management of Rare Skeletal Diseases. Paediatric Drugs, 2019, 21, 95-106.	1.3	18
1361	Immune Modulation by Transplanted Calcium Phosphate Biomaterials and Human Mesenchymal Stromal Cells in Bone Regeneration. Frontiers in Immunology, 2019, 10, 663.	2.2	83
1362	Androgens and Androgen Receptor Actions on Bone Health and Disease: From Androgen Deficiency to Androgen Therapy. Cells, 2019, 8, 1318.	1.8	51
1363	Clinical Applications of Mesenchymal Stromal Cells (MSCs) in Orthopedic Diseases. , 2019, , .		1
1364	The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Research and Therapy, 2019, 10, 377.	2.4	99
1365	Use of Mesenchymal Stem/Stromal Cells for Pediatric Orthopedic Applications. Techniques in Orthopaedics, 2019, 34, 257-265.	0.1	0
1366	In Vitro Mesenchymal Progenitor Cell Expansion is a Predictor of Transplant-related Mortality and acute GvHD III-IV After Bone Marrow Transplantation in Univariate Analysis: A Large Single-Center Experience. Journal of Pediatric Hematology/Oncology, 2019, 41, 42-46.	0.3	4
1367	Systemic Administration of Adipose-Derived Stromal Cells Concurrent with Fat Grafting. Plastic and Reconstructive Surgery, 2019, 143, 973e-982e.	0.7	21
1368	Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharmaceutica Sinica B, 2019, 9, 167-176.	5.7	94
1369	Evidence for Lgr6 as a Novel Marker of Osteoblastic Progenitors in Mice. JBMR Plus, 2019, 3, e10075.	1.3	10
1370	Mesenchymal stem cells and biologic factors leading to bone formation. Journal of Clinical Periodontology, 2019, 46, 12-32.	2.3	38
1371	Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. Applied Sciences (Switzerland), 2019, 9, 174.	1.3	58
1372	Bone Marrow Transplantation for Treatment of the Col1a2+/G610C Osteogenesis Imperfecta Mouse Model. Calcified Tissue International, 2019, 104, 426-436.	1.5	11
1373	Concise review: The challenges and opportunities of employing mesenchymal stromal cells in the treatment of acute pancreatitis. Biotechnology Advances, 2020, 42, 107338.	6.0	13

#	Article	IF	CITATIONS
1374	In Utero Stem Cell Transplantation. , 2020, , 554-559.e2.		0
1375	Fate of systemically and locally administered adipose-derived mesenchymal stromal cells and their effect on wound healing. Stem Cells Translational Medicine, 2020, 9, 131-144.	1.6	38
1376	Engraftment of skeletal progenitor cells by bone-directed transplantation improves osteogenesis imperfecta murine bone phenotype. Stem Cells, 2020, 38, 530-541.	1.4	22
1378	Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discovery Today, 2020, 25, 380-391.	3.2	7
1379	Effect of cryopreservation on therapeutic potential of canine bone marrow derived mesenchymal stem cells augmented mesh scaffold for wound healing in guinea pig. Biomedicine and Pharmacotherapy, 2020, 121, 109573.	2.5	11
1380	A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Theranostics, 2020, 10, 741-756.	4.6	58
1381	Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone, 2020, 141, 115617.	1.4	18
1382	Bone marrow in orthopaedics (part II): a three hundred and seventyÂmillion-year saga from the Devonian to the coronavirus disease 2019 pandemic—osteonecrosis; transplantation; "human chimeraâ€; stem cells, bioreactors, and coronavirus disease. International Orthopaedics, 2020, 44, 2787-2805.	0.9	7
1383	Oriented immobilization of basic fibroblast growth factor: Bioengineered surface design for the expansion of human mesenchymal stromal cells. Scientific Reports, 2020, 10, 8762.	1.6	7
1384	Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Research and Therapy, 2020, 11, 492.	2.4	128
1385	Genomic Medicine: Lessons Learned From Monogenic and Complex Bone Disorders. Frontiers in Endocrinology, 2020, 11, 556610.	1.5	4
1386	Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived β2 Microglobulin Knockout Induced Pluripotent Stem Cells. Cell Transplantation, 2020, 29, 096368972096552.	1.2	9
1387	Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 557758.	2.0	18
1388	Modular Orthopaedic Tissue Engineering With Implantable Microcarriers and Canine Adipose-Derived Mesenchymal Stromal Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 816.	2.0	4
1389	Stem Cell Therapy. , 2020, , 637-667.		0
1390	Mesenchymal Stromal Cells in Pediatric Hematopoietic Cell Transplantation a Review and a Pilot Study in Children Treated With Decidua Stromal Cells for Acute Graft-versus-Host Disease. Frontiers in Immunology, 2020, 11, 567210.	2.2	11
1391	Stem Cell Aging and Regenerative Medicine. Advances in Experimental Medicine and Biology, 2020, 1326, 11-37.	0.8	11
1392	Liver damage in schistosomiasis is reduced by adipose tissue-derived stem cell therapy after praziguantelÅtreatment. PLoS Neglected Tropical Diseases, 2020, 14, e0008635.	1.3	9

#	Article	IF	CITATIONS
1393	Use of MSCs and MSC-Educated Macrophages to Mitigate Hematopoietic Acute Radiation Syndrome. Current Stem Cell Reports, 2020, 6, 77-85.	0.7	7
1394	Longtime Outcome After Intraosseous Application of Autologous Mesenchymal Stromal Cells in Pediatric Patients and Young Adults with Avascular Necrosis After Steroid or Chemotherapy. Stem Cells and Development, 2020, 29, 811-822.	1.1	8
1395	Obesity-Induced Changes in Bone Marrow Homeostasis. Frontiers in Endocrinology, 2020, 11, 294.	1.5	53
1396	Limited Potential or Unfavorable Manipulations? Strategies Toward Efficient Mesenchymal Stem/Stromal Cell Applications. Frontiers in Cell and Developmental Biology, 2020, 8, 316.	1.8	19
1397	New perspectives on the treatment of skeletal dysplasia. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882090401.	1.4	26
1398	Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture healing by targeting Smad5. Journal of Nanobiotechnology, 2020, 18, 47.	4.2	88
1399	Ganglioside GM3 Up-Regulate Chondrogenic Differentiation by Transform Growth Factor Receptors. International Journal of Molecular Sciences, 2020, 21, 1967.	1.8	7
1400	Management of Osteogenesis Imperfecta. Frontiers in Endocrinology, 2019, 10, 924.	1.5	49
1401	Mesenchymal Stem Cells Beyond Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2020, 8, 72.	1.8	60
1402	Human Mesenchymal Stromal Cell (MSC) Characteristics Vary Among Laboratories When Manufactured From the Same Source Material: A Report by the Cellular Therapy Team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Frontiers in Cell and Developmental Biology, 2020, 8, 458.	1.8	28
1403	Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst, The, 2020, 145, 2070-2105.	1.7	55
1404	Tris(2-carboxyethyl)phosphine-Mediated Nanometric Extracellular Matrix-Coating Method of Mesenchymal Stem Cells. ACS Biomaterials Science and Engineering, 2020, 6, 813-821.	2.6	5
1405	Individual Tissue-Engineered Bone in Repairing Bone Defects: A 10-Year Follow-Up Study. Tissue Engineering - Part A, 2020, 26, 896-904.	1.6	11
1406	Immunoregulatory properties of mesenchymal stem cells and their application in immunotherapy. , 2020, , 17-43.		0
1407	Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells. Biomaterials, 2020, 248, 120014.	5.7	57
1408	Nanowire transducers for biomedical applications. , 2020, , 697-713.		1
1409	Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery. Biomaterials, 2021, 264, 120445.	5.7	24
1410	Mitophagy promotes the stemness of bone marrow-derived mesenchymal stem cells. Experimental Biology and Medicine, 2021, 246, 97-105.	1.1	14

#	Article	IF	CITATIONS
1411	Comparative characteristic study from bone marrow-derived mesenchymal stem cells. Journal of Veterinary Science, 2021, 22, e74.	0.5	16
1412	The skeletal stem cell. , 2021, , 75-98.		0
1413	Mesenchymal Stromal Cells: Impact on Hematopoietic Cell Transplantation. , 2021, , 859-870.		1
1414	Reiterative infusions of MSCs improve pediatric osteogenesis imperfecta eliciting a proâ€osteogenic paracrine response: TERCELOI clinical trial. Clinical and Translational Medicine, 2021, 11, e265.	1.7	23
1415	Immunomodulatory Properties of Mesenchymal Stromal Cells Can Vary in Genetically Modified Rats. International Journal of Molecular Sciences, 2021, 22, 1181.	1.8	2
1416	The Effect of Co-treating Human Mesenchymal Stem Cells with Epigallocatechin Gallate and Hypoxia-Inducible Factor-1 on the Expression of RANKL/RANK/OPG Signaling Pathway, Osteogenesis, and Angiogenesis Genes. Regenerative Engineering and Translational Medicine, 0, , 1.	1.6	1
1417	Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages. Cell Biochemistry and Biophysics, 2021, 79, 321-336.	0.9	6
1418	Mesenchymal stem cellâ€derived exosomes for organ development and cellâ€free therapy. Nano Select, 2021, 2, 1291-1325.	1.9	4
1419	The Potential of Mesenchymal Stromal Cells in Neuroblastoma Therapy for Delivery of Anti-Cancer Agents and Hematopoietic Recovery. Journal of Personalized Medicine, 2021, 11, 161.	1.1	6
1420	Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. International Journal of Molecular Sciences, 2021, 22, 3576.	1.8	43
1421	Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Progress in Retinal and Eye Research, 2021, 85, 100967.	7.3	16
1422	Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. Journal of Biomedical Science, 2021, 28, 28.	2.6	100
1423	Trophic effects of multiple administration of mesenchymal stem cells in children with osteogenesis imperfecta. Clinical and Translational Medicine, 2021, 11, e385.	1.7	2
1424	Cylindrical Magnetic Nanowires Applications. IEEE Transactions on Magnetics, 2021, 57, 1-17.	1.2	28
1427	Photothermal release and recovery of mesenchymal stem cells from substrates functionalized with gold nanorods. Acta Biomaterialia, 2021, 129, 110-121.	4.1	2
1428	Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. International Journal of Molecular Sciences, 2021, 22, 7724.	1.8	13
1429	Local administration of allogeneic or autologous bone marrow-derived mesenchymal stromal cells enhances bone formation similarly in distraction osteogenesis. Cytotherapy, 2021, 23, 590-598.	0.3	9
1430	Stem Cell Applications in Periodontal Regeneration. Dental Clinics of North America, 2021, 66, 53-74.	0.8	3

#	Article	IF	CITATIONS
1431	Construction and evaluation of a novel tissue‑engineered bone device. Experimental and Therapeutic Medicine, 2021, 22, 1166.	0.8	1
1432	Mesenchymal Stem Cells in Premature Ovarian Insufficiency: Mechanisms and Prospects. Frontiers in Cell and Developmental Biology, 2021, 9, 718192.	1.8	17
1433	Lipid-Based Drug Delivery Systems in Regenerative Medicine. Materials, 2021, 14, 5371.	1.3	16
1434	A systematic review and meta-analysis on the efficacy of stem cell therapy on bone brittleness in mouse models of osteogenesis imperfecta. Bone Reports, 2021, 15, 101108.	0.2	2
1435	Adipose stem cell homing and routes of delivery. , 2022, , 109-120.		0
1436	Adult Bone Marrow Transplantation after Stroke in Adult Rats. Cell Transplantation, 2001, 10, 31-40.	1.2	94
1438	Stem Cells: The Holy Grail of Regenerative Medicine. , 2014, , 19-69.		5
1439	Mesenchymal Stromal Cells in Regenerative Medicine: A Perspective. , 2013, , 3-16.		6
1440	Mesenchymal Stem Cells in Allogeneic Transplantation. , 2003, , 151-158.		2
1441	Human Pluripotent Stem Cells from Bone Marrow. , 2003, , 89-111.		1
1442	Retroviral Modification of Mesenchymal Stem Cells for Gene Therapy of Hemophilia. Methods in Molecular Biology, 2008, 433, 203-212.	0.4	32
1443	Differentiation of Human Embryonic Stem Cells into Mesenchymal Stem Cells by the "Raclure―Method. Methods in Molecular Biology, 2011, 690, 183-193.	0.4	17
1444	Mesenchymal Stem Cells and Tissue Repair. , 2012, , 35-51.		5
1445	Mesenchymal Stem Cells in Bone and Cartilage Regeneration. , 2013, , 131-153.		3
1446	Cementum and Periodontal Ligament Regeneration. Advances in Experimental Medicine and Biology, 2015, 881, 207-236.	0.8	27
1447	Control of Muscle Size During Embryonic, Fetal, and Adult Life. Results and Problems in Cell Differentiation, 2002, 38, 163-186.	0.2	21
1448	Stem Cell Culture. , 2002, , 461-469.		2
1449	Metabolic and Endocrine Bone Diseases. , 2008, , 1917-1982.		1

#	Article	IF	CITATIONS
1450	Mesenchymal stem cells and haematopoietic stem cell transplantation. Best Practice and Research in Clinical Haematology, 2004, 17, 387-399.	0.7	20
1451	Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clinic Proceedings, 2009, 84, 893-902.	1.4	86
1452	Human cytidine deaminase as an ex vivo drug selectable marker in gene-modified primary bone marrow stromal cells. , 0, .		1
1453	Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. , 0, .		2
1454	Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3213-8.	3.3	440
1455	Answer: Marrow Stem Cell Transplantation in Fibrodysplasia Ossificans Progressiva. Clinical Orthopaedics and Related Research, 2001, 392, 451-455.	0.7	11
1456	Osteoblasts may take a road well-traveled. BoneKEy Osteovision, 2005, 2, 14-18.	0.6	2
1457	Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. Journal of Clinical Investigation, 2002, 110, 807-814.	3.9	140
1458	Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. Journal of Clinical Investigation, 2002, 110, 807-814.	3.9	89
1459	Glomerulosclerosis is transmitted by bone marrow–derived mesangial cell progenitors. Journal of Clinical Investigation, 2001, 108, 1649-1656.	3.9	114
1460	Identification of a bone marrow–derived epithelial-like population capable of repopulating injured mouse airway epithelium. Journal of Clinical Investigation, 2009, 119, 336-48.	3.9	116
1461	Bone Marrow Transplantation for Non-Malignant Disease. Hematology American Society of Hematology Education Program, 2000, 2000, 319-338.	0.9	5
1462	Bone Marrow Transplantation for Non-Malignant Disease. Hematology American Society of Hematology Education Program, 2000, 2000, 319-338.	0.9	8
1463	Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood, 2000, 95, 3620-3627.	0.6	2
1464	Immunobiology of Biomaterial/ Mesenchymal Stem Cell Interactions. , 2012, , 405-418.		2
1465	Recent advances in understanding mesenchymal stromal cells. F1000Research, 2020, 9, 156.	0.8	22
1466	Stem cells in cancer therapy: From their role in pathogenesis to their use as therapeutic agents. Drug News and Perspectives, 2010, 23, 175.	1.9	7
1467	Development of a Surface Plasmon Resonance Biosensor for Real-Time Detection of Osteogenic Differentiation in Live Mesenchymal Stem Cells. PLoS ONE, 2011, 6, e22382.	1.1	32

#	Article	IF	CITATIONS
1468	Hypoxia Inhibits Osteogenesis in Human Mesenchymal Stem Cells through Direct Regulation of RUNX2 by TWIST. PLoS ONE, 2011, 6, e23965.	1.1	140
1469	Renoprotective Effect of Human Umbilical Cord–Derived Mesenchymal Stem Cells in Immunodeficient Mice Suffering from Acute Kidney Injury. PLoS ONE, 2012, 7, e46504.	1.1	28
1470	A Xenogeneic-Free Protocol for Isolation and Expansion of Human Adipose Stem Cells for Clinical Uses. PLoS ONE, 2013, 8, e67870.	1.1	29
1471	Prospects and limitations of improving skeletal growth in a mouse model of spondyloepiphyseal dysplasia caused by R992C (p.R1192C) substitution in collagen II. PLoS ONE, 2017, 12, e0172068.	1.1	4
1472	Multipotent mesenchymal stem cells in lung fibrosis. PLoS ONE, 2017, 12, e0181946.	1.1	43
1473	Current Status of Cell Therapies in Stroke. International Journal of Stem Cells, 2009, 2, 35-44.	0.8	4
1475	Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?. Oncotarget, 2016, 7, 60752-60774.	0.8	56
1476	New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget, 2016, 7, 71998-72010.	0.8	13
1477	Cordycepin prevents oxidative stress-induced inhibition of osteogenesis. Oncotarget, 2015, 6, 35496-35508.	0.8	41
1479	Mesenchymal Stem/Stromal Cells: A New ''Cells as Drugs'' Paradigm. Efficacy and Critical Aspects in Cell Therapy. Current Pharmaceutical Design, 2013, 19, 2459-2473.	0.9	144
1480	One-step Derivation of Functional Mesenchymal Stem Cells from Human Pluripotent Stem Cells. Bio-protocol, 2018, 8, e3080.	0.2	10
1481	Mesenchymal Stromal Cells Implantation in Combination with Platelet Lysate Product Is Safe for Reconstruction of Human Long Bone Nonunion. Cell Journal, 2016, 18, 302-309.	0.2	18
1482	Percutaneous Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Implantation Is Safe for Reconstruction of Human Lower Limb Long Bone Atrophic Nonunion. Cell Journal, 2017, 19, 159-165.	0.2	19
1483	Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. , 2010, 20, 121-133.		287
1484	Regulation of proliferation and differentiation of human fetal bone cells. , 2011, 21, 46-58.		20
1485	Systemic mesenchymal stem cell administration enhances bone formation in fracture repair but not load-induced bone formation. , 2015, 29, 22-34.		25
1486	Mesenchymal stem cells: from biology to clinical use. Blood Transfusion, 2007, 5, 120-9.	0.3	82
1487	Adventage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105+ and CD271+ cells Folia Histochemica Et Cytobiologica, 2008, 46, 307-14.	0.6	74

#	Article	IF	Citations
1488	The CD271 expression could be alone for establisher phenotypic marker in Bone Marrow derived mesenchymal stem cells Folia Histochemica Et Cytobiologica, 2011, 48, 682-6.	0.6	28
1489	Regenerative medicine for bone diseases using mesenchymal stem cells. Inflammation and Regeneration, 2013, 33, 048-053.	1.5	1
1490	Hutchinson-Gilford progeria syndrome, cardiovascular disease and oxidative stress. Frontiers in Bioscience - Scholar, 2011, S3, 1285.	0.8	22
1491	FTIR spectroscopic imaging of mesenchymal stem cells in beta thalassemia major disease state. Biomedical Spectroscopy and Imaging, 2012, 1, 67-78.	1.2	1
1492	Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. International Journal of Molecular Sciences, 2020, 21, 9759.	1.8	131
1493	Comparison of biological characteristics of marrow mesenchymal stem cells in hepatitis B patients and normal adults. World Journal of Gastroenterology, 2007, 13, 1743.	1.4	18
1494	Rationale for the potential use of mesenchymal stromal cells in liver transplantation. World Journal of Gastroenterology, 2014, 20, 16418.	1.4	19
1495	Current Progress on Tissue Engineering of Bone and Cartilage. Endocrinology and Metabolism, 2012, 27, 1.	1.3	1
1497	Simvastatin Induces Osteogenic Differentiation and Suppresses Adipogenic Differentiation in Primarily Cultured Human Adipose-Derived Stem Cells. Biomolecules and Therapeutics, 2009, 17, 353-361.	1.1	4
1498	Adult mesenchymal stem cells. Journal of Postgraduate Medicine, 2007, 53, 121-127.	0.2	147
1499	A method for reconstruction of severely damaged spinal cord using autologous hematopoietic stem cells and platelet-rich protein as a biological scaffold. Journal of Innovative Optical Health Sciences, 2017, 12, 681-690.	0.5	9
1500	The Potential of Tissue Engineering and Regeneration for Craniofacial Bone. Dentistry (Sunnyvale,) Tj ETQq1 1 0.	784314 rg 0.1	BŢ/Overlock
1501	Human Bone Marrow-Derived Mesenchymal Stem Cells. Libyan Journal of Medicine, 2007, 2, 190-201.	0.8	10
1502	Mesenchymal Stem Cells—A Boon to Orthopedics. Open Journal of Regenerative Medicine, 2018, 07, 19-27.	0.5	5
1503	Characterization of a mesenchymal stem cell line that differentiates to bone and provides niches supporting mouse and human hematopoietic stem cells. Stem Cell Discovery, 2012, 02, 5-14.	0.5	6
1504	Mesenchymal stem cells: From bench to bedside. World Journal of Stem Cells, 2010, 2, 13.	1.3	38
1505	Immunophenotype and differentiation capacity of bone marrow-derived mesenchymal stem cells from CBA/Ca, ICR and Balb/c mice. World Journal of Stem Cells, 2013, 5, 34.	1.3	13
1506	Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World Journal of Stem Cells, 2013, 5, 136.	1.3	199

#	Article	IF	Citations
1507	Trasplante de progenitores hemopoy $ ilde{A}$ ©ticos. Anales Del Sistema Sanitario De Navarra, 0, 29, .	0.2	2
1508	Trasplante celular y terapia regenerativa con células madre. Anales Del Sistema Sanitario De Navarra, 0, 29, .	0.2	10
1509	Mesenchymal stem cells and innate tolerance: biology and clinical applications. Swiss Medical Weekly, 2010, 140, w13121.	0.8	31
1510	Gene Therapy and Tissue Engineering in Orthopaedic Surgery. Journal of the American Academy of Orthopaedic Surgeons, The, 2002, 10, 6-15.	1.1	53
1511	Duchenne Muscular Dystrophy. Journal of the American Academy of Orthopaedic Surgeons, The, 2002, 10, 138-151.	1.1	144
1512	Osteogenesis Imperfecta: Diagnosis and Treatment. Journal of the American Academy of Orthopaedic Surgeons, The, 2008, 16, 356-366.	1.1	72
1513	Therapeutic potential of intravenously administered human mesenchymal stromal cells. Hamostaseologie, 2011, 31, 269-274.	0.9	6
1514	Mesenchymal stem cells: new aspect in cell-based regenerative therapy. Advanced Pharmaceutical Bulletin, 2013, 3, 433-7.	0.6	41
1515	Bone marrow-derived mesenchymal stem cells (MSCs) stimulate neurite outgrowth from differentiating adult hippocampal progenitor cells. Stem Cell Biology and Research, 2016, 3, 3.	0.4	7
1516	Changes in the hepatic differentiation potential of human mesenchymal stem cells aged in vitro. Annals of Translational Medicine, 2021, 9, 1628-1628.	0.7	5
1517	Osteogenesis Imperfecta: Current and Prospective Therapies. Biomolecules, 2021, 11, 1493.	1.8	27
1518	Inhibitory Effect of Bovine Adipose-Derived Mesenchymal Stem Cells on Lipopolysaccharide Induced Inflammation of Endometrial Epithelial Cells in Dairy Cows. Frontiers in Veterinary Science, 2021, 8, 726328.	0.9	6
1519	Human Adipose-Derived Mesenchymal Stem Cells Ameliorate Elastase-Induced Emphysema in Mice by Mesenchymal–Epithelial Transition. International Journal of COPD, 2021, Volume 16, 2783-2793.	0.9	6
1520	Modern approaches on stem cells and scaffolding technology for osteogenic differentiation and regeneration. Experimental Biology and Medicine, 2022, 247, 433-445.	1.1	11
1521	Limited engraftment capacity of bone marrow–derived mesenchymal cells following T-cell–depleted hematopoietic stem cell transplantation. Blood, 2000, 96, 3637-3643.	0.6	1
1522	Plasticity of Stem Cells. , 2001, , 1-17.		0
1523	Criteria for Evaluating Success of a Therapeutic Intervention in Osteogenesis Imperfecta: Application to Cell Transplantation and Bisphosphonates Therapy. BoneKEy Osteovision, 0, , .	0.6	0
1524	虚血性å¿fç−¾æ,£ãĸå⁻¾ã₮Mã,‹è‡ªå®¶éª¨é«"å∙æççfç°èfžç§»æ₿,'用ã₅ãŸè;€ç®¡æ−°ç"Ÿç™,法ã®åŸºçŽçš"æ	ĕ èðŽ(<ç <u>%</u>	∞¹@†>ç¬ <u>¬</u> 63

#	Article	IF	Citations
1525	Stem Cell Therapy in the Mouse Heart. Basic Science for the Cardiologist, 2004, , 349-361.	0.1	0
1526	Stammzellen. , 2004, , 196-211.		Ο
1527	Osteogenesis Imperfecta: Recent Progress in Many Areas. Clinical Reviews in Bone and Mineral Metabolism, 2004, 2, 19-36.	1.3	0
1528	Hochdosistherapie und Stammzelltransplantation. , 2004, , 535-562.		0
1531	ASPIRATION OF OSTEOPROGENITOR CELLS FOR AUGMENTING SPINAL FUSION. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2655-2661.	1.4	0
1532	Mesenchymal Stem Cells: Where Can You Find Them? How Can You Use Them?. , 2006, , 159-168.		1
1533	Engineering of Human Adipose-Derived Mesenchymal Stem-Like Cells. , 2006, , 111-125.		0
1534	Stammzellen und ihre Bedeutung für die Onkologie. , 2006, , 2333-2359.		0
1535	Bone Marrow Mesenchymal Stem Cell Transplantation for Children with Severe Osteogenesis Imperfecta. , 2006, , 135-150.		0
1536	Regenerative Medicine: The Promise of Cellular Cardiomyoplasty. Fundamental and Clinical Cardiology, 2006, , 547-572.	0.0	0
1537	Do Autologous Mesenchymal Stem Cells Augment Bone Growth and Contact to Massive Bone Tumor Implants?. Tissue Engineering, 2006, .	4.9	0
1538	Do Autologous Mesenchymal Stem Cells Augment Bone Growth and Contact to Massive Bone Tumor Implants?. Tissue Engineering, 2006, .	4.9	0
1539	Bespoke Human Hypertrophic Chondrocytic Cell Lines Provide the Osteoinductive Signals Required for Vascularized Bone Formation. Tissue Engineering, 2006, .	4.9	0
1540	Bespoke Human Hypertrophic Chondrocytic Cell Lines Provide the Osteoinductive Signals Required for Vascularized Bone Formation. Tissue Engineering, 2006, .	4.9	0
1541	A Rapid and Efficient Method for Expansion of Human Mesenchymal Stem Cells. Tissue Engineering, 2006, .	4.9	1
1542	Two MSCs: Marrow stromal cells and mesenchymal stem cells. Inflammation and Regeneration, 2007, 27, 28-36.	1.5	0
1544	Stem Cells Differentiation. , 2008, , 83-93.		0
1545	Stem Cell Treatment for Complicated Diabetes. International Journal of Stem Cells, 2008, 1, 91-95.	0.8	1

#	Article	IF	CITATIONS
1546	Non-hematopoietic Stem and Progenitor Cells Derived From Human Umbilical Cord Blood. , 2009, , 123-157.		1
1547	Mesenchymal Stem Cells: Applications in Cell and Gene Therapy. , 2009, , 97-122.		1
1548	Utilization of MSCs for Repairing Cardiomyocytes. Advanced Topics in Science and Technology in China, 2009, , 59-72.	0.0	0
1549	Stem Cells with No Tissue Specificity. , 2009, , 57-108.		1
1550	MSC Therapy in Animal Models and in Regenerative Medicine for Human Diseases. , 2009, , 245-266.		0
1554	Mesenchymal Stromal Cells: An Emerging Cell-Based Pharmaceutical. , 2011, , 127-148.		Ο
1555	Expansion of Mesenchymal Stem Cells (MSCs) for Clinical Use. , 2010, , 207-226.		0
1557	Mesenchymal Stem Cells as Muscle Reservoir. Journal of Stem Cell Research & Therapy, 2011, 01, .	0.3	5
1559	Anti-Angiogenesis Therapy Based on the Bone Marrow-Derived Stromal Cells Genetically Engineered to Express Sflt-1 in Mouse Tumor Model. , 2011, , 217-233.		0
1560	Embryonic Stem Cells: from Blastocyst to in vitro Differentiation. , 0, , .		0
1561	Mesenchymal Stem Cells from Bone Marrow. Series in Medical Physics and Biomedical Engineering, 2011, , 31-52.	0.1	0
1562	Mesenchymal Stem Cells as Vehicles for Targeted Therapies. , 0, , .		1
1563	Bone Marrow Stromal Cells for Repair of the Injured Spinal Cord. , 0, , .		0
1564	Novel Sources of Fetal Stem Cells for Future Regenerative Medicine. Indonesian Biomedical Journal, 2012, 4, 3.	0.2	1
1565	The Immunogenicity of Stem Cells and Thymus-Based Strategies to Minimise Immune Rejection. , 2013, , 201-223.		0
1566	MSCs for Gastrointestinal Disorders. , 2013, , 529-540.		Ο
1567	MSCs in Pediatric Hematopoietic Stem Cell Transplantation. , 2013, , 467-483.		0
1568	Experiences with In Utero Transplantation of Mesenchymal Stem Cells. , 2013, , 161-168.		0

#	Article	IF	Citations
1569	Aggregation of Human Eyelid Adipose-derived Stem Cells by Human Body Fluids. Development & Reproduction, 2012, 16, 339-351.	0.5	5
1571	The Human Nose Offers a New Stem Cell Source for Bone Injuries. , 2013, , 64-81.		0
1572	Evidence of a Hematopoietic Origin of Human Bone Marrow Stromal Cells. Journal of Bone Marrow Research, 2013, 01, .	0.2	0
1573	Endothelial Progenitor Cells, Lnk and Bone Fracture Healing. , 2013, , 180-199.		0
1574	Mesenchymal Stromal/Stem Cell Transplantation: From Tissue Regeneration to Immune Modulation. , 2013, , 391-397.		0
1575	Allogeneic Mesenchymal Stem Cells for Bone Tissue Engineering. , 2013, , 245-266.		0
1576	Pediatric Diseases and Stem Cells: Recent Advances and Challenges. Pancreatic Islet Biology, 2013, , 125-158.	0.1	0
1577	Cell therapy of a patient with type III <i>osteogenesis imperfecta</i> caused by mutation in <i>COL1A2</i> gene and unstable collagen type I. Open Journal of Genetics, 2013, 03, 49-60.	0.1	4
1579	Musculoskeletal System: Growing Endochondral Bone, Mature Osseous, Muscle (Striated), and Soft Tissue Mesenchyme. Medical Radiology, 2014, , 595-622.	0.0	0
1580	The Potential of Gene and Cell-Based Strategies for the Treatment of Osteogenesis Imperfecta. , 2014, , 529-541.		0
1581	Bone Marrow Versus Dental Pulp Stem Cells in Osteogenesis. , 2014, , 127-141.		0
1583	Targeted Therapies for Bone Metastases. Current Clinical Pathology, 2015, , 249-266.	0.0	0
1584	Fetal and Perinatal Stem Cells in Regenerative Medicine. , 2015, , 23-45.		0
1585	Modes d'actions paracrines des Cellules Stromales Mésenchymateuses. Bulletin De L'Academie Nationale De Medecine, 2015, 199, 501-514.	0.0	0
1586	Promises and Challenges of Adult Stem Cells in Cancer Therapy. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2015, 15, 138-144.	0.5	0
1587	Stem Cell Therapy and Orthopedics. , 2016, , 269-281.		0
1588	Stem Cell Therapy for Avascular Femoral Head Necrosis: From Preclinical to Clinical Study. Stem Cells in Clinical Applications, 2016, , 89-105.	0.4	0
1590	Supermacroporous Cryogels as Scaffolds for Pancreatic Islet Transplantation. , 2016, , 281-308.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1591	Tissue Engineering and Stem Cell Research. , 2017, , 1-15.			0
1592	Effects of Short Term Hypoxia-Preconditioning on Glial Phenotype Induction of Human Me Stem Cells. AIMS Cell and Tissue Engineering, 2017, 1, 47-63.	senchymal	0.4	0
1593	Mesenchymal Stromal Cells to Improve Solid Organ Transplant Outcome. , 2017, , 319-33	1.		0
1594	Effects of Bone Marrow Stromal Cell Transplantation on Repair of Bone Defect in Rats. Tran Monthly, 2018, 23, .	uma	0.2	0
1595	Biomimetics: A New Abstraction for Bone Implant Design. , 2019, , 151-157.			0
1597	The Effect of Mesenchymal Punca Cell in Scaffold Primo to Fusion of Vertebral Column After Laminoplasty. , 2019, , .	er		0
1598	ADMINISTRATION OF BONE MARROW DERIVED MESENCHYMAL STEM CELLS MODULATE DURING LIVER REGENERATION. Trakya University Journal of Natural Sciences, 0, 20, 1-10.	TLR EXPRESSION	0.4	0
1599	Stem Cell Therapy. , 2020, , 1-31.			1
1600	Effect of Adipose-Derived Mesenchymal Stem Cell Repair in Nicotine Model Rat: A Femoral Diaphyseal Defect Study. Iranian Red Crescent Medical Journal, 2020, 22, .	Bone	0.5	0
1601	Isolation and characterization of mesenchymal stem cells derived from amniotic fluid: A prostudy. International Journal of Molecular and Immuno Oncology, 0, 5, 67-72.	ospective	0.0	6
1602	Anatomy of Periodontal Tissues. , 2020, , 1-7.			0
1603	A review from mesenchymal stem-cells and their small extracellular vesicles in tissue engine Biocell, 2022, 46, 325-338.	eering.	0.4	0
1604	Human Primary Bone Marrow Stromal Cells—Basic Biology and Isolation Strategies. , 202	0, , 26-34.		0
1605	Tissue Engineering and Stem Cell Research. , 2020, , 577-592.			0
1606	Functional beta-cells derived from umbilical cord blood mesenchymal stem cells for curing streptozotocin-induced diabetes mellitus. Singapore Medical Journal, 2020, 61, 39-45.	rats with	0.3	6
1607	Bone Substitutes: From Basic to Current Update. Journal of the Korean Fracture Society, 20	020, 33, 238.	0.1	1
1608	Stem Cells and Bioactive Materials. , 2004, , 181-198.			0
1610	Glomerulosclerosis is transmitted by bone marrow–derived mesangial cell progenitors. Jo Clinical Investigation, 2001, 108, 1649-1656.	burnal of	3.9	53

#	Article	IF	CITATIONS
1611	Fetal Tissue Engineering: Regenerative Capacity of Fetal Stem Cells. , 2009, , 139-157.		0
1612	Treatment of children with osteogenesis imperfecta. Current Osteoporosis Reports, 2006, 4, 159-164.	1.5	3
1613	Severe osteogenesis imperfecta: new therapeutic options?. BMJ: British Medical Journal, 2001, 322, 63-64.	2.4	0
1614	Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica, 2006, 91, 192-9.	1.7	127
1615	Mesenchymal cells from limbal stroma of human eye. Molecular Vision, 2008, 14, 431-42.	1.1	124
1617	Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. International Journal of Clinical and Experimental Medicine, 2010, 3, 248-69.	1.3	174
1618	Comparison of beneficial factors for corneal wound-healing of rat mesenchymal stem cells and corneal limbal stem cells on the xenogeneic acellular corneal matrix in vitro. Molecular Vision, 2012, 18, 161-73.	1.1	17
1619	Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. American Journal of Stem Cells, 2013, 2, 22-38.	0.4	77
1620	Bone marrow-derived mesenchymal stem cells inhibits hepatocyte apoptosis after acute liver injury. International Journal of Clinical and Experimental Pathology, 2015, 8, 107-16.	0.5	23
1621	Potential of Mesenchymal Stem Cell based application in Cancer. International Journal of Hematology-Oncology and Stem Cell Research, 2015, 9, 95-103.	0.3	44
1622	Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling. International Journal of Clinical and Experimental Medicine, 2015, 8, 7125-33.	1.3	29
1623	MESENCHYMAL STROMAL CELLS AND THEIR ORTHOPAEDIC APPLICATIONS. Case Orthopaedic Journal, 2012, 9, 60-65.	0.0	0
1624	Transplantation of bone marrow-derived mesenchymal stem cells rescues partially rachitic phenotypes induced by 1,25-Dihydroxyvitamin D deficiency in mice. American Journal of Translational Research (discontinued), 2016, 8, 4382-4393.	0.0	3
1625	Experimental study on healing of long bone defects treated with fibrin membrane enriched with platelet growth factors and periosteal mesenchymal stem cells in rabbit: Radiographical and histopathological evaluations. Veterinary Research Forum, 2019, 10, 285-291.	0.3	0
1626	Hematopoietic Stem Cell-Derived Functional Osteoblasts Exhibit Therapeutic Efficacy in a Murine Model of Osteogenesis Imperfecta. Stem Cells, 2021, 39, 1457-1477.	1.4	6
1627	Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. International Journal of Dentistry, 2021, 2021, 1-13.	0.5	11
1628	Cell Therapy: Types, Regulation, and Clinical Benefits. Frontiers in Medicine, 2021, 8, 756029.	1.2	61
1629	Co-culture of BMSCs and HUVECs with simvastatin-loaded gelatin nanosphere/chitosan coating on Mg alloy for osteogenic differentiation and vasculogenesis. International Journal of Biological Macromolecules. 2021, 193, 2021-2028.	3.6	7

#	Article	IF	CITATIONS
1630	Animal models and their substitutes in biomedical research. , 2022, , 87-101.		1
1631	Nanoscale Imaging and Analysis of Bone Pathologies. Applied Sciences (Switzerland), 2021, 11, 12033.	1.3	1
1632	Engineered Cellâ€Secreted Extracellular Matrix Modulates Cell Spheroid Mechanosensing and Amplifies Their Response to Inductive Cues for the Formation of Mineralized Tissues. Advanced Healthcare Materials, 2022, 11, e2102337.	3.9	21
1633	Immunomodulation of Skin Repair: Cell-Based Therapeutic Strategies for Skin Replacement (A) Tj ETQq1 1 0.7843	314 rgBT /	Oyerlock 10

$1634 \qquad D \bar{D} \mu \bar{D} \bar{D} \bar{A} \bar{N} \bar{D} \bar{D} \bar{A} \bar{D} \bar{A} \bar{D} \bar{A} \bar{D} \bar{A} \bar{D} \bar{A} \bar{N} \bar{N}, D \mu \bar{D} \bar{A} \bar{D} \bar{A$

1635	Smad4 and Î ³ -secretase knock-down effect on osteogenic differentiation mediated via Runx2 in canine mesenchymal stem cells. Research in Veterinary Science, 2022, 145, 116-124.	0.9	1
1636	Educating EVs to Improve Bone Regeneration: Getting Closer to the Clinic. International Journal of Molecular Sciences, 2022, 23, 1865.	1.8	5
1637	Circulating TGF-Î ² Pathway in Osteogenesis Imperfecta Pediatric Patients Subjected to MSCs-Based Cell Therapy. Frontiers in Cell and Developmental Biology, 2022, 10, 830928.	1.8	3
1638	Mesenchymal Stem Cell (MSCs) Therapy for Ischemic Heart Disease: A Promising Frontier. Global Heart, 2022, 17, 19.	0.9	16
1639	Visualized procollagen lî ± 1 demonstrates the intracellular processing of propeptides. Life Science Alliance, 2022, 5, e202101060.	1.3	3
1640	New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. International Journal of Molecular Sciences, 2022, 23, 2669.	1.8	7
1641	Curative Cell and Gene Therapy for Osteogenesis Imperfecta. Journal of Bone and Mineral Research, 2020, 37, 826-836.	3.1	15
1642	Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Frontiers in Immunology, 2022, 13, 839844.	2.2	44
1643	Clinical implications of differential functional capacity between tissueâ€specific human mesenchymal stromal/stem cells. FEBS Journal, 2023, 290, 2833-2844.	2.2	7
1644	Mesenchymal Stem Cell-Derived Extracellular Vesicles in Liver Immunity and Therapy. Frontiers in Immunology, 2022, 13, 833878.	2.2	22
1645	Gastrin producing syngeneic mesenchymal stem cells protect non-obese diabetic mice from type 1 diabetes. Autoimmunity, 2022, 55, 95-108.	1.2	4
1646	Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Biological Carriers for Drug Delivery in Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2022, 10, 882545.	2.0	4
1655	The Hematopoietic Microenvironment. , 0, , 53-61.		0

ARTICLE IF CITATIONS Nonunion., 2017, , 1829-1837.e5. 0 1657 Serum-Free Cultures: Could They Be a Future Direction to Improve Neuronal Differentiation of Mesenchymal Stromal Cells?. International Journal of Molecular Sciences, 2022, 23, 6391. 1.8 Modulated nanowire scaffold for highly efficient differentiation of mesenchymal stem cells. Journal 1659 4.2 6 of Nanobiotechnology, 2022, 20, . An optimized method for obtaining clinicalâ€grade specific cell subpopulations from human umbilical 2.4 <scp>cordâ€derived</scp> mesenchymal stem cells. Cell Proliferation, 2022, 55, . Current Status of the Diagnosis and Management of Osteoporosis. International Journal of 1662 1.8 54 Molecular Sciences, 2022, 23, 9465. Differential dynamics of bone graft transplantation and mesenchymal stem cell therapy during bone defect healing in a murine critical size defect. Journal of Orthopaedic Translation, 2022, 36, 64-74. 1663 A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From 1665 1.4 48 Biosynthesis to Bioscaffold. Biomedicines, 2022, 10, 2307. New perspectives on treatment of gastrointestinal diseases: therapeutic potential of mesenchymal 1666 0.4 stromal cells. Biological Communications, 2022, 67, . Biologic Foundations for Skeletal Tissue Engineering. Synthesis Lectures on Tissue Engineering, 2011, 1667 0.3 4 Células madre pluripotentes humanas II., 0,, 8-12. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other 1670 0.5 1 sources of mesenchymal stem cells?. Cell and Tissue Banking, 0, , . Mechanosensitive miR-99b mediates the regulatory effect of matrix stiffness on bone marrow 1671 3.3 mesenchymal stem cell fate both <i>in vitro</i> and <i>in vivo</i>. APL Bioengineering, 2023, 7, . Mesenchymal stem cells in the treatment of osteogenesis imperfecta. Cell Regeneration, 2023, 12, . 1672 1.1 3 Decellularized Extracellular Matrix: The Role of This Complex Biomaterial in Regeneration. ACS 1.6 Omega, 2023, 8, 22256-22267. Participation of Mesenchymal Stem Cells in the Tumor Process., 2023, , 1-32. 1683 0 Collagen diseases. , 2024, , 371-398.