Mechanical unfolding intermediates in titin modules

Nature 402, 100-103

DOI: 10.1038/47083

Citation Report

#	Article	IF	CITATIONS
1	Responsive Hybrid Hydrogels with Volume Transitions Modulated by a Titin Immunoglobulin Module. Bioconjugate Chemistry, 2000, 11, 734-740.	1.8	44
2	The Mechanical Properties of Single Chromatin Fibers Under Tension. Single Molecules, 2000, 1, 185-192.	1.7	24
3	Force spectroscopy with single bio-molecules. Current Opinion in Chemical Biology, 2000, 4, 524-530.	2.8	388
4	Stretching single molecules into novel conformations using the atomic force microscope. Nature Structural Biology, 2000, 7, 719-724.	9.7	283
5	Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnology, 2000, 18, 1091-1095.	9.4	337
6	Point mutations alter the mechanical stability of immunoglobulin modules. Nature Structural Biology, 2000, 7, 1117-1120.	9.7	206
7	Structural biology with carbon nanotube AFM probes. Chemistry and Biology, 2000, 7, R193-R204.	6.2	76
8	Protein folding mechanisms: new methods and emerging ideas. Current Opinion in Structural Biology, 2000, 10, 16-25.	2.6	125
9	Single molecule force spectroscopy in biology using the atomic force microscope. Progress in Biophysics and Molecular Biology, 2000, 74, 37-61.	1.4	348
10	Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Progress in Biophysics and Molecular Biology, 2000, 74, 63-91.	1.4	400
11	Skeletal muscle titin: physiology and pathophysiology. Cellular and Molecular Life Sciences, 2000, 57, 1570-1576.	2.4	11
12	The application of atomic force microscopy to topographical studies and force measurements on the secreted adhesive of the green alga Enteromorpha. Planta, 2000, 211, 641-647.	1.6	75
13	Atomic force microscopy reveals the mechanical design of a modular protein. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6527-6531.	3.3	276
14	Native topology determines force-induced unfolding pathways in globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7254-7259.	3.3	164
15	Dynamic Force Spectroscopy of Molecular Adhesion Bonds. Physical Review Letters, 2000, 84, 6126-6129.	2.9	152
16	Unfolding proteins by external forces and temperature: The importance of topology and energetics. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6521-6526.	3.3	282
17	Monitoring Biomolecular Interactions by Time-Lapse Atomic Force Microscopy. Journal of Structural Biology, 2000, 131, 171-180.	1.3	70
18	The Key Event in Force-Induced Unfolding of Titin's Immunoglobulin Domains. Biophysical Journal, 2000, 79, 51-65.	0.2	282

#	Article	IF	CITATIONS
19	Biomolecular Interactions Measured by Atomic Force Microscopy. Biophysical Journal, 2000, 79, 3267-3281.	0.2	226
20	Single Molecule Force Spectroscopy of Modular Proteins in the Nervous System. Neuron, 2000, 27, 435-446.	3.8	50
21	STRUCTURAL BIOLOGY:Unraveling a Membrane Protein. Science, 2000, 288, 63-64.	6.0	10
22	Scanning Probe Microscopy. Analytical Chemistry, 2000, 72, 189-196.	3.2	50
23	Single Polymer Chain Elongation of Poly(N-isopropylacrylamide) and Poly(acrylamide) by Atomic Force Microscopy. Journal of Physical Chemistry B, 2000, 104, 10258-10264.	1,2	112
24	Probing the Relation Between Force—Lifetime—and Chemistry in Single Molecular Bonds. Annual Review of Biophysics and Biomolecular Structure, 2001, 30, 105-128.	18.3	1,220
25	Kiss and Run Mechanism in Exocytosis. Journal of Membrane Biology, 2001, 181, 67-76.	1.0	29
26	Kiss and Run Mechanism in Exocytosis. Journal of Membrane Biology, 2001, 181, 67-76.	1.0	34
27	Intermolecular forces in biology. Quarterly Reviews of Biophysics, 2001, 34, 105-267.	2.4	584
28	Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3658-3661.	3.3	800
29	Stability and Folding Rates of Domains Spanning the Large A-Band Super-Repeat of Titin. Biophysical Journal, 2001, 81, 1570-1579.	0.2	19
30	Simulated Refolding of Stretched Titin Immunoglobulin Domains. Biophysical Journal, 2001, 81, 2268-2277.	0.2	48
31	Can Non-Mechanical Proteins Withstand Force? Stretching Barnase by Atomic Force Microscopy and Molecular Dynamics Simulation. Biophysical Journal, 2001, 81, 2344-2356.	0.2	234
32	Unfolding of Titin Domains Explains the Viscoelastic Behavior of Skeletal Myofibrils. Biophysical Journal, 2001, 80, 1442-1451.	0.2	178
33	Construction d'une médiation entre connaissances scientifiques et action : Deux expériences de lutte contre des maladies épidémiques de vergers dans le Sud de la France. Natures Sciences Societes, 2001, 9, 59-67.	0.1	0
34	Kraftspektroskopie von einzelnen Biomolekülen: Biologische Makromoleküle besser begreifen – mit Einzelmolekülâ€Kraftmessungen und Computersimulationen. Physik Journal, 2001, 57, 55-61.	0.1	4
35	Study on Polymer Micelles of Hydrophobically Modified Ethyl Hydroxyethyl Cellulose Using Single-Molecule Force Spectroscopy. Langmuir, 2001, 17, 4799-4808.	1.6	21
36	An Explanation of Shortening Heat Generation and Mechanical Performance Enhancement during Muscle Stretch. Scientific World Journal, The, 2001, 1, 547-554.	0.8	1

#	Article	IF	CITATIONS
37	Force spectroscopy on single passive biomolecules and single biomolecular bonds. Physics Reports, 2001, 346, 343-385.	10.3	120
38	Steered molecular dynamics investigations of protein function. Journal of Molecular Graphics and Modelling, 2001, 19, 13-25.	1.3	327
39	Single Chromatin Fibre Assembly Using Optical Tweezers. Single Molecules, 2001, 2, 91-97.	1.7	28
40	Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest. Journal of Muscle Research and Cell Motility, 2001, 22, 399-414.	0.9	24
41	Structural insights into the mechanical regulation of molecular recognition sites. Trends in Biotechnology, 2001, 19, 416-423.	4.9	73
42	Single molecule measurements of titin elasticity. Progress in Biophysics and Molecular Biology, 2001, 77, 1-44.	1.4	66
43	Structural Evidence for a Possible Role of Reversible Disulphide Bridge Formation in the Elasticity of the Muscle Protein Titin. Structure, 2001, 9, 331-340.	1.6	80
44	Steered molecular dynamics and mechanical functions of proteins. Current Opinion in Structural Biology, 2001, 11, 224-230.	2.6	934
45	Force as a probe of membrane protein structure and function. Current Opinion in Structural Biology, 2001, 11, 433-439.	2.6	16
46	Atomic force microscopy of macromolecular interactions. Current Opinion in Structural Biology, 2001, 11, 567-572.	2.6	39
47	Stepwise unfolding of titin under force-clamp atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 468-472.	3.3	336
48	Single molecules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10527-10528.	3.3	18
49	Comparison of the early stages of forced unfolding for fibronectin type III modules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5590-5595.	3.3	125
50	Fluorescence Correlation Spectroscopy. Springer Series in Chemical Physics, 2001, , .	0.2	295
51	Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1565-1570.	3.3	118
52	Mechanical unfolding and refolding of proteins: An off-lattice model study. Physical Review E, 2001, 63, 021905.	0.8	17
53	Protein denaturation in vacuo: Mechanism for centrifugal unfolding of neutral lysozyme. Journal of Chemical Physics, 2001, 115, 10557.	1.2	7
54	Multiple conformations of PEVK proteins detected by single-molecule techniques. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10682-10686.	3.3	167

#	Article	IF	Citations
55	Kinetic Monte Carlo simulation of titin unfolding. Journal of Chemical Physics, 2001, 114, 9663-9673.	1.2	61
56	On the interpretation of force extension curves of single protein molecules. Journal of Chemical Physics, 2002, 116, 7760-7765.	1.2	38
57	Unfolding Proteins under External Forces: A Solvable Model under the Self-Consistent Pair Contact Probability Approximation. Physical Review Letters, 2002, 89, 068103.	2.9	18
58	A simple method for probing the mechanical unfolding pathway of proteins in detail. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12143-12148.	3.3	93
59	Structure and mechanics of single biomolecules: experiment and simulation. Journal of Physics Condensed Matter, 2002, 14, R383-R414.	0.7	88
60	Forced Unfolding of Single Proteins. Methods in Cell Biology, 2002, 68, 311-335.	0.5	1
61	Multiple Steering Molecular Dynamics Applied to Water Exchange at Alkali Ions. Journal of Physical Chemistry B, 2002, 106, 13027-13032.	1.2	15
62	Chain Length and Concentration Dependence of β-Cyclodextrinâ^Ferrocene Hostâ^Guest Complex Rupture Forces Probed by Dynamic Force Spectroscopy. Langmuir, 2002, 18, 6988-6994.	1.6	90
63	Oxygen Bridge Inhibits Conformational Transition of 1,4-Linked \hat{l}_{\pm} -d-Galactose Detected by Single-Molecule Atomic Force Microscopy. Macromolecules, 2002, 35, 871-876.	2.2	31
64	Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4278-4283.	3.3	141
65	Different Molecular Mechanics Displayed by Titin's Constitutively and Differentially Expressed Tandem Ig Segments. Journal of Structural Biology, 2002, 137, 248-258.	1.3	83
66	Force Spectroscopy Study on Poly(acrylamide) Derivatives:  Effects of Substitutes and Buffers on Single-Chain Elasticity. Nano Letters, 2002, 2, 1169-1172.	4.5	52
67	Reversible stretching of random heteropolymers. Physical Review E, 2002, 65, 056110.	0.8	23
68	Quasicontinuum Representations of Atomic-Scale Mechanics: From Proteins to Dislocations. Annual Review of Materials Research, 2002, 32, 219-233.	4.3	31
69	Mechanical Response of Random Heteropolymers. Macromolecules, 2002, 35, 4429-4436.	2.2	18
70	What can atomic force microscopy tell us about protein folding?. Chemical Communications, 2002, , 183-192.	2.2	50
71	Mechanical Unfolding of a Titin Ig Domain: Structure of Unfolding Intermediate Revealed by Combining AFM, Molecular Dynamics Simulations, NMR and Protein Engineering. Journal of Molecular Biology, 2002, 322, 841-849.	2.0	200
72	Identifying Unfolding Intermediates of FN-III10 by Steered Molecular Dynamics. Journal of Molecular Biology, 2002, 323, 939-950.	2.0	159

#	Article	IF	Citations
73	The Effect of Core Destabilization on the Mechanical Resistance of I27. Biophysical Journal, 2002, 83, 458-472.	0.2	132
74	Steered Molecular Dynamics Studies of Titin I1 Domain Unfolding. Biophysical Journal, 2002, 83, 3435-3445.	0.2	111
75	Stability of Bacteriorhodopsin \hat{l}_{\pm} -Helices and Loops Analyzed by Single-Molecule Force Spectroscopy. Biophysical Journal, 2002, 83, 3578-3588.	0.2	163
76	A structural model for force regulated integrin binding to fibronectin's RGD-synergy site. Matrix Biology, 2002, 21, 139-147.	1.5	158
77	Entropic Elasticity in the Generation of Muscle Force – A Theoretical Model. Journal of Theoretical Biology, 2002, 219, 99-119.	0.8	5
78	Characterization of the Adhesive Mucilages Secreted by Live Diatom Cells using Atomic Force Microscopy. Protist, 2002, 153, 25-38.	0.6	105
79	A Dynamic Analysis of the Rotation Mechanism for Conformational Change in F1-ATPase. Structure, 2002, 10, 921-931.	1.6	157
80	Pathways and Intermediates in Forced Unfolding of Spectrin Repeats. Structure, 2002, 10, 1085-1096.	1.6	75
81	Integrated structural genomics in Europe. Gene Function & Disease, 2002, 3, 18-24.	0.3	0
82	Entropic Elasticity in the Generation of Muscle Force – A Theoretical Model. Journal of Theoretical Biology, 2002, 219, 99-119.	0.8	5
83	Biomolecular force measurements and the atomic force microscope. Current Opinion in Biotechnology, 2002, 13, 47-51.	3.3	127
84	Molecular dynamics study of mechanical extension of polyalanine by AFM cantilever. Applied Surface Science, 2002, 188, 372-376.	3.1	9
85	Use of AFM for imaging and measurement of the mechanical properties of light-convertible organelles in plants. Ultramicroscopy, 2002, 91, 261-268.	0.8	19
86	Folding and stretching in a Go-like model of titin. Proteins: Structure, Function and Bioinformatics, 2002, 49, 114-124.	1.5	64
87	Reverse engineering of the giant muscle protein titin. Nature, 2002, 418, 998-1002.	13.7	487
88	The myosin coiled-coil is a truly elastic protein structure. Nature Materials, 2002, 1, 232-235.	13.3	231
89	The protein import motor of mitochondria. Nature Reviews Molecular Cell Biology, 2002, 3, 555-565.	16.1	358
90	Optical tweezers stretching of chromatin. Journal of Muscle Research and Cell Motility, 2002, 23, 397-407.	0.9	12

#	Article	IF	CITATIONS
91	Titin as a modular spring: emerging mechanisms for elasticity control by titin in cardiac physiology and pathophysiology. Journal of Muscle Research and Cell Motility, 2002, 23, 457-470.	0.9	25
92	Unfolding of titin domains studied by molecular dynamics simulations. Journal of Muscle Research and Cell Motility, 2002, 23, 513-521.	0.9	61
93	The protein import motor of mitochondria: a targeted molecular ratchet driving unfolding and translocation. EMBO Journal, 2002, 21, 3659-3671.	3.5	103
94	Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. Journal of Muscle Research and Cell Motility, 2003, 24, 175-189.	0.9	167
95	Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO Journal, 2003, 22, 5220-5229.	3.5	111
96	Pathogenesis of Myositis and Myasthenia Associated with Titin and Ryanodine Receptor Antibodies. Annals of the New York Academy of Sciences, 2003, 998, 343-350.	1.8	27
97	Calcium-dependent molecular spring elements in the giant protein titin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13716-13721.	3.3	352
98	Protein folding: bringing theory and experiment closer together. Current Opinion in Structural Biology, 2003, 13, 82-87.	2.6	50
99	Single-molecule folding. Current Opinion in Structural Biology, 2003, 13, 88-97.	2.6	228
100	Atomic force bio-analytics. Current Opinion in Chemical Biology, 2003, 7, 641-647.	2.8	69
101	Force mode atomic force microscopy as a tool for protein folding studies. Analytica Chimica Acta, 2003, 479, 87-105.	2.6	120
102	Molecular dynamics simulations of a protein model in uniform and elongational flows. Proteins: Structure, Function and Bioinformatics, 2003, 51, 224-235.	1.5	25
103	The mechanical stability of ubiquitin is linkage dependent. Nature Structural and Molecular Biology, 2003, 10, 738-743.	3.6	436
104	Pulling geometry defines the mechanical resistance of a \hat{l}^2 -sheet protein. Nature Structural and Molecular Biology, 2003, 10, 731-737.	3.6	356
105	Hidden complexity in the mechanical properties of titin. Nature, 2003, 422, 446-449.	13.7	268
106	Single molecule mechanochemistry of macromolecules. Progress in Polymer Science, 2003, 28, 1271-1295.	11.8	254
107	THE STRUCTURE AND NANOMECHANICAL PROPERTIES OF THE ADHESIVE MUCILAGE THAT MEDIATES DIATOM-SUBSTRATUM ADHESION AND MOTILITY1. Journal of Phycology, 2003, 39, 1181-1193.	1.0	110
108	Relationship between the Mechanical Properties and Topology of Cross-Linked Polymer Molecules:Â Parallel Strands Maximize the Strength of Model Polymers and Protein Domains. Journal of Physical Chemistry B, 2003, 107, 8730-8733.	1.2	45

#	Article	IF	CITATIONS
109	Unfolding Mechanics of Multiple OspA Substructures Investigated with Single Molecule Force Spectroscopy. Journal of Molecular Biology, 2003, 333, 993-1002.	2.0	43
110	Mechanical Design of the First Proximal Ig Domain of Human Cardiac Titin Revealed by Single Molecule Force Spectroscopy. Journal of Molecular Biology, 2003, 334, 75-86.	2.0	87
111	Advances in biomolecular simulations: methodology and recent applications. Quarterly Reviews of Biophysics, 2003, 36, 257-306.	2.4	125
112	Gating of MscL Studied by Steered Molecular Dynamics. Biophysical Journal, 2003, 85, 2087-2099.	0.2	158
113	Mechanical Unfolding of a Titin Ig Domain: Structure of Transition State Revealed by Combining Atomic Force Microscopy, Protein Engineering and Molecular Dynamics Simulations. Journal of Molecular Biology, 2003, 330, 867-877.	2.0	168
114	Linkage between ATP Consumption and Mechanical Unfolding during the Protein Processing Reactions of an AAA+ Degradation Machine. Cell, 2003, 114, 511-520.	13.5	277
115	Kinetics from Nonequilibrium Single-Molecule Pulling Experiments. Biophysical Journal, 2003, 85, 5-15.	0.2	437
116	Mechanisms of Selectivity in Channels and Enzymes Studied with Interactive Molecular Dynamics. Biophysical Journal, 2003, 85, 36-48.	0.2	88
117	Molecular Basis of Passive Stress Relaxation in Human Soleus Fibers: Assessment of the Role of Immunoglobulin-Like Domain Unfolding. Biophysical Journal, 2003, 85, 3142-3153.	0.2	40
118	Cooperativity in Forced Unfolding of Tandem Spectrin Repeats. Biophysical Journal, 2003, 84, 533-544.	0.2	166
119	Forced Detachment of the CD2-CD58 Complex. Biophysical Journal, 2003, 84, 2223-2233.	0.2	62
120	Cellular Manipulations. , 2003, , 407-482.		0
121	Stress-induced shape transitions in polymers using a new approach to steered molecular dynamics. Physical Chemistry Chemical Physics, 2003, 5, 407-414.	1.3	8
122	Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14784-14789.	3.3	187
123	Unfolding proteins in an external field: Can we always observe the intermediate states?. Physical Review E, 2003, 67, 031910.	0.8	19
125	Theoretical studies of the mechanical unfolding of the muscle protein titin: Bridging the time-scale gap between simulation and experiment. Journal of Chemical Physics, 2003, 119, 9260-9268.	1.2	81
126	Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI. Nanotechnology, 2003, 14, 1279-1288.	1.3	77
127	Dynamics of the constrained polymer collapse. Europhysics Letters, 2003, 62, 848-854.	0.7	6

#	Article	IF	CITATIONS
128	Conformational mechanics of stimulus-responsive polypeptides. , 2003, , .		0
129	Biological Single Molecule Applications and Advanced Biosensing. Journal of Chromatography Library, 2003, , 241-263.	0.1	3
130	Measurement of Single Molecular Interactions by Dynamic Force Microscopy., 2004, 242, 369-382.		2
131	Giant Protein Titin: Structural and Functional Aspects. , 2003, , 242-258.		O
134	Multiple sources of passive stress relaxation in muscle fibres. Physics in Medicine and Biology, 2004, 49, 3613-3627.	1.6	33
135	Rupture Force between the Third Strand and the Double Strand within a Triplex DNA. Journal of the American Chemical Society, 2004, 126, 13992-13997.	6.6	35
136	Microelectromechanical system device for calibration of atomic force microscope cantilever spring constants between 0.01 and 4 N/m. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, $1444-1449$.	0.9	12
137	Stretching of homopolymers and contact order. Physical Review E, 2004, 70, 011917.	0.8	13
138	Elastic behavior of short compact polymers. Journal of Chemical Physics, 2004, 120, 5469-5475.	1.2	27
139	Simultaneous dynamic stiffness and extension profiles of single titin molecules: Nanomechanical evidence for unfolding intermediates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1439-1443.	0.9	13
140	Computational Cardiology. Lecture Notes in Computer Science, 2004, , .	1.0	98
141	Atomic Force Microscopy of Biological Samples. MRS Bulletin, 2004, 29, 449-455.	1.7	19
142	Chemistry on a Single Protein, Vascular Cell Adhesion Molecule-1, during Forced Unfolding. Journal of Biological Chemistry, 2004, 279, 45865-45874.	1.6	53
143	A mechanical unfolding intermediate in an actin-crosslinking protein. Nature Structural and Molecular Biology, 2004, 11, 81-85.	3.6	198
144	Tuning the Mechanical Stability of Fibronectin Type III Modules through Sequence Variations. Structure, 2004, 12, 21-30.	1.6	98
145	Nanomechanics of adhesion proteins. Current Opinion in Structural Biology, 2004, 14, 524-530.	2.6	17
146	Atomic force microscopy and drug discovery. Drug Discovery Today, 2004, 9, 64-71.	3. 2	52
147	Steered molecular dynamics simulations of protein-ligand interactions. Science in China Series B: Chemistry, 2004, 47, 355-366.	0.8	5

#	Article	IF	Citations
148	Effects of temperature on elastic behavior of short compact polymers. Polymer, 2004, 45, 3547-3554.	1.8	10
149	Thermal effects in stretching of Go-like models of titin and secondary structures. Proteins: Structure, Function and Bioinformatics, 2004, 56, 285-297.	1.5	73
150	Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials. Microscopy Research and Technique, 2004, 64, 415-434.	1.2	55
151	Conformational properties and elastic behavior of protein-like lattice polymers. Polymer, 2004, 45, 6735-6744.	1.8	4
152	Atomic force microscopic and theoretical studies of poly-ubiquitin proteins. Chemical Physics Letters, 2004, 399, 440-445.	1.2	3
153	Formamide Hydrolysis Investigated by Multiple-Steering ab Initio Molecular Dynamics. Journal of Physical Chemistry B, 2004, 108, 369-375.	1.2	50
154	Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16192-16197.	3.3	321
155	Molecular shape transitions driven by an external force: the case of polymer chains with transient knotted loops. Physical Chemistry Chemical Physics, 2004, 6, 3500.	1.3	6
156	A Microfabricated Spring-Constant Calibration Device for Atomic Force Microscopy (AFM) Potentially Traceable to the SI., 2004, , .		0
157	A Review of Nanobioscience and Bioinformatics Initiatives in North America. IEEE Transactions on Nanobioscience, 2004, 3, 74-84.	2.2	6
158	Properties of Titin Immunoglobulin and Fibronectin-3 Domains. Journal of Biological Chemistry, 2004, 279, 46351-46354.	1.6	67
159	Hierarchical Networks of Casein Proteins:Â An Elasticity Study Based on Atomic Force Microscopy. Langmuir, 2004, 20, 5079-5090.	1.6	61
160	Modular Domain Structure:  A Biomimetic Strategy for Advanced Polymeric Materials. Journal of the American Chemical Society, 2004, 126, 2058-2065.	6.6	125
161	Ubiquitin-like Protein Domains Show High Resistance to Mechanical Unfolding Similar to That of the I27 Domain in Titin:Â Evidence from Simulations. Journal of Physical Chemistry B, 2004, 108, 745-749.	1.2	51
162	Î ² -Cyclodextrin Hostâ [^] Guest Complexes Probed under Thermodynamic Equilibrium:Â Thermodynamics and AFM Force Spectroscopy. Journal of the American Chemical Society, 2004, 126, 1577-1584.	6.6	162
163	Reversible Mechanical Unfolding of Single Ubiquitin Molecules. Biophysical Journal, 2004, 87, 3995-4006.	0.2	87
164	Molecular Dynamics Simulations of Forced Conformational Transitions in 1,6-Linked Polysaccharides. Biophysical Journal, 2004, 87, 1456-1465.	0.2	62
165	Origin of Mechanical Strength of Bovine Carbonic Anhydrase Studied by Molecular Dynamics Simulation. Biophysical Journal, 2004, 87, 4007-4020.	0.2	39

#	ARTICLE	IF	CITATIONS
166	Mechanical Processes in Biochemistry. Annual Review of Biochemistry, 2004, 73, 705-748.	5.0	721
167	Simulation of the mechanical unfolding of ubiquitin: Probing different unfolding reaction coordinates by changing the pulling geometry. Journal of Chemical Physics, 2004, 121, 4826-4832.	1.2	75
168	High sensitivity detection of protein molecules picked up on a probe of atomic force microscope based on the fluorescence detection by a total internal reflection fluorescence microscope. FEBS Letters, 2004, 569, 59-64.	1.3	20
169	Atomic force microscopy: mechanical unfolding of proteins. Methods, 2004, 34, 100-111.	1.9	74
170	Force Spectroscopy with a Small Dithering of AFM Tip: A Method of Direct and Continuous Measurement of the Spring Constant of Single Molecules and Molecular Complexes. Biophysical Journal, 2004, 86, 1177-1184.	0.2	62
171	Single molecule force spectroscopy on ligand–DNA complexes: from molecular binding mechanisms to biosensor applications. Journal of Biotechnology, 2004, 112, 5-12.	1.9	38
172	Scanning probe microscopy – applications for the study of soft materials. , 2005, , 161-213.		2
173	Mechanical stretching of proteins: calmodulin and titin. Physica A: Statistical Mechanics and Its Applications, 2005, 352, 28-42.	1.2	9
174	Force spectroscopy of single multidomain biopolymers: A master equation approach. European Physical Journal E, 2005, 18, 1-13.	0.7	7
175	Visualizing and manipulating individual protein molecules. Physiological Measurement, 2005, 26, R119-R153.	1.2	40
176	Optical Characteristics of Atomic Force Microscopy Tips for Single-Molecule Fluorescence Applications. ChemPhysChem, 2005, 6, 976-983.	1.0	35
177	Direct Detection of Inter-residue Hydrogen Bonds in Polysaccharides by Single-Molecule Force Spectroscopy. Angewandte Chemie - International Edition, 2005, 44, 2723-2727.	7.2	36
179	Thermodynamic calculations in biological systems. Biophysical Chemistry, 2005, 117, 239-254.	1.5	6
180	New approaches to bridging the timescale gap in the computer simulation of biomolecular processes. , 2005, , .		0
181	Unfolding Induced by Mechanical Force., 0,, 1111-1142.		6
183	Molecular Dynamics Simulations of Single Molecule Atomic Force Microscope Experiments. Computational Chemistry - Reviews of Current Trends, 2005, , 47-83.	0.4	6
184	Topography of the free-energy landscape probed via mechanical unfolding of proteins. Journal of Chemical Physics, 2005, 122, 234915.	1,2	67
185	Mechanical properties of the domains of titin in a Go-like model. Journal of Chemical Physics, 2005, 122, 054906.	1.2	27

#	Article	IF	CITATIONS
186	Mechanical unfolding of ubiquitin molecules. Journal of Chemical Physics, 2005, 123, 194903.	1.2	28
187	Theoretical studies of the kinetics of mechanical unfolding of cross-linked polymer chains and their implications for single-molecule pulling experiments. Physical Review E, 2005, 71, 021904.	0.8	29
188	Comparison of the protein-unfolding pathways between mitochondrial protein import and atomic-force microscopy measurements. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17999-18004.	3.3	60
189	Measurements of the Forces in Protein Interactions with Atomic Force Microscopy. Current Proteomics, 2005, 2, 55-81.	0.1	32
190	Single Adhesive Nanofibers from a Live Diatom Have the Signature Fingerprint of Modular Proteins. Biophysical Journal, 2005, 89, 4252-4260.	0.2	72
191	Simulated force-induced unfolding of \hat{l}_{\pm} -helices: dependence of stretching stability on primary sequence. Physical Chemistry Chemical Physics, 2005, 7, 2018-2026.	1.3	4
192	Thermal unfolding of proteins. Journal of Chemical Physics, 2005, 123, 194908.	1.2	25
193	Atomic cranks and levers control sugar ring conformations. Journal of Physics Condensed Matter, 2005, 17, S1427-S1442.	0.7	15
194	Mechanical Unfolding Intermediates Observed by Single-molecule Force Spectroscopy in a Fibronectin Type III Module. Journal of Molecular Biology, 2005, 345, 817-826.	2.0	138
195	Study of the Mechanical Properties of Myomesin Proteins Using Dynamic Force Spectroscopy. Journal of Molecular Biology, 2005, 348, 1127-1137.	2.0	23
196	The Remarkable Mechanical Strength of Polycystin-1 Supports a Direct Role in Mechanotransduction. Journal of Molecular Biology, 2005, 349, 861-871.	2.0	108
197	Mechanical Unfolding of TNfn3: The Unfolding Pathway of a fnIII Domain Probed by Protein Engineering, AFM and MD Simulation. Journal of Molecular Biology, 2005, 350, 776-789.	2.0	110
198	Temperature Softening of a Protein in Single-molecule Experiments. Journal of Molecular Biology, 2005, 354, 497-503.	2.0	120
199	Free Energy Surfaces from Single-Molecule Force Spectroscopy. Accounts of Chemical Research, 2005, 38, 504-513.	7.6	227
200	Change of the unbinding mechanism upon a mutation: A molecular dynamics study of an antibody-hapten complex. Protein Science, 2005, 14, 2499-2514.	3.1	19
201	Mechanically Induced Titin Kinase Activation Studied by Force-Probe Molecular Dynamics Simulations. Biophysical Journal, 2005, 88, 790-804.	0.2	195
202	Molecular Force Modulation Spectroscopy Revealing the Dynamic Response of Single Bacteriorhodopsins. Biophysical Journal, 2005, 88, 1423-1431.	0.2	69
203	Inferring the Diameter of a Biopolymer from Its Stretching Response. Biophysical Journal, 2005, 89, 80-86.	0.2	30

#	ARTICLE	IF	CITATIONS
204	Mechanically Unfolding the Small, Topologically Simple Protein L. Biophysical Journal, 2005, 89, 506-519.	0.2	154
205	Unfolding and Extraction of a Transmembrane α-Helical Peptide: Dynamic Force Spectroscopy and Molecular Dynamics Simulations. Biophysical Journal, 2005, 89, 3129-3140.	0.2	27
206	Ligand Binding Modulates the Mechanical Stability of Dihydrofolate Reductase. Biophysical Journal, 2005, 89, 3337-3344.	0.2	103
207	Influence of Substrate Binding on the Mechanical Stability of Mouse Dihydrofolate Reductase. Biophysical Journal, 2005, 89, L46-L48.	0.2	59
208	Surface Biology: Analysis of Biomolecular Structure by Atomic Force Microscopy and Molecular Pulling., 2005,, 387-403.		1
209	Force Spectroscopy., 2005,, 404-428.		2
210	AFM: a versatile tool in biophysics. Measurement Science and Technology, 2005, 16, R65-R92.	1.4	343
211	The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis. Nanotechnology, 2005, 16, 1666-1680.	1.3	166
213	Mechanical unfolding revisited through a simple but realistic model. Journal of Chemical Physics, 2006, 124, 154909.	1.2	55
214	Molecular mechanisms of cellular mechanics. Physical Chemistry Chemical Physics, 2006, 8, 3692.	1.3	76
215	Mechanical Unfolding of Segment-Swapped Protein G Dimer:Â Results from Replica Exchange Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2006, 110, 14469-14474.	1.2	18
216	Frequency Modulation Atomic Force Microscopy Reveals Individual Intermediates Associated with each Unfolded I27 Titin Domain. Biophysical Journal, 2006, 90, 640-647.	0.2	38
217	Mechanical Resistance of Proteins Explained Using Simple Molecular Models. Biophysical Journal, 2006, 90, 287-297.	0.2	106
218	Stretching the Immunoglobulin 27 Domain of the Titin Protein: The Dynamic Energy Landscape. Biophysical Journal, 2006, 91, 3446-3455.	0.2	5
219	Molecular Dynamics Studies of the Archaeal Translocon. Biophysical Journal, 2006, 90, 2356-2367.	0.2	78
220	Mechanism of Titin Unfolding by Force: Insight from Quasi-Equilibrium Molecular Dynamics Calculations. Biophysical Journal, 2006, 91, 467-472.	0.2	24
221	Viscoelastic Study of the Mechanical Unfolding of a Protein by AFM. Biophysical Journal, 2006, 91, L16-L18.	0.2	49
222	Sequential Unfolding of Individual Helices of Bacterioopsin Observed in Molecular Dynamics Simulations of Extraction from the Purple Membrane. Biophysical Journal, 2006, 91, 3276-3284.	0.2	13

#	ARTICLE	IF	CITATIONS
223	MECHANOTRANSDUCTION INVOLVING MULTIMODULAR PROTEINS: Converting Force into Biochemical Signals. Annual Review of Biophysics and Biomolecular Structure, 2006, 35, 459-488.	18.3	397
224	Probing surfaces with single-polymer atomic force microscope experiments. Biointerphases, 2006, 1, MR1-MR21.	0.6	24
225	Single-molecule experiments in biological physics: methods and applications. Journal of Physics Condensed Matter, 2006, 18, R531-R583.	0.7	315
226	Understanding the elasticity of fibronectin fibrils: Unfolding strengths of FN-III and GFP domains measured by single molecule force spectroscopy. Matrix Biology, 2006, 25, 175-184.	1.5	70
227	Single Molecule Force Spectroscopy Reveals a Weakly Populated Microstate of the FnIII Domains of Tenascin. Journal of Molecular Biology, 2006, 361, 372-381.	2.0	16
228	Single-Molecule Biology: What Is It and How Does It Work?. Molecular Cell, 2006, 24, 317-329.	4.5	86
229	Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiology of Aging, 2006, 27, 546-561.	1.5	38
231	Stretching of proteins in a force-clamp. Journal of Physics Condensed Matter, 2006, 18, L21-L28.	0.7	26
232	High-Resolution Imaging and Force Measurement of Individual Membrane Proteins by AFM. Current Nanoscience, 2006, 2, 329-335.	0.7	7
233	Titin and ryanodine receptor antibodies in myasthenia gravis. Acta Neurologica Scandinavica, 2006, 113, 19-23.	1.0	48
234	Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 2006, 7, 265-275.	16.1	2,034
235	Nanospring behaviour of ankyrin repeats. Nature, 2006, 440, 246-249.	13.7	354
236	Real-time observation of trigger factor function on translating ribosomes. Nature, 2006, 444, 455-460.	13.7	202
237	Residual force enhancement in skeletal muscle. Journal of Physiology, 2006, 574, 635-642.	1.3	102
238	Suppression of binding events via external perturbation with emphasis on QCM. Chemical Physics Letters, 2006, 424, 214-217.	1.2	4
239	The unfolding and folding dynamics of TNfnALL probed by single molecule force–ramp spectroscopy. Polymer, 2006, 47, 2548-2554.	1.8	20
240	The jolly gentle giant titin explains Frank and Starling. Journal of Molecular Medicine, 2006, 84, 443-445.	1.7	2
241	Characterizing folding, structure, molecular interactions and ligand gated activation of single sodium/proton antiporters. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 372, 400-412.	1.4	2

#	Article	IF	CITATIONS
242	Single molecule force spectroscopy discovers mechanochemical switches in biology: The case of the disulfide bond. Polymer, 2006, 47, 2571-2579.	1.8	12
243	Simulations of multi-directional forced unfolding of titin I27. Journal of Molecular Graphics and Modelling, 2006, 24, 396-403.	1.3	17
244	Unfolding Barriers in Bacteriorhodopsin Probed from the Cytoplasmic and the Extracellular Side by AFM. Structure, 2006, 14, 521-527.	1.6	65
245	Mechanical Strength of the Titin Z1Z2-Telethonin Complex. Structure, 2006, 14, 497-509.	1.6	70
246	Nonmechanical Protein Can Have Significant Mechanical Stability. Angewandte Chemie - International Edition, 2006, 45, 642-645.	7.2	104
248	Single Molecule Studies of Protein Folding Using Atomic Force Microscopy. , 2007, 350, 139-168.		11
249	A toy model of polymer stretching. Journal of Chemical Physics, 2006, 125, 084908.	1.2	3
251	Protein Nanomechanics â€" as Studied by AFM Single-Molecule Force Spectroscopy. , 2006, , 163-245.		25
252	Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7222-7227.	3.3	324
253	Impact of Î ² -Sheet Conformations on the Mechanical Response of Protein in Biocomposites. Materials and Manufacturing Processes, 2006, 21, 676-682.	2.7	9
254	Molecular-Scale Studies on Biopolymers Using Atomic Force Microscopy., 0,, 123-172.		9
255	Protein structure by mechanical triangulation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1244-1247.	3.3	162
256	Mechanical Unfolding Pathways of the Enhanced Yellow Fluorescent Protein Revealed by Single Molecule Force Spectroscopy. Journal of Biological Chemistry, 2006, 281, 40010-40014.	1.6	88
257	Two-dimensional vibrational optical probes for peptide fast folding investigation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18934-18938.	3.3	30
258	Anisotropic deformation response of single protein molecules. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12724-12728.	3.3	280
259	Programming protein self assembly with coiled coils. New Journal of Physics, 2007, 9, 424-424.	1.2	9
260	Detecting Molecular Fingerprints in Single Molecule Force Spectroscopy Using Pattern Recognition. Japanese Journal of Applied Physics, 2007, 46, 5540.	0.8	12
261	Digital force-feedback for protein unfolding experiments using atomic force microscopy. Nanotechnology, 2007, 18, 044022.	1.3	10

#	Article	IF	CITATIONS
262	Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments. Journal of Physics Condensed Matter, 2007, 19, 113101.	0.7	83
263	Single molecule pulling with large time steps. Physical Review E, 2007, 75, 061106.	0.8	23
264	Does Changing the Pulling Direction Give Better Insight into Biomolecules?. Physical Review Letters, 2007, 98, 048101.	2.9	36
265	Single Molecule Force Microscopy on Cells and Biological Membranes. Current Nanoscience, 2007, 3, 49-56.	0.7	14
266	Fluctuations of primary ubiquitin folding intermediates in a force clamp. Journal of Structural Biology, 2007, 157, 557-569.	1.3	28
267	Experiments Suggest that Simulations May Overestimate Electrostatic Contributions to the Mechanical Stability of a Fibronectin Type III Domain. Journal of Molecular Biology, 2007, 371, 851-854.	2.0	9
268	Single-Molecule Experiments in Vitro and in Silico. Science, 2007, 316, 1144-1148.	6.0	529
269	Deciphering Molecular Interactions of Native Membrane Proteins by Single-Molecule Force Spectroscopy. Annual Review of Biophysics and Biomolecular Structure, 2007, 36, 233-260.	18.3	124
270	Mechanical stretching of proteinsâ€"a theoretical survey of the Protein Data Bank. Journal of Physics Condensed Matter, 2007, 19, 283201.	0.7	113
272	Force-Induced Prolyl Cisâ^'Trans Isomerization in Elastin-like Polypeptides. Journal of the American Chemical Society, 2007, 129, 6491-6497.	6.6	52
273	Structural Determinants of Lateral Gate Opening in the Protein Translocon. Biochemistry, 2007, 46, 11147-11157.	1.2	59
274	Tandem Repeating Modular Proteins Avoid Aggregation in Single Molecule Force Spectroscopy Experiments. Journal of Physical Chemistry A, 2007, 111, 12402-12408.	1.1	8
275	Dendron Arrays for the Force-Based Detection of DNA Hybridization Events. Journal of the American Chemical Society, 2007, 129, 9349-9355.	6.6	51
276	The Mechanical Unfolding of Ubiquitin through All-Atom Monte Carlo Simulation with a GŕType Potential. Biophysical Journal, 2007, 92, 2054-2061.	0.2	35
277	Refolding upon Force Quench and Pathways of Mechanical and Thermal Unfolding of Ubiquitin. Biophysical Journal, 2007, 92, 547-561.	0.2	45
278	Free Energy of Membrane Protein Unfolding Derived from Single-Molecule Force Measurements. Biophysical Journal, 2007, 93, 930-937.	0.2	45
279	Understanding Adsorption-Desorption Dynamics of BMP-2 on Hydroxyapatite (001) Surface. Biophysical Journal, 2007, 93, 750-759.	0.2	173
280	Sugar Transport across Lactose Permease Probed by Steered Molecular Dynamics. Biophysical Journal, 2007, 93, 92-102.	0.2	63

#	Article	IF	CITATIONS
281	Secondary and Tertiary Structure Elasticity of Titin Z1Z2 and a Titin Chain Model. Biophysical Journal, 2007, 93, 1719-1735.	0.2	46
282	Engineering proteins with tailored nanomechanical properties: a single molecule approach. Organic and Biomolecular Chemistry, 2007, 5, 3399.	1.5	21
283	Nonequilibrium Methods for Equilibrium Free Energy Calculations. Springer Series in Chemical Physics, 2007, , 171-198.	0.2	8
284	Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase. Biosensors and Bioelectronics, 2007, 23, 459-465.	5. 3	57
285	A steered molecular dynamics study on peptide sequence prediction from force-extension profiles. Polymer, 2007, 48, 3013-3020.	1.8	8
286	Force-induced activation of Talin and its possible role in focal adhesion mechanotransduction. Journal of Biomechanics, 2007, 40, 2096-2106.	0.9	143
287	Nanomechanical Fingerprints of UV Damage To DNA. Small, 2007, 3, 809-813.	5.2	11
288	Steered molecular dynamics simulation of elastic behavior of adsorbed single polyethylene chains. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2322-2332.	2.4	14
289	Supramolecular design in biopolymers and biomimetic polymers for advanced mechanical properties. Polymer International, 2007, 56, 467-473.	1.6	46
290	Mechanical unfolding of proteins: insights into biology, structure and folding. Current Opinion in Structural Biology, 2007, 17, 58-66.	2.6	107
291	High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biological Cybernetics, 2007, 97, 63-79.	0.6	84
292	The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function. Physics of Life Reviews, 2007, 4, 157-188.	1.5	19
293	Using steered molecular dynamics simulations and single-molecule force spectroscopy to guide the rational design of biomimetic modular polymeric materials. Polymer, 2008, 49, 3892-3901.	1.8	22
294	Pulling single molecules of titin by AFMâ€"recent advances and physiological implications. Pflugers Archiv European Journal of Physiology, 2008, 456, 101-115.	1.3	96
295	Predicting the order in which contacts are broken during single molecule protein stretching experiments. Proteins: Structure, Function and Bioinformatics, 2008, 71, 45-60.	1.5	26
296	Unstructured intermediate states in single protein force experiments. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1145-1155.	1.5	1
297	A Singleâ€Molecule Perspective on the Role of Solvent Hydrogen Bonds in Protein Folding and Chemical Reactions. ChemPhysChem, 2008, 9, 2836-2847.	1.0	39
298	An Effective Strategy for the Design of Proteins with Enhanced Mechanical Stability. Angewandte Chemie - International Edition, 2008, 47, 6900-6903.	7.2	24

#	Article	IF	Citations
299	â€~Mechanical Engineering' of Elastomeric Proteins: Toward Designing New Protein Building Blocks for Biomaterials. Advanced Functional Materials, 2008, 18, 2643-2657.	7.8	43
301	Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Progress in Materials Science, 2008, 53, 1101-1241.	16.0	168
302	Steered unfolding of ricin A and B chains. Journal of Molecular Graphics and Modelling, 2008, 27, 266-274.	1.3	0
303	Mechanical aspects of nitrile hydratase enzymatic activity. Steered molecular dynamics simulations of Pseudonocardia thermophila JCM 3095. Chemical Physics Letters, 2008, 467, 144-149.	1.2	37
304	Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface. Biomaterials, 2008, 29, 2423-2432.	5.7	66
305	Structure and Mechanics of Membrane Proteins. Annual Review of Biochemistry, 2008, 77, 127-148.	5.0	246
306	Microscopic mechanics of biomolecules in living cells. Scientific Modeling and Simulation SMNS, 2008, 15, 339-362.	0.8	9
307	A fluorescence energy transferâ€based mechanical stress sensor for specific proteins <i>inâ€∫situ</i> . FEBS Journal, 2008, 275, 3072-3087.	2.2	144
308	Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008, 5, 491-505.	9.0	2,008
309	Molecular Basis of Fibrin Clot Elasticity. Structure, 2008, 16, 449-459.	1.6	119
310	Substrate Binding and Formation of an Occluded State in the Leucine Transporter. Biophysical Journal, 2008, 94, 1600-1612.	0.2	89
311	Molecular Mechanics of Filamin's Rod Domain. Biophysical Journal, 2008, 94, 1075-1083.	0.2	31
312	Toward a Molecular Understanding of the Anisotropic Response of Proteins to External Forces: Insights from Elastic Network Models. Biophysical Journal, 2008, 94, 3424-3435.	0.2	94
313	The Allosteric Role of the Ca2+ Switch in Adhesion and Elasticity of C-Cadherin. Biophysical Journal, 2008, 94, 4621-4633.	0.2	118
314	Selection of Optimal Variants of GŕLike Models of Proteins through Studies of Stretching. Biophysical Journal, 2008, 95, 3174-3191.	0.2	119
315	Comparative Energy Measurements in Single Molecule Interactions. Biophysical Journal, 2008, 95, 419-425.	0.2	21
316	Stabilization Provided by Neighboring Strands Is Critical for the Mechanical Stability of Proteins. Biophysical Journal, 2008, 95, 3935-3942.	0.2	33
317	The Effect of Temperature on Mechanical Resistance of the Native and Intermediate States of I27. Biophysical Journal, 2008, 95, 5296-5305.	0.2	29

#	ARTICLE	IF	CITATIONS
319	Elastic Bond Network Model for Protein Unfolding Mechanics. Physical Review Letters, 2008, 100, 098101.	2.9	79
320	Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence. Nanotechnology, 2008, 19 , 384008 .	1.3	35
321	Mechanical Unfoldons as Building Blocks of Maltose-binding Protein. Journal of Molecular Biology, 2008, 378, 447-458.	2.0	72
322	Configurational Entropy Modulates the Mechanical Stability of Protein GB1. Journal of Molecular Biology, 2008, 379, 871-880.	2.0	38
323	Protein folding: Then and now. Archives of Biochemistry and Biophysics, 2008, 469, 4-19.	1.4	88
324	Single-Molecule Cut-and-Paste Surface Assembly. Science, 2008, 319, 594-596.	6.0	259
325	Imaging Biomolecular Interactions by Fast Three-Dimensional Tracking of Laser-Confined Carrier Particles. Langmuir, 2008, 24, 1194-1203.	1.6	35
326	Modeling and simulation of chemomechanics at the cell-matrix interface. Cell Adhesion and Migration, 2008, 2, 83-94.	1.1	11
327	Solvent molecules bridge the mechanical unfolding transition state of a protein. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3185-3190.	3.3	73
328	An experimentally guided umbrella sampling protocol for biomolecules. Journal of Chemical Physics, 2008, 129, 114101.	1.2	23
329	New method for deciphering free energy landscape of three-state proteins. Journal of Chemical Physics, 2008, 129, 105102.	1.2	9
330	Revisiting atomic force microscopy force spectroscopy sensitivity for single molecule studies. Journal of Applied Physics, 2008, 104, 114504.	1.1	3
331	Fully automated single-molecule force spectroscopy for screening applications. Nanotechnology, 2008, 19, 384020.	1.3	32
332	Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15755-15760.	3.3	582
333	Atomic force microscopy reveals parallel mechanical unfolding pathways of T4 lysozyme: Evidence for a kinetic partitioning mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1885-1890.	3.3	93
334	Minimal Models for Proteins and RNA: From Folding to Function. Progress in Molecular Biology and Translational Science, 2008, 84, 203-250.	0.9	38
335	Model for Stretching and Unfolding the Giant Multidomain Muscle Protein Using Single-Molecule Force Spectroscopy. Physical Review Letters, 2008, 101, 248301.	2.9	37
336	Probing the origin of tubulin rigidity with molecular simulations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15743-15748.	3.3	45

#	ARTICLE	IF	CITATIONS
337	Strength limit of entropic elasticity in beta-sheet protein domains. Physical Review E, 2008, 78, 061913.	0.8	35
338	Protein-Protein Interactions and Aggregation Processes. , 2008, , 299-324.		3
341	Viscoelasticity and Dynamics of Single Biopolymer Chain Measured with Magnetically Modulated Atomic Force Microscopy. AIP Conference Proceedings, 2008, , .	0.3	2
343	A Molecular Perspective on Mechanotransduction in Focal Adhesions. , 0, , 250-268.		0
344	Translating Mechanical Force into Discrete Biochemical Signal Changes., 0,, 286-338.		0
346	Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18267-18272.	3.3	230
347	The titin-telethonin complex is a directed, superstable molecular bond in the muscle Z-disk. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13307-133310.	3.3	94
348	ROBUSTNESS-STRENGTH PERFORMANCE OF HIERARCHICAL ALPHA-HELICAL PROTEIN FILAMENTS. International Journal of Applied Mechanics, 2009, 01, 85-112.	1.3	36
349	Protein mechanical unfolding: Importance of non-native interactions. Journal of Chemical Physics, 2009, 131, 215103.	1.2	19
350	Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis. PLoS Computational Biology, 2009, 5, e1000306.	1.5	62
351	Stochastic emergence of multiple intermediates detected by single-molecule quasi-static mechanical unfolding of protein. Biophysics (Nagoya-shi, Japan), 2009, 5, 25-35.	0.4	1
352	Protein displacements under external forces: An atomistic Langevin dynamics approach. Journal of Chemical Physics, 2009, 130, 085104.	1.2	0
353	Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays. International Journal of Molecular Sciences, 2009, 10, 4009-4032.	1.8	15
354	Nanoscale Structural and Mechanical Properties of Nontypeable <i>Haemophilus influenzae</i> Biofilms. Journal of Bacteriology, 2009, 191, 2512-2520.	1.0	38
355	MACROMOLECULES., 2009,, 76-180.		0
356	Force and function: probing proteins with AFM-based force spectroscopy. Current Opinion in Structural Biology, 2009, 19, 605-614.	2.6	239
357	Discovery Through the Computational Microscope. Structure, 2009, 17, 1295-1306.	1.6	302
358	How Nature Modulates a Fiber's Mechanical Properties: Mechanically Distinct Fibers Drawn from Natural Mesogenic Block Copolymer Variants. Advanced Materials, 2009, 21, 440-444.	11.1	58

#	Article	IF	CITATIONS
359	Mechanically Stretching Folded Nanoâ€∢i>Ï€â€b;å€stacks Reveals Picoâ€Newton Attractive Forces. Advanced Materials, 2009, 21, 786-789.	11.1	28
360	Mesoscopic model for mechanical characterization of biological protein materials. Journal of Computational Chemistry, 2009, 30, 873-880.	1.5	21
361	Efficient extraction of free energy profiles from nonequilibrium experiments. Journal of Computational Chemistry, 2009, 30, 1726-1736.	1.5	16
362	Analyzing singleâ€molecule manipulation experiments. Journal of Molecular Recognition, 2009, 22, 356-362.	1.1	17
363	Mechanical Signaling on the Single Protein Level Studied Using Steered Molecular Dynamics. Cell Biochemistry and Biophysics, 2009, 55, 141-152.	0.9	27
364	Nanomechanical Characterization of the Triple \hat{I}^2 -Helix Domain in the Cell Puncture Needle of Bacteriophage T4 Virus. Cellular and Molecular Bioengineering, 2009, 2, 66-74.	1.0	17
365	Mechanical unfolding pathway and origin of mechanical stability of proteins of ubiquitin family: An investigation by steered molecular dynamics simulation. Proteins: Structure, Function and Bioinformatics, 2009, 75, 1024-1034.	1.5	15
366	Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials, 2009, 8, 175-188.	13.3	307
367	Mechanically interlocked calix[4] arene dimers display reversible bond breakage under force. Nature Nanotechnology, 2009, 4, 225-229.	15.6	71
368	Comparison of Three Perturbation Molecular Dynamics Methods for Modeling Conformational Transitions. Journal of Chemical Theory and Computation, 2009, 5, 1304-1314.	2.3	47
369	Quantifying Multiscale Noise Sources in Single-Molecule Time Series. Journal of Physical Chemistry B, 2009, 113, 138-148.	1.2	20
370	Collagen insulated from tensile damage by domains that unfold reversibly: In situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. Journal of Structural Biology, 2009, 167, 47-54.	1.3	125
371	Versatile Horizontal Force Probe for Mechanical Tests on Pipette-Held Cells, Particles, and Membrane Capsules. Biophysical Journal, 2009, 96, 1218-1231.	0.2	18
372	Mechanical Properties of the Icosahedral Shell of Southern Bean Mosaic Virus: A Molecular Dynamics Study. Biophysical Journal, 2009, 96, 1350-1363.	0.2	117
373	Elasticity and Rupture of a Multi-Domain Neural Cell Adhesion Molecule Complex. Biophysical Journal, 2009, 96, 3005-3014.	0.2	23
374	Dependence of protein mechanical unfolding pathways on pulling speeds. Journal of Chemical Physics, 2009, 130, 145102.	1.2	26
375	Alpha-helical protein domains unify strength and robustness through hierarchical nanostructures. Nanotechnology, 2009, 20, 075103.	1.3	27
376	Scientific Modeling and Simulations. Lecture Notes in Computational Science and Engineering, 2009, , .	0.1	8

#	Article	IF	CITATIONS
377	Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes. Journal of Chemical Physics, 2009, 131, 015101.	1.2	35
378	Direct Observation of Multiple and Stochastic Transition States by a Feedback-controlled Single-molecule Force Measurement. Analytical Sciences, 2009, 25, 5-7.	0.8	1
379	Gene Classification and Quantitative Analysis of Gene Regulation in Bacteria Using Single Cell Atomic Force Microscopy and Single Molecule Force Spectroscopy. , 0, , 19-37.		0
380	Interplay of mechanical and binding properties of Fibronectin type I. Theoretical Chemistry Accounts, 2010, 125, 397-405.	0.5	8
381	Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function. Cellular and Molecular Bioengineering, 2010, 3, 91-105.	1.0	37
382	Unravelling the design principles for single protein mechanical strength. Current Opinion in Structural Biology, 2010, 20, 508-517.	2.6	61
386	Evidence for a Broad Transitionâ€State Ensemble in Calmodulin Folding from Singleâ€Molecule Force Spectroscopy. Angewandte Chemie - International Edition, 2010, 49, 3306-3309.	7.2	23
387	A "Force Buffer―Protecting Immunoglobulin Titin. Angewandte Chemie - International Edition, 2010, 49, 3528-3531.	7.2	23
388	Steered molecular dynamics simulation of the detaching process of two parallel surfaces glued together by a single polyethylene chain. Journal of Applied Polymer Science, 2010, 115, 460-468.	1.3	4
389	Biomolecules under mechanical force. Physics Reports, 2010, 486, 1-74.	10.3	211
390	The molecular origins of the mechanical properties of fibrin. Biophysical Chemistry, 2010, 152, 15-20.	1.5	73
391	Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach. BMC Structural Biology, 2010, 10, 8.	2.3	29
392	Structural basis for unfolding pathwayâ€dependent stability of proteins: Vectorial unfolding versus global unfolding. Protein Science, 2010, 19, 693-702.	3.1	20
393	Nâ€ŧerminal strands of filamin Ig domains act as a conformational switch under biological forces. Proteins: Structure, Function and Bioinformatics, 2010, 78, 12-24.	1.5	29
394	Atomic force microscopy of biological samples. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 618-634.	3.3	160
395	Nanoconfinement controls stiffness, strength and mechanical toughness of \hat{l}^2 -sheet crystals in silk. Nature Materials, 2010, 9, 359-367.	13.3	1,131
396	Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nature Precedings, 2010, , .	0.1	2
397	Master equation approach to single oligomeric enzyme catalysis: Mechanically controlled further catalysis. Journal of Chemical Physics, 2010, 132, 135102.	1.2	11

#	ARTICLE	IF	CITATIONS
398	DNA force-extension curve under uniaxial stretching. Molecular Simulation, 2010, 36, 221-228.	0.9	1
399	Water's role in the force-induced unfolding of ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19284-19289.	3 . 3	37
400	Sampling Protein Form and Function with the Atomic Force Microscope. Molecular and Cellular Proteomics, 2010, 9, 1678-1688.	2.5	25
401	Isopeptide Bonds Block the Mechanical Extension of Pili in Pathogenic Streptococcus pyogenes. Journal of Biological Chemistry, 2010, 285, 11235-11242.	1.6	94
402	Full Reconstruction of a Vectorial Protein Folding Pathway by Atomic Force Microscopy and Molecular Dynamics Simulations*. Journal of Biological Chemistry, 2010, 285, 38167-38172.	1.6	36
403	On the Impact of Precursor Unfolding during Protein Import into Chloroplasts. Molecular Plant, 2010, 3, 499-508.	3.9	29
404	Nanopore Force Spectroscopy Tools for Analyzing Single Biomolecular Complexes. Methods in Enzymology, 2010, 475, 565-589.	0.4	24
405	Differential binding of bispyridinium oxime drugs with acetylcholinesterase. Acta Pharmacologica Sinica, 2010, 31, 313-328.	2.8	18
406	The Giant Protein Titin as an Integrator of Myocyte Signaling Pathways. Physiology, 2010, 25, 186-198.	1.6	102
407	Interfacing Cluster Physics with Biology at the Nanoscale. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 2010, , 517-556.	0.6	3
408	Equilibrium Sampling for Biomolecules under Mechanical Tension. Biophysical Journal, 2010, 98, 733-740.	0.2	6
409	Tertiary and Secondary Structure Elasticity of a Six-Ig Titin Chain. Biophysical Journal, 2010, 98, 1085-1095.	0.2	30
410	Mechanical Unfolding of an Ankyrin Repeat Protein. Biophysical Journal, 2010, 98, 1294-1301.	0.2	56
411	Fast and Forceful Refolding of Stretched α-Helical Solenoid Proteins. Biophysical Journal, 2010, 98, 3086-3092.	0.2	49
412	Flow-Induced β-Hairpin Folding of the Glycoprotein Ibα β-Switch. Biophysical Journal, 2010, 99, 1182-1191.	0.2	16
413	Interfacial Free Energy Governs Single Polystyrene Chain Collapse in Water and Aqueous Solutions. Journal of the American Chemical Society, 2010, 132, 6530-6540.	6.6	90
414	Fold Catastrophes and the Dependence of Free-Energy Barriers to Conformational Transitions on Applied Force. Journal of Physical Chemistry B, 2010, 114, 10821-10825.	1.2	13
415	Molecular and Nanostructural Mechanisms of Deformation, Strength and Toughness of Spider Silk Fibrils. Nano Letters, 2010, 10, 2626-2634.	4.5	362

#	Article	IF	CITATIONS
416	Releasing of the chromophore from the drug delivery protein C-1027: A molecular dynamics simulations study. Journal of Structural Biology, 2010, 172, 284-293.	1.3	7
417	Molecular Basis for the Structural Stability of an Enclosed \hat{I}^2 -Barrel Loop. Journal of Molecular Biology, 2010, 402, 475-489.	2.0	12
418	Sopâ€GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2984-2999.	1.5	58
419	Computational and single-molecule force studies of a macro domain protein reveal a key molecular determinant for mechanical stability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1989-1994.	3.3	54
421	Elastic Behaviors of Adsorbed Protein-like Chains. Chinese Journal of Chemical Physics, 2010, 23, 11-17.	0.6	0
422	The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chemical Society Reviews, 2010, 39, 734-749.	18.7	120
423	Studies of protein folding pathways. Annual Reports on the Progress of Chemistry Section C, 2010, 106, 259.	4.4	5
424	Force-Induced Change in Protein Unfolding Mechanism: Discrete or Continuous Switch?. Journal of Physical Chemistry B, 2011, 115, 1546-1561.	1.2	50
425	Atomic Force Microscopy Force Mapping in the Study of Supported Lipid Bilayers. Langmuir, 2011, 27, 1308-1313.	1.6	55
426	Probing Multivalent Interactions in a Synthetic Host–Guest Complex by Dynamic Force Spectroscopy. Journal of the American Chemical Society, 2011, 133, 10849-10857.	6.6	71
427	Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease. Biophysical Journal, 2011, 100, 1094-1099.	0.2	30
428	Improved Resolution of Tertiary Structure Elasticity in Muscle Protein. Biophysical Journal, 2011, 100, L22-L24.	0.2	10
429	Extension of a Three-Helix Bundle Domain of Myosin VI and Key Role of Calmodulins. Biophysical Journal, 2011, 100, 2964-2973.	0.2	16
430	Protein Unfolding under Force: Crack Propagation in a Network. Biophysical Journal, 2011, 101, 736-744.	0.2	10
431	Nonkinetic Modeling of the Mechanical Unfolding of Multimodular Proteins: Theory and Experiments. Biophysical Journal, 2011, 101, 1504-1512.	0.2	7
432	Effects of Mechanical Stress on Cells. , 2011, , 73-80.		2
433	Understanding the Molecular Mechanism of Enzyme Dynamics of Ribonuclease A through Protonation/Deprotonation of HIS48. Journal of the American Chemical Society, 2011, 133, 17727-17737.	6.6	19
434	Single-Molecule and Nanoscale Approaches to Biological Signaling. , 2011, , 287-323.		0

#	Article	IF	CITATIONS
435	Protein Nanomechanics., 2011, , 227-261.		2
436	Molecular Dynamics Simulations of the Adsorption of Bone Morphogenetic Protein-2 on Surfaces with Medical Relevance. Langmuir, 2011, 27, 13144-13153.	1.6	91
437	Mechanical Mapping of Single Membrane Proteins at Submolecular Resolution. Nano Letters, 2011, 11, 3983-3986.	4.5	122
439	Structural, Mechanical and Functional Properties of Intermediate Filaments from the Atomistic to the Cellular Scales., 2011,, 117-166.		2
441	ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates. Cell, 2011, 145, 459-469.	13.5	256
442	Structure and stability of the lamin A tail domain and HGPS mutant. Journal of Structural Biology, 2011, 175, 425-433.	1.3	43
443	How ClpX Unfolds GFP in Stages by Pulling. Journal of Molecular Biology, 2011, 413, 1-3.	2.0	0
444	Molecular Origin of the Hierarchical Elasticity of Titin: Simulation, Experiment, and Theory. Annual Review of Biophysics, 2011, 40, 187-203.	4.5	53
445	Filamin structure, function and mechanics: are altered filamin-mediated force responses associated with human disease?. Biophysical Reviews, 2011, 3, 15-23.	1.5	16
446	Potential role of atomic force microscopy in systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 702-716.	6.6	8
447	Hybrid Steered Molecular Dynamicsâ€Docking: An Efficient Solution to the Problem of Ranking Inhibitor Affinities Against a Flexible Drug Target Molecular Informatics, 2011, 30, 459-471.	1.4	36
448	Deformation Strengthening of Biopolymer in Nacre. Advanced Functional Materials, 2011, 21, 3883-3888.	7.8	121
449	Nanomechanics of Streptavidin Hubs for Molecular Materials. Advanced Materials, 2011, 23, 5684-5688.	11,1	26
451	Modular Design in Natural and Biomimetic Soft Materials. Angewandte Chemie - International Edition, 2011, 50, 9026-9057.	7.2	195
452	Protein folding at single-molecule resolution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1021-1029.	1.1	46
453	Fast-folding \hat{l} ±-helices as reversible strain absorbers in the muscle protein myomesin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14139-14144.	3.3	59
455	Mechanotransduction., 2011, 1, 1057-1073.		21
457	Pseudoelastic behaviour of a natural material is achieved via reversible changes in protein backbone conformation. Journal of the Royal Society Interface, 2012, 9, 2911-2922.	1.5	35

#	Article	IF	CITATIONS
458	Nanomechanics of Proteins, Both Folded and Disordered., 2012, , 1-47.		0
459	Why is F19Ap53 unable to bind MDM2? Simulations suggest crack propagation modulates binding. Cell Cycle, 2012, 11, 2239-2247.	1.3	16
460	On the origin of the unusual behavior in the stretching of single-stranded DNA. Journal of Chemical Physics, 2012, 136, 235103.	1.2	33
461	Directed patterning of the self-assembled silk-elastin-like nanofibers using a nanomechanical stimulus. Chemical Communications, 2012, 48, 10654.	2.2	17
462	Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17820-17825.	3.3	115
463	Mechanical unfolding studies of protein molecules. Biophysics (Nagoya-shi, Japan), 2012, 8, 51-58.	0.4	4
464	Mean Force Simulation of the Adsorption of Aqueous Dilute Solutions. Soft Materials, 2012, 10, 153-178.	0.8	1
465	Fibers with Integrated Mechanochemical Switches: Minimalistic Design Principles Derived from Fibronectin. Biophysical Journal, 2012, 103, 1909-1918.	0.2	27
466	Force and Stress along Simulated Dissociation Pathways of Cucurbituril–Guest Systems. Journal of Chemical Theory and Computation, 2012, 8, 966-976.	2.3	14
467	Using Nanoscale Substrate Curvature to Control the Dimerization of a Surface-Bound Protein. ACS Nano, 2012, 6, 10571-10580.	7.3	13
468	Stretching single polysaccharides and proteins using atomic force microscopy. Chemical Society Reviews, 2012, 41, 3523.	18.7	118
469	Molecular origin of the sawtooth behavior and the toughness of nacre. Materials Science and Engineering C, 2012, 32, 1542-1547.	3.8	17
471	Elastic and Bendable Caffeine Cocrystals: Implications for the Design of Flexible Organic Materials. Angewandte Chemie - International Edition, 2012, 51, 10319-10323.	7.2	350
472	Polymer Nanomechanics., 2012, , 377-404.		1
473	Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics. Chemical Reviews, 2012, 112, 5412-5487.	23.0	346
474	3.7 Simulation Studies of Force-Induced Unfolding. , 2012, , 138-147.		0
475	Mechanical Anisotropy of Ankyrin Repeats. Biophysical Journal, 2012, 102, 1118-1126.	0.2	20
476	Reference-Free Alignment and Sorting of Single-Molecule Force Spectroscopy Data. Biophysical Journal, 2012, 102, 2202-2211.	0.2	27

#	Article	IF	Citations
477	Single-Molecule Experiments Reveal the Flexibility of a Per-ARNT-Sim Domain and the Kinetic Partitioning in the Unfolding Pathway under Force. Biophysical Journal, 2012, 102, 2149-2157.	0.2	25
478	Titin-based tension in the cardiac sarcomere: Molecular origin and physiological adaptations. Progress in Biophysics and Molecular Biology, 2012, 110, 204-217.	1.4	87
479	Fashioning NAMD, a History of Risk and Reward: Klaus Schulten Reminisces. RSC Biomolecular Sciences, 2012, , 8-19.	0.4	2
480	Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E690-7.	3.3	1,131
481	Large-Scale Domain Conformational Change Is Coupled to the Activation of the Co–C Bond in the B ₁₂ -Dependent Enzyme Ornithine 4,5-Aminomutase: A Computational Study. Journal of the American Chemical Society, 2012, 134, 2367-2377.	6.6	41
482	A Rapid Cloning Method Employing Orthogonal End Protection. PLoS ONE, 2012, 7, e37617.	1.1	3
483	The Ca2+ Influence on Calmodulin Unfolding Pathway: A Steered Molecular Dynamics Simulation Study. PLoS ONE, 2012, 7, e49013.	1.1	11
484	Understanding protein unfolding from molecular simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 405-423.	6.2	29
485	Engineering proteins with enhanced mechanical stability by forceâ€specific sequence motifs. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1308-1315.	1.5	8
486	Characterisation of spin coated engineered Escherichia coli biofilms using atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2012, 89, 152-160.	2.5	18
487	Hepatitis B surface antigen–antibody interactions studied by optical tweezers. IET Nanobiotechnology, 2012, 6, 9.	1.9	9
488	Single Molecule Force Spectroscopy Reveals That Iron Is Released from the Active Site of Rubredoxin by a Stochastic Mechanism. Journal of the American Chemical Society, 2013, 135, 7992-8000.	6.6	28
489	Biophysics of the Failing Heart. Biological and Medical Physics Series, 2013, , .	0.3	5
490	A structure-based model fails to probe the mechanical unfolding pathways of the titin I27 domain. Journal of Chemical Physics, 2013, 139, 065103.	1.2	13
491	Single-molecule Studies of Proteins., 2013,,.		7
492	Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties. Physical Chemistry Chemical Physics, 2013, 15, 11339.	1.3	14
493	Biomimetic Modular Polymer with Tough and Stress Sensing Properties. Macromolecules, 2013, 46, 6566-6574.	2.2	96
494	Nanomechanics of HaloTag Tethers. Journal of the American Chemical Society, 2013, 135, 12762-12771.	6.6	108

#	Article	IF	CITATIONS
495	Global Transitions of Proteins Explored by a Multiscale Hybrid Methodology: Application to Adenylate Kinase. Biophysical Journal, 2013, 105, 1643-1652.	0.2	63
496	The molecular yo-yo method: Live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions. Review of Scientific Instruments, 2013, 84, 085119.	0.6	2
497	The ClpXP Protease Unfolds Substrates Using a Constant Rate of Pulling but Different Gears. Cell, 2013, 155, 636-646.	13.5	123
498	High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations. Science, 2013, 342, 741-743.	6.0	216
499	Molecular Biophysics for the Life Sciences. , 2013, , .		2
500	Insights into chromatin fibre structure by <i>inÂvitro</i> and <i>in silico</i> single-molecule stretching experiments. Biochemical Society Transactions, 2013, 41, 494-500.	1.6	9
501	Mechanically unzipping dsDNA with built-in sequence inhomogeneities and bound proteins. European Physical Journal E, 2013, 36, 12.	0.7	0
502	Molecular basis of lateral force spectroscopy nano-diagnostics: computational unbinding of autism related chemokine MCP-1 from IgG antibody. Journal of Molecular Modeling, 2013, 19, 4773-4780.	0.8	4
503	Mechanics of proteins with a focus on atomic force microscopy. Journal of Nanobiotechnology, 2013, 11, S3.	4.2	23
504	Single-Molecule Folding Mechanism of an EF-Hand Neuronal Calcium Sensor. Structure, 2013, 21, 1812-1821.	1.6	27
505	Multiple Unfolding Pathways of Leucine Binding Protein (LBP) Probed by Single-Molecule Force Spectroscopy (SMFS). Journal of the American Chemical Society, 2013, 135, 14768-14774.	6.6	36
506	Using metal–ligand interactions to access biomimetic supramolecular polymers with adaptive and superb mechanical properties. Journal of Materials Chemistry B, 2013, 1, 4809.	2.9	26
507	AFM-based Force Spectroscopy on Polystyrene Brushes: Effect of Brush Thickness on Protein Adsorption. Langmuir, 2013, 29, 1850-1856.	1.6	18
508	Protein Folding Under Mechanical Forces: A Physiological View. Physiology, 2013, 28, 9-17.	1.6	38
509	Unfolding dynamics of the mucin <scp>SEA</scp> domain probed by force spectroscopy suggest that it acts as a cellâ€protective device. FEBS Journal, 2013, 280, 1491-1501.	2.2	33
510	Single Molecule Force Spectroscopy on Titin Implicates Immunoglobulin Domain Stability as a Cardiac Disease Mechanism*. Journal of Biological Chemistry, 2013, 288, 5303-5315.	1.6	38
511	Mechanical Activation of a Multimeric Adhesive Protein Through Domain Conformational Change. Physical Review Letters, 2013, 110, 108102.	2.9	26
512	Tracking unfolding and refolding reactions of single proteins using atomic force microscopy methods. Methods, 2013, 60, 151-160.	1.9	28

#	Article	IF	Citations
513	Single-Molecule Studies on PolySUMO Proteins Reveal Their Mechanical Flexibility. Biophysical Journal, 2013, 104, 2273-2281.	0.2	40
514	The how's and why's of protein folding intermediates. Archives of Biochemistry and Biophysics, 2013, 531, 14-23.	1.4	47
515	Cross-Species Mechanical Fingerprinting of Cardiac Myosin Binding Protein-C. Biophysical Journal, 2013, 104, 2465-2475.	0.2	8
516	Nanoconfinement and the Strength of Biopolymers. Annual Review of Biophysics, 2013, 42, 651-673.	4.5	47
517	Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium. European Biophysics Journal, 2013, 42, 301-307.	1.2	57
518	Investigation of the binding network of IGF-I on the cavity surface of IGFBP4. Journal of Molecular Modeling, 2013, 19, 5257-5266.	0.8	2
519	12 Single molecule methods to study flavoproteins. , 2013, , 277-298.		2
520	Detailed analysis of putative genes encoding small proteins in legume genomes. Frontiers in Plant Science, 2013, 4, 208.	1.7	26
521	Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques. Journal of Biophysics, 2013, 2013, 1-11.	0.8	11
522	Direct force measurement of single DNA–peptide interactions using atomic force microscopy. Journal of Molecular Recognition, 2013, 26, 268-275.	1.1	7
523	Physics of engineered protein hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 587-601.	2.4	31
524	Protein-Based Textiles: Bio-Inspired and Bio-Derived Materials for Medical and Non-Medical Applications. Journal of Chemical and Biological Interfaces, 2013, 1, 25-34.	0.3	14
525	Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014, 5, 5635.	5.8	92
526	The role of topology and thermal backbone fluctuations on sacrificial bond efficacy in mechanical metalloproteins. New Journal of Physics, 2014, 16, 013003.	1.2	15
527	Direct sampling of multiple single-molecular rupture dominant pathways involving a multistep transition. Physical Chemistry Chemical Physics, 2014, 16, 25508-25514.	1.3	2
528	Mechanical unfolding of a simple model protein goes beyond the reach of one-dimensional descriptions. Journal of Chemical Physics, 2014, 141, 135102.	1.2	4
529	Conformational dynamics through an intermediate. Journal of Chemical Physics, 2014, 140, 135101.	1.2	12
530	Characterization of Unfolding Mechanism of Human Lamin A Ig Fold by Single-Molecule Force Spectroscopy—Implications in EDMD. Biochemistry, 2014, 53, 7247-7258.	1.2	27

#	Article	IF	Citations
531	Stretching of single poly-ubiquitin molecules revisited: Dynamic disorder in the non-exponential unfolding kinetics. Journal of Chemical Physics, 2014, 140, 125102.	1.2	11
532	Single molecule mechanical manipulation for studying biological properties of proteins, <scp>DNA</scp> , and sugars. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 211-229.	3.3	34
533	Stochastic simulation of single-molecule pulling experiments. European Physical Journal E, 2014, 37, 99.	0.7	1
534	Mechanostability of Virus Capsids and Their Proteins in Structure-Based Models. Springer Series in Bio-/neuroinformatics, 2014, , 295-315.	0.1	3
535	Coarse-Grained Modeling of Protein Dynamics. Springer Series in Bio-/neuroinformatics, 2014, , 55-79.	0.1	8
536	Nanomechanics of \hat{I}^2 -rich proteins related to neuronal disorders studied by AFM, all-atom and coarse-grained MD methods. Journal of Molecular Modeling, 2014, 20, 2144.	0.8	9
537	Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nature Materials, 2014, 13, 1055-1062.	13.3	107
538	Nanoscale characterization of effect of l-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy. Microbiology (United Kingdom), 2014, 160, 1466-1473.	0.7	59
539	Quantum chemical and steered molecular dynamics studies for one pot solution to reactivate aged acetylcholinesterase with alkylator oxime. Chemico-Biological Interactions, 2014, 223, 58-68.	1.7	13
540	Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules. Journal of Chemical Physics, 2014, 140, 104114.	1.2	41
541	Stable Single \hat{I}_{\pm} -Helices Are Constant Force Springs in Proteins. Journal of Biological Chemistry, 2014, 289, 27825-27835.	1.6	54
542	Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies. Molecular BioSystems, 2014, 10, 2368.	2.9	15
543	Manipulating and probing enzymatic conformational fluctuations and enzyme–substrate interactions by single-molecule FRET-magnetic tweezers microscopy. Physical Chemistry Chemical Physics, 2014, 16, 13052-13058.	1.3	22
544	Highâ€speed atomic force microscopy: Imaging and force spectroscopy. FEBS Letters, 2014, 588, 3631-3638.	1.3	58
545	Ultrastable atomic force microscopy: Improved force and positional stability. FEBS Letters, 2014, 588, 3621-3630.	1.3	26
546	Graphene mechanics: I. Efficient first principles based Morse potential. Physical Chemistry Chemical Physics, 2014, 16, 12591-12598.	1.3	10
547	A water-based molecular flip-flop. EPJ Applied Physics, 2014, 68, 30403.	0.3	3
549	Capturing the Mechanical Unfolding Pathway of a Large Protein with Coiledâ€Coil Probes. Angewandte Chemie - International Edition, 2014, 53, 13429-13433.	7.2	17

#	ARTICLE	IF	CITATIONS
552	Designing Elastic Organic Crystals: Highly Flexible Polyhalogenated <i>N</i> â€Benzylideneanilines. Angewandte Chemie, 2015, 127, 2712-2716.	1.6	65
553	Instabilityâ€Assisted Direct Writing of Microstructured Fibers Featuring Sacrificial Bonds. Advanced Materials, 2015, 27, 3676-3680.	11.1	43
554	Designing Elastic Organic Crystals: Highly Flexible Polyhalogenated <i>N</i> â€Benzylideneanilines. Angewandte Chemie - International Edition, 2015, 54, 2674-2678.	7.2	213
555	Dynamics of Equilibrium Folding and Unfolding Transitions of Titin Immunoglobulin Domain under Constant Forces. Journal of the American Chemical Society, 2015, 137, 3540-3546.	6.6	135
556	Correlation of breaking forces, conductances and geometries of molecular junctions. Scientific Reports, 2015, 5, 9002.	1.6	48
557	Forced Unfolding of Single-Chain Polymeric Nanoparticles. Journal of the American Chemical Society, 2015, 137, 6880-6888.	6.6	89
558	Guidelines for the analysis of free energy calculations. Journal of Computer-Aided Molecular Design, 2015, 29, 397-411.	1.3	375
559	Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy. Topics in Current Chemistry, 2015, 369, 97-134.	4.0	18
560	Thermodynamics of force-dependent folding and unfolding of small protein and nucleic acid structures. Integrative Biology (United Kingdom), 2015, 7, 1154-1160.	0.6	11
561	The mechanochemistry of copper reports on the directionality of unfolding in model cupredoxin proteins. Nature Communications, 2015, 6, 7894.	5.8	57
562	Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10389-10394.	3.3	41
563	Titin-mimicking polycyclic polymers with shape regeneration and healing properties. Polymer Chemistry, 2015, 6, 1714-1726.	1.9	13
564	Implications and Assessment of the Elastic Behavior of Lamins in Laminopathies. Cells, 2016, 5, 37.	1.8	6
565	Nanoscale deicing by molecular dynamics simulation. Nanoscale, 2016, 8, 14625-14632.	2.8	51
566	Regulatory Roles of Fluctuation-Driven Mechanotransduction in Cell Function. Physiology, 2016, 31, 346-358.	1.6	21
567	Perspective: Mechanochemistry of biological and synthetic molecules. Journal of Chemical Physics, 2016, 144, 030901.	1.2	82
569	The Y9P Variant of the Titin I27 Module: Structural Determinants of Its Revisited Nanomechanics. Structure, 2016, 24, 606-616.	1.6	10
570	The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 28767-28780.	1.3	7

#	Article	IF	CITATIONS
571	Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy. Biophysical Journal, 2016, 111, 832-840.	0.2	27
572	Reconciling Intermediates in Mechanical Unfolding Experiments with Two-State Protein Folding in Bulk. Journal of Physical Chemistry Letters, 2016, 7, 3798-3803.	2.1	13
573	Can Dissipative Properties of Single Molecules Be Extracted from a Force Spectroscopy Experiment?. Biophysical Journal, 2016, 111, 1163-1172.	0.2	10
574	Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation. Journal of Molecular Modeling, 2016, 22, 188.	0.8	1
575	Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor. Physical Review E, 2016, 93, 012410.	0.8	8
576	A simple two-state protein unfolds mechanically via multiple heterogeneous pathways at single-molecule resolution. Nature Communications, 2016, 7, 11777.	5.8	43
577	Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis. Chemical Reviews, 2016, 116, 14137-14180.	23.0	140
578	Charge carrier transition in an ambipolar single-molecule junction: Its mechanical-modulation and reversibility. Npj Computational Materials, 2016, 2, .	3.5	8
579	Mechanical property design of molecular solids. Current Opinion in Solid State and Materials Science, 2016, 20, 361-370.	5.6	78
580	Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix. Matrix Biology, 2016, 50, 27-38.	1.5	51
581	The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Reports on Progress in Physics, 2016, 79, 076601.	8.1	99
582	Fully Atomistic Simulations of Protein Unfolding in Low Speed Atomic Force Microscope and Force Clamp Experiments with the Help of Boxed Molecular Dynamics. Journal of Physical Chemistry B, 2016, 120, 700-708.	1.2	15
583	Nanopuller-open data acquisition platform for AFM force spectroscopy experiments. Ultramicroscopy, 2016, 164, 17-23.	0.8	5
584	The reactivation of tabun-inhibited mutant AChE with Ortho-7: steered molecular dynamics and quantum chemical studies. Molecular BioSystems, 2016, 12, 1224-1231.	2.9	11
585	Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing. Nano Letters, 2016, 16, 2096-2102.	4.5	61
586	The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 772-781.	0.5	44
587	Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution. Journal of Structural Biology, 2017, 197, 13-25.	1.3	33
588	Structural Insights How PIP2 Imposes Preferred Binding Orientations of FAK at Lipid Membranes. Journal of Physical Chemistry B, 2017, 121, 3523-3535.	1.2	28

#	Article	IF	CITATIONS
589	Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. Journal of Chemical Theory and Computation, 2017, 13, 1366-1374.	2.3	136
590	Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science, 2017, 355, 945-950.	6.0	194
591	Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains. Angewandte Chemie - International Edition, 2017, 56, 5490-5493.	7.2	59
592	Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains. Angewandte Chemie, 2017, 129, 5582-5585.	1.6	15
593	Force spectroscopy unveils hidden protein-folding states. Physics Today, 2017, 70, 16-18.	0.3	2
594	Simulated Force Quench Dynamics Shows GB1 Protein Is Not a Two State Folder. Journal of Physical Chemistry B, 2017, 121, 5162-5173.	1.2	14
595	Intramolecular Crossâ€Linking: Addressing Mechanochemistry with a Bioinspired Approach. Angewandte Chemie - International Edition, 2017, 56, 6431-6434.	7.2	40
596	Mg ²⁺ â€Dependent High Mechanical Anisotropy of Threeâ€Wayâ€Junction pRNA as Revealed by Singleâ€Molecule Force Spectroscopy. Angewandte Chemie, 2017, 129, 9504-9508.	1.6	4
597	Mg ²⁺ â€Dependent High Mechanical Anisotropy of Threeâ€Wayâ€Junction pRNA as Revealed by Singleâ€Molecule Force Spectroscopy. Angewandte Chemie - International Edition, 2017, 56, 9376-9380.	7.2	20
598	Free-energy predictions and absorption spectra calculations for supramolecular nanocarriers and their photoactive cargo. Nanoscale, 2017, 9, 4989-4994.	2.8	11
599	Steering chemical reactions with force. Nature Reviews Chemistry, 2017, 1, .	13.8	95
600	Designed inhibitors with hetero linkers for gastric proton pump H + ,K + -ATPase: Steered molecular dynamics and metadynamics studies. Journal of Molecular Graphics and Modelling, 2017, 78, 129-138.	1.3	2
601	Directional mechanical stability of Bacteriophage φ29 motor's 3WJ-pRNA: Extraordinary robustness along portal axis. Science Advances, 2017, 3, e1601684.	4.7	17
602	Nanomechanics of multidomain neuronal cell adhesion protein contactin revealed by single molecule AFM and SMD. Scientific Reports, 2017, 7, 8852.	1.6	17
603	Single Molecule Study on Polymer–Nanoparticle Interactions: The Particle Shape Matters. Langmuir, 2017, 33, 7615-7621.	1.6	6
604	Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6306-E6313.	3.3	44
605	Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chemical Reviews, 2017, 117, 12851-12892.	23.0	289
606	Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies. Journal of Computer-Aided Molecular Design, 2017, 31, 729-742.	1.3	7

#	Article	IF	CITATIONS
607	Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms. Journal of Physical Chemistry B, 2017, 121, 7108-7121.	1.2	10
608	Intramolecular Crossâ€Linking: Addressing Mechanochemistry with a Bioinspired Approach. Angewandte Chemie, 2017, 129, 6531-6534.	1.6	14
609	Ripping RNA by Force Using Gaussian Network Models. Journal of Physical Chemistry B, 2017, 121, 3515-3522.	1.2	2
610	Nanomechanical properties of MscL $\langle b \rangle \hat{l} \pm \langle b \rangle$ helices: A steered molecular dynamics study. Channels, 2017, 11, 209-223.	1.5	20
611	5.6 Effects of Mechanical Stress on Cells â-†., 2017, , 102-114.		0
612	The Important Roles of Water in Protein Folding: an Approach by Single Molecule Force Spectroscopy. Chinese Journal of Polymer Science (English Edition), 2018, 36, 379-384.	2.0	8
613	The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: A combined study of nutrient concentrations and shear conditions. Colloids and Surfaces B: Biointerfaces, 2018, 165, 127-134.	2.5	30
614	Unraveling the Mechanobiology of Extracellular Matrix. Annual Review of Physiology, 2018, 80, 353-387.	5.6	158
615	Differences in the mechanical unfolding pathways of apo- and copper-bound azurins. Scientific Reports, 2018, 8, 1989.	1.6	21
616	Two-State Folding Energy Determination Based on Transition Points in Nonequilibrium Single-Molecule Experiments. Journal of Physical Chemistry Letters, 2018, 9, 811-816.	2.1	11
617	Disulfide isomerization reactions in titin immunoglobulinÂdomains enable a mode of protein elasticity. Nature Communications, 2018, 9, 185.	5.8	70
618	Deciphering the Mechanical Properties of Type III Secretion System EspA Protein by Single Molecule Force Spectroscopy. Langmuir, 2018, 34, 6261-6270.	1.6	6
619	History, rare, and multiple events of mechanical unfolding of repeat proteins. Journal of Chemical Physics, 2018, 148, 123335.	1.2	15
620	Nano-Mechanical Tensile Behavior of the SPTA1 Gene in the Presence of Hereditary Hemolytic Anemia-Related Point Mutations. Lecture Notes in Applied and Computational Mechanics, 2018, , 35-47.	2.0	0
622	Correlating Conformational Dynamics with the Von Willebrand Factor Reductase Activity of Factor H Using Single Molecule Force Measurements. Journal of Physical Chemistry B, 2018, 122, 10653-10658.	1.2	1
623	Polymer Mechanochemistry: A New Frontier for Physical Organic Chemistry. Advances in Physical Organic Chemistry, 2018, 52, 87-143.	0.5	9
624	Implications of Molecular Topology for Nanoscale Mechanical Unfolding. Journal of Physical Chemistry B, 2018, 122, 9703-9712.	1.2	7
625	Role of Resultant Dipole Moment in Mechanical Dissociation of Biological Complexes. Molecules, 2018, 23, 1995.	1.7	20

#	Article	IF	CITATIONS
626	Structural–elastic determination of the force-dependent transition rate of biomolecules. Chemical Science, 2018, 9, 5871-5882.	3.7	45
627	Steered Molecular Dynamics Simulation in Rational Drug Design. Journal of Chemical Information and Modeling, 2018, 58, 1473-1482.	2.5	122
628	Unraveling the Mechanical Unfolding Pathways of a Multidomain Protein: Phosphoglycerate Kinase. Biophysical Journal, 2018, 115, 46-58.	0.2	6
629	High-Speed Force Spectroscopy for Single Protein Unfolding. Methods in Molecular Biology, 2018, 1814, 243-264.	0.4	10
630	AFM-Based Single-Molecule Force Spectroscopy of Proteins. Methods in Molecular Biology, 2018, 1814, 35-47.	0.4	16
631	Using single molecule force spectroscopy to facilitate a rational design of Ca ²⁺ -responsive β-roll peptide-based hydrogels. Journal of Materials Chemistry B, 2018, 6, 5303-5312.	2.9	8
632	Langmuir–Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals. Langmuir, 2018, 34, 9376-9386.	1.6	26
633	Influence of gauche effect on uncharged oxime reactivators for the reactivation of tabun-inhibited AChE: quantum chemical and steered molecular dynamics studies. Journal of Computer-Aided Molecular Design, 2018, 32, 793-807.	1.3	4
634	Compressive Force Spectroscopy: From Living Cells to Single Proteins. International Journal of Molecular Sciences, 2018, 19, 960.	1.8	5
635	Monitoring Unfolding of Titin I27 Single and Bi Domain with High-Pressure NMR Spectroscopy. Biophysical Journal, 2018, 115, 341-352.	0.2	6
636	Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow. Journal of Chemical Physics, 2018, 148, 174104.	1.2	3
637	Atomistic dewetting mechanics of Wenzel and monostable Cassie–Baxter states. Physical Chemistry Chemical Physics, 2018, 20, 24759-24767.	1.3	22
638	Generalization of the elastic network model for the study of large conformational changes in biomolecules. Physical Chemistry Chemical Physics, 2018, 20, 17020-17028.	1.3	26
639	Steering the Lipid Transfer To Unravel the Mechanism of Cholesteryl Ester Transfer Protein Inhibition. Biochemistry, 2019, 58, 3789-3801.	1.2	5
640	Multistep Protein Unfolding Scenarios from the Rupture of a Complex Metal Cluster Cd3S9. Scientific Reports, 2019, 9, 10518.	1.6	14
641	Flexible parking reservation system and pricing: A continuum approximation approach. Transportation Research Part B: Methodological, 2019, 128, 408-434.	2.8	30
642	Depicting Conformational Ensembles of α-Synuclein by Single Molecule Force Spectroscopy and Native Mass Spectroscopy. International Journal of Molecular Sciences, 2019, 20, 5181.	1.8	7
643	On the Interpretation of Force-Induced Unfolding Studies of Membrane Proteins Using Fast Simulations. Biophysical Journal, 2019, 117, 1429-1441.	0.2	12

#	Article	IF	Citations
644	Unfolding Dynamics of Ubiquitin from Constant Force MD Simulation: Entropy–Enthalpy Interplay Shapes the Free-Energy Landscape. Journal of Physical Chemistry B, 2019, 123, 1228-1236.	1.2	9
645	Multiple stochastic pathways in forced peptide-lipid membrane detachment. Scientific Reports, 2019, 9, 451.	1.6	9
646	Contribution of frustules and mucilage trails to the mobility of diatom Navicula sp Scientific Reports, 2019, 9, 7342.	1.6	19
647	An estimate to the first approximation of microtubule rupture force. European Biophysics Journal, 2019, 48, 569-577.	1.2	6
648	Understanding the catch-bond kinetics of biomolecules on aÂone-dimensional energy landscape. Communications Chemistry, 2019, 2, .	2.0	23
649	Protein Dynamics Simulations Using Coarse-Grained Models. Springer Series on Bio- and Neurosystems, 2019, , 61-87.	0.2	4
650	Ultra-Sensitive and Label-Free Probing of Binding Affinity Using Recognition Imaging. Nano Letters, 2019, 19, 612-617.	4.5	14
651	Mechanics of materials with embedded unstable molecules. International Journal of Solids and Structures, 2019, 162, 21-35.	1.3	11
652	Computer Simulation of Protein Materials at Multiple Length Scales: From Single Proteins to Protein Assemblies. Multiscale Science and Engineering, 2019, 1, 1-25.	0.9	16
653	Titin as a force-generating muscle protein under regulatory control. Journal of Applied Physiology, 2019, 126, 1474-1482.	1.2	96
654	Highâ€Performance Polymeric Materials through Hydrogenâ€Bond Crossâ€Linking. Advanced Materials, 2020, 32, e1901244.	11.1	292
655	Computer simulating of nanoprocesses: Thermal jumps over a low barrier in the overdamped regime. Journal of Physics: Conference Series, 2020, 1546, 012115.	0.3	0
656	Piecewise All-Atom SMD Simulations Reveal Key Secondary Structures in Luciferase Unfolding Pathway. Biophysical Journal, 2020, 119, 2251-2261.	0.2	3
657	Lipid bilayers: Phase behavior and nanomechanics. Current Topics in Membranes, 2020, 86, 1-55.	0.5	15
658	Calibration of T-shaped atomic force microscope cantilevers using the thermal noise method. Review of Scientific Instruments, 2020, 91, 083703.	0.6	3
659	Smart Polymers for Advanced Applications: A Mechanical Perspective Review. Frontiers in Materials, 2020, 7, .	1.2	40
660	An Exactly Solvable Stochastic Kinetic Theory of Single-Molecule Force Experiments. Journal of Physical Chemistry B, 2020, 124, 7735-7744.	1.2	5
661	Combining High-Pressure Perturbation with NMR Spectroscopy for a Structural and Dynamical Characterization of Protein Folding Pathways. Molecules, 2020, 25, 5551.	1.7	17

#	Article	IF	CITATIONS
662	Unfolding compactly folded molecular domains: Overall stiffness modifies the force-barrier relation. Chemical Physics Letters, 2020, 758, 137924.	1.2	5
664	Single-Molecule Studies of Protein Folding with Optical Tweezers. Annual Review of Biochemistry, 2020, 89, 443-470.	5.0	124
665	The rupture mechanism of rubredoxin is more complex than previously thought. Chemical Science, 2020, 11, 6036-6044.	3.7	1
666	Learning how planarization can affect dichroic patterns in polyfluorenes. Chirality, 2020, 32, 661-666.	1.3	4
667	Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chemical Society Reviews, 2020, 49, 2799-2827.	18.7	82
668	The Non-dominant AAA+ Ring in the ClpAP Protease Functions as an Anti-stalling Motor to Accelerate Protein Unfolding and Translocation. Cell Reports, 2020, 30, 2644-2654.e3.	2.9	21
669	Protein unfolding by SDS: the microscopic mechanisms and the properties of the SDS-protein assembly. Nanoscale, 2020, 12, 5422-5434.	2.8	34
670	Retained Stability of the RNA Structure in DNA Packaging Motor with a Single Mg ²⁺ Ion Bound at the Double Mg-Clamp Structure. Journal of Physical Chemistry B, 2020, 124, 701-707.	1.2	4
671	A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nature Communications, 2020, 11, 2060.	5.8	42
672	Exploiting a Mechanical Perturbation of a Titin Domain to Identify How Force Field Parameterization Affects Protein Refolding Pathways. Journal of Chemical Theory and Computation, 2020, 16, 3240-3252.	2.3	5
673	Protein mechanics probed using simple molecular models. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129613.	1.1	5
674	Cavitation in soft matter. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9157-9165.	3.3	86
675	Towards a Quantitative Understanding of Protein–Lipid Bilayer Interactions at the Single Molecule Level: Opportunities and Challenges. Journal of Membrane Biology, 2021, 254, 17-28.	1.0	4
676	Oncogenic mutations on Rac1 affect global intrinsic dynamics underlying GTP and PAK1 binding. Biophysical Journal, 2021, 120, 866-876.	0.2	12
677	Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins*. Chinese Physics B, 2021, 30, 038701.	0.7	1
678	Pioglitazone Inhibits Metal Cluster Transfer of mitoNEET by Stabilizing the Labile Fe–N Bond Revealed at Single-Bond Level. Journal of Physical Chemistry Letters, 2021, 12, 3860-3867.	2.1	16
679	From folding to function: complex macromolecular reactions unraveled one-by-one with optical tweezers. Essays in Biochemistry, 2021, 65, 129-142.	2.1	8
680	The Sliding Filament Theory Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research. Annual Review of Biophysics, 2021, 50, 373-400.	4.5	27

#	Article	IF	CITATIONS
681	Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations. Methods, 2022, 197, 39-53.	1.9	6
682	Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy. ACS Nano, 2021, 15, 10203-10216.	7.3	16
683	Anisotropy in mechanical unfolding of protein upon partner-assisted pulling and handle-assisted pulling. Communications Biology, 2021, 4, 925.	2.0	6
684	The Sarcomeric Spring Protein Titin: Biophysical Properties, Molecular Mechanisms, and Genetic Mutations Associated with Heart Failure and Cardiomyopathy. Current Cardiology Reports, 2021, 23, 121.	1.3	18
686	Protein nanomechanics in biological context. Biophysical Reviews, 2021, 13, 435-454.	1.5	21
687	Microbial production of megadalton titin yields fibers with advantageous mechanical properties. Nature Communications, 2021, 12, 5182.	5.8	21
688	Simulation of protein pulling dynamics on second time scale with boxed molecular dynamics. Journal of Chemical Physics, 2021, 155, 085101.	1.2	2
689	Reduction of atomistic ice tensile stress by graphene–carbon nanotube coating. Applied Surface Science, 2021, 565, 150562.	3.1	5
692	Protein Mechanics at the Single-Molecule Level. , 2009, , 7026-7051.		6
693	The Dynamical Response of Proteins Under Force. , 2008, , 205-249.		1
694	Force Spectroscopy of Polymers: Beyond Single Chain Mechanics., 2007,, 525-535.		2
695	Adaptations in Titin's Spring Elements in Normal and Cardiomyopathic Hearts. Advances in Experimental Medicine and Biology, 2003, 538, 517-531.	0.8	6
696	Individual Proteins Under Mechanical Stress: Lessons from Theory and Computer Simulations. , 2012, , 235-268.		6
697	Single-Molecule Methods. , 2013, , 257-288.		2
698	Force-Clamp Spectroscopy of Single Proteins. Springer Series in Chemical Physics, 2010, , 317-335.	0.2	6
699	Force-Extension and Force-Clamp AFM Spectroscopies in Investigating Mechanochemical Reactions and Mechanical Properties of Single Biomolecules. Nanoscience and Technology, 2010, , 395-423.	1.5	4
700	Titin as a modular spring: emerging mechanisms for elasticity control by titin in cardiac physiology and pathophysiology. , 2003, , 457-471.		15
701	Single molecule force spectroscopy in biology using the atomic force microscope., 2001,, 37-61.		2

#	Article	IF	Citations
702	Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering, 2001, , 63-91.		4
703	Single molecule measurements of titin elasticity. , 2001, , 1-44.		1
704	Stepwise unfolding of titin under force-clamp atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 468-72.	3.3	199
705	Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1565-70.	3.3	69
706	Biological physics by high-speed atomic force microscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190604.	1.6	21
708	Thermodynamics and Kinetics from Single-Molecule Force Spectroscopy. , 2008, , 139-180.		4
709	Single Molecule Measurements of Interaction Free Energies Between the Proteins Within Binary and Ternary SNARE Complexes. Journal of Nanoneuroscience, 2009, 1, 120-129.	0.5	26
710	Force enhancement following stretching of skeletal muscle. Journal of Experimental Biology, 2002, 205, 1275-1283.	0.8	212
711	AFM Force Spectroscopy and Steered Molecular Dynamics Simulation of Protein Contactin 4. Acta Physica Polonica A, 2009, 116, S-156-S-159.	0.2	13
712	Computing Average Passive Forces in Sarcomeres in Length-Ramp Simulations. PLoS Computational Biology, 2016, 12, e1004904.	1.5	2
713	An Improved Strategy for Generating Forces in Steered Molecular Dynamics: The Mechanical Unfolding of Titin, e2lip3 and Ubiquitin. PLoS ONE, 2010, 5, e13068.	1.1	11
714	Ca2+ Binding Enhanced Mechanical Stability of an Archaeal Crystallin. PLoS ONE, 2014, 9, e94513.	1.1	12
715	afmToolkit: an R Package for Automated AFM Force-Distance Curves Analysis. R Journal, 2017, 9, 291.	0.7	19
716	Mechanical Stability of a Small, Highly-Luminescent Engineered Protein NanoLuc. International Journal of Molecular Sciences, 2021, 22, 55.	1.8	9
717	Quantitative Label-free Biodetection of Acute Disease Related Proteins Based on Nanomechanical Dynamic Microcantilevers. Journal of Semiconductor Technology and Science, 2007, 7, 151-160.	0.1	3
718	Single-Molecule Force Spectroscopy Studies of Missense Titin Mutations That Are Likely Causing Cardiomyopathy. Langmuir, 2021, 37, 12128-12137.	1.6	6
720	Strain-Dependent Fluorescence Correlation Spectroscopy: Proposing a New Measurement for Conformational Fluctuations of Biological Macromolecules. Springer Series in Chemical Physics, 2001,, 65-83.	0.2	0
722	Structural Genomics in Europe and beyond - Shifting Scientific Directions at EMBL Hamburg. Acta Physica Polonica A, 2002, 101, 635-646.	0.2	0

#	Article	IF	Citations
723	Unfolding of titin domains studied by molecular dynamics simulations., 2003,, 513-521.		1
724	Optical tweezers stretching of chromatin. , 2003, , 397-407.		O
725	Atomic Force Microscopy. The Electrical Engineering Handbook, 2006, , 67-1-67-29.	0.2	0
726	Microscopic mechanics of biomolecules in living cells. Lecture Notes in Computational Science and Engineering, 2008, , 339-362.	0.1	0
727	Counting and Breaking Single Bonds. , 2008, , 251-272.		0
728	SDynamic Force Spectroscopy with the Atomic Force Microscope. , 2008, , 143-161.		1
729	Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins. Springer Series in Biophysics, 2008, , 279-311.	0.4	0
731	A STEERED MOLECULAR DYNAMCS STUDY OF ADSORBED POLYMER CHAIN. Acta Polymerica Sinica, 2008, 008, 216-220.	0.0	0
732	A STEERED MOLECULAR DYNAMICS STUDY ON ELASTIC BEHAVIOR OF POLYETHYLENE CHAINS. Acta Polymerica Sinica, 2008, 008, 448-453.	0.0	1
733	Design and Computational Analysis ofÂBio-Nanorobotic Structures. , 2011, , 75-127.		0
734	Single-Molecule Methods to Study Cell Adhesion Molecules. Methods in Molecular Biology, 2011, 757, 139-155.	0.4	0
735	The Cutting Edge of Mechanical Unfolding Research: What We Learn from Protein Pulling Studies. Seibutsu Butsuri, 2011, 51, 168-173.	0.0	0
736	Exploring the Energy Landscape of Biopolymers UsingSingle-Molecule Force Spectroscopy and MolecularSimulations., 2011,, 125-148.		0
737	Mechanics of Proteins and Tailored Mechanics of Engineered Proteins. , 2011, , 47-82.		0
738	Mechanical Characterization in Molecular Simulation. Springer Series in Materials Science, 2012, , 265-296.	0.4	0
739	Steered molecular dynamics simulation of peeling a carbon nanotube on silicon substrate. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 146102.	0.2	1
740	Biophysics of Titin in Cardiac Health and Disease. Biological and Medical Physics Series, 2013, , 201-223.	0.3	0
741	Phase transition from -helices to -sheets in supercoils of fibrillar proteins. Computer Research and Modeling, 2013, 5, 705-725.	0.2	1

#	Article	IF	CITATIONS
743	Chemical and Physical Properties of Polymers for Biomedical Use., 2015,, 67-90.		1
744	Protein Mechanics at the Single-Molecule Level. , 2015, , 1-36.		0
748	Mechanostability of Virus Capsids and Their Proteins in Structure-Based Coarse-Grained Models. Springer Series on Bio- and Neurosystems, 2019, , 307-330.	0.2	0
749	Single-Molecule Studies of Exonucleases: Following Cleavage Actions One Step at a Time. Biological and Medical Physics Series, 2019, , 57-84.	0.3	0
752	Protein Interaction Mapping related to Becker Muscular Dystrophy. Iranian Journal of Child Neurology, 2019, 13, 125-134.	0.2	1
7 53	Understanding the Extraordinary Flexibility of Polydimethylsiloxane through Single-Molecule Mechanics. , 2022, 4, 329-335.		15
754	Impact of PROTAC Linker Plasticity on the Solution Conformations and Dissociation of the Ternary Complex. Journal of Chemical Information and Modeling, 2022, 62, 340-349.	2.5	28
755	Force-Induced Changes of PilY1 Drive Surface Sensing by Pseudomonas aeruginosa. MBio, 2022, 13, e0375421.	1.8	15
756	Forced Unfolding of Protein-Inspired Single-Chain Random Heteropolymers. Macromolecules, 2022, 55, 1295-1309.	2.2	10
757	Nano-Precision Tweezers for Mechanosensitive Proteins and Beyond. Molecules and Cells, 2022, 45, 16-25.	1.0	6
758	The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. Journal of Molecular and Cellular Cardiology, 2022, 166, 36-49.	0.9	7
759	Force probe molecular dynamics simulations. Methods in Molecular Biology, 2005, 305, 493-515.	0.4	33
760	The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP . FEBS Letters, 2022, 596, 703-746.	1.3	12
761	High-Resolution Single-Molecule Magnetic Tweezers. Annual Review of Biochemistry, 2022, 91, 33-59.	5.0	25
762	Identification of an Ultrathin Osteochondral Interface Tissue with Specific Nanostructure at the Human Knee Joint. Nano Letters, 2022, 22, 2309-2319.	4.5	18
764	Contribution of hydrophobic interactions to protein mechanical stability. Computational and Structural Biotechnology Journal, 2022, 20, 1946-1956.	1.9	13
765	Measuring (biological) materials mechanics with atomic force microscopy. 3. Mechanical unfolding of biopolymers. Microscopy Research and Technique, 2022, , .	1.2	1
766	Recognizing the Binding Pattern and Dissociation Pathways of the p300 Taz2-p53 TAD2 Complex. Jacs Au, 2022, 2, 1935-1945.	3.6	6

#	Article	IF	CITATIONS
767	Strengthening and toughening of TEMPO-oxidized cellulose nanofibers/polymers composite films based on hydrogen bonding interactions. Composites Communications, 2022, 35, 101322.	3.3	4
768	Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chemical Reviews, 2022, 122, 14594-14678.	23.0	74
769	Direct and Simultaneous Measurement of the Stiffness and Internal Friction of a Single Folded Protein. Journal of Physical Chemistry Letters, 2022, 13, 9473-9479.	2.1	4
770	Structure–mechanics relationship of hybrid polyvinyl alcohol-collagen composite by molecular dynamics simulations. MRS Bulletin, 0, , .	1.7	0
772	Single-Molecule Optical Tweezers As a Tool for Delineating the Mechanisms of Protein-Processing Mechanoenzymes. ACS Omega, 2023, 8, 87-97.	1.6	4
773	Force Probe Molecular Dynamics Simulations. Methods in Molecular Biology, 2005, , 493-515.	0.4	36
774	Stretching the story of titin and muscle function. Journal of Biomechanics, 2023, 152, 111553.	0.9	6
776	Quantification of carboxylateâ€bridged diâ€zinc site stability in protein due ferri by singleâ€molecule force spectroscopy. Protein Science, 2023, 32, .	3.1	1
777	Extremely Strong and Tough Biodegradable Poly(urethane) Elastomers with Unprecedented Crack Tolerance via Hierarchical Hydrogenâ€Bonding Interactions. Advanced Materials, 2023, 35, .	11.1	53
778	The cofactor-dependent folding mechanism of Drosophila cryptochrome revealed by single-molecule pulling experiments. Nature Communications, 2023, 14, .	5.8	1
783	Viscoelasticity of single folded proteins using dynamic atomic force microscopy. Soft Matter, 2023, 19, 4188-4203.	1.2	0
787	Magnetic tweezers in cell mechanics. Methods in Enzymology, 2024, , 321-354.	0.4	O