AUTOMATED METHODS FOR ESTIMATING BASEFLOW STREAMFLOW RECORDS

Journal of the American Water Resources Association 35, 411-424 DOI: 10.1111/j.1752-1688.1999.tb03599.x

Citation Report

#	Article	IF	CITATIONS
1	Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. Journal of Hydrology, 2000, 227, 21-40.	2.3	369
2	Base Flow Determination In a Ditch Off a Tile-Drained Watershed. , 2001, , .		0
3	Hydrologic model for design and constructed wetlands. Wetlands, 2001, 21, 167-178.	0.7	72
4	VALIDATION OF THE SWAT MODEL ON A LARGE RWER BASIN WITH POINT AND NONPOINT SOURCES. Journal of the American Water Resources Association, 2001, 37, 1169-1188.	1.0	1,153
5	Application of swat model in the upstream watershed of the Luohe River. Chinese Geographical Science, 2003, 13, 334-339.	1.2	19
6	Regional Estimation of Base Recharge to Ground Water Using Water Balance and a Base-Flow Index. Ground Water, 2003, 41, 504-513.	0.7	67
7	HYDROLOGIC SIMULATION OF THE LITTLE WASHITA RIVER EXPERIMENTAL WATERSHED USING SWAT. Journal of the American Water Resources Association, 2003, 39, 413-426.	1.0	221
8	Determining Critical Flow Conditions for Chloride Impairment in an Effluent-Dominated, Storm-Peaking, Western U.S. Stream. Water Environment Research, 2003, 75, 39-53.	1.3	2
9	DISSOLVED PHOSPHORUS TRANSPORT DURING STORM AND BASE FLOW CONDITIONS FROM AN AGRICULTURALLY INTENSIVE SOUTHEASTERN COASTAL PLAIN WATERSHED. Transactions of the American Society of Agricultural Engineers, 2003, 46, .	0.9	20
10	Examination of the Role of Physical Resolution and Scale on Sediment and Nutrient Yields. , 2004, , 1.		0
11	Quantifying Ground Water Recharge at Multiple Scales Using PRMS and GIS. Ground Water, 2004, 42, 97-110.	0.7	58
12	Changes in components of the hydrological cycle in the Yellow River basin during the second half of the 20th century. Hydrological Processes, 2004, 18, 2337-2345.	1.1	70
13	Coupled SVAT–groundwater model for water resources simulation in irrigated alluvial plains. Environmental Modelling and Software, 2004, 19, 1053-1063.	1.9	51
14	Heuristic Continuous Base Flow Separation. Journal of Hydrologic Engineering - ASCE, 2004, 9, 311-318.	0.8	27
15	Evaluation of hydrological model parameter transferability for simulating the impact of land use on catchment hydrology. Physics and Chemistry of the Earth, 2004, 29, 739-747.	1.2	61
16	MODELING EFFECTS OF BRUSH MANAGEMENT ON THE RANGELAND WATER BUDGET: EDWARDS PLATEAU, TEXAS. Journal of the American Water Resources Association, 2005, 41, 181-193.	1.0	45
17	HYDROLOGICAL MODELING OF THE IROQUOIS RIVER WATERSHED USING HSPF AND SWAT. Journal of the American Water Resources Association, 2005, 41, 343-360.	1.0	471
18	SENSITIVITY ANALYSIS, CALIBRATION, AND VALIDATIONS FOR A MULTISITE AND MULTIVARIABLE SWAT MODEL. Journal of the American Water Resources Association, 2005, 41, 1077-1089.	1.0	351

#	Article	IF	CITATIONS
19	BASE FLOW TRENDS IN URBANIZING WATERSHEDS OF THE DELAWARE RIVER BASIN. Journal of the American Water Resources Association, 2005, 41, 1377-1391.	1.0	82
20	AUTOMATED WEB GIS BASED HYDROGRAPH ANALYSIS TOOL, WHAT. Journal of the American Water Resources Association, 2005, 41, 1407-1416.	1.0	324
21	Estimating Ground Water Recharge from Topography, Hydrogeology, and Land Cover. Ground Water, 2005, 43, 102-112.	0.7	49
22	Sensitivity of the SWAT model to the soil and land use data parametrisation: a case study in the Thyle catchment, Belgium. Ecological Modelling, 2005, 187, 27-39.	1.2	114
23	How to construct recursive digital filters for baseflow separation. Hydrological Processes, 2005, 19, 507-515.	1.1	641
24	Field data and flow system response in clay (vertisol) shale terrain, north central Texas, USA. Hydrological Processes, 2005, 19, 2719-2736.	1.1	44
25	HYDROLOGICAL MODELING OF THE L'ANGUILLE RIVER WATERSHED USING SOIL AND WATER ASSESSMENT TOOL. , 2005, , .		0
26	Modelling nitrogen pressure in river basins: A comparison between a statistical approach and the physically-based SWAT model. Physics and Chemistry of the Earth, 2005, 30, 508-517.	1.2	37
27	A revised approach to the UKIH method for the calculation of baseflow / Une approche améliorée de la méthode de l'UKIH pour le calcul de l'écoulement de base. Hydrological Sciences Journal, 2005, 50, .	1.2	65
28	Assessment of Sediment Yields for a Mixed-landuse Great Lakes Watershed: Lessons from Field Measurements and Modeling. Journal of Great Lakes Research, 2006, 32, 471-488.	0.8	9
29	Assessing stream–aquifer interactions through inverse modeling of flow routing. Journal of Hydrology, 2006, 327, 208-218.	2.3	5
30	Multi-Objective Automatic Calibration of a Semi-Distributed Watershed Model using Pareto Ordering Optimization and Genetic Algorithm. , 2006, , .		0
31	Watershed Modeling Uncertainty from Spatial Rainfall Variability. , 2006, , .		0
32	An integrated hydrological, ecological, and economical (HEE) modeling system for assessing water resources and ecosystem production: calibration and validation in the upper and middle parts of the Yellow River Basin, China. , 2006, , .		1
33	A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling and Software, 2006, 21, 1141-1157.	1.9	248
34	Effects of calibration on L-THIA GIS runoff and pollutant estimation. Journal of Environmental Management, 2006, 78, 35-43.	3.8	58
35	Springs on rangelands: runoff dynamics and influence of woody plant cover. Hydrological Processes, 2006, 20, 3277-3288.	1.1	29
36	Hydrologic Modeling of an Eastern Pennsylvania Watershed with NEXRAD and Rain Gauge Data. Journal of Hydrologic Engineering - ASCE, 2006, 11, 555-569.	0.8	86

#	Article	IF	CITATIONS
37	Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service Watersheds. Journal of Hydrologic Engineering - ASCE, 2007, 12, 173-189.	0.8	284
38	The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Transactions of the ASABE, 2007, 50, 1211-1250.	1.1	1,979
39	Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 2007, 50, 885-900.	1.1	7,902
40	Cannonsville Reservoir Watershed SWAT2000 model development, calibration and validation. Journal of Hydrology, 2007, 337, 68-86.	2.3	129
41	Hydrologic response to climatic variability in a Great Lakes Watershed: A case study with the SWAT model. Journal of Hydrology, 2007, 337, 187-199.	2.3	118
42	Water Quality Modeling for the Raccoon River Watershed Using SWAT. Transactions of the ASABE, 2007, 50, 479-493.	1.1	129
43	Sensitivity Analysis And Interdependence Of The SWAT Model Parameters. , 2007, , .		2
44	Assessing regional land-use/cover influences on New Jersey Pinelands streamflow through hydrograph analysis. Hydrological Processes, 2007, 21, 185-197.	1.1	36
45	Parameter estimation in semi-distributed hydrological catchment modelling using a multi-criteria objective function. Hydrological Processes, 2007, 21, 2998-3008.	1.1	49
46	Use of Streamflow Data to Estimate Base Flow/Groundâ€Water Recharge For Wisconsin ¹ . Journal of the American Water Resources Association, 2007, 43, 220-236.	1.0	38
47	Automatic Calibration of Hydrologic Models With Multi-Objective Evolutionary Algorithm and Pareto Optimization. Journal of the American Water Resources Association, 2007, 43, 981-989.	1.0	90
48	Automated Algorithms for Heuristic Baseâ€Flow Separation ¹ . Journal of the American Water Resources Association, 2007, 43, 1583-1594.	1.0	16
49	Estimation of groundwater recharge using water balance model. Water Resources, 2007, 34, 153-162.	0.3	30
50	Rainfall—runoff response, event-based runoff coefficients and hydrograph separation. Hydrological Sciences Journal, 2007, 52, 843-862.	1.2	202
51	The non-point source pollution in livestock-breeding areas of the Heihe River basin in Yellow River. Stochastic Environmental Research and Risk Assessment, 2007, 21, 213-221.	1.9	40
52	Effect of climate change on watershed system: a regional analysis. Climatic Change, 2008, 89, 263-280.	1.7	133
53	Contributions of DOC from surface and groundflow into Lake Võrtsjä⁄ (Estonia). Hydrobiologia, 2008, 599, 213-220.	1.0	17
54	Estimation of groundwater recharge using the soil moisture budget method and the base-flow model. Environmental Geology, 2008, 54, 1787-1797.	1.2	20

#	Article	IF	CITATIONS
55	Comparing groundwater recharge and base flow in the Bukmoongol small-forested watershed, Korea. Journal of Earth System Science, 2008, 117, 553-566.	0.6	20
56	Hydrologic comparison between a forested and a wetland/lake dominated watershed using SWAT. Hydrological Processes, 2008, 22, 1431-1442.	1.1	43
57	Smoothed minima baseflow separation tool for perennial and intermittent streams. Hydrological Processes, 2008, 22, 4467-4476.	1.1	35
58	Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management, 2008, 88, 393-406.	3.8	131
59	Constraining water table depth simulations in a land surface model using estimated baseflow. Advances in Water Resources, 2008, 31, 1552-1564.	1.7	40
60	Hydrologic Calibration and Validation of SWAT in a Snowâ€Dominated Rocky Mountain Watershed, Montana, U.S.A. ¹ . Journal of the American Water Resources Association, 2008, 44, 1411-1430.	1.0	104
61	Hydrologic Effects of NDVI Time Series in a Context of Climatic Variability in an Upstream Catchment of the Minjiang River ¹ . Journal of the American Water Resources Association, 2008, 44, 1132-1143.	1.0	29
62	Longâ€ŧerm trends in streamflow from semiarid rangelands: uncovering drivers of change. Global Change Biology, 2008, 14, 1676-1689.	4.2	66
63	Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology, 2008, 348, 279-291.	2.3	239
64	Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 2008, 351, 139-153.	2.3	183
65	A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 2008, 352, 168-173.	2.3	373
66	Development and application of the integrated SWAT–MODFLOW model. Journal of Hydrology, 2008, 356, 1-16.	2.3	307
67	The influence of impoundments on riverine nutrient transport: An evaluation using the Soil and Water Assessment Tool. Journal of Hydrology, 2008, 355, 131-147.	2.3	71
68	Spatial modeling of land cover change and watershed response using Markovian cellular automata and simulation. Water Resources Research, 2008, 44, .	1.7	34
69	Using spatially distributed parameters and multiâ€response objective functions to solve parameterization of complex applications of semiâ€distributed hydrological models. Water Resources Research, 2008, 44, .	1.7	21
70	Identification of runoff generation processes using combined hydrometric, tracer and geophysical methods in a headwater catchment in South Africa / Identification des processus de formation du débit en combinat la méthodes hydrométrique, traceur et géophysiques dans un bassin versant sud-africain. Hydrological Sciences Iournal, 2008, 53, 65-80.	1.2	57
71	Modelling hydrological processes in mesoscale lowland river basins with SWAT—capabilities and challenges. Hydrological Sciences Journal, 2008, 53, 989-1000.	1.2	46
72	Assessment of the Iowa River's South Fork watershed: Part 1. Water quality. Journal of Soils and Water Conservation, 2008, 63, 360-370.	0.8	66

#	Article	IF	CITATIONS
73	The Distributed Stochastic Monitoring and Modeling on Non-Point Source Pollution and Water Ecosystem Health Assessment. , 2008, , .		2
74	Hydrologic Modeling of the Fox River Watershed: Model Development, Calibration, and Validation. , 2008, , .		1
75	Base-Flow Separation in the Source Region of the Yellow River. Journal of Hydrologic Engineering - ASCE, 2008, 13, 541-548.	0.8	15
76	Continuous Simulation of Water and Soil Erosion in a Small Watershed of the Loess Plateau with a Distributed Model. Journal of Hydrologic Engineering - ASCE, 2008, 13, 392-399.	0.8	11
77	The Distribution of Nitrogen in Soil and Rainfall Intensity on Nitrogen Infiltration Flux Influence in Partly Saturated Soil. , 2008, , .		0
78	Simulation of an Agricultural Watershed Using an Improved Curve Number Method in SWAT. Transactions of the ASABE, 2008, 51, 1323-1339.	1.1	30
79	Impact of landuse on runoff in mountain catchments of different scales. Soil and Water Research, 2008, 3, 113-120.	0.7	7
80	Evaluation of Flow Regime in Mediterranean Streams Using Flashiness Index. , 2008, , .		0
81	Evaluation of NRCS curve number and MODIS time-series proxies for antecedent moisture condition. Civil Engineering and Environmental Systems, 2009, 26, 85-101.	0.4	3
82	Ranking of Waterways Susceptible to Adverse Stormwater Effects. Canadian Water Resources Journal, 2009, 34, 205-228.	0.5	9
83	Effect of watershed delineation and areal rainfall distribution on runoff prediction using the SWAT model. Hydrology Research, 2009, 40, 505-519.	1.1	20
84	Hydroclimatic trend detection in a rapidly urbanizing semi-arid and coastal river basin. Journal of Hydrology, 2009, 367, 217-227.	2.3	28
85	Filtered smoothed minima baseflow separation method. Journal of Hydrology, 2009, 372, 94-101.	2.3	79
86	Identifying critical source areas for water quality: 2. Validating the approach for phosphorus and sediment losses in grazed headwater catchments. Journal of Hydrology, 2009, 379, 68-80.	2.3	45
87	Response of hydrological processes to landâ€cover and climate changes in Kejie watershed, southâ€west China. Hydrological Processes, 2009, 23, 1179-1191.	1.1	162
88	Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part I: model parameterization and evaluation. Hydrological Processes, 2009, 23, 1202-1211.	1.1	33
89	SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrological Processes, 2010, 24, 357-367.	1.1	108
90	Evaluación de la recarga de aguas subterrÃ;neas y flujo de agua del Sistema AcuÃfero GuaranÃ , Brasil. Hydrogeology Journal, 2009, 17, 1733-1748.	0.9	44

<u> </u>			~	
СП	ΆΤΙ	ON.	REPO	DRT

#	Article	IF	CITATIONS
91	Groundwater recharge rates for regional groundwater modelling: a case study using GROWA in the Lower Rhine lignite mining area, Germany. Hydrogeology Journal, 2009, 17, 2049-2060.	0.9	13
92	Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. Journal of Environmental Management, 2009, 90, 1385-1395.	3.8	99
93	Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region. Natural Hazards, 2009, 48, 41-57.	1.6	102
94	Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China. Water Resources Management, 2009, 23, 1935-1949.	1.9	30
95	Using SWAT to Model Streamflow in Two River Basins With Ground and Satellite Precipitation Data ¹ . Journal of the American Water Resources Association, 2009, 45, 253-271.	1.0	78
96	A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environmental Modelling and Software, 2009, 24, 311-321.	1.9	194
97	Application of SWAT for sediment yield estimation in a mountainous agricultural basin. , 2009, , .		1
98	Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena, 2009, 77, 1-7.	2.2	154
99	Spatial and temporal characterisation of stable isotopes in river water as indicators of groundwater contribution and confirmation of modelling results; a study of the Weser river, Germanyâ€. Isotopes in Environmental and Health Studies, 2009, 45, 289-302.	0.5	39
100	Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China. Water Resources Research, 2009, 45, .	1.7	242
101	Impacts of Urbanization on Surface Runoff of the Dardenne Creek Watershed, St. Charles County, Missouri. Physical Geography, 2009, 30, 556-573.	0.6	56
102	Modeling Flow and Pollutant Transport in a Karst Watershed with SWAT. Transactions of the ASABE, 2009, 52, 469-479.	1.1	57
103	Using Watershed-Scale Nutrient Modeling Approaches for Integrated Evaluation of Wastewater Treatment Alternatives. Proceedings of the Water Environment Federation, 2009, 2009, 5569-5586.	0.0	0
104	The Relationship between Watershed Physiography, Tile Flow, and Streamflow Characteristics. , 2010, ,		0
105	Simulation of Agricultural Management Alternatives for Watershed Protection. Water Resources Management, 2010, 24, 3115-3144.	1.9	124
106	Watershed Modeling to Assessing Impacts of Potential Climate Change on Water Supply Availability. Water Resources Management, 2010, 24, 3299-3320.	1.9	78
107	Assessment of climate change impact on floodplain and hydrologic ecotones. Journal of Hydrology, 2010, 395, 264-278.	2.3	50
108	Development of genetic algorithm-based optimization module in WHAT system for hydrograph analysis and model application. Computers and Geosciences, 2010, 36, 936-944.	2.0	62

	CITATION	Report	
#	Article	IF	CITATIONS
109	Nonpointâ€Source Pollution Reduction for an Iowa Watershed: An Application of Evolutionary Algorithms. Canadian Journal of Agricultural Economics, 2010, 58, 411-431.	1.2	23
110	Streamflow Characteristics of a Naturally Drained Forested Watershed in Southeast Atlantic Coastal Plain. , 2010, , .		1
111	Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning. Hydrology and Earth System Sciences, 2010, 14, 1963-1977.	1.9	40
112	Targeting BMP Placement using SWAT Sediment Yield Estimates for Field-Scale BMPs. , 2010, , .		0
113	Identifying Priority subwatersheds using distributed modeling approach. , 2010, , .		1
114	Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. Journal of Soils and Water Conservation, 2010, 65, 342-352.	0.8	70
115	Impact of crop rotations on optimal selection of conservation practices for water quality protection. Journal of Soils and Water Conservation, 2010, 65, 369-380.	0.8	16
116	Response to commentary on "Effect of brush control on evapotranspiration in the North Concho River watershed using the eddy covariance technique" by Wilcox et al. (2010). Journal of Soils and Water Conservation, 2010, 65, 85A-86A.	0.8	0
117	Assimilating Remotely Sensed Surface Soil Moisture into SWAT Using Ensemble Kalman Filter. , 2010, , .		0
118	Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa. , 2010, , .		36
119	Woody plant encroachment paradox: Rivers rebound as degraded grasslands convert to woodlands. Geophysical Research Letters, 2010, 37, .	1.5	79
120	Parsimonious modeling of hydrologic responses in engineered watersheds: Structural heterogeneity versus functional homogeneity. Water Resources Research, 2010, 46, .	1.7	56
121	A combined watershed–water quality modeling analysis of the Lake Waco reservoir: I. Calibration and confirmation of predicted water quality. Lake and Reservoir Management, 2010, 26, 147-158.	0.4	22
122	Characteristic analysis of baseflow change and its response to global change in the Upper Reaches of Heihe River Basin, Northwestern China. , 2010, , .		Ο
123	Functional model of water balance variability at the catchment scale: 1. Evidence of hydrologic similarity and spaceâ€ŧime symmetry. Water Resources Research, 2011, 47, .	1.7	121
124	Modified equilibrium temperature models for coldâ€water streams. Water Resources Research, 2011, 47, .	1.7	22
125	Quantifying regional scale ecosystem response to changes in precipitation: Not all rain is created equal. Water Resources Research, 2011, 47, .	1.7	69
126	Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 2011, 15, 2895-2911.	1.9	405

#	Article	IF	Citations
127	Hydrograph analysis of Inountas River Basin (Lakonia, Greece). , 2011, , 171-178.		1
128	Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand. Agricultural Water Management, 2011, 101, 8-26.	2.4	58
129	Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China. Geomorphology, 2011, 135, 158-166.	1.1	70
130	Assessing planning approaches by watershed streamflow modeling: Case study of The Woodlands; Texas. Landscape and Urban Planning, 2011, 99, 9-22.	3.4	49
131	Application of the Soil and Water Assessment Tool for six watersheds of Lake Erie: Model parameterization and calibration. Journal of Great Lakes Research, 2011, 37, 263-271.	0.8	54
132	Modelling Cryptosporidium oocysts transport in small ungauged agricultural catchments. Water Research, 2011, 45, 3665-3680.	5.3	31
133	Effect of non-point source pollution on water quality of the Weihe River. International Journal of Sediment Research, 2011, 26, 50-61.	1.8	57
134	SWAT-Based Streamflow and Embayment Modeling of Karst-Affected Chapel Branch Watershed, South Carolina. Transactions of the ASABE, 2011, 54, 1311-1323.	1.1	23
135	Seasonal and Annual Impacts of Climate Change on Watershed Response Using an Ensemble of Global Climate Models. Transactions of the ASABE, 2011, 54, 2209-2218.	1.1	17
136	Hydrologic similarity among catchments under variable flow conditions. Hydrology and Earth System Sciences, 2011, 15, 989-997.	1.9	40
137	AnnAGNPS Model Application for Nitrogen Loading Assessment for the Future Midwest Landscape Study. Water (Switzerland), 2011, 3, 196-216.	1.2	12
138	Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient. Hydrology and Earth System Sciences, 2011, 15, 3411-3430.	1.9	110
139	Comparative study of base flow separation methods-Taking Huaxian station of Weihe River for example. , 2011, , .		0
140	Assessing impacts of Landuse and Landcover changes on hydrology for the upper San Pedro watershed. Journal of Hydrology, 2011, 407, 105-114.	2.3	238
141	Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande. Journal of Hydrology, 2011, 409, 710-723.	2.3	7
142	Long term change of nutrient concentrations of rivers discharging in European seas. Science of the Total Environment, 2011, 409, 4899-4916.	3.9	151
143	SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecological Modelling, 2011, 222, 3500-3512.	1.2	105
144	Evaluating the SWAT Model for Hydrological Modeling in the Xixian Watershed and a Comparison with the XAJ Model. Water Resources Management, 2011, 25, 2595-2612.	1.9	101

#	Article	IF	CITATIONS
145	The effect of soil data resolution on hydrological processes modelling in a large humid watershed. Hydrological Processes, 2011, 25, 130-140.	1.1	27
146	Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework. Hydrological Processes, 2011, 25, 2313-2320.	1.1	56
147	Integration of remotely sensed C factor into SWAT for modelling sediment yield. Hydrological Processes, 2011, 25, 3387-3398.	1.1	20
148	Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Advances in Water Resources, 2011, 34, 526-536.	1.7	157
149	Automated Linear and Nonlinear Reservoir Approaches for Estimating Annual Base Flow. Journal of Hydrologic Engineering - ASCE, 2012, 17, 554-564.	0.8	13
150	A STUDY ON THE ESTIMATION METHOD OF THE POLLUTANT LOADS DURING SINGLE STORM EVENTS IN RIVERS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_1633-I_1638.	0.0	0
151	SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 2012, 55, 1491-1508.	1.1	1,916
152	Phosphorus source areas in a dairy catchment in Otago, New Zealand. Soil Research, 2012, 50, 145.	0.6	11
153	Testing the Wisconsin Phosphorus Index with Year-Round, Field-Scale Runoff Monitoring. Journal of Environmental Quality, 2012, 41, 1730-1740.	1.0	37
154	A Power Function Method for Estimating Base Flow. Ground Water, 2013, 51, 442-451.	0.7	10
155	Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agricultural Water Management, 2012, 104, 113-120.	2.4	95
156	Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. Journal of Hydrology, 2012, 458-459, 28-39.	2.3	111
157	Long-term streamflow relations with riparian gallery forest expansion into tallgrass prairie in the Southern Great Plains, USA. Forest Ecology and Management, 2012, 266, 170-179.	1.4	32
159	Nitrate removal in deep sediments of a nitrogenâ€rich river network: A test of a conceptual model. Journal of Geophysical Research, 2012, 117, .	3.3	19
160	SWAT application in intensive irrigation systems: Model modification, calibration and validation. Journal of Hydrology, 2012, 470-471, 227-238.	2.3	105
161	Modeling BMPs in Delaware's Inland Bays Watershed. , 2012, , .		1
162	Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China. International Journal of Environmental Research and Public Health, 2012, 9, 1887-1907.	1.2	16
163	Spatio-temporal impact of climate change on the groundwater system. Hydrology and Earth System Sciences, 2012, 16, 1517-1531.	1.9	67

#	Article	IF	CITATIONS
164	Prediction of Surface Runoff and Soil Erosion at Watershed Scale: Analysis of the AnnAGNPS Model in Different Environmental Conditions. , 2012, , .		1
165	Controls on hydrologic similarity: role of nearby gauged catchments for prediction at an ungauged catchment. Hydrology and Earth System Sciences, 2012, 16, 551-562.	1.9	81
166	Assessing the impact of climate variability on catchment water balance and vegetation cover. Hydrology and Earth System Sciences, 2012, 16, 43-58.	1.9	30
167	Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrology and Earth System Sciences, 2012, 16, 1259-1267.	1.9	111
168	Intercomparing hillslope hydrological dynamics: Spatioâ€ŧemporal variability and vegetation cover effects. Water Resources Research, 2012, 48, .	1.7	52
169	Short-term dynamics of pesticide concentrations and loads in a river of an agricultural watershed in the outer tropics. Agriculture, Ecosystems and Environment, 2012, 158, 1-14.	2.5	31
170	Validation of Satellite Precipitation Adjustment Methodology From Seven Basins in the Continental United States ¹ . Journal of the American Water Resources Association, 2012, 48, 221-234.	1.0	6
171	Rainfall Runoff Relationships for a Cloud Forest Watershed in Central America: Implications for Water Resource Engineering ¹ . Journal of the American Water Resources Association, 2012, 48, 1022-1031.	1.0	10
172	Model diagnostic analysis of seasonal switching of runoff generation mechanisms in the Blue River basin, Oklahoma. Journal of Hydrology, 2012, 418-419, 136-149.	2.3	41
173	Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River basin, Japan. Journal of Hydrology, 2012, 450-451, 25-35.	2.3	68
174	Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrological Processes, 2012, 26, 771-785.	1.1	162
175	Modelling the rainfall–runoff process of the Mara River basin using the Soil and Water Assessment Tool. Hydrological Processes, 2012, 26, 4038-4049.	1.1	74
176	Hydrological analysis of the Upper Tiber River Basin, Central Italy: a watershed modelling approach. Hydrological Processes, 2013, 27, 2339-2351.	1.1	34
177	Temporal analysis of Soil and Water Assessment Tool (SWAT) performance based on remotely sensed precipitation products. Hydrological Processes, 2013, 27, 505-514.	1.1	16
178	Hydrological impact of roadside ditches in an agricultural watershed in Central New York: implications for nonâ€point source pollutant transport. Hydrological Processes, 2013, 27, 2422-2437.	1.1	54
179	Defining parameters for Eckhardt's digital baseflow filter. Hydrological Processes, 2013, 27, 2614-2622.	1.1	69
180	Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Science of the Total Environment, 2013, 468-469, S102-S116.	3.9	48
181	Evaluation of groundwater withdrawal from a mountain watershed, Colorado, USA. Environmental Earth Sciences, 2013, 69, 1901-1913.	1.3	1

#	Article	IF	CITATIONS
182	Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA. Geomorphology, 2013, 183, 110-119.	1.1	65
183	Assessing Sediment Yield for Selected Watersheds in the Laurentian Great Lakes Basin Under Future Agricultural Scenarios. Environmental Management, 2013, 51, 59-69.	1.2	12
184	Combining hydrological modeling and GIS approaches to determine the spatial distribution of groundwater recharge in an arid irrigation scheme. Irrigation Science, 2013, 31, 793-806.	1.3	22
185	A Simple Semi-distributed Hydrologic Model to Estimate Groundwater Recharge in a Humid Tropical Basin. Water Resources Management, 2013, 27, 1517-1532.	1.9	15
186	An approach for global sensitivity analysis of a complex environmental model to spatial inputs and parameters: A case study of an agro-hydrological model. Environmental Modelling and Software, 2013, 47, 74-87.	1.9	45
187	Streamflow Responses to Climate Change: Analysis of Hydrologic Indicators in a New York City Water Supply Watershed. Journal of the American Water Resources Association, 2013, 49, 1308-1326.	1.0	35
188	Integration of groundwater information into decision making for regional planning: A portrait for North America. Journal of Environmental Management, 2013, 114, 496-504.	3.8	8
189	Application of a SWAT Model for Hydrological Modeling in the Xixian Watershed, China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1522-1529.	0.8	26
190	Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20years. Journal of Hydrology, 2013, 479, 159-168.	2.3	114
191	Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: A review. Journal of Hydrology, 2013, 485, 201-211.	2.3	182
193	Hydrologic response to climate change and human activities in a subtropical coastal watershed of southeast China. Regional Environmental Change, 2013, 13, 1195-1210.	1.4	30
194	Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. Journal of Hydrology, 2013, 499, 324-338.	2.3	187
195	Analysis on the Characteristics of Surface Runoff and Baseflow in Qingshitan Reservoir. , 2013, , .		0
196	Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling, 2013, 268, 123-133.	1.2	144
197	Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. Journal of Environmental Management, 2013, 119, 151-161.	3.8	173
198	Increasing river flood preparedness by real-time warning based on wetness state conditions. Journal of Hydrology, 2013, 489, 227-237.	2.3	30
199	Classification of Ontario watersheds based on physical attributes and streamflow series. Journal of Hydrology, 2013, 493, 81-94.	2.3	56
200	Modeling effects of changing land use/cover on daily streamflow: An Artificial Neural Network and curve number based hybrid approach. Journal of Hydrology, 2013, 485, 103-112.	2.3	125

#	Article	IF	CITATIONS
201	Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter. Environmental Modelling and Software, 2013, 41, 163-175.	1.9	29
202	Analyzing the Water Budget and Hydrological Characteristics and Responses to Land Use in a Monsoonal Climate River Basin in South China. Environmental Management, 2013, 51, 1174-1186.	1.2	25
203	Estimation of annual baseflow at ungauged sites in Indiana USA. Journal of Hydrology, 2013, 476, 13-27.	2.3	75
204	Considering Streamflow Trend Analyses Uncertainty in Urbanizing Watersheds: A Baseflow Case Study in the Central United States. Earth Interactions, 2013, 17, 1-28.	0.7	40
205	Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model: Evidence from MOPEX Basins. Journal of Hydrometeorology, 2013, 14, 1754-1772.	0.7	55
206	Paying for sediment: Field-scale conservation practice targeting, funding, and assessment using the Soil and Water Assessment Tool. Journal of Soils and Water Conservation, 2013, 68, 41-51.	0.8	17
207	Simulating sediment loading into the major reservoirs in Trinity River Basin. Journal of Soils and Water Conservation, 2013, 68, 372-383.	0.8	5
208	Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resources Research, 2013, 49, 8443-8462.	1.7	150
209	Toward diagnostic model calibration and evaluation: Approximate Bayesian computation. Water Resources Research, 2013, 49, 4335-4345.	1.7	123
210	Regression Modeling of Baseflow and Baseflow Index for Michigan USA. Water (Switzerland), 2013, 5, 1797-1815.	1.2	26
211	Modeling the Production of Multiple Ecosystem Services from Agricultural and Forest Landscapes in Rhode Island. Agricultural and Resource Economics Review, 2013, 42, 251-274.	0.6	16
212	Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrology and Earth System Sciences, 2013, 17, 3543-3560.	1.9	106
213	Hydrology Evaluation of the Soil and Water Assessment Tool Considering Measurement Uncertainty for a Small Watershed in Southern Brazil. Applied Engineering in Agriculture, 2013, 29, 189-200.	0.3	20
214	Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model. Journal of Environmental Quality, 2014, 43, 75-85.	1.0	54
215	Regional Calibration of SCS-CN L-THIA Model: Application for Ungauged Basins. Water (Switzerland), 2014, 6, 1339-1359.	1.2	24
216	Simulation of Streamflow and Sediment with the Soil and Water Assessment Tool in a Data Scarce Catchment in the Three Gorges Region, China. Journal of Environmental Quality, 2014, 43, 37-45.	1.0	56
217	Estimating Groundwater Recharge in the Semiarid Al-Khazir Gomal Basin, North Iraq. Water (Switzerland), 2014, 6, 2467-2481.	1.2	25
218	Remote Sensing and Ground-Based Weather Forcing Data Analysis for Streamflow Simulation. Hydrology, 2014, 1, 89-111.	1.3	6

#	Article	IF	CITATIONS
219	Development of Web-Based RECESS Model for Estimating Baseflow Using SWAT. Sustainability, 2014, 6, 2357-2378.	1.6	13
220	Estimation of sediment yield using SWAT model for Upper Tapi basin. ISH Journal of Hydraulic Engineering, 2014, 20, 291-300.	1.1	30
221	Estimating exploitable amount of groundwater abstraction using an integrated surface water-groundwater model: Mihocheon watershed, South Korea. Hydrological Sciences Journal, 2014, , 141217125340005.	1.2	7
222	Assessing the performance and uncertainty analysis of the SWAT and RBNN models for simulation of sediment yield in the Nagwa watershed, India. Hydrological Sciences Journal, 2014, 59, 351-364.	1.2	50
223	Application of <scp>SWAT</scp> with and without Variable Source Area Hydrology to a Large Watershed. Journal of the American Water Resources Association, 2014, 50, 42-56.	1.0	15
224	Contrasting the spatial management of nitrogen and phosphorus for improved water quality: Modelling studies in New Zealand and France. European Journal of Agronomy, 2014, 57, 52-61.	1.9	18
225	Assessment of groundwater resources based on AutoCAD technique. Environmental Earth Sciences, 2014, 71, 2143-2154.	1.3	2
226	Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in south eastern Australia. Environmental Earth Sciences, 2014, 71, 5241-5254.	1.3	49
227	Evaluating ephemeral gullies with a process-based topographic index model. Catena, 2014, 113, 177-186.	2.2	37
228	Application of SWAT Model for Hydrologic and Water Quality Modeling in Thachin River Basin, Thailand. Arabian Journal for Science and Engineering, 2014, 39, 1671-1684.	1.1	11
229	Runoff and sediment yield modeling by means of WEPP in the Bautzen dam catchment, Germany. Environmental Earth Sciences, 2014, 72, 2051-2063.	1.3	14
230	Variability of particulate (SS, POC) and dissolved (DOC, NO ₃) matter during storm events in the Alegria agricultural watershed. Hydrological Processes, 2014, 28, 2855-2867.	1.1	35
231	A modeling approach to evaluating the impacts of policy-induced land management practices on non-point source pollution: A case study of the Liuxi River watershed, China. Agricultural Water Management, 2014, 131, 1-16.	2.4	33
232	Balancing tradeâ€off issues in land use change and the impact on streamflow and salinity management. Hydrological Processes, 2014, 28, 1641-1662.	1.1	10
233	Mitigating the Effects of Landscape Development on Streams in Urbanizing Watersheds. Journal of the American Water Resources Association, 2014, 50, 163-178.	1.0	33
234	Transferability of hydrological model parameter spaces in the estimation of runoff in ungauged catchments. Hydrological Sciences Journal, 2014, 59, 1470-1490.	1.2	17
235	A blue/green waterâ€based accounting framework for assessment of water security. Water Resources Research, 2014, 50, 7187-7205.	1.7	100
236	Satellite precipitation products and hydrologic applications. Water International, 2014, 39, 360-380.	0.4	14

#	Article	IF	CITATIONS
237	Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments – A comparative hydrology approach. Journal of Hydrology, 2014, 517, 985-996.	2.3	84
238	Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment, 2014, 499, 437-447.	3.9	65
239	A comprehensive approach to evaluating watershed models for predicting river flow regimes critical to downstream ecosystem services. Environmental Modelling and Software, 2014, 61, 121-134.	1.9	64
240	Diagnosing Climate Change and Hydrological Responses in the Past Decades for a Minimally-disturbed Headwater Basin in South China. Water Resources Management, 2014, 28, 4385-4400.	1.9	16
241	The variability of the snow and ice melt in alpine rivers in northwestern China. Journal of Mountain Science, 2014, 11, 884-895.	0.8	7
242	An empirical method for approximating stream baseflow time series using groundwater table fluctuations. Journal of Hydrology, 2014, 519, 1031-1041.	2.3	23
243	Assessing the effect of watershed slopes on recharge/baseflow and soil erosion. Paddy and Water Environment, 2014, 12, 169-183.	1.0	14
244	Assessment of interbasin groundwater flows between catchments using a semi-distributed water balance model. Journal of Hydrology, 2014, 519, 1848-1858.	2.3	17
245	Conceptual model of leachate migration in a granular aquifer derived from the integration of multi-source characterization data (St-Lambert, Canada). Hydrogeology Journal, 2014, 22, 587-608.	0.9	35
246	Evaluation of High-Frequency Mean Streamwater Transit-Time Estimates Using Groundwater Age and Dissolved Silica Concentrations in a Small Forested Watershed. Aquatic Geochemistry, 2014, 20, 183-202.	1.5	44
247	Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale. Journal of Hydrology, 2014, 519, 2584-2595.	2.3	149
248	Links between flood frequency and annual water balance behaviors: A basis for similarity and regionalization. Water Resources Research, 2014, 50, 937-953.	1.7	37
249	A new MONERIS in-Stream Retention Module to Account Nutrient Budget of a Temporary River in Cyprus. Water Resources Management, 2014, 28, 2917-2935.	1.9	3
250	GIS and SBF for estimating groundwater recharge of a mountainous basin in the Wu River watershed, Taiwan. Journal of Earth System Science, 2014, 123, 503-516.	0.6	26
251	A process-based stream temperature modelling approach for mountain regions. Journal of Hydrology, 2014, 511, 920-931.	2.3	24
252	Slowflow fingerprints of urban hydrology. Journal of Hydrology, 2014, 515, 116-128.	2.3	23
253	Catchment-scale stream temperature response to land disturbance by wildfire governed by surface–subsurface energy exchange and atmospheric controls. Journal of Hydrology, 2014, 517, 328-338.	2.3	36
254	Hydrological and Water Quality Assessment in a Suburban Watershed with Mixed Land Uses Using the SWAT Model. Journal of Hydrologic Engineering - ASCE, 2014, 19, 816-827.	0.8	30

#	Article	IF	CITATIONS
255	Detecting land use and land management influences on catchment hydrology by modelling and wavelets. Journal of Hydrology, 2014, 517, 378-389.	2.3	22
256	Focused groundwater flow in a carbonate aquifer in a semi-arid environment. Journal of Hydrology, 2014, 517, 284-297.	2.3	23
257	Hydrological Forecasting. , 2014, , 405-444.		0
258	A comparison of surface and subsurface controls on summer temperature in a headwater stream. Hydrological Processes, 2014, 28, 2338-2347.	1.1	26
259	Floodâ€ŧype classification in mountainous catchments using crisp and fuzzy decision trees. Water Resources Research, 2015, 51, 7959-7976.	1.7	88
261	Determination of runoff components using path analysis and isotopic measurements in a glacier-covered alpine catchment (upper Hailuogou Valley) in southwest China. Hydrological Processes, 2015, 29, 3065-3073.	1.1	29
262	Comparative analysis of baseflow characteristics of two Andean catchments, Ecuador. Hydrological Processes, 2015, 29, 3051-3064.	1.1	17
263	Deep drainage sensitivity to climate, edaphic factors, and woody encroachment, Oklahoma, USA. Hydrological Processes, 2015, 29, 3779-3789.	1.1	22
264	Basin-Scale Assessment of Operational Base Flow Separation Methods. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	15
265	Sensitivity-Based Calibration of the Soil and Water Assessment Tool for Hydrologic Cycle Simulation in the Cong Watershed, Vietnam. Water Environment Research, 2015, 87, 735-750.	1.3	4
266	Diagnostic calibration of a hydrological model in a mountain area by hydrograph partitioning. Hydrology and Earth System Sciences, 2015, 19, 1807-1826.	1.9	40
267	Estimation of groundwater recharge and drought severity with varying model complexity. Journal of Hydrology, 2015, 527, 844-857.	2.3	32
268	Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resources Research, 2015, 51, 3796-3814.	1.7	121
269	Rice agriculture increases base flow contribution to catchment nitrate loading in subtropical central China. Agriculture, Ecosystems and Environment, 2015, 214, 86-95.	2.5	20
270	Assessing the impact of drought and forestry on streamflows in south-eastern Australia using a physically based hydrological model. Environmental Earth Sciences, 2015, 74, 6047-6063.	1.3	38
271	An assessment of recharge estimates from stream and well data and from a coupled surface-water/groundwater model for the des Anglais catchment, Quebec (Canada). Hydrogeology Journal, 2015, 23, 1731-1743.	0.9	10
272	Evaluating the potential role of denitrifying bioreactors in reducing watershed-scale nitrate loads: A case study comparing three Midwestern (USA) watersheds. Ecological Engineering, 2015, 75, 441-448.	1.6	33
273	Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Science of the Total Environment, 2015, 511, 298-308.	3.9	151

#	Article	IF	CITATIONS
274	Spatiotemporal characteristics of alpine snow and ice melt under a changing regional climate: A case study in Northwest China. Quaternary International, 2015, 358, 126-136.	0.7	11
275	A new approach for continuous estimation of baseflow using discrete water quality data: Method description and comparison with baseflow estimates from two existing approaches. Journal of Hydrology, 2015, 522, 203-210.	2.3	43
276	Assessment of the internal dynamics of the Australian Water Balance Model under different calibration regimes. Environmental Modelling and Software, 2015, 66, 57-68.	1.9	16
277	Quantifying Water Pollution Sources in a Small Tileâ€drained Agricultural Watershed. Clean - Soil, Air, Water, 2015, 43, 698-709.	0.7	15
278	Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors. Journal of Hydrology: Regional Studies, 2015, 4, 349-368.	1.0	103
279	Geographically isolated wetlands and watershed hydrology: A modified model analysis. Journal of Hydrology, 2015, 529, 240-256.	2.3	82
280	Investigation of the potential surface–groundwater relationship using automated base-flow separation techniques and recession curve analysis in Al Zerba region of Aleppo, Syria. Arabian Journal of Geosciences, 2015, 8, 10543-10563.	0.6	7
281	Baseflow characteristics in alpine rivers — a multi-catchment analysis in Northwest China. Journal of Mountain Science, 2015, 12, 614-625.	0.8	20
282	Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. Journal of Hydrology, 2015, 525, 326-334.	2.3	66
283	Simulating Groundwater Dynamics Using Feflowâ€3D Groundwater Model Under Complex Irrigation and Drainage Network of Dryland Ecosystems of Central Asia. Irrigation and Drainage, 2015, 64, 283-296.	0.8	10
284	What does it take to flood the <scp>P</scp> ampas?: Lessons from a decade of strong hydrological fluctuations. Water Resources Research, 2015, 51, 2937-2950.	1.7	63
285	Using detailed monitoring data to simulate spatial sediment loading in a watershed. Environmental Monitoring and Assessment, 2015, 187, 532.	1.3	4
286	Estimation of groundwater recharge and its relation to land degradation: case study of a semi-arid river basin in Iran. Environmental Earth Sciences, 2015, 74, 6791-6803.	1.3	16
287	Hydrological and pesticide transfer modeling in a tropical volcanic watershed with the WATPPASS model. Journal of Hydrology, 2015, 529, 909-927.	2.3	17
288	An approach to improve direct runoff estimates and reduce uncertainty in the calculated groundwater component in water balances of large lakes. Journal of Hydrology, 2015, 531, 655-670.	2.3	7
289	Modelling spatial distribution of surface runoff and sediment yield in a Chinese river basin without continuous sediment monitoring. Hydrological Sciences Journal, 0, , 1-24.	1.2	7
290	Modelâ€Based Characterization and Monitoring of Runoff and Soil Erosion in Response to Land Use/land Cover Changes in the Modjo Watershed, Ethiopia. Land Degradation and Development, 2015, 26, 711-724.	1.8	190
291	Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning. Hydrology and Earth System Sciences, 2016, 20, 2295-2307.	1.9	8

#	Article	IF	CITATIONS
292	Southern Rockies Watershed Project. Forestry Chronicle, 2016, 92, 39-42.	0.5	5
293	Influences of Land Use Change on Baseflow in Mountainous Watersheds. Forests, 2016, 7, 16.	0.9	27
294	Accounting for dependencies in regionalized signatures for predictions in ungauged catchments. Hydrology and Earth System Sciences, 2016, 20, 887-901.	1.9	17
295	Multi-Site Validation of the SWAT Model on the Bani Catchment: Model Performance and Predictive Uncertainty. Water (Switzerland), 2016, 8, 178.	1.2	59
296	Web-Based BFlow System for the Assessment of Streamflow Characteristics at National Level. Water (Switzerland), 2016, 8, 384.	1.2	9
297	Influence of climate variability on water partitioning and effective energy and mass transfer in a semi-arid critical zone. Hydrology and Earth System Sciences, 2016, 20, 1103-1115.	1.9	8
298	Assessing regionalâ€scale spatioâ€temporal patterns of groundwater–surface water interactions using a coupled SWATâ€MODFLOW model. Hydrological Processes, 2016, 30, 4420-4433.	1.1	183
299	Influence of terrain aspect on water partitioning, vegetation structure and vegetation greening in highâ€elevation catchments in northern New Mexico. Ecohydrology, 2016, 9, 782-795.	1.1	55
300	Evaluation of Surface Runoff Prediction by A nn AGNPS Model in a Large Mediterranean Watershed Covered by Olive Groves. Land Degradation and Development, 2016, 27, 811-822.	1.8	35
301	Assessing the digital filter method for base flow estimation in glacier melt dominated basins. Hydrological Processes, 2016, 30, 1367-1375.	1.1	11
302	Two-dimensional continuous simulation of spatiotemporally varied hydrological processes using the time-area method. Hydrological Processes, 2016, 30, 751-770.	1.1	19
303	Nested‣cale Nutrient Flux in a Mixedâ€Landâ€Use Urbanizing Watershed. Hydrological Processes, 2016, 30, 1475-1490.	1.1	24
304	Hydrological responses of land use change from cotton (<i>GossypiumÂhirsutum L</i> .) to cellulosic bioenergy crops in the Southern High Plains of Texas, <scp>USA</scp> . GCB Bioenergy, 2016, 8, 981-999.	2.5	23
305	Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed. Environmental Earth Sciences, 2016, 75, 1.	1.3	34
306	Development and evaluation of targeted marginal land mapping approach in SWAT model for simulating water quality impacts of selected second generation biofeedstock. Environmental Modelling and Software, 2016, 81, 26-39.	1.9	20
307	Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau. Journal of Hydrology, 2016, 542, 204-221.	2.3	67
308	Development and Comparison of Multiple Regression Models to Predict Bankfull Channel Dimensions for Use in Hydrologic Models. Journal of the American Water Resources Association, 2016, 52, 1385-1400.	1.0	8
309	Homogeneous region determination using linear and nonlinear techniques. Physical Geography, 2016, 37, 361-384.	0.6	8

#	Article	IF	CITATIONS
310	Estimating shallow groundwater availability in small catchments using streamflow recession and instream flow requirements of rivers in South Africa. Journal of Hydrology, 2016, 541, 754-765.	2.3	16
311	Effect of best management practice implementation on sediment and phosphorus load reductions at subwatershed and watershed scale using SWAT model. International Journal of Sediment Research, 2016, 31, 386-394.	1.8	28
312	Water security assessment using blue and green water footprint concepts. Journal of Hydrology, 2016, 542, 589-602.	2.3	143
313	Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii. Journal of Hydrology: Regional Studies, 2016, 8, 182-197.	1.0	58
314	Impact of climate variability and streamflow alteration on groundwater contribution to the base flow of the Lower Zab River (Iran and Iraq). Environmental Earth Sciences, 2016, 75, 1.	1.3	12
315	Characterizing Runoff and Water Yield for Headwater Catchments in the Southern Sierra Nevada. Journal of the American Water Resources Association, 2016, 52, 1327-1346.	1.0	41
316	Simulated future changes of extreme nutrient loads in a mesoscale agricultural watershed in Bavaria / Simulierte zukünftige Änderungen der Extremwerte für Närstofffrachten in einem mesoskaligen landwirtschaftlichen Einzugsgebiet in Bayern. Bodenkultur, 2016, 67, 77-90.	0.1	1
317	Regional climate change projections of streamflow characteristics in the Northeast and Midwest U.S Journal of Hydrology: Regional Studies, 2016, 5, 309-323.	1.0	59
318	Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Regions Science and Technology, 2016, 126, 36-43.	1.6	44
319	Improvement of artificial neural networks to predict daily streamflow in a semi-arid area. Hydrological Sciences Journal, 0, , 1-12.	1.2	9
320	Daily suspended sediment simulation using machine learning approach. Catena, 2016, 138, 77-90.	2.2	64
321	Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Environmental Management, 2016, 57, 894-911.	1.2	73
322	Base flow separation: A comparison of analytical and mass balance methods. Journal of Hydrology, 2016, 535, 525-533.	2.3	72
323	Baseflow separation based on a meteorology-corrected nonlinear reservoir algorithm in a typical rainy agricultural watershed. Journal of Hydrology, 2016, 535, 418-428.	2.3	29
324	Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources. Water Research, 2016, 94, 187-199.	5.3	95
325	Multicriteria Evaluation Approach for Assessing Parametric Uncertainty during Extreme Peak and Low Flow Conditions over Snow Glaciated and Inland Catchments. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	12
326	lsotopic time series partitioning of streamflow components under regional climate change in the Urumqi River, northwest China. Hydrological Sciences Journal, 2016, 61, 1443-1459.	1.2	27
327	Sensitivity of mGROWA-simulated groundwater recharge to changes in soil and land use parameters in a Mediterranean environment and conclusions in view of ensemble-based climate impact simulations. Science of the Total Environment, 2016, 543, 937-951.	3.9	19

#	Article	IF	CITATIONS
328	Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River basin, Mexico. Agricultural Water Management, 2016, 175, 29-42.	2.4	59
329	Comparison of daily and sub-daily SWAT models for daily streamflow simulation in the Upper Huai River Basin of China. Stochastic Environmental Research and Risk Assessment, 2016, 30, 959-972.	1.9	45
330	Effect of Irrigation and Climate Variability on Water Quality of Coastal Watersheds: Case Study in Alabama. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 05015010.	0.6	4
332	An Empirical Method to Investigate the Spatial and Temporal Distribution of Annual Average Groundwater Recharge Intensity-a Case Study in Grand River, Michigan, USA. Water Resources Management, 2016, 30, 195-206.	1.9	7
333	Simulation of future groundwater recharge using a climate model ensemble and SAR-image based soil parameter distributions — A case study in an intensively-used Mediterranean catchment. Science of the Total Environment, 2016, 543, 889-905.	3.9	19
334	Projected impacts of climate change on stream salmonids with implications for resilienceâ€based management. Ecology of Freshwater Fish, 2017, 26, 190-204.	0.7	31
335	Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models. Hydrology Research, 2017, 48, 1489-1507.	1.1	37
336	Probabilistic predictions using a groundwater model informed with airborne EM data. Advances in Water Resources, 2017, 103, 86-98.	1.7	9
337	Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change. Agricultural Water Management, 2017, 186, 51-65.	2.4	35
338	A distributed monthly water balance model: formulation and application on Black Volta Basin. Environmental Earth Sciences, 2017, 76, 1.	1.3	56
339	Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate. Reviews in Fish Biology and Fisheries, 2017, 27, 443-462.	2.4	12
340	Hydrogeochemistry, Isotopic Composition and Water Age in the Hydrologic System of a Large Catchment within a Plain Humid Environment (Argentine Pampas): Quequén Grande River, Argentina. River Research and Applications, 2017, 33, 438-449.	0.7	16
341	Evaluating the impact of management scenarios and land use changes on annual surface runoff and sediment yield using the GeoWEPP: a case study from the Lighvanchai watershed, Iran. Environmental Earth Sciences, 2017, 76, 1.	1.3	13
342	Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina. Science of the Total Environment, 2017, 596-597, 437-450.	3.9	44
343	Implications of Conceptual Channel Representation on <scp>SWAT</scp> Streamflow and Sediment Modeling. Journal of the American Water Resources Association, 2017, 53, 725-747.	1.0	13
344	A diagnostic approach to constraining flow partitioning in hydrologic models using a multiobjective optimization framework. Water Resources Research, 2017, 53, 3279-3301.	1.7	22
345	Temporal variations in baseflow for the Little River experimental watershed in South Georgia, USA. Journal of Hydrology: Regional Studies, 2017, 10, 110-121.	1.0	36
346	Constraining SWAT Calibration with Remotely Sensed Evapotranspiration Data. Journal of the American Water Resources Association, 2017, 53, 593-604.	1.0	36

#	Article	IF	CITATIONS
347	Evaluating relative merits of four baseflow separation methods in Eastern Australia. Journal of Hydrology, 2017, 549, 252-263.	2.3	100
348	Contribution of baseflow during dry spells in irregular channel cross section. Hydrological Processes, 2017, 31, 1161-1173.	1.1	5
349	Hydrological and environmental controls of the stream nitrate concentration and flux in a small agricultural watershed. Journal of Hydrology, 2017, 545, 355-366.	2.3	52
350	Quantifying Surface Water Supplies under Changing Climate and Land Use. , 2017, , 337-373.		1
351	Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study. Environmental Science and Pollution Research, 2017, 24, 15700-15711.	2.7	6
352	Optimal implementation of green infrastructure practices to minimize influences of land use change and climate change on hydrology and water quality: Case study in Spy Run Creek watershed, Indiana. Science of the Total Environment, 2017, 601-602, 1400-1411.	3.9	41
353	Determination of the soil moisture recession constant from satellite data: a case study of the Yucatan peninsula. International Journal of Remote Sensing, 2017, 38, 5793-5813.	1.3	3
354	Impacts of incorporating dominant crop rotation patterns as primary land use change on hydrologic model performance. Agriculture, Ecosystems and Environment, 2017, 247, 33-42.	2.5	20
355	Effect of Single and Multisite Calibration Techniques on the Parameter Estimation, Performance, and Output of a SWAT Model of a Spatially Heterogeneous Catchment. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	39
356	Automating Recession Curve Displacement Recharge Estimation. Ground Water, 2017, 55, 81-87.	0.7	4
357	Changes in the rainfall–streamflow regimes related to climate change in a small catchment in Northern Italy. Theoretical and Applied Climatology, 2017, 129, 1075-1087.	1.3	12
358	Understanding Climateâ€Hydrologicâ€Human Interactions to Guide Groundwater Model Development for Southern High Plains. Journal of Contemporary Water Research and Education, 2017, 162, 79-99.	0.7	9
359	Decadal climate variability and the spatial organization of deep hydrological drought. Environmental Research Letters, 2017, 12, 104005.	2.2	7
360	Assessment of Nitrogen Inputs into Hunt River by Onsite Wastewater Treatment Systems via SWAT Simulation. Water (Switzerland), 2017, 9, 610.	1.2	8
361	Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model. Water (Switzerland), 2017, 9, 667.	1.2	7
362	Simulating Climate Change Induced Thermal Stress in Coldwater Fish Habitat Using SWAT Model. Water (Switzerland), 2017, 9, 732.	1.2	10
363	Comparative Analysis of HRU and Grid-Based SWAT Models. Water (Switzerland), 2017, 9, 272.	1.2	36
364	Hydrological Modeling and Runoff Mitigation in an Ungauged Basin of Central Vietnam Using SWAT Model. Hydrology, 2017, 4, 16.	1.3	29

#	Article	IF	CITATIONS
365	Comparison of SWAT and GSSHA for High Time Resolution Prediction of Stream Flow and Sediment Concentration in a Small Agricultural Watershed. Hydrology, 2017, 4, 27.	1.3	14
366	Base Flow Index Estimation on Gauged and Ungauged Catchments in Hungary Using Digital Filter, Multiple Linear Regression and Artificial Neural Networks. Periodica Polytechnica: Civil Engineering, 2017, , .	0.6	2
367	Crop and Location Specific Agricultural Drought Quantification: Part II. Case Study. Transactions of the ASABE, 2017, 60, 729-739.	1.1	4
368	Quantification of groundwater recharge and river bed clogging by daily water level measurements in a check dam. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	7
369	Estimation of groundwater recharge via percolation outputs from a rainfall/runoff model for the Verlorenvlei estuarine system, west coast, South Africa. Journal of Hydrology, 2018, 558, 238-254.	2.3	18
370	Prediction uncertainty and data worth assessment for groundwater transport times in an agricultural catchment. Journal of Hydrology, 2018, 561, 1019-1036.	2.3	12
371	A comparison of methods for low streamflow estimation from spot measurements. Hydrological Processes, 2018, 32, 480-492.	1.1	9
372	Evaluating the Importance of Non-Unique Behavioural Parameter Sets on Surface Water Quality Variables under Climate Change Conditions in a Mesoscale Agricultural Watershed. Water Resources Management, 2018, 32, 619-639.	1.9	14
373	Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model. Agricultural Water Management, 2018, 202, 202-219.	2.4	25
374	Monitoring tylosin and sulfamethazine in a tile-drained agricultural watershed using polar organic chemical integrative sampler (POCIS). Science of the Total Environment, 2018, 612, 358-367.	3.9	17
375	Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: A case study of the Joumine watershed, Tunisia. Science of the Total Environment, 2018, 616-617, 1-16.	3.9	46
376	Benefits and limitations of using isotope-derived groundwater travel times and major ion chemistry to validate a regional groundwater flow model: example from the Centre-du-Québec region, Canada. Canadian Water Resources Journal, 2018, 43, 195-213.	0.5	12
377	Episodic Master Recession Evaluation of Groundwater and Streamflow Hydrographs for Waterâ€Resource Estimation. Vadose Zone Journal, 2018, 17, 1-25.	1.3	17
378	Assessment of SWAT Model Performance in Simulating Daily Streamflow under Rainfall Data Scarcity in Pacific Island Watersheds. Water (Switzerland), 2018, 10, 1533.	1.2	14
379	Baseflow Contribution to Streamflow and Aquatic Habitats Using Physical Habitat Simulations. Water (Switzerland), 2018, 10, 1304.	1.2	16
380	Historical and predicted variations of baseflow in <scp>China's Poyang Lake</scp> catchment. River Research and Applications, 2018, 34, 1286-1297.	0.7	9
381	Enumerating the Effects of Climate Change on Water Resources Using GCM Scenarios at the Xin'anjiang Watershed, China. Water (Switzerland), 2018, 10, 1296.	1.2	14
382	Parameter sensitivity of automated baseflow separation for snowmeltâ€dominated watersheds and new filtering procedure for determining end of snowmelt period. Hydrological Processes, 2019, 33, 876-888.	1.1	8

#	Article	IF	Citations
383	Spatially Distributed Conceptual Hydrological Model Building: A Generic Topâ€Down Approach Starting From Lumped Models. Water Resources Research, 2018, 54, 8064-8085.	1.7	25
384	Analysis of the Performance of Base Flow Separation Methods Using Chemistry and Statistics in Sudano-Sahelian Watershed, Burkina Faso. Hydrology Current Research, 2018, 09, .	0.4	5
385	Multi-objective autocalibration of SWAT model for improved low flow performance for a small snowfed catchment. Hydrological Sciences Journal, 2018, 63, 1482-1501.	1.2	21
386	Technical Note: An Operational Implementation of Recursive Digital Filter for Base Flow Separation. Water Resources Research, 2018, 54, 8528-8540.	1.7	12
387	Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT). Ecological Engineering, 2018, 125, 50-67.	1.6	16
388	Signal Decomposition of Conductivity Sensor Measurements on the Allegheny River, Pennsylvania. Journal of Environmental Engineering, ASCE, 2018, 144, 04018103.	0.7	1
389	Model-Based Evaluation of Land Management Strategies with Regard to Multiple Ecosystem Services. Sustainability, 2018, 10, 3844.	1.6	15
390	Evaluating the Effects of Watershed Size on SWAT Calibration. Water (Switzerland), 2018, 10, 898.	1.2	20
391	Flow–duration curve integration into digital filtering algorithms for simulating climate variability based on river baseflow. Hydrological Sciences Journal, 2018, 63, 1558-1573.	1.2	9
392	Integrated Effects of Land Use and Topography on Streamflow Response to Precipitation in an Agriculture-Forest Dominated Northern Watershed. Water (Switzerland), 2018, 10, 633.	1.2	9
393	New Analysis Method for Continuous Base-Flow and Availability of Water Resources Based on Parallel Linear Reservoir Models. Water (Switzerland), 2018, 10, 465.	1.2	4
394	Conservation dairy farming impact on water quality in a karst watershed in northeastern US. Agricultural Systems, 2018, 165, 187-196.	3.2	22
395	Assessing sustainability of agriculture through water footprint analysis and in-stream monitoring activities. Journal of Cleaner Production, 2018, 200, 454-470.	4.6	45
396	Assessment of hydrologic vulnerability to urbanization and climate change in a rapidly changing watershed in the Southeast U.S Science of the Total Environment, 2018, 645, 806-816.	3.9	35
397	Landward Perspective of Coastal Eutrophication Potential Under Future Climate Change: The Seine River Case (France). Frontiers in Marine Science, 2018, 5, .	1.2	28
398	SWAT-Simulated Streamflow Responses to Climate Variability and Human Activities in the Miyun Reservoir Basin by Considering Streamflow Components. Sustainability, 2018, 10, 941.	1.6	37
399	A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water (Switzerland), 2018, 10, 192.	1.2	113
400	Assessment of Baseflow Estimates Considering Recession Characteristics in SWAT. Water (Switzerland), 2018, 10, 371.	1.2	27

#	Article	IF	CITATIONS
401	Evaluation of Multi-Satellite Precipitation Products for Streamflow Simulations: A Case Study for the Han River Basin in the Korean Peninsula, East Asia. Water (Switzerland), 2018, 10, 642.	1.2	52
402	Calibration Parameter Selection and Watershed Hydrology Model Evaluation in Time and Frequency Domains. Water (Switzerland), 2018, 10, 710.	1.2	38
403	Contribution of Baseflow to River Streamflow: Study on Nepal's Bagmati and Koshi Basins. KSCE Journal of Civil Engineering, 2018, 22, 4710-4718.	0.9	8
404	Nutrient inputs and hydrology together determine biogeochemical status of the Loire River (France): Current situation and possible future scenarios. Science of the Total Environment, 2018, 637-638, 609-624.	3.9	35
405	Interaction of groundwater with Lake Urmia in Iran. Hydrological Processes, 2018, 32, 3283-3295.	1.1	56
406	Impacts of baseflow contribution on the streamflow variability of major river systems in Korea. Paddy and Water Environment, 2018, 16, 835-855.	1.0	1
407	Annual Sediment Transport Dynamics in the Narayani Basin, Central Nepal: Assessing the Impacts of Erosion Processes in the Annual Sediment Budget. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2341-2376.	1.0	23
408	Application of multi-method approach to assess groundwater–surface water interactions, for catchment management. International Journal of Environmental Science and Technology, 2019, 16, 2215-2230.	1.8	6
409	Modeling Climate Change Impact on the Hydrology of Keleta Watershed in the Awash River Basin, Ethiopia. Environmental Modeling and Assessment, 2019, 24, 95-107.	1.2	54
410	Runoff Simulation Using SWAT Model in the Middle Reaches of the Dagu River Basin. Environmental Earth Sciences, 2019, , 115-126.	0.1	5
411	Changes in Nutrient Concentrations of Two Streams in Western Lithuania with Focus on Shrinkage of Agriculture and Effect of Climate, Drainage Runoff and Soil Factors. Water (Switzerland), 2019, 11, 1590.	1.2	2
412	Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China. Sustainability, 2019, 11, 3535.	1.6	10
413	Effects of Infiltration Characteristics on Spatial-Temporal Evolution of Stability of an Interstate Highway Embankment. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, 05019008.	1.5	11
414	Combining Clustering Methods With MPS to Estimate Structural Uncertainty for Hydrological Models. Frontiers in Earth Science, 2019, 7, .	0.8	16
415	Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins. Hydrology and Earth System Sciences, 2019, 23, 2665-2678.	1.9	28
416	Review of Time-of-Concentration Equations and a New Proposal in Italy. Journal of Hydrologic Engineering - ASCE, 2019, 24, 04019039.	0.8	13
417	Contrasting behavior of nitrate and phosphate flux from high flow events on small agricultural and urban watersheds. Biogeochemistry, 2019, 145, 141-160.	1.7	21
418	Coupling catchment runoff models to groundwater flow models in a multi-model ensemble approach for improved prediction of groundwater recharge, hydraulic heads and river discharge. Hydrogeology Journal, 2019, 27, 3043-3061.	0.9	8

#	Article	IF	CITATIONS
419	Surface-groundwater interaction in unconfined sedimentary aquifer system in the Brazil's tropical wet region. Revista Brasileira De Recursos Hidricos, 0, 24, .	0.5	4
420	Development of advanced web-based SWAT LUC system considering yearly land use changes and recession curve characteristics. Ecological Engineering, 2019, 128, 39-47.	1.6	4
421	Green infrastructure practices simulation of the impacts of land use on surface runoff: Case study in Ecorse River watershed, Michigan. Journal of Environmental Management, 2019, 233, 603-611.	3.8	30
422	A Modeling Approach to Diagnose the Impacts of Global Changes on Discharge and Suspended Sediment Concentration within the Red River Basin. Water (Switzerland), 2019, 11, 958.	1.2	16
423	Hydrologic impacts and trade-offs associated with forest-based bioenergy development practices in a snow-dominated watershed, Wisconsin, USA. Journal of Hydrology, 2019, 574, 421-429.	2.3	11
424	"Multivariate analysis of baseflow index in complex rift margin catchments: The case of Abaya-Chamo lakes basin, southern Ethiopia― Groundwater for Sustainable Development, 2019, 9, 100236.	2.3	7
425	Water transit time and active recharge in the Sahel inferred by bomb-produced 36Cl. Scientific Reports, 2019, 9, 7465.	1.6	16
426	The Effect of Reduced Flow on Downstream Water Systems Due to the Kumgangsan Dam under Dry Conditions. Water (Switzerland), 2019, 11, 739.	1.2	11
427	Propagation of structural uncertainty in watershed hydrologic models. Journal of Hydrology, 2019, 575, 66-81.	2.3	35
428	Comparison of nutrient loss pathways: Runâ€off and seepage flow in <scp>Vertisols</scp> . Hydrological Processes, 2019, 33, 2384-2393.	1.1	6
429	Impacts of Large-Scale Rare Earth Mining on Surface Runoff, Groundwater, and Evapotranspiration: A Case Study Using SWAT for the Taojiang River Basin in Southern China. Mine Water and the Environment, 2019, 38, 268-280.	0.9	10
430	Improved Curve Number Estimation in SWAT by Reflecting the Effect of Rainfall Intensity on Runoff Generation. Water (Switzerland), 2019, 11, 163.	1.2	22
431	Dynamics and Attributions of Baseflow in the Semiarid Loess Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3684-3701.	1.2	27
432	Some Challenges in Hydrologic Model Calibration for Large-Scale Studies: A Case Study of SWAT Model Application to Mississippi-Atchafalaya River Basin. Hydrology, 2019, 6, 17.	1.3	15
433	Setting Up a Computer Simulation Model in an Arkansas Watershed for the MRBI Program. , 2019, , .		0
434	Managing the Agri-Food System of Watersheds to Combat Coastal Eutrophication: A Land-to-Sea Modelling Approach to the French Coastal English Channel. Geosciences (Switzerland), 2019, 9, 441.	1.0	19
435	Improving Alpine Summertime Streamflow Simulations by the Incorporation of Evapotranspiration Data. Water (Switzerland), 2019, 11, 112.	1.2	7
436	Apport de la variabilité spatiale des caractéristiques physiques du bassin versant dans la modélisation hydrologique et les sous-produits du bilan hydrologique : cas du bassin versant de l'aval Mekerra, Algérie. Revue Des Sciences De L'Eau, 0, 32, 117-144.	0.2	3

#	Article	IF	CITATIONS
437	Application of a Digital Filter Method to Separate Baseflow in the Small Watershed of Pengchongjian in Southern China. Forests, 2019, 10, 1065.	0.9	11
438	Hydrologic functioning of the deep critical zone and contributions to streamflow in a highâ€elevation catchment: Testing of multiple conceptual models. Hydrological Processes, 2019, 33, 476-494.	1.1	22
439	Equilibrium sediment exchange in the earth's critical zone: evidence from sediment fingerprinting with stable isotopes and watershed modeling. Journal of Soils and Sediments, 2019, 19, 3332-3356.	1.5	17
440	Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: A geospatial modeling approach - Part 1. Science of the Total Environment, 2019, 653, 1546-1556.	3.9	27
441	Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations. Journal of the American Water Resources Association, 2019, 55, 209-227.	1.0	23
442	Separating climate change and human contributions to variations in streamflow and its components using eight timeâ€trend methods. Hydrological Processes, 2019, 33, 383-394.	1.1	30
443	Towards baseflow index characterisation at national scale in New Zealand. Journal of Hydrology, 2019, 568, 646-657.	2.3	47
444	A Regional Scale Hydrostratigraphy Generated from Geophysical Data of Varying Age, Type, and Quality. Water Resources Management, 2019, 33, 539-553.	1.9	9
445	Water provisioning improvement through payment for ecosystem services. Science of the Total Environment, 2019, 655, 1197-1206.	3.9	49
446	Features and causes of catastrophic floods in the Nemunas River basin. Hydrology Research, 2020, 51, 308-321.	1.1	7
447	Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy, 2020, 90, 104306.	2.5	62
448	Characterization of sudden and sustained base flow jump hydrologic behaviour in the humid seasonal tropics of the Panama Canal Watershed. Hydrological Processes, 2020, 34, 569-582.	1.1	7
449	Impact of climatic variation on infiltration rate under an arid climate: case of Northern Gafsa Watershed, Tunisia. Environment, Development and Sustainability, 2020, 22, 7727-7742.	2.7	3
450	On the importance of river hydrodynamics in simulating groundwater levels and baseflows. Hydrological Processes, 2020, 34, 1754-1767.	1.1	5
451	Global Changes in Baseflow Under the Impacts of Changing Climate and Vegetation. Water Resources Research, 2020, 56, e2020WR027349.	1.7	36
452	The overlooked role of diffuse household livestock production in nitrogen pollution at the watershed scale. Journal of Cleaner Production, 2020, 272, 122758.	4.6	16
453	Improving SWAT Model Calibration Using Soil MERGE (SMERGE). Water (Switzerland), 2020, 12, 2039.	1.2	5
454	Investigating the Role of Hydrological Model Parameter Uncertainties in Future Streamflow Projections. Journal of Hydrologic Engineering - ASCE, 2020, 25, 05020035.	0.8	2

#	ARTICLE	IF	CITATIONS
455	Hydrograph separation through multi objective optimization: Revealing the importance of a temporally and spatially constrained baseflow solute source. Journal of Hydrology, 2020, 590, 125349.	2.3	14
456	Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment. Water Research, 2020, 184, 115987.	5.3	18
457	Water exchange processes estimation in a temperate shallow lake based on water stable isotope analysis. Isotopes in Environmental and Health Studies, 2020, 56, 465-479.	0.5	5
458	Which Aspects of Hydrological Regime in Mid-Latitude Montane Basins Are Affected by Climate Change?. Water (Switzerland), 2020, 12, 2279.	1.2	15
459	Modelling Hydrological Processes and Identifying Soil Erosion Sources in a Tropical Catchment of the Great Barrier Reef Using SWAT. Water (Switzerland), 2020, 12, 2179.	1.2	11
460	Large-scale stochastic flood hazard analysis applied to the Po River. Natural Hazards, 2020, 104, 2027-2049.	1.6	6
461	A Development of a â€~ArcSWAT' Surface Runoff Model for Estimating Urban Precipitation Recharge. IOP Conference Series: Earth and Environmental Science, 2020, 549, 012010.	0.2	0
462	Hydrologic impacts and trade-offs associated with developing oil palm for bioenergy in Tabasco, Mexico. Journal of Hydrology: Regional Studies, 2020, 31, 100722.	1.0	5
463	Modification of the MONERIS Nutrient Emission Model for a Lowland Country (Hungary) to Support River Basin Management Planning in the Danube River Basin. Water (Switzerland), 2020, 12, 859.	1.2	7
464	From Highs to Lows: Changes in Dissolved Organic Carbon in a Peatland Catchment and Lake Following Extreme Flow Events. Water (Switzerland), 2020, 12, 2843.	1.2	8
465	Hydrogeology of Volcanic Highlands Affects Prioritization of Land Management Practices. Water (Switzerland), 2020, 12, 2702.	1.2	13
466	Spatio-temporal critical source area patterns of runoff pollution from agricultural practices in the Colombian Andes. Ecological Engineering, 2020, 149, 105810.	1.6	9
467	Uncertainty quantification in reconstruction of sparse water quality time series: Implications for watershed health and risk-based TMDL assessment. Environmental Modelling and Software, 2020, 131, 104735.	1.9	7
468	Evaluation of Filtering Methods for Hydrograph Separation in Small Agricultural Watersheds in Québec, Canada. Transactions of the ASABE, 2020, 63, 981-1005.	1.1	1
469	Insights on expected streamflow response to land-cover restoration. Journal of Hydrology, 2020, 589, 125121.	2.3	0
470	Modeling seasonal water yield for landscape management: Applications in Peru and Myanmar. Journal of Environmental Management, 2020, 270, 110792.	3.8	27
471	Topography scale effects on groundwater-surface water exchange fluxes in a Canadian Shield setting. Journal of Hydrology, 2020, 585, 124772.	2.3	6
472	Coupling SWAT Model and CMB Method for Modeling of High-Permeability Bedrock Basins Receiving Interbasin Groundwater Flow. Water (Switzerland), 2020, 12, 657.	1.2	24

#	Article	IF	CITATIONS
473	Modeling inorganic carbon dynamics in the Seine River continuum in France. Hydrology and Earth System Sciences, 2020, 24, 2379-2398.	1.9	16
474	Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models. Catena, 2020, 195, 104762.	2.2	27
475	Assessment of watershed characteristics with limited water quantity and quality data. Environmental Monitoring and Assessment, 2020, 192, 486.	1.3	0
476	Spatial Patterns in Baseflow Mean Response Time across a Watershed in the Loess Plateau: Linkage with Land-Use Types. Forest Science, 2020, 66, 382-391.	0.5	15
477	Diffuse groundwater recharge estimation confronting hydrological modelling uncertainty. Journal of Hydrology, 2020, 584, 124642.	2.3	18
478	An Integrated Hydrologic and Hydraulic Flood Modeling Study for a Medium-Sized Ungauged Urban Catchment Area: A Case Study of Tiruchirappalli City Using HEC-HMS and HEC-RAS. Journal of the Institution of Engineers (India): Series A, 2020, 101, 381-398.	0.6	18
479	Hydrological modelling in desert areas of the eastern Mediterranean. Journal of Hydrology, 2020, 587, 124879.	2.3	8
480	Towards a more consistent eco-hydrological modelling through multi-objective calibration: a case study in the Andean Vilcanota River basin, Peru. Hydrological Sciences Journal, 2021, 66, 59-74.	1.2	22
481	Modeling the response of dry bean yield to irrigation water availability controlled by watershed hydrology. Agricultural Water Management, 2021, 243, 106429.	2.4	5
482	On the statistical attribution of changes in monthly baseflow across the U.S. Midwest. Journal of Hydrology, 2021, 592, 125551.	2.3	16
483	Increasing plant water stress and decreasing summer streamflow in response to a warmer and wetter climate in seasonally snowâ€covered forests. Ecohydrology, 2021, 14, .	1.1	7
484	Signatures of Hydrologic Function Across the Critical Zone Observatory Network. Water Resources Research, 2021, 57, e2019WR026635.	1.7	31
485	Study on the applicability of the SCS-CN-based models to simulate floods in the semi-arid watersheds of northern Algeria. Acta Geophysica, 2021, 69, 217-230.	1.0	2
486	Introducing a new post-processing tool for the SWAT+ model to evaluate environmental flows. Environmental Modelling and Software, 2021, 136, 104944.	1.9	16
487	Comparison of conceptual rainfall–runoff models in semiâ€arid watersheds of eastern Algeria. Journal of Flood Risk Management, 2021, 14, e12672.	1.6	2
488	Usage of long-term river discharge data in water balance model for assessment of trends in basin storages. Modeling Earth Systems and Environment, 2021, 7, 953-966.	1.9	4
489	Streamflow Alteration Impacts with Particular Reference to the Lower Zab River, Tributary of the Tigris River. , 2021, , 243-273.		1
490	Hydrological Modelling of Small Gauged and Ungauged Mountainous Watersheds Using SWAT—A Case of Western Ghats in India. Journal of Water Resource and Protection, 2021, 13, 455-477.	0.3	4

#	ARTICLE	IF	CITATIONS
491	Modeling the impacts of land use and land cover dynamics on hydrological processes of the Keleta watershed, Ethiopia. Sustainable Environment, 2021, 7, .	1.2	14
492	Spatially variable hydrologic impact and biomass production tradeoffs associated with Eucalyptus (E.) Tj ETQq1	0.78431 2.5	4 rgBT /Over
493	Is It a Drought or Only a Fluctuation in Precipitation Patterns?—Drought Reconnaissance in Poland. Water (Switzerland), 2021, 13, 807.	1.2	13
494	Research on Baseflow Separation Based on Single Parameter Digital Filtering Method. IOP Conference Series: Earth and Environmental Science, 2021, 693, 012079.	0.2	0
495	Impact of Dataset Size on the Signature-Based Calibration of a Hydrological Model. Water (Switzerland), 2021, 13, 970.	1.2	5
496	Validation of the Community Land Model Version 5 Over the Contiguous United States (CONUS) Using In Situ and Remote Sensing Data Sets. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033539.	1.2	19
497	Projected changes in monthly baseflow across the U.S. Midwest. International Journal of Climatology, 2021, 41, 5536.	1.5	3
498	Debi-Sürek EÄŸrisi Yardımıyla Taban Akımının Hesaplaması: Samsun Kürtün Irmağı ÖrneÄ Science and Technology, 0, , .	Ÿi, Europe	aŋ Journal of
499	End member and Bayesian mixing models consistently indicate nearâ€surface flowpath dominance in a pristine humid tropical rainforest. Hydrological Processes, 2021, 35, e14153.	1.1	16
500	Prospective assessment of the water balance of the Northern Gafsa Aquifer, South-western Tunisia. Environment, Development and Sustainability, 2022, 24, 1359-1375.	2.7	3
501	Evaluation of thiobencarb runoff from rice farming practices in a California watershed using an integrated RiceWQ-AnnAGNPS system. Science of the Total Environment, 2021, 767, 144898.	3.9	6
502	Data- and model-driven determination of flow pathways in the Piako catchment, New Zealand. Journal of Hydro-Environment Research, 2021, 37, 82-82.	1.0	2
503	Impacts of Watershed Physical Properties and Land Use on Baseflow at Regional Scales. Journal of Hydrology: Regional Studies, 2021, 35, 100810.	1.0	8
504	Baseflow dynamics and multivariate analysis using bivariate and multiple wavelet coherence in an alpine endorheic river basin (Northwest China). Science of the Total Environment, 2021, 772, 145013.	3.9	14
505	Effects of different soil and water conservation measures on hydrological extremes and flood processes in the Yanhe River, Loess Plateau, China. Natural Hazards, 2021, 109, 545-566.	1.6	5
506	Estimating Surface and Groundwater Irrigation Potential under Different Conservation Agricultural Practices and Irrigation Systems in the Ethiopian Highlands. Water (Switzerland), 2021, 13, 1645.	1.2	10
507	A Study to Suggest Monthly Baseflow Estimation Approach for the Long-Term Hydrologic Impact Analysis Models: A Case Study in South Korea. Water (Switzerland), 2021, 13, 2043.	1.2	4
508	Development of statistical models for estimating daily nitrate load in Iowa. Science of the Total Environment, 2021, 782, 146643.	3.9	4

#	Article	IF	CITATIONS
509	Estimating surface runoff and groundwater recharge in an urban catchment using a water balance approach. Hydrogeology Journal, 2021, 29, 2411-2428.	0.9	13
510	Estimation of groundwater recharge using multiple climate models in Bayesian frameworks. Journal of Water and Climate Change, 0, , .	1.2	2
511	Determination of runoff coefficient (C) in catchments based on analysis of precipitation and flow events. International Soil and Water Conservation Research, 2022, 10, 208-216.	3.0	16
512	Characterizing shallow groundwater in hillslope aquifers using isotopic signatures: A case study in the Upper Blue Nile basin, Ethiopia. Journal of Hydrology: Regional Studies, 2021, 37, 100901.	1.0	2
513	Landscape patterns of catchment and land-use regulate legacy phosphorus releases in subtropical mixed agricultural and woodland catchments. Science of the Total Environment, 2022, 804, 150055.	3.9	15
514	Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling. Science of the Total Environment, 2022, 802, 149962.	3.9	20
515	Climate Change Impact on the Hydrology of Weyb River Watershed, Bale Mountainous Area, Ethiopia. Springer Geography, 2016, , 587-613.	0.3	8
516	Climate Change Impact Assessment on Groundwater Recharge of the Upper Tiber Basin (Central Italy). Springer Geography, 2016, , 675-701.	0.3	2
517	Multi-Site Calibration and Validation of the Hydrological Component of SWAT in a Large Lowland Catchment. GeoPlanet: Earth and Planetary Sciences, 2011, , 15-41.	0.2	17
518	Modelling the Impacts of Climate Change on Dissolved Organic Carbon. , 2010, , 221-252.		11
519	Comparison of Computer Models for Estimating Hydrology and Water Quality in an Agricultural Watershed. Water Resources Management, 2017, 31, 3641-3665.	1.9	7
520	Evaluation of typical methods for baseflow separation in the contiguous United States. Journal of Hydrology, 2020, 583, 124628.	2.3	43
521	Annual Average Baseflow Separation of River Runoff and Its Change Tendency. Journal of Water Resources Research, 2014, 03, 57-61.	0.1	1
522	Modeling the Water Balance Processes for Understanding the Components of River Discharge in a Non-conservative Watershed. Transactions of the ASABE, 2011, 54, 2171-2180.	1.1	19
523	Total Nitrogen Sources of the Three Gorges Reservoir — A Spatio-Temporal Approach. PLoS ONE, 2015, 10, e0141458.	1.1	10
524	Analysis of Baseflow Contribution to Streamflow at Several Flow Stations. Journal of Korean Neuropsychiatric Association, 2014, 30, 441-451.	0.2	7
525	Analysis of Spatiotemporal Changes in Groundwater Recharge and Baseflow using SWAT and BFlow Models. Journal of Korean Neuropsychiatric Association, 2014, 30, 549-558.	0.2	3
526	The Effect of Connected Bioretention on Reduction of Surface Runoff in LID Design. Journal of Korean Neuropsychiatric Association, 2016, 32, 562-569.	0.2	1

#	Article	IF	CITATIONS
527	Calibração e validação da equação universal de perda de solos modificada (MUSLE) utilizando dados hidrossedimentológicos locais. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1431-1439.	0.5	3
528	Estimativa de recarga da bacia do Rio das Fêmeas através de métodos manuais e automáticos. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 1123-1129.	0.4	5
529	Hydrological Modelling in the Lake Tana Basin, Ethiopia Using SWAT Model. The Open Hydrology Journal, 2008, 2, 49-62.	0.4	239
533	Comparative Analysis of Four Baseflow Separation Methods in the South Atlantic-Gulf Region of the U.S Water (Switzerland), 2020, 12, 120.	1.2	18
534	Method of Estimating Groundwater Recharge with Spatial-Temporal Variability. Journal of Korea Water Resources Association, 2005, 38, 517-526.	0.3	7
535	Quantifying Contribution of Direct Runoff and Baseflow to Rivers in Han River System, South Korea. Journal of Korea Water Resources Association, 2015, 48, 309-319.	0.3	6
536	EVALUATION OF SOIL LOSS IN GUARAÃRA BASIN BY GIS AND REMOTE SENSING BASED MODEL. Journal of Urban and Environmental Engineering, 2007, 1, 44-52.	0.3	17
537	A PROPOSED APPROACH OF SEDIMENT SOURCES AND EROSION PROCESSES IDENTIFICATION AT LARGE CATCHMENTS. Journal of Urban and Environmental Engineering, 2007, 1, 79-86.	0.3	8
538	Assessment of Land-Use and Land Cover Change Effect on Melka Wakena Hydropower Dam in Melka Wakena Catchment of Sub-Upper Wabe-Shebelle Watershed, South Eastern Ethiopia. Agricultural Sciences, 2019, 10, 819-840.	0.2	4
539	Quantifying In-Stream Processes on Phosphorus Export Using an Empirical Approach. Journal of Water Resource and Protection, 2014, 06, 120-131.	0.3	1
540	Coevolution of volcanic catchments in Japan. Hydrology and Earth System Sciences, 2016, 20, 1133-1150.	1.9	15
542	Key challenges facing the application of the conductivity mass balance method: a case study of the Mississippi River basin. Hydrology and Earth System Sciences, 2020, 24, 6075-6090.	1.9	5
558	Quiahua, the First Citizen Science Rainfall Monitoring Network in Mexico: Filling Critical Gaps in Rainfall Data for Evaluating a Payment for Hydrologic Services Program. Citizen Science: Theory and Practice, 2020, 5, .	0.6	4
559	Simulation of Hydrological and Sediment Behaviors in the Doam-dam Watershed considering Soil Properties of the Soil Reconditioned Agricultural Fields. Journal of the Korean Society of Agricultural Engineers, 2007, 49, 49-60.	0.1	3
560	A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation. Journal of Soil and Groundwater Environment, 2015, 20, 74-82.	0.1	3
561	Correlation Analysis between Groundwater Level and Baseflow in the Geum River Watershed, Calculated using the WHAT SYSTEM. Journal of Engineering Geology, 2011, 21, 107-116.	0.1	5
562	Understanding Catchments' Hydrologic Response Similarity of Upper Blue Nile (Abay) basin through catchment classification. Modeling Earth Systems and Environment, 2022, 8, 3305-3323.	1.9	3
563	Modeling and comparing streamflow simulations in two different montane watersheds of western himalayas. Groundwater for Sustainable Development, 2021, 15, 100689.	2.3	3

ARTICLE IF CITATIONS Comparison of Soil Loss Estimation using SWAT and SATEEC. Journal of the Korean Society of 566 0.1 6 Agricultural Engineers, 2008, 50, 3-12. Evolutionary Regression Modeling with Active Learning: An Application to Rainfall Runoff Modeling. 1.0 Lecture Notes in Computer Science, 2009, , 548-558. 568 Continental hydrosphere., 2010, , 164-253. 0 Analysis of the Characteristics of NPS Runoff and Application of L-THIA model at Upper Daecheong 569 0.1 Reservoir. Journal of the Korean Society of Agricultural Engineers, 2010, 52, 1-11. Determining The Critical Degree of Reservoir Lifetime for The Saguling Reservoir Based on The 570 0.1 0 Sediment Inflow Simulation. Jurnal Teknik Sipil, 2016, 17, 47. 571 SYNTHESIS, CONCLUSIONS AND RECOMMENDATIONS., 2011, , 159-164. Baseflow Comparison using the WHAT system and Flow Rate Measurements in the Dry and Rainy 572 0.1 2 Seasons. Journal of Engineering Geology, 2013, 23, 117-125. Modelling the response in streamflow to increased forestry plantations., 0, , . A Method of Estimating Conservative Potential Amount of Groundwater. Journal of the Korean 574 0.1 1 Society of Civil Engineers, 2014, 34, 1797. Estimation of baseflow considering recession characteristics of hydrograph. Journal of Wetlands 0.2 Research, 2014, 16, 161-171. Estimation and assessment of baseflow at an ungauged watershed according to landuse change. 576 0 0.2 Journal of Wetlands Research, 2014, 16, 303-318. A Study of Total Nitrogen Pollutant Load through Baseflow Analysis at the Watershed. Journal of Korean Neuropsychiatric Association, 2015, 31, 55-66. A Study on Relationship between Streamflow Variability and Baseflow Contribution in Nakdong River 579 0.1 3 Basin. Journal of the Korean Society of Agricultural Engineers, 2016, 58, 27-38. Devils River watershed: Southern Edwards-Trinity Aquifer., 2019, ... Investigation of a Monthly Water Balance and Valuemetric Estimation of the Filtered Base -Flow and 583 0.0 0 Total Flow in Vanak Watershed. Journal of Watershed Management Research, 2019, 9, 146-156. Evaluation Des Performances Du Modele Agro-Hydrologique SWAT Ã Reproduire Le Fonctionnement 584 Hydrologique Du Bassin Versant Nakhla (Rif occidental, Maroc). European Scientific Journal, 2019, 15, . A review on quantitative estimation of baseflow and hydrograph separation using isotopes as a 585 0.30 tracer. Journal of the Geological Society of Korea, 2020, 56, 501-514. Effects of deforestation and afforestation on water availability for dry bean production in Haiti. Agriculture, Ecosystems and Environment, 2022, 325, 107721.

	CITATION	Report	
#	Article	IF	CITATIONS
587	Contributions of DOC from surface and groundflow into Lake Võrtsjä⁄ (Estonia). , 2007, , 213-220.		2
588	Modelling of Groundwater Development Using Arc-SWAT and MODFLOW. Water Science and Technology Library, 2021, , 303-315.	0.2	0
589	Estimation of baseflow recession constant and regression of low flow indices in eastern Japan. Hydrological Sciences Journal, 2022, 67, 191-204.	1.2	2
590	The uncertainties of synthetic unit hydrographs applied for basins with different runoff generation processes. Revista Brasileira De Recursos Hidricos, 0, 26, .	0.5	1
592	Continental Atlantic Rivers: The Meuse, Loire and Adour-Garonne Basins. , 2022, , 225-228.		1
593	Development and Application of a QGIS-Based Model to Estimate Monthly Streamflow. ISPRS International Journal of Geo-Information, 2022, 11, 40.	1.4	3
594	Use of simulation models to aid soil and water conservation actions for sustainable agro-forested systems. , 2022, , 389-412.		4
595	Continental Atlantic Rivers: the Seine Basin. , 2022, , 293-332.		14
596	Systematic Assessment of the Development and Recovery Characteristics of Hydrological Drought in a Semi-Arid Area. SSRN Electronic Journal, 0, , .	0.4	0
597	Effects of forest cover type and ratio changes on runoff and its components. International Soil and Water Conservation Research, 2022, 10, 445-456.	3.0	12
598	Simulating sediment yield by SWAT and optimizing the parameters using SUFI-2 in Bilate river of Lake Abaya in Ethiopia. World Journal of Engineering, 2023, 20, 681-689.	1.0	4
599	Baseflow Separation Using the Digital Filter Method: Review and Sensitivity Analysis. Water (Switzerland), 2022, 14, 485.	1.2	6
600	Spatial-Temporal Water Balance Components Estimation Using Integrated GIS-Based Wetspass-M Model in Moulouya Basin, Morocco. ISPRS International Journal of Geo-Information, 2022, 11, 139.	1.4	7
601	Analysis of Water Balance Changes and Parameterization Reflecting Soil Characteristics in a Hydrological Simulation Program—FORTRAN Model. Water (Switzerland), 2022, 14, 990.	1.2	3
602	A Physically Based Model of a Twoâ€Pass Digital Filter for Separating Groundwater Runoff From Streamflow Time Series. Water Resources Research, 2022, 58, .	1.7	5
603	Understanding event runoff coefficient variability across Australia using the <i><scp>hydroEvents</scp> R</i> package. Hydrological Processes, 2022, 36, .	1.1	13
604	Changes of Hydrological Components in Arctic Rivers Based on Multi-Source Data during 2003–2016. Water (Switzerland), 2021, 13, 3494.	1.2	0
605	A Study on the Applicability of a Swat Model in Predicting the Water Yield and Water Balance of the Upper Ouémé Catchment in the Republic of Benin. Slovak Journal of Civil Engineering, 2022, 30, 57-66.	0.2	2

#	Article	IF	CITATIONS
607	Influence path identification of topography, soil, hydrology and landscape on phosphorus buffering capacity in typical agricultural catchments in central subtropical China. Journal of Environmental Management, 2022, 315, 115164.	3.8	8
608	Systematic assessment of the development and recovery characteristics of hydrological drought in a semi-arid area. Science of the Total Environment, 2022, 836, 155472.	3.9	11
609	A comparison of the spatial heterogeneities of surface fluxes simulated by INLAND model with observations at a valley and a nearby plateau stations in Central Amazon Forest. SN Applied Sciences, 2022, 4, .	1.5	0
610	The assessment of baseflow separation method and baseflow characteristics in the Yiluo River basin, China. Environmental Earth Sciences, 2022, 81, .	1.3	3
611	Applying the NWS's Distributed Hydrologic Model to Short-Range Forecasting of Quickflow in the Mahantango Creek Watershed. Journal of Hydrometeorology, 2022, 23, 1257-1280.	0.7	2
612	Modelling of Streamflow and Water Balance in the Kuttiyadi River Basin Using SWAT and Remote Sensing/GIS Tools. International Journal of Environmental Research, 2022, 16, .	1.1	9
613	Stormwater Management Adaptation Pathways under Climate Change and Urbanization. Journal of Sustainable Water in the Built Environment, 2022, 8, .	0.9	5
614	Hydrological modeling of Oued El Abiod watershed using the SWAT model. Arabian Journal of Geosciences, 2022, 15, .	0.6	1
615	Exploring river–aquifer interactions and hydrological system response using baseflow separation, impulse response modeling, and time series analysis in three temperate lowland catchments. Hydrology and Earth System Sciences, 2022, 26, 3629-3649.	1.9	3
616	Assessing the effect of urbanization on regional-scale surface water-groundwater interaction and nitrate transport. Scientific Reports, 2022, 12, .	1.6	6
617	Evaluation of baseflow separation methods with real and synthetic streamflow data from a watershed. Journal of Hydrology, 2022, 613, 128279.	2.3	5
618	Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy). Agricultural Water Management, 2022, 273, 107870.	2.4	5
619	Assessment of groundwater discharge pathways in a till-dominated coastal aquifer. Journal of Hydrology: Regional Studies, 2022, 44, 101205.	1.0	1
620	Distinct indicators of land use and hydrology characterize different aspects of riverine phytoplankton communities. Science of the Total Environment, 2022, 851, 158209.	3.9	7
621	Understanding groundwater behaviors and exchange dynamics in a linked catchment-floodplain-lake system. Science of the Total Environment, 2022, 853, 158558.	3.9	8
622	A Coupled SWAT-AEM Modelling Framework for a Comprehensive Hydrologic Assessment. Water (Switzerland), 2022, 14, 2753.	1.2	1
623	Effects of climate and anthropogenic changes on current and future variability in flows in the So'o River Basin (south of Cameroon). Hydrology Research, 2022, 53, 1203-1220.	1.1	16
624	Developing and Applying a QGIS-Based Model That Accounts for Nonpoint Source Pollution Due to Domestic Animals. Water (Switzerland), 2022, 14, 2742.	1.2	0

# 625	ARTICLE Modeling runoff-sediment influx responses to alternative BMP interventions in the Gojeb watershed, Ethiopia, using the SWAT hydrological model. Environmental Science and Pollution Research, 2023, 30, 22816-22834.	IF 2.7	Citations 9
627	Baseflow index assessment for agriculture-industry led Ramganga river basin. Journal of Applied Water Engineering and Research, 2023, 11, 407-421.	1.0	2
628	Potential Hydrological Impacts of Planting Switchgrass on Marginal Rangelands in South Central Great Plains. Water (Switzerland), 2022, 14, 3087.	1.2	0
629	Modelling Approach for NBSs Suitability Assessment in an Agricultural Area under Changing Climate Conditions: Case Studies in the Massaciuccoli Catchment (Central Italy). , 0, , .		0
630	A Hybrid Physics–Al Model to Improve Hydrological Forecasts. , 2023, 2, .		0
631	Modeling streamflow in headwater catchments: A data-based mechanistic grounded framework. Journal of Hydrology: Regional Studies, 2022, 44, 101243.	1.0	2
632	Surface water-groundwater interaction issues in Texas. , 2018, 9, 129-149.		6
633	Estimation of base and surface flow using deep neural networks and a hydrologic model in two watersheds of the Chesapeake Bay. Journal of Hydrology, 2023, 617, 128916.	2.3	2
634	Performance evaluation of spatial lumped model and spatial distributed travel time model using event based rainfall for hydrological simulation. Arabian Journal of Geosciences, 2022, 15, .	0.6	2
635	Improvement of evapotranspiration estimates for grasslands in the southern Great Plains: Comparing a biophysical model (SWAT) and remote sensing (MODIS). Journal of Hydrology: Regional Studies, 2022, 44, 101275.	1.0	2
636	Hydrological modeling of the watershed of a RAMSAR site using the SWAT model (Ichkeul National) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
637	Impact of climate and anthropogenic changes on current and future variability in flows in the Nyong River Basin (equatorial Central Africa). Journal of Hydroinformatics, 2023, 25, 369-395.	1.1	5
638	Characterization of micropollutants in urban stormwater using high-resolution monitoring and machine learning. Water Research, 2023, 235, 119865.	5.3	3
639	The impact of climate change on monthly baseflow trends across Canada. Journal of Hydrology, 2023, 618, 129254.	2.3	2
640	Groundwater shapes North American river floods. Environmental Research Letters, 2023, 18, 034043.	2.2	5
641	Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study. Sustainability, 2023, 15, 4343.	1.6	4
642	Multimethodological Revisit of the Surface Water and Groundwater Interaction in the Balaton Highland Region—Implications for the Overlooked Groundwater Component of Lake Balaton, Hungary. Water (Switzerland), 2023, 15, 1006.	1.2	0
643	Effects of landscape attributes and climate variables on catchment hydrology. Environmental Systems Research, 2023, 12, .	1.5	0

#	Article	IF	CITATIONS
644	Hydrological response of a headwater catchment in Southeast Brazil—Threshold patterns of stormflow response. Hydrological Processes, 2023, 37, .	1.1	3
645	The role of climate conditions and groundwater on baseflow separation in Urmia Lake Basin, Iran. Journal of Hydrology: Regional Studies, 2023, 47, 101383.	1.0	0
652	Services from Agroecosystems and Their Quantification. , 2023, , 247-276.		0