PROCESS DOMAINS AND THE RWER CONTINTUUM

Journal of the American Water Resources Association 35, 397-410 DOI: 10.1111/j.1752-1688.1999.tb03598.x

Citation Report

#	Article	IF	CITATIONS
1	Fish Assemblage Stability in a Southern Appalachian Stream. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 1949-1958.	1.4	103
2	Riparian Ecology and Management in the Pacific Coastal Rain Forest. BioScience, 2000, 50, 996.	4.9	270

TION REDOR

Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (<i>Salvelinus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

4	Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 824-840.	1.4	285
5	Biophysical gradients related to Channel Islands, middle Snake River, Idaho. Water Science and Application, 2001, , 73-83.	0.3	32
6	A comparison of multi-disciplinary methods for measuring physical conditions of streams. Water Science and Application, 2001, , 7-18.	0.3	2
7	Relations between streamflow, sediment transport, and aquatic habitat in regulated rivers. Water Science and Application, 2001, , 185-198.	0.3	33
8	Regional Risk Analysis of Channel Instability. , 2001, , 1.		0
9	Geomorphology, river ecology, and ecosystem management. Water Science and Application, 2001, , 247-253.	0.3	14
10	RIPARIAN ZONE CLASSIFICATION FOR MANAGEMENT OF STREAM WATER QUALITY AND ECOSYSTEM HEALTH. Journal of the American Water Resources Association, 2001, 37, 1509-1515.	2.4	20
11	ANALYZIIG RIPARIAN SITE CAPABILITY AND MANAGEMENT OPTIONS. Journal of the American Water Resources Association, 2001, 37, 1665-1679.	2.4	3
12	SOIL AND VEGETATION PATTERNS IN BARRIER-ISLAND DUNE ENVIRONMENTS. Physical Geography, 2001, 22, 79-98.	1.4	23
13	Landscapes to Riverscapes: Bridging the Gap between Research and Conservation of Stream Fishes. BioScience, 2002, 52, 483.	4.9	1,193
14	Understanding Processes and Downstream Linkages of Headwater Systems. BioScience, 2002, 52, 905.	4.9	622
15	From continua to patches: examining stream community structure over large environmental gradients. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 1404-1417.	1.4	42
16	Integrated catchment assessment of riverine landscape dynamics. , 2002, 64, 129-140.		40
17	Comparison of Hydrology of Wetlands in Pennsylvania and Oregon (USA) as an Indicator of Transferability of Hydrogeomorphic (HGM) Functional Models Between Regions. Environmental Management, 2002, 30, 265-278.	2.7	24
18	Legitimizing Fluvial Ecosystems as Users of Water: An Overview. Environmental Management, 2002, 30, 455-467.	2.7	205

#	Article	IF	CITATIONS
19	Fluvial landscape ecology: addressing uniqueness within the river discontinuum. Freshwater Biology, 2002, 47, 641-660.	2.4	492
20	Food webs in river networks. Ecological Research, 2002, 17, 451-471.	1.5	193
21	DIAGNOSTIC APPROACH TO STREAM CHANNEL ASSESSMENT AND MONITORING. Journal of the American Water Resources Association, 2002, 38, 1-16.	2.4	133
22	MULTISCALE RIVER ENVIRONMENT CLASSIFICATION FOR WATER RESOURCES MANAGEMENT1. Journal of the American Water Resources Association, 2002, 38, 1225-1239.	2.4	288
23	Scales of Macroinvertebrate Distribution in Relation to the Hierarchical Organization of River Systems. Journal of the North American Benthological Society, 2003, 22, 105-122.	3.1	73
24	Controls on Patterns of Coarse Organic Particle Retention in Headwater Streams. Journal of the North American Benthological Society, 2003, 22, 17-34.	3.1	58
25	Geomorphology and fish assemblages in a Piedmont river basin, U.S.A Freshwater Biology, 2003, 48, 1950-1970.	2.4	108
26	COLD WATER PATCHES IN WARM STREAMS: PHYSICOCHEMICAL CHARACTERISTICS AND THE INFLUENCE OF SHADING. Journal of the American Water Resources Association, 2003, 39, 355-368.	2.4	124
27	The Influence of Complex Systems Interactions on Barrier Island Dune Vegetation Pattern and Process. Annals of the American Association of Geographers, 2003, 93, 13-29.	3.0	127
28	Effects of post-wildfire erosion on channel environments, Boise River, Idaho. Forest Ecology and Management, 2003, 178, 105-119.	3.2	148
29	Guiding principles for assessing geomorphic river condition: application of a framework in the Bega catchment, South Coast, New South Wales, Australia. Catena, 2003, 53, 17-52.	5.0	42
30	Large wood recruitment and redistribution in headwater streams in the southern Oregon Coast Range, U.S.A Canadian Journal of Forest Research, 2003, 33, 1352-1362.	1.7	108
31	Thermal heterogeneity, stream channel morphology, and salmonid abundance in northeastern Oregon streams. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60, 1266-1280.	1.4	132
32	Rivers and riverine landscapes. Developments in Quaternary Sciences, 2003, , 221-246.	0.1	3
35	The Network Dynamics Hypothesis: How Channel Networks Structure Riverine Habitats. BioScience, 2004, 54, 413.	4.9	731
36	Defining River Types in a Mediterranean Area: A Methodology for the Implementation of the EU Water Framework Directive. Environmental Management, 2004, 34, 711-729.	2.7	52
37	Analysis of Sediment Retention in Western Riverine Wetlands: The Yampa River Watershed, Colorado, USA. Environmental Management, 2004, 33, 318-30.	2.7	11
39	Detecting persistent change in the habitat of salmon-bearing streams in the Pacific Northwest. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 283-291.	1.4	62

#	Article	IF	CITATIONS
40	Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 2085-2096.	1.4	125
41	Confluence effects in rivers: Interactions of basin scale, network geometry, and disturbance regimes. Water Resources Research, 2004, 40, .	4.2	226
42	HORIZONS IN STREAM BIOGEOCHEMISTRY: FLOWPATHS TO PROGRESS. Ecology, 2004, 85, 2369-2379.	3.2	143
43	Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2004, 35, 257-284.	8.3	2,605
44	Development of Process-Based Assessment Protocols in the Kishwaukee River Basin, Illinois: Watershed Integration of Hydrology, Geomorphology, and Ecology. , 2004, , 1.		0
46	Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology, 2005, 50, 201-220.	2.4	920
47	Ecogeography of the herpetofauna of a northern California watershed: linking species patterns to landscape processes. Ecography, 2005, 28, 521-536.	4.5	35
48	Land Use, Spatial Scale, and Stream Systems: Lessons from an Agricultural Region. Environmental Management, 2005, 36, 775-791.	2.7	63
49	Abundance and Production of Riparian Trees in the Lowland Floodplain of the Queets River, Washington. Ecosystems, 2005, 8, 841-861.	3.4	49
50	Detection of biotic responses to urbanization using fish assemblages from small streams of western Georgia, USA. Urban Ecosystems, 2005, 8, 39-57.	2.4	74
51	Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Research and Applications, 2005, 21, 719-737.	1.7	221
53	The Wyoming Habitat Assessment Methodology (WHAM). Fisheries, 2005, 30, 75-81.	0.8	0
54	Changes in stream biota along a gradient of logging disturbance, 15 years after logging at Ben Nevis, Tasmania. Forest Ecology and Management, 2005, 219, 132-148.	3.2	28
55	River restoration. Water Resources Research, 2005, 41, .	4.2	452
56	Geomorphic Classification of Rivers and Streams. , 2005, , 171-204.		13
57	Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA*. International Journal of River Basin Management, 2006, 4, 85-97.	2.7	5
58	Glacial erosion, evolution of river long profiles, and the organization of process domains in mountain drainage basins of coastal British Columbia. Journal of Geophysical Research, 2006, 111, .	3.3	100
59	Evidence of continued effects from timber harvesting on lotic amphibians in redwood forests of northwestern California. Forest Ecology and Management, 2006, 221, 183-193.	3.2	40

#	Article	IF	CITATIONS
60	Geomorphology and ecology: Unifying themes for complex systems in biogeomorphology. Geomorphology, 2006, 77, 207-216.	2.6	198
61	A morpho-statistical classification of mountain stream reach types in southeastern Australia. Geomorphology, 2006, 81, 43-65.	2.6	46
62	Human impacts to mountain streams. Geomorphology, 2006, 79, 217-248.	2.6	189
63	Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems. Geomorphology, 2006, 79, 264-285.	2.6	335
64	Urban Stream Restoration: Guidance for Monitoring and Assessment Protocols. , 2006, , 1.		0
65	The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications, 2006, 22, 123-147.	1.7	737
66	Placing global stream flow variability in geographic and geomorphic contexts. River Research and Applications, 2006, 22, 149-166.	1.7	167
67	Postfire Logging in Riparian Areas. Conservation Biology, 2006, 20, 994-1004.	4.7	29
68	Influence of stream geomorphic condition on fish communities in Vermont, U.S.A Freshwater Biology, 2006, 51, 1811-1826.	2.4	56
69	A Large-scale, Hierarchical Approach for Assessing Habitat Associations of Fish Assemblages in Large Dryland Rivers. Hydrobiologia, 2006, 572, 11-31.	2.0	43
70	The distribution of the Rocky Mountain tailed frog (Ascaphus montanus) in relation to the fluvial system: implications for management and conservation. Ecological Research, 2006, 21, 489-502.	1.5	14
71	Landscape attributes and life history variability shape genetic structure of trout populations in a stream network. Landscape Ecology, 2006, 21, 901-916.	4.2	149
72	Environmental controls on food web regimes: A fluvial perspective. Progress in Oceanography, 2006, 68, 125-133.	3.2	12
74	Geologic influences on Apache trout habitat in the White Mountains of Arizona. Journal of the Arizona-Nevada Academy of Science, 2006, 38, 88-101.	0.1	4
75	Consequences of Ignoring Geologic Variation in Evaluating Grazing Impacts. Rangeland Ecology and Management, 2006, 59, 373-382.	2.3	4
76	THE LAND-COVER CASCADE: RELATIONSHIPS COUPLING LAND AND WATER. Ecology, 2007, 88, 228-242.	3.2	116
77	Urban Stream Restoration: Guidance for Monitoring and Assessment Protocols. , 2007, , 1.		0
78	DISTRIBUTION OF SALMON-HABITAT POTENTIAL RELATIVE TO LANDSCAPE CHARACTERISTICS AND IMPLICATIONS FOR CONSERVATION. , 2007, 17, 66-80.		131

#	Article	IF	CITATIONS
79	Discontinuities in stream nutrient uptake below lakes in mountain drainage networks. Limnology and Oceanography, 2007, 52, 1978-1990.	3.1	27
80	Biodiversity management approaches for stream–riparian areas: Perspectives for Pacific Northwest headwater forests, microclimates, and amphibians. Forest Ecology and Management, 2007, 246, 81-107.	3.2	136
81	Simulating riparian vegetation and aquatic habitat dynamics in response to natural and anthropogenic disturbance regimes in the Upper Grande Ronde River, Oregon, USA. Landscape and Urban Planning, 2007, 80, 249-267.	7.5	16
82	Upstream heterogeneous zones: small stream systems structured by a lack of competence?. Journal of the North American Benthological Society, 2007, 26, 365-374.	3.1	48
83	Geomorphology and stream habitat relationships with smallmouth bass (<i>Micropterus) Tj ETQq0 0 0 rgBT /Over and Aquatic Sciences, 2007, 64, 1116-1129.</i>	lock 10 Tf 1.4	50 587 Td 31
84	Effects of forest cover, topography, and sampling extent on the measured density of shallow, translational landslides. Water Resources Research, 2007, 43, .	4.2	33
85	Glacially induced organization of channelâ€reach morphology in mountain streams. Journal of Geophysical Research, 2007, 112, .	3.3	50
86	Role of Fish Assemblages in Stream Communities. , 2007, , 489-514.		5
87	Development of an automated desktop procedure for defining macro-reaches for river longitudinal profiles. Water S A, 2007, 32, .	0.4	1
88	Stream geomorphology in a mountain lake district: hydraulic geometry, sediment sources and sinks, and downstream lake effects. Earth Surface Processes and Landforms, 2007, 32, 525-543.	2.5	41
89	Quantitative morphodynamic typology of rivers: a methodological study based on the French Upper Rhine basin. Earth Surface Processes and Landforms, 2007, 32, 1726-1746.	2.5	43
90	Very-broad-scale assessment of human impacts on river condition. Freshwater Biology, 2007, 52, 959-976.	2.4	60
91	Invasive alien plants and South African rivers: a proposed approach to the prioritization of control operations. Freshwater Biology, 2007, 52, 711-723.	2.4	42
92	Reach-scale geomorphology affects organic matter and consumer ?13C in a forested Piedmont stream. Freshwater Biology, 2007, 52, 1105-1119.	2.4	24
93	Woody riparian plant distributions in western Oregon, USA: comparing landscape and local scale factors. Plant Ecology, 2007, 190, 291-311.	1.6	21
94	Two lowland stream riffles – linkages between physical habitats and macroinvertebrates across multiple spatial scales. Aquatic Ecology, 2007, 41, 475-490.	1.5	14
95	Toward Conceptual Cohesiveness: a Historical Analysis of the Theory and Utility of Ecological Boundaries and Transition Zones. Ecosystems, 2007, 10, 462-476.	3.4	80
96	Biogeography, ecoregions, and geomorphology affect fish species composition in streams of eastern Oklahoma, USA. Environmental Biology of Fishes, 2008, 82, 237-249.	1.0	32

ARTICLE

97 Quantifying phenotypic gradients in freshwater snails: a case study in Lithasia (Gastropoda:) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 742 1

98	Leaf litter degradation in the wave impact zone of a pre-alpine lake. Hydrobiologia, 2008, 613, 117-131.	2.0	15
99	Basin-Scale Consequences of Agricultural Land Use on Benthic Light Availability and Primary Production Along a Sixth-Order Temperate River. Ecosystems, 2008, 11, 1091-1105.	3.4	30
100	Geomorphic controls and transition zones in the lower Sabine River. Hydrological Processes, 2008, 22, 2424-2437.	2.6	28
101	Channel flow competence and sediment transport in upland streams in southeast Australia. Earth Surface Processes and Landforms, 2008, 33, 329-352.	2.5	44
102	Uncertainty in Riparian and Floodplain Restoration. , 0, , 79-104.		5
103	Transferability of an HGM wetland classification scheme to a longitudinal gradient of the central Appalachian Mountains: Initial hydrological results. Wetlands, 2008, 28, 439-449.	1.5	20
104	Watersheds in layers: Landform influences on tree growth and understory species richness. Journal of Vegetation Science, 2008, 19, 885-892.	2.2	1

Influence of morphohydraulic habitat structure on invertebrate communities (Ephemeroptera,) Tj ETQq000 rgBT / $\frac{10}{1.5}$ Tf 50 42.

106	Amphibians as metrics of critical biological thresholds in forested headwater streams of the Pacific Northwest, U.S.A Freshwater Biology, 2008, 53, 1470-1488.	2.4	45
107	Ecological Effects of Water-Level Fluctuations in Lakes. , 2008, , .		24
108	Stream Restoration. , 2008, , 461-503.		26
109	A catchment-scale model of mountain stream channel morphologies in southeast Australia. Geomorphology, 2008, 95, 119-144.	2.6	14
110	Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers. Geomorphology, 2008, 97, 631-654.	2.6	48
111	Freshwater vulnerabilities and resilience on the Seward Peninsula: Integrating multiple dimensions of landscape change. Global Environmental Change, 2008, 18, 256-270.	7.8	38
112	Flow variability and the biophysical vitality of river systems. Comptes Rendus - Geoscience, 2008, 340, 629-643.	1.2	206
113	Relating stream physical habitat condition and concordance of biotic productivity across multiple taxa. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2667-2677.	1.4	20
115	Freshwater Ecosystems and Resilience of Pacific Salmon: Habitat Management Based on Natural Variability. Ecology and Society, 2009, 14, .	2.3	75

#	Article	IF	Citations
116	Naturalness and Place in River Rehabilitation. Ecology and Society, 2009, 14, .	2.3	78
117	Hyporheic Exchange in Mountain Rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange. Geography Compass, 2009, 3, 1038-1062.	2.7	177
118	Using simplified watershed hydrology to define spatially explicit â€~zones of influence'. Hydrobiologia, 2009, 618, 149-160.	2.0	6
119	Do tributaries affect loads and fluxes of particulate organic matter, inorganic sediment and wood? Patterns in an upland river basin in south-eastern Australia. Hydrobiologia, 2009, 636, 307-317.	2.0	8
120	Conceptual framework and interdisciplinary approach for the sustainable management of gravel-bed rivers: The case of the Drôme River basin (S.E. France). Aquatic Sciences, 2009, 71, 356-370.	1.5	41
121	Environmental indicators of macroinvertebrate and fish assemblage integrity in urbanizing watersheds. Ecological Indicators, 2009, 9, 1222-1233.	6.3	78
122	Changes in benthic macroinvertebrate communities in upper catchment streams across a gradient of catchment forest operation history. Forest Ecology and Management, 2009, 257, 2166-2174.	3.2	14
123	Design and management of linkage areas across headwater drainages to conserve biodiversity in forest ecosystems. Forest Ecology and Management, 2009, 258, S117-S126.	3.2	25
124	Models of Ecological Processes in Riverine Ecosystems. , 2009, , 448-455.		3
125	Late-successional riparian forest structure results in heterogeneous periphyton distributions in low-order streams. Canadian Journal of Forest Research, 2009, 39, 2343-2354.	1.7	21
126	Large channel confluences influence geomorphic heterogeneity of a southeastern United States river. Water Resources Research, 2009, 45, .	4.2	8
127	Restoring the River Discontinuum: Looking at the Example of Beaver Dams. , 2010, , .		0
128	Evaluating the Illinois Stream Valley Segment Model as an Effective Management Tool. Environmental Management, 2010, 46, 761-770.	2.7	10
129	Does the scale of our observational window affect our conclusions about correlations between endangered salmon populations and their habitat?. Landscape Ecology, 2010, 25, 727-743.	4.2	18
130	Quantifying historic landscape heterogeneity from aerial photographs using object-based analysis. Landscape Ecology, 2010, 25, 985-998.	4.2	86
131	What are we monitoring and why? Using geomorphic principles to frame eco-hydrological assessments of river condition. Science of the Total Environment, 2010, 408, 2025-2033.	8.0	55
132	Habitat Characteristics of Lowland Leopard Frogs in Mountain Canyons of Southeastern Arizona. Journal of Wildlife Management, 2010, 74, 808-815.	1.8	11
133	Partitioning hydrologic contributions to an â€~oldâ€growth' riparian area in the Huron Mountains of Michigan, USA. Ecohydrology, 2010, 3, 315-324.	2.4	8

#	Article	IF	CITATIONS
135	The effect of land use on channel geometry and sediment distribution in gravel mantled bedrock streams, Illinois River watershed, Arkansas. River Research and Applications, 2011, 27, 857-866.	1.7	10
136	A brief review of the process domain concept and its application to quantifying sediment dynamics in bedrock canyons. Terra Nova, 2010, 22, 411-416.	2.1	20
137	Coâ€variation of fish assemblages, flow regimes and other habitat factors in French rivers. Freshwater Biology, 2010, 55, 881-892.	2.4	30
138	Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams. Freshwater Biology, 2010, 55, 1005-1019.	2.4	42
139	Sources of smallâ€scale variation in the invertebrate communities of headwater streams. Freshwater Biology, 2010, 55, 1219-1233.	2.4	17
140	Natural and logging disturbances in the temperate rain forests of the Central Coast, British Columbia. Canadian Journal of Forest Research, 2010, 40, 1970-1984.	1.7	21
141	The River Discontinuum: Applying Beaver Modifications to Baseline Conditions for Restoration of Forested Headwaters. BioScience, 2010, 60, 908-922.	4.9	138
142	Linking Ecosystem Services, Rehabilitation, and River Hydrogeomorphology. BioScience, 2010, 60, 67-74.	4.9	108
143	Process-based Principles for Restoring River Ecosystems. BioScience, 2010, 60, 209-222.	4.9	575
144	Spatial Ecology of the Oregon Gartersnake, Thamnophis atratus hydrophilus, in a Free-Flowing Stream Environment. Copeia, 2010, 2010, 75-85.	1.3	6
145	Disturbances structuring macroinvertebrate communities in steep headwater streams: relative importance of forest clearcutting and debris flow occurrence. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 427-444.	1.4	29
146	Ecoregions and stream morphology in eastern Oklahoma. Geomorphology, 2010, 122, 117-128.	2.6	19
147	Recent developments in landscape approaches for the study of aquatic ecosystems. Journal of the North American Benthological Society, 2010, 29, 41-66.	3.1	112
148	Incorporating lakes within the river discontinuum: longitudinal changes in ecological characteristics in stream–lake networks. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1350-1362.	1.4	108
149	Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society, 2010, 29, 84-99.	3.1	171
150	Influence of bed heterogeneity and habitat type on macroinvertebrate uptake in peri-urban streams. International Journal of Sediment Research, 2010, 25, 203-220.	3.5	22
151	The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society, 2010, 29, 67-83.	3.1	113
152	Downstream Effects of Urbanization on Stillwater Creek, Oklahoma. Physical Geography, 2010, 31, 186-201.	1.4	11

#	Article	IF	CITATIONS
153	Literature Citations. , 2010, , 1022-1194.		0
154	Mechanisms and source distances for the input of large woody debris to forested streams in British Columbia, Canada. Canadian Journal of Forest Research, 2011, 41, 2231-2246.	1.7	9
155	Long-term changes in river–floodplain dynamics: implications for salmonid habitat in the Interior Columbia Basin, USA. , 2011, 21, 1643-1658.		7
156	Hydrology and Ecology of River Systems. , 2011, , 237-269.		9
157	Influences of life history, environmental gradients, and disturbance on riparian tree regeneration in Western Oregon. Forest Ecology and Management, 2011, 261, 1241-1253.	3.2	13
158	Spatial disaggregation and aggregation procedures for characterizing fluvial features at the network-scale: Application to the Rhà ne basin (France). Geomorphology, 2011, 125, 343-360.	2.6	102
159	Geomorphic and process domain controls on riparian zones in the Colorado Front Range. Geomorphology, 2011, 125, 504-516.	2.6	54
160	The legacy of Pleistocene glaciation and the organization of lowland alluvial process domains in the Puget Sound region. Geomorphology, 2011, 126, 174-185.	2.6	40
161	Spatial relationships in a dendritic network: the herpetofaunal metacommunity of the Mattole River catchment of northwest California. Ecography, 2011, 34, 49-66.	4.5	16
162	Geoadditive regression modeling of stream biological condition. Environmental and Ecological Statistics, 2011, 18, 709-733.	3.5	26
163	Site length for biological assessment of boatable rivers. River Research and Applications, 2011, 27, 520-535.	1.7	43
164	What should these rivers look like? Historical range of variability and human impacts in the Colorado Front Range, USA. Earth Surface Processes and Landforms, 2011, 36, 1378-1390.	2.5	80
165	An evaluation of restoration practises in lowland streams: Has the physical integrity been re-created?. Ecological Engineering, 2011, 37, 1654-1660.	3.6	23
166	Trophic niche dimensions of fish communities as a function of historical hydrological conditions in a Plains river. River Systems, 2011, 19, 177-187.	0.2	28
167	Frogs, Fish and Forestry: An Integrated Watershed Network Paradigm Conserves Biodiversity and Ecological Services. Diversity, 2011, 3, 503-530.	1.7	11
168	Towards a Process Domain-Sensitive Substrate Habitat Model for Sea Lampreys in Michigan Rivers. Transactions of the American Fisheries Society, 2012, 141, 313-326.	1.4	6
169	Historical perspectives on river restoration design in the USA. Progress in Physical Geography, 2012, 36, 138-153.	3.2	43
172	Use of geomorphic, hydrologic, and nitrogen mass balance data to model ecosystem nitrate retention in tidal freshwater wetlands. Biogeosciences, 2012, 9, 2661-2672.	3.3	4

#	ARTICLE Comment on $\hat{a} \in \infty$ Does timber harvest influence the dynamics of marine-derived nutrients in Southeast Alaska streams $\hat{a} \in 1$ Original article by Levi et al. appears in Cap. J. Fish Agust. Sci. 68(8): 1316 $\hat{a} \in (1329)$ and is	IF	CITATIONS
173	available at http://www.nrcresearchpress.com/doi/full/10.1139/f2012-106. Canadian Journal of Fisheries and Aquatic	1.4	1
174	Variation in water-mediated connectivity influences patch distributions of total N, total P, and TN:TP ratios in the Upper Mississippi River, USA. Freshwater Science, 2012, 31, 1254-1272.	1.8	17
178	River profile controls on channel morphology, debris flow disturbance, and the spatial extent of salmonids in steep mountain streams. Journal of Geophysical Research, 2012, 117, .	3.3	15
179	Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession. Water Resources Research, 2012, 48, .	4.2	73
180	Channel head locations in forested watersheds across the mid-Atlantic United States: A physiographic analysis. Geomorphology, 2012, 177-178, 194-203.	2.6	65
181	Delineation and Validation of River Network Spatial Scales for Water Resources and Fisheries Management. Environmental Management, 2012, 50, 875-887.	2.7	17
182	A Process-Based Hierarchical Framework for Monitoring Glaciated Alpine Headwaters. Environmental Management, 2012, 50, 982-997.	2.7	12
184	Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates. PLoS ONE, 2012, 7, e45787.	2.5	30
185	The bed morphology of upland singleâ€thread channels in semiâ€arid environments: evidence of repeating bedforms and their wider implications for gravelâ€bed rivers. Earth Surface Processes and Landforms, 2012, 37, 741-753.	2.5	16
186	Use of ergodic reasoning to reconstruct the historical range of variability and evolutionary trajectory of rivers. Earth Surface Processes and Landforms, 2012, 37, 763-773.	2.5	100
187	Combining historical and process perspectives to infer ranges of geomorphic variability and inform river restoration in a wandering gravelâ€bed river. Earth Surface Processes and Landforms, 2012, 37, 1302-1312.	2.5	52
188	Using a processâ€based catchmentâ€scale model for enhancing fieldâ€based stream assessments and predicting stream fish assemblages. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 511-525.	2.0	7
189	The hydrogeomorphic influences on alluvial gully erosion along the Mitchell River fluvial megafan. Hydrological Processes, 2013, 27, 1086-1104.	2.6	31
190	LINKING RIVER MANAGEMENT TO SPECIES CONSERVATION USING DYNAMIC LANDSCAPEâ€SCALE MODELS. River Research and Applications, 2013, 29, 906-918.	1.7	27
191	Explaining freshwater fish biogeography: history versus environment versus species personality. Reviews in Fish Biology and Fisheries, 2013, 23, 523-536.	4.9	12
192	Denitrification in a large river: consideration of geomorphic controls on microbial activity and community structure. Ecology, 2013, 94, 2249-2262.	3.2	52
193	How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?. Water Resources Research, 2013, 49, 5473-5486.	4.2	59
194	Critical Role for hierarchical geospatial analyses in the design of fluvial research, assessment, and management. Environmental Monitoring and Assessment, 2013, 185, 7165-7180.	2.7	13

#	Article	IF	CITATIONS
195	Automated riverine landscape characterization: GIS-based tools for watershed-scale research, assessment, and management. Environmental Monitoring and Assessment, 2013, 185, 7485-7499.	2.7	33
196	Stream foodweb δ13C and geomorphology are tightly coupled in mountain drainages of northern Idaho. Freshwater Science, 2013, 32, 606-621.	1.8	13
197	Seeing the Forest and the Trees: Wood in Stream Restoration in the Colorado Front Range, United States. Geophysical Monograph Series, 2013, , 399-418.	0.1	5
198	Method of allocating biotope margins in watercourses using biodiversity indexes applied to benthic communities. Inland Water Biology, 2013, 6, 249-252.	0.8	1
199	The complexity of the real world in the context of the field tradition in geomorphology. Geomorphology, 2013, 200, 50-58.	2.6	28
200	12.2 Riverine Habitat Dynamics. , 2013, , 6-19.		6
201	Increasing synchrony of high temperature and low flow in western North American streams: double trouble for coldwater biota?. Hydrobiologia, 2013, 712, 61-70.	2.0	87
202	9.41 Geomorphologist's Guide to Participating in River Rehabilitation. , 2013, , 843-860.		11
203	9.14 Reciprocal Relations between Riparian Vegetation, Fluvial Landforms, and Channel Processes. , 2013, , 219-243.		24
204	9.2 A River Runs Through It: Conceptual Models in Fluvial Geomorphology. , 2013, , 6-21.		35
205	9.36 Geomorphic Classification of Rivers. , 2013, , 730-767.		103
206	A 300-year successional sequence in an eastern United States riparian hardwood forest ¹ . Journal of the Torrey Botanical Society, 2013, 140, 65-88.	0.3	4
207	Wind as a natural disturbance agent in forests: a synthesis. Forestry, 2013, 86, 147-157.	2.3	317
208	Multi-scale factors controlling the pattern of floodplain width at a network scale: The case of the Rhône basin, France. Geomorphology, 2013, 200, 155-171.	2.6	39
209	Association between geomorphic attributes of watersheds, water temperature, and salmon spawn timing in Alaskan streams. Geomorphology, 2013, 185, 78-86.	2.6	89
210	Geodiversity in the Yellow River source zone. Journal of Chinese Geography, 2013, 23, 775-792.	3.9	27
211	Analysis of controls upon channel planform at the First Great Bend of the Upper Yellow River, Qinghai-Tibet Plateau. Journal of Chinese Geography, 2013, 23, 833-848.	3.9	18
212	GEOMORPHOLOGICAL CONTROLS ON VEGETATION RESPONSES TO FLOW ALTERATIONS IN A MEDITERRANEAN STREAM (CENTRALâ€WESTERN SPAIN). River Research and Applications, 2013, 29, 1237-1252.	1.7	5

#	Article	IF	CITATIONS
213	Reading the landscape. Progress in Physical Geography, 2013, 37, 601-621.	3.2	131
214	Nonlinear variation of stream–forest linkage along a streamâ€size gradient: an assessment using biogeochemical proxies of inâ€stream fine particulate organic matter. Journal of Applied Ecology, 2013, 50, 1019-1027.	4.0	15
215	Modeling stream-bank erosion in the Southern Blue Ridge Mountains. Physical Geography, 2013, 34, 354-372.	1.4	6
216	Ethnogeomorphology. Progress in Physical Geography, 2013, 37, 573-600.	3.2	86
217	On the multiple ecological roles of water in river networks. Ecosphere, 2013, 4, 1-14.	2.2	45
218	Controls on the Distribution and Life History of Fish Populations in the Deschutes River: Geology, Hydrology, and Dams. Water Science and Application, 0, , 51-70.	0.3	2
219	Socio-ecological complexity and the restoration of river ecosystems. Inland Waters, 2013, 3, 391-410.	2.2	54
220	Clustering and classifying channel morphology in Eastern Oklahoma ecoregions using dissimilarity coefficients. Physical Geography, 2013, 34, 512-528.	1.4	4
221	Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: implications for resilience. Ecology and Society, 2014, 19, .	2.3	12
222	Assessment of fish assemblages in streams of different orders in the Upper ParanÃ _i River basin, Central Brazil. Iheringia - Serie Zoologia, 2014, 104, 175-183.	0.5	5
223	Longitudinal variation in community structure of floodplain fishes along two rivers of the southeastern USA. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 1291-1302.	1.4	6
224	EFFECTS OF GEOMORPHIC PROCESS DOMAINS ON RIVER ECOSYSTEMS: A COMPARISON OF FLOODPLAIN AND CONFINED VALLEY SEGMENTS. River Research and Applications, 2014, 30, 617-630.	1.7	82
225	Characterizing geomorphological change to support sustainable river restoration and management. Wiley Interdisciplinary Reviews: Water, 2014, 1, 483-512.	6.5	111
226	Time and the rivers flowing: Fluvial geomorphology since 1960. Geomorphology, 2014, 216, 263-282.	2.6	40
227	Multi-scalar controls on channel geometry of headwater streams in New Zealand hill country. Catena, 2014, 113, 341-352.	5.0	7
228	Common Core Themes in Geomorphic, Ecological, and Social Systems. Environmental Management, 2014, 53, 14-27.	2.7	26
229	River of the dammed: longitudinal changes in fish assemblages in response to dams. Hydrobiologia, 2014, 727, 19-33.	2.0	45
230	Estimating the topographic predictability of debris flows. Geomorphology, 2014, 207, 114-125.	2.6	19

#	Article	IF	CITATIONS
231	A Method for Spatially Explicit Representation of Sub-watershed Sediment Yield, Southern California, USA. Environmental Management, 2014, 53, 968-984.	2.7	10
232	Landscape Influences on Ecosystem Function: Local and Routing Control of Oxygen Dynamics in a Floodplain Aquifer. Ecosystems, 2014, 17, 195-211.	3.4	13
233	Regional <i>vs</i> local drivers of phylogenetic and species diversity in stream fish communities. Freshwater Biology, 2014, 59, 450-462.	2.4	43
234	Metamorphosis in river ecology: from reaches to macrosystems. Freshwater Biology, 2014, 59, 200-210.	2.4	40
235	Relative influences of the river channel, floodplain surface, and alluvial aquifer on simulated hydrologic residence time in a montane river floodplain. Geomorphology, 2014, 205, 17-26.	2.6	66
236	Potential and actual geomorphic complexity of restored headwater streams in northern Sweden. Geomorphology, 2014, 210, 98-118.	2.6	46
237	Spatially implemented <scp>B</scp> ayesian network model to assess environmental impacts of water management. Water Resources Research, 2014, 50, 8107-8124.	4.2	24
238	Statistical analysis of structural variations of benthic communities and testing the hypothesis of river continuum. Water Resources, 2014, 41, 543-552.	0.9	1
239	The River Wave Concept: Integrating River Ecosystem Models. BioScience, 2014, 64, 870-882.	4.9	153
240	The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landscape Ecology, 2014, 29, 1001-1016.	4.2	82
241	Glacially conditioned specific stream powers in low-relief river catchments of the southern Laurentian Great Lakes. Geomorphology, 2014, 206, 271-287.	2.6	34
242	A geomorphic classification of ephemeral channels in a mountainous, arid region, southwestern Arizona, USA. Geomorphology, 2014, 221, 164-175.	2.6	51
243	HYDROLOGIC CONNECTIVITY OF FLOODPLAINS, NORTHERN MISSOURI-IMPLICATIONS FOR MANAGEMENT AND RESTORATION OF FLOODPLAIN FOREST COMMUNITIES IN DISTURBED LANDSCAPES. River Research and Applications, 2014, 30, 269-286.	1.7	11
244	Land use around headwater streams in a semi-rural environment in the humid tropics. International Journal of Water, 2014, 8, 82.	0.1	3
245	Response: A Suggested Tiered Monitoring Strategy for Maximizing Best Management Practice Effectiveness and Protecting Water Quality. Journal of Forestry, 2014, 112, 49-50.	1.0	3
246	A geomorphic perspective on terrainâ€modulated organization of vegetation productivity: analysis in two semiarid grassland ecosystems in Southwestern United States. Ecohydrology, 2014, 7, 242-257.	2.4	13
247	Temperature sensitivity of community respiration rates in streams is associated with watershed geomorphic features. Ecology, 2014, 95, 2707-2714.	3.2	47
248	River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resources Research, 2015, 51, 6893-6922.	4.2	290

#	Article	IF	CITATIONS
249	Debris flows amplify effects of wildfire on magnitude and composition of tributary subsidies to mainstem habitats. Freshwater Science, 2015, 34, 1457-1467.	1.8	17
251	Multiâ€scale environmental filters and niche partitioning govern the distributions of riparian vegetation guilds. Ecosphere, 2015, 6, 1-22.	2.2	25
252	Geomorphic predictors of riparian vegetation in small mountain watersheds. Journal of Plant Ecology, 2015, , rtv002.	2.3	2
253	Alluvial floodplain classification by multivariate clustering and discriminant analysis for lowâ€relief glacially conditioned river catchments. Earth Surface Processes and Landforms, 2015, 40, 756-770.	2.5	17
254	Causes and consequences of habitat fragmentation in river networks. Annals of the New York Academy of Sciences, 2015, 1355, 31-51.	3.8	179
255	Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe. , 2015, , .		4
256	Spatial drivers of ecosystem structure and function in a floodplain riverscape: springbrook nutrient dynamics. Freshwater Science, 2015, 34, 233-244.	1.8	3
257	The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs, 0, , .	5.4	24
258	3D seismic interpretation of the depositional morphology of the Middle to Late Triassic fluvial system in Eastern Hammerfest Basin, Barents Sea. Marine and Petroleum Geology, 2015, 68, 470-479.	3.3	11
259	Glacial legacy effects on river landforms of the southern Laurentian Great Lakes. Journal of Great Lakes Research, 2015, 41, 951-964.	1.9	22
260	An evaluation of stream characteristics in glacial versus fluvial process domains in the Colorado Front Range. Geomorphology, 2015, 231, 72-82.	2.6	35
261	Hydrologic response to valleyâ€scale structure in alpine headwaters. Hydrological Processes, 2015, 29, 356-372.	2.6	13
262	Rivers in the Critical Zone. Developments in Earth Surface Processes, 2015, , 267-293.	2.8	5
263	Legacy effects on sediments in river corridors. Earth-Science Reviews, 2015, 147, 30-53.	9.1	138
264	The process domains concept as a framework for fish and mussel habitat in a coastal plain river of southeastern North America. Ecological Engineering, 2015, 75, 484-496.	3.6	8
265	Multiscale hydrogeomorphic influences on bull trout (<i>Salvelinus confluentus</i>) spawning habitat. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 514-526.	1.4	17
266	River water temperature in the United Kingdom. Progress in Physical Geography, 2015, 39, 68-92.	3.2	117
267	Groundwater–surface-water interactions: perspectives on the development of the science over the last 20 years. Freshwater Science, 2015, 34, 368-376.	1.8	21

ARTICLE IF CITATIONS # The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river 268 1.4 242 continuum. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1272-1285. Application of Science-Based Restoration Planning to a Desert River System. Environmental 2.7 Management, 2015, 55, 1246-1261. Fish assemblage and environmental differences upstream and downstream of a cave: a potential reset 270 1.0 2 mechanism. Environmental Biology of Fishes, 2015, 98, 1223-1231. The role of the geophysical template and environmental regimes in controlling stream-living trout 271 1.4 populations. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 893-901. Relationships between invertebrate communities and both hydrological regime and other 272 2.4 41 environmental factors across New Zealand's rivers. Ecohydrology, 2015, 8, 13-32. Local and regional processes determine plant species richness in a riverâ€network metacommunity. Ecology, 2015, 96, 381-391. 3.2 Land use and surface water withdrawal effects on fish and macroinvertebrate assemblages in the 274 1.2 15 Susquehanna River basin, USA. Journal of Freshwater Ecology, 2015, 30, 229-248. Frequency of large in-channel wood in eastern Oklahoma ecoregions and its association with 2.6 channel morphology. Geomorphology, 2016, 269, 175-185. Hydrogeomorphic and Biotic Drivers of Instream Wood Differ Across Sub-basins of the Columbia 277 8 1.7 Ríver Basin, USA. River Research and Applications, 2016, 32, 1302-1315. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological 278 5.4 Monographs, 2016, 86, 146-171. Fish Assemblage Structure and Habitat Associations in a Large Western River System. River Research 279 1.7 24 and Applications, 2016, 32, 622-638. The influence of storm characteristics on hydrological connectivity in intermittent channel networks: implications for nitrogen transport and denitrification. Freshwater Biology, 2016, 61, 280 2.4 1214-1227. 281 Phosphorus in the river corridor. Earth-Science Reviews, 2016, 158, 65-88. 9.1 43 Spatial heterogeneity as a component of river geomorphic complexity. Progress in Physical Geography, 2016, 40, 598-615. 3.2 Banking carbon: a review of organic carbon storage and physical factors influencing retention in 283 2.5191 floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 2016, 41, 38-60. Variability in isotopic composition of base flow in two headwater streams of the southern 284 Appalachians. Water Resources Research, 2016, 52, 4264-4279. Catchment―and reachâ€scale controls on the distribution and expectation of geomorphic channel 288 4.2 43 adjustment. Water Resources Research, 2016, 52, 3408-3427. The influence of geomorphic unit spatial distribution on nitrogen retention and removal in a large 289 river. Ecological Modelling, 2016, 336, 26-35.

#	ARTICLE	IF	CITATIONS
290	Simulated wood budgets in two mountain streams. Geomorphology, 2016, 259, 119-133.	2.6	29
291	Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology, 2016, 9, 1141-1153.	2.4	102
292	An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. Earth Surface Processes and Landforms, 2016, 41, 701-710.	2.5	111
293	Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons. Biologia (Poland), 2016, 71, 574-582.	1.5	3
294	Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA. Journal of Hydrology: Regional Studies, 2016, 5, 1-19.	2.4	42
295	Ecological classification and mapping for landscape management and science. Progress in Physical Geography, 2016, 40, 38-65.	3.2	34
296	Evaluating process domains in small arid granitic watersheds: Case study of Pima Wash, South Mountains, Sonoran Desert, USA. Geomorphology, 2016, 255, 108-124.	2.6	10
297	Relating upstream forest management to stream ecosystem condition in middle catchment reaches in Tasmania. Forest Ecology and Management, 2016, 362, 142-155.	3.2	10
298	Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Science of the Total Environment, 2016, 543, 828-845.	8.0	131
299	Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management. Aquatic Sciences, 2016, 78, 35-55.	1.5	43
300	Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA. Forest Ecology and Management, 2016, 359, 126-140.	3.2	22
301	Nature's complex flume — Using a diagnostic state-and-transition framework to understand post-restoration channel adjustment of the Clark Fork River, Montana. Geomorphology, 2016, 254, 1-15.	2.6	11
302	Aquatic biodiversity in forests: a weak link in ecosystem services resilience. Biodiversity and Conservation, 2017, 26, 3125-3155.	2.6	21
303	Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado. Geomorphology, 2017, 277, 171-181.	2.6	43
304	River sensitivity: a lost foundation concept in fluvial geomorphology. Earth Surface Processes and Landforms, 2017, 42, 55-70.	2.5	173
305	The importance of metacommunity processes for long-term turnover of riffle-dwelling fish assemblages depends on spatial position within a dendritic network. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 101-115.	1.4	18
306	Aquatic foodâ€web structure along a salinized dryland river. Freshwater Biology, 2017, 62, 681-694.	2.4	27
307	Geology and geomorphology control suspended sediment yield and modulate increases following timber harvest in temperate headwater streams. Journal of Hydrology, 2017, 548, 754-769.	5.4	42

ATION P

#	Article	IF	CITATIONS
308	Connectivity in rivers. Progress in Physical Geography, 2017, 41, 345-362.	3.2	161
309	Valley Segments, Stream Reaches, andÂChannel Units. , 2017, , 21-47.		13
310	Assessing Erosion Hazards due to Floods on Fans: Physical Modeling and Application to Engineering Challenges. Journal of Hydraulic Engineering, 2017, 143, .	1.5	8
311	The spatial organization of ecosystem services in riverâ€floodplains. Ecosphere, 2017, 8, e01728.	2.2	39
312	The fate of sediment, wood, and organic carbon eroded during an extreme flood, Colorado Front Range, USA. Geology, 2017, 45, 499-502.	4.4	36
313	Eight river principles for navigating the science–policy interface. Marine and Freshwater Research, 2017, 68, 401.	1.3	15
314	Carbon dynamics of river corridors and the effects of human alterations. Ecological Monographs, 2017, 87, 379-409.	5.4	86
315	Geomorphic classification of rivers: a new methodology applied in an Atlantic Region (Galicia, NW) Tj ETQq1 1 0.	784314 rş 2.7	gBT /Overlock
316	A Stochastic Water Balance Framework for Lowland Watersheds. Water Resources Research, 2017, 53, 9564-9579.	4.2	10
317	Riparian Processes and Interactions. , 2017, , 83-111.		4
318	An investigation of controlling variables of riverbank erosion in sub-tropical Australia. Environmental Modelling and Software, 2017, 97, 1-15.	4.5	10
319	Geomorphology and Sediment Regimes of Intermittent Rivers and Ephemeral Streams. , 2017, , 21-49.		38
320	Hydrological Connectivity in Intermittent Rivers and Ephemeral Streams. , 2017, , 79-108.		42
321	Slope-Fluvial System Structure in the Western Tatra Mountains (Poland): Slope-to-Channel Transition. Arctic, Antarctic, and Alpine Research, 2017, 49, 569-583.	1.1	5
322	Fish Assemblages. , 2017, , 321-353.		2
323	Climatic seasonality, hydrological variability, and geomorphology shape fish assemblage structure in a subtropical floodplain. Freshwater Science, 2017, 36, 653-668.	1.8	22
324	Landscape archetypes for ecological classification and mapping. Progress in Physical Geography, 2017, 41, 95-123.	3.2	33
325	Windthrow Dynamics in Boreal Ontario: A Simulation of the Vulnerability of Several Stand Types across a Range of Wind Speeds. Forests, 2017, 8, 233.	2.1	20

#	Article	IF	CITATIONS
326	Hydrogeomorphology: Recognition and Evolution of the Flood Phenomenon. , 2017, , 167-191.		5
327	Shifting stream planform state decreases stream productivity yet increases riparian animal production. Oecologia, 2018, 187, 167-180.	2.0	25
328	Applying a hydrogeomorphic channel classification to understand spatial patterns in riparian vegetation. Journal of Vegetation Science, 2018, 29, 550-559.	2.2	6
329	Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis. Journal of the American Water Resources Association, 2018, 54, 323-345.	2.4	53
330	Characterization of River Networks: A GIS Approach and Its Applications. Journal of the American Water Resources Association, 2018, 54, 899-913.	2.4	26
331	A geomorphological characterisation of river systems in South Africa: A case study of the Sabie River. Physics and Chemistry of the Earth, 2018, 105, 196-205.	2.9	7
332	Fluvial system dynamics derived from distributed sediment budgets: perspectives from an uncertaintyâ€bounded application. Earth Surface Processes and Landforms, 2018, 43, 1335-1354.	2.5	6
333	Sediment–Water Surface Area Along Rivers: Water Column Versus Benthic. Ecosystems, 2018, 21, 1505-1520.	3.4	19
334	River Classification as a Geographic Tool in the Age of Big Data and Global Change. Geographical Review, 2018, 108, 120-137.	1.8	9
335	Variation in stream metabolism and benthic invertebrate composition along longitudinal profiles of two contrasting river systems. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 549-559.	1.4	8
336	Connections among soil, ground, and surface water chemistries characterize nitrogen loss from an agricultural landscape in the upper Missouri River Basin. Journal of Hydrology, 2018, 556, 247-261.	5.4	17
337	Application of lithotopo units for automatic classification of rivers: Concept, development and validation. Ecological Indicators, 2018, 84, 459-469.	6.3	7
338	Rivers as Ecosystems. SpringerBriefs in Environmental Science, 2018, , 11-58.	0.3	0
339	Post-disturbance sediment recovery: Implications for watershed resilience. Geomorphology, 2018, 305, 61-75.	2.6	34
340	A oneâ€dimensional processâ€based approach to study reservoir sediment dynamics during management operations. Earth Surface Processes and Landforms, 2018, 43, 373-386.	2.5	9
341	Assessment of alluvial trends toward dynamic equilibrium under chronic climatic forcing. Advances in Water Resources, 2018, 120, 19-34.	3.8	10
342	Downstream grainâ€size changes associated with a transition from single channel to anabranching. Sedimentology, 2018, 65, 1590-1610.	3.1	5
343	Road-stream crossing an in-stream intervention to alter channel morphology of headwater streams: case study. International Journal of River Basin Management, 2018, 16, 1-19.	2.7	20

#	Article	IF	CITATIONS
344	A patchy continuum? Stream processes show varied responses to patch―and continuumâ€based analyses. Ecosphere, 2018, 9, e02481.	2.2	14
345	Do riffle and pool fish assemblages respond differently to longitudinal position along a subtropical stream network?. Fundamental and Applied Limnology, 2018, 192, 115-128.	0.7	4
346	Fisheries Volume 43 Number 9 September 2018. Fisheries, 2018, 43, 379-450.	0.8	0
347	Effect of small water retention structures on diffusive CO2 and CH4 emissions along a highly impounded river. Inland Waters, 2018, 8, 449-460.	2.2	5
348	A comparison of the taxonomic and trait structure of macroinvertebrate communities between the riffles and pools of montane headwater streams. Hydrobiologia, 2018, 820, 115-133.	2.0	24
349	Geomorphic context in rivers. Progress in Physical Geography, 2018, 42, 841-857.	3.2	22
350	Fish community response to environmental variations in an impacted Neotropical basin. Ecology of Freshwater Fish, 2018, 27, 1126-1139.	1.4	11
351	A stream classification system to explore the physical habitat diversity and anthropogenic impacts in riverscapes of the eastern United States. PLoS ONE, 2018, 13, e0198439.	2.5	17
352	The challenges of channel heads. Earth-Science Reviews, 2018, 185, 649-664.	9.1	22
353	Using Natural Disturbance and Portfolio Concepts to Guide Aquatic–Riparian Ecosystem Management. Fisheries, 2018, 43, 406-422.	0.8	16
354	Quantitatively describing the downstream effects of an abrupt land cover transition: buffering effects of a forest remnant on a stream impacted by cattle grazing. Inland Waters, 2018, 8, 294-311.	2.2	14
355	Discovery of zeroâ€order basins as an important link for progress in hydrogeomorphology. Hydrological Processes, 2018, 32, 3059-3065.	2.6	13
356	Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 2019, 44, 4-26.	2.5	233
357	A geomorphic perspective on the rights of the river in Aotearoa New Zealand. River Research and Applications, 2019, 35, 1640-1651.	1.7	40
358	Bedrock fracture influences on geomorphic process and form across process domains and scales. Earth Surface Processes and Landforms, 2019, 44, 27-45.	2.5	45
359	Emergent productivity regimes of river networks. Limnology and Oceanography Letters, 2019, 4, 173-181.	3.9	50
360	An Integrated Framework for Ecological Drought across Riverscapes of North America. BioScience, 2019, 69, 418-431.	4.9	50
361	Floodplain inundation spectrum across the United States. Nature Communications, 2019, 10, 5194.	12.8	36

#	Article	IF	CITATIONS
362	Functional process zones and their fish communities in temperate Andean river networks. River Research and Applications, 2019, 35, 1702-1711.	1.7	13
363	Development and Application of Predictive Models of Surface Water Extent to Identify Aquatic Refuges in Eastern Australian Temporary Stream Networks. Water Resources Research, 2019, 55, 9639-9655.	4.2	10
364	Distance to large rivers affects fish diversity patterns in highly dynamic streams of Central Amazonia. PLoS ONE, 2019, 14, e0223880.	2.5	11
365	Metabolic rhythms in flowing waters: An approach for classifying river productivity regimes. Limnology and Oceanography, 2019, 64, 1835-1851.	3.1	52
366	Space-for-time substitution in geomorphology. Journal of Chinese Geography, 2019, 29, 1670-1680.	3.9	16
367	Impact of ski run construction on atypical channel head development. Science of the Total Environment, 2019, 692, 791-805.	8.0	9
368	Timescale dependence in river channel migration measurements. Earth Surface Processes and Landforms, 2019, 44, 1530-1541.	2.5	21
369	Communities associated with the Functional Process Zone scale: A case study of stream macroinvertebrates in endorheic drainages. Science of the Total Environment, 2019, 677, 184-193.	8.0	14
370	The stream evolution triangle: Integrating geology, hydrology, and biology. River Research and Applications, 2019, 35, 315-326.	1.7	54
371	Landscape process domains drive patterns of CO ₂ evasion from river networks. Limnology and Oceanography Letters, 2019, 4, 87-95.	3.9	70
372	Relevant parameters for characterizing mountain rivers: a review. Revista Brasileira De Recursos Hidricos, 0, 24, .	0.5	2
373	Ecohydrologic structure and function of stream networks with earthen upstream and concreteâ€lined downstream. Ecohydrology, 2019, 12, e2088.	2.4	7
374	Catchment-scale cumulative impact of human activities on river channels in the late Anthropocene: implications, limitations, prospect. Geomorphology, 2019, 338, 88-104.	2.6	89
375	Functional Structure of River Ecosystems: Retrospective of the Development of Contemporary Concepts (Review). Inland Water Biology, 2019, 12, 1-9.	0.8	4
376	Importance of landscape context for postâ€restoration recovery of riparian vegetation. Freshwater Biology, 2019, 64, 1015-1028.	2.4	4
377	Variation in hydrochory among lakes and streams: Effects of channel planform, roughness, and currents. Ecohydrology, 2019, 12, e2091.	2.4	5
378	The Natural Wood Regime in Rivers. BioScience, 2019, 69, 259-273.	4.9	121
379	Watershed geomorphology modifies the sensitivity of aquatic ecosystem metabolism to temperature. Scientific Reports, 2019, 9, 17619.	3.3	15

#	Article	IF	CITATIONS
380	The use of the slope–area function to analyse process domains in complex badland landscapes. Earth Surface Processes and Landforms, 2019, 44, 273-286.	2.5	15
381	Multiple Stressors in Riparian Ecosystems. , 2019, , 81-110.		35
382	Gradients in fish feeding guilds along a reservoir cascade. Aquatic Sciences, 2019, 81, 1.	1.5	8
383	Cascading processes in a changing environment: Disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Science of the Total Environment, 2019, 655, 1089-1103.	8.0	34
384	Developing composite indicators for ecological water quality assessment based on network interactions and expert judgment. Environmental Modelling and Software, 2019, 115, 51-62.	4.5	9
385	Selecting geomorphic variables for automatic river segmentation: Trade-offs between information gained and effort required. Geomorphology, 2019, 329, 248-258.	2.6	7
386	Advancing our predictive understanding of river corridor exchange. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1327.	6.5	50
387	Checklist of Benthic Macroinvertebrate Taxa Along Different Riparian Land Use Types in Alaknanda River Catchment of the Central Himalaya, Uttarakhand (India). Proceedings of the Zoological Society, 2019, 72, 130-153.	1.0	4
388	How water, wind, waves and ice shape landscapes and landforms: Historical contributions to geomorphic science. Geomorphology, 2020, 366, 106687.	2.6	6
389	Lotic Freshwater: Rivers. , 2020, , 152-169.		0
390	Does variable channel morphology lead to dynamic salmon habitat?. Earth Surface Processes and Landforms, 2020, 45, 295-311.	2.5	8
391	Wood process domains and wood loads on floodplains. Earth Surface Processes and Landforms, 2020, 45, 144-156.	2.5	31
392	River Classification in Line with China's New Requirements of Water Resources Management. IOP Conference Series: Materials Science and Engineering, 2020, 794, 012005.	0.6	0
393	Linkages between temperature, macroinvertebrates, and young-of-year Coho Salmon growth in surface-water and groundwater streams. Freshwater Science, 2020, 39, 447-460.	1.8	7
394	Multiscale effects on freshwater fish distribution in a highly disturbed Mediterranean-type basin: community-level and species-level responses. Aquatic Ecology, 2020, 54, 869-887.	1.5	1
395	Point bars retained particulate organic carbon within a meandering river corridor in Zoige Basin of the Tibetan Plateau. Journal of Hydrology, 2020, 588, 125112.	5.4	6
396	The River Continuum Concept: lessons from the past and perspectives for the future. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1853-1864.	1.4	63
397	Cutting Edge: A Comparison of Contemporary Practices of Riparian Buffer Retention Around Small Streams in Canada, Finland, and Sweden. Water Resources Research, 2020, 56, e2019WR026381.	4.2	39

#	Article	IF	CITATIONS
398	Linking instream wood recruitment to adjacent forest development in landscapes driven by stand-replacing disturbances: a conceptual model to inform riparian and stream management. Environmental Reviews, 2020, 28, 517-527.	4.5	10
399	River ecosystem conceptual models and nonâ€perennial rivers: A critical review. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1473.	6.5	37
400	Streamflow permanence in headwater streams across four geomorphic provinces in Northern California. Hydrological Processes, 2020, 34, 4487-4504.	2.6	14
401	Beyond sticks and stones: Integrating physical and ecological conditions into watershed restoration assessments using a food web modeling approach. Food Webs, 2020, 25, e00160.	1.2	9
402	Sediment transport at the river confluences: few observations from a sub-tropical plateau fringe river of eastern India. , 2020, , 1-24.		3
403	Facets and scales in river restoration: Nestedness and interdependence of hydrological, geomorphic, ecological, and biogeochemical processes. Journal of Environmental Management, 2020, 265, 110288.	7.8	46
404	Effects of tributary size on the resource supply and physical habitat at tributary junctions along two mainstem rivers. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1393-1408.	1.4	5
405	Reachâ€scale bankfull channel types can exist independently of catchment hydrology. Earth Surface Processes and Landforms, 2020, 45, 2179-2200.	2.5	10
406	Application of globally available, coarseâ€resolution digital elevation models for delineating valley bottom segments of varying length across a catchment. Earth Surface Processes and Landforms, 2020, 45, 2788-2803.	2.5	8
407	Coupled fish-hydrogeomorphic responses to urbanization in streams of Columbus, Ohio, USA. PLoS ONE, 2020, 15, e0234303.	2.5	9
408	River Restoration: Disappointing, Nascent, Yet Desperately Needed. , 2020, , .		7
409	Stream Biomes of the World. , 2020, , 134-151.		2
411	Relationships Between Environmental Conditions And Fish Assemblages In Tropical Savanna Headwater Streams. Scientific Reports, 2020, 10, 2174.	3.3	13
412	A catchment scale assessment of patterns and controls of historic 2D river planform adjustment. Geomorphology, 2020, 354, 107046.	2.6	7
414	Riparian vegetation as an indicator of stream channel presence and connectivity in arid environments. Journal of Arid Environments, 2020, 178, 104167.	2.4	15
415	Reflections on the history of research on large wood in rivers. Earth Surface Processes and Landforms, 2021, 46, 55-66.	2.5	30
416	Reciprocal Relations Between Riparian Vegetation, Fluvial Landforms and Channel Processes. , 2022, , 269-297.		1
417	Scale associated coupling between channel morphology and riparian vegetation in a bedrock-controlled stream. Geomorphology, 2021, 375, 107562.	2.6	2

		CITATION REPORT	
#	ARTICLE	IF	CITATIONS
418	Uncovering process domains in large rivers: Patterns and potential drivers of benthic substrate heterogeneity in two North American riverscapes. Geomorphology, 2021, 375, 107524.	2.6	7
419	Sr and U isotopes reveal the influence of lithologic structure on groundwater contributions along a mountain headwater catchment (Hyalite Canyon, MT). Journal of Hydrology, 2021, 594, 125653.	5.4	1
420	Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices. Journal of the American Water Resources Association, 2021, 57, 154-169.	2.4	10
421	Prevalence, correlates and outcomes of absolute and functional iron deficiency anemia in nondialysis-dependent chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 129-136.	0.7	46
423	Geomorphic Classification of Rivers: An Updated Review. , 2022, , 1143-1190.		6
425	Beyond Stationarity: Influence of Flow History and Sediment Supply on Coarse Bedload Transport. Water Resources Research, 2021, 57, e2020WR027774.	4.2	8
426	A framework for lotic macrosystem research. Ecosphere, 2021, 12, e03342.	2.2	7
427	Geophysical templates modulate the structure of stream food webs dominated by omnivory. Ecosphere, 2021, 12, e03444.	2.2	3
428	Effects of subsidies from small anadromous Pacific salmon populations on stream and riparian food webs are mediated by channel gradient. Freshwater Science, 2021, 40, 1-20.	1.8	1
429	Morphodynamics of Boulderâ€Bed Semiâ€Alluvial Streams in Northern Fennoscandia: A Flume Experiment to Determine Sediment Selfâ€Organization. Water Resources Research, 2021, 57, e2020WR028859.	4.2	10
430	Identifying Geomorphic Process Domains in the Synthetic Landscapes of West Virginia, USA. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005851.	2.8	2
431	Structure of aquatic macroinvertebrate communities in streams of a sub-basin in the Pampa Biome, Southern Brazil. Neotropical Biology and Conservation, 2021, 16, 249-271.	0.9	2
432	An Integrative Conceptualization of Floodplain Storage. Reviews of Geophysics, 2021, 59, e2020RG000724.	23.0	40
433	Floodplain Wetland Channel Planform, Crossâ€5ectional Morphology, and Sediment Characteristics Along an Estuarine to Tidal River Gradient. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2019JF005391.	2.8	6
435	Analysis of reach-scale sediment process domains in glacially-conditioned catchments using self-organizing maps. Geomorphology, 2021, 382, 107684.	2.6	6
436	Turbidity Structures the Controls of Ecosystem Metabolism and Associated Metabolic Process Domains Along a 75-km Segment of a Semiarid Stream. Ecosystems, 2022, 25, 422-440.	3.4	1
437	Effects of reservoir cascades on diversity, distribution, and abundance of fish assemblages in three Neotropical basins. Science of the Total Environment, 2021, 778, 146246.	8.0	15
438	Riverine complexity and life history inform restoration in riparian environments in the southwestern United States. Restoration Ecology, 2021, 29, e13418.	2.9	5

#	Article	IF	CITATIONS
439	Does Type, Quantity, and Location of Habitat Matter for Fish Diversity in a Great Plains Riverscape?. Fisheries, 2021, 46, 495.	0.8	0
440	Improving river hydromorphological assessment through better integration of riparian vegetation: Scientific evidence and guidelines. Journal of Environmental Management, 2021, 292, 112730.	7.8	38
441	Modelling sediment (dis)connectivity across a river network to understand locationalâ€ŧransmissionâ€filter sensitivity for identifying hotspots of potential geomorphic adjustment. Earth Surface Processes and Landforms, 2021, 46, 2856-2869.	2.5	6
442	Geomorphic controls on the diversity and patterns of fluvial forms along longitudinal profiles. Catena, 2021, 203, 105329.	5.0	11
443	Basinâ€wide hydromorphological analysis of ephemeral streams using machine learning algorithms [‡] . Earth Surface Processes and Landforms, 2022, 47, 328-344.	2.5	15
444	Form and process based geomorphic classification and mapping of a meandering river using satellite remote sensing data. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	1
445	Determining transition reaches between torrents and downstream rivers using a valley morphology index in a mountainous landscape. Hydrological Processes, 2021, 35, e14393.	2.6	2
446	Measuring stream habitat conditions: Can remote sensing substitute for field data?. Science of the Total Environment, 2021, 788, 147617.	8.0	6
447	Comparison of regression-based and machine learning techniques to explain alpha diversity of fish communities in streams of central and eastern India. Ecological Indicators, 2021, 129, 107922.	6.3	4
448	Physiography of Rivers: Relevant Hypothesis and Theories. , 2021, , 235-374.		2
449	Debrisâ€flowâ€dominated sediment transport through a channel network after wildfire. Earth Surface Processes and Landforms, 2020, 45, 1155-1167.	2.5	21
450	Aquatic Landscapes: The Importance of Integrating Waters. , 2013, , 1-37.		1
452	Geology, Geomorphology, and the restoration ecology of salmon. GSA Today, 2004, 14, 4.	2.0	18
453	Geomorphic and Ecological Disturbance and Recovery from Two Small Dams and Their Removal. PLoS ONE, 2014, 9, e108091.	2.5	58
454	The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks. PLoS ONE, 2016, 11, e0150293.	2.5	75
460	The wall between civil engineering and ecology has been removed?River restoration: linking science with application. Ecology and Civil Engineering, 2007, 10, 15-25.	0.1	5
463	Restoration of Riparian Ecosystems. , 2003, , .		0
465	Landscape Influences on Stream Habitats and Biological Assemblages. , 2006, , .		11

#	Article	IF	CITATIONS
466	The Stream Ecosystem. , 2007, , 83-103.		0
467	Leaf litter degradation in the wave impact zone of a pre-alpine lake. , 2008, , 117-131.		5
468	Aspectos conceituais sobre o regime hidrológico para a definição do hidrograma ambiental. Revista Ambiente & Ãgua, 2011, 6, 131-147.	0.3	3
469	Caracterización geomorfológica de los rÃos de Galicia mediante unidades litotopográficas. Geographicalia, 2014, , 35.	0.1	Ο
470	Impact Scales of Fluvial Response to Management along the Sacramento River, California, USA: Transience Versus Persistence. , 2015, , 53-85.		1
471	Impact of Dam on Channel Morphology of Alaknanda River in Srinagar Valley (Garhwal Himalaya). Himalayan Journal of Social Sciences and Humanities, 2019, 14, .	0.0	2
472	Morphologic and hydraulic variability of small bedrock and alluvial channels in relation to lithological controls, Upper Ogun River Basin, Southwestern Nigeria. Physical Geography, 2020, 41, 537-557.	1.4	6
473	Fish in the matrix: effects of landscape on community-structure patterns of the ichthyofauna of streams in Cerrado. Marine and Freshwater Research, 2020, 71, 1211.	1.3	2
475	Morphological dynamicity and sediment characteristics of channel bars in the piedmont rivers: a study of Darjeeling Himalayan foothill region, India. Journal of Sedimentary Environments, 0, , 1.	1.5	1
476	Riverscape approaches in practice: perspectives and applications. Biological Reviews, 2022, 97, 481-504.	10.4	38
477	Attributes for assessing the environmental quality of riparian zones. , 2006, 25, 389-402.		35
478	Geomorphological diversity of rivers in the Amazon Basin. Geomorphology, 2022, 400, 108078.	2.6	4
479	Hydromorphology: Overview and Assessment Methods. , 2022, , 84-97.		1
480	The River Continuum Concept. , 2021, , .		2
481	Geomorphic responses of fluvial systems to climate change: A habitat perspective. River Research and Applications, 2022, 38, 757-775.	1.7	2
482	Testing the effective-discharge paradigm in gravel-bed river restoration. Geomorphology, 2022, 403, 108139.	2.6	4
484	Riparian Zones. , 2022, , .		1
485	The effect of hierarchical environmental structure and catchment-scale land cover on fish assemblage composition in streams from the Brazilian south-eastern rain forest. Hydrobiologia, 2022, 849, 4485-4497.	2.0	4

#	Article	IF	CITATIONS
486	Truths of the Riverscape: Moving beyond command-and-control to geomorphologically informed nature-based river management. Geoscience Letters, 2022, 9, .	3.3	21
487	Nutrient processing domains: Spatial and temporal patterns of material retention in running waters. Freshwater Science, 2022, 41, 195-214.	1.8	4
488	Do the drivers and levels of isolation in fish faunas differ across Atlantic and Pacific drainages in the Americas?. Journal of Biogeography, 0, , .	3.0	0
489	Reconstruction of Nineteenth-Century Channel Patterns of Polish Carpathians Rivers from the Galicia and Bucovina Map (1861–1864). Remote Sensing, 2021, 13, 5147.	4.0	4
490	Quantitative analysis of hillshed geomorphology and critical zone function: Raising the hillshed to watershed status. Bulletin of the Geological Society of America, 2022, 134, 2007-2021.	3.3	2
491	Sediment Nourishments to Mitigate Channel Bed Incision in Engineered Rivers. Journal of Hydraulic Engineering, 2022, 148, .	1.5	5
493	Levees don't protect, they disconnect: A critical review of how artificial levees impact floodplain functions. Science of the Total Environment, 2022, 837, 155773.	8.0	33
494	Faunal assemblages and multi-scale habitat patterns in headwater tributaries of the South Fork Trinity River – an unregulated river embedded within a multiple-use landscape. Animal Biodiversity and Conservation, 2010, 33, 63-87.	0.5	4
495	Riverine Habitat Dynamics. , 2013, , 382-395.		0
496	A River Runs Through It: Conceptual Models in Fluvial Geomorphology. , 2013, , 5-21.		0
496 497	A River Runs Through It: Conceptual Models in Fluvial Geomorphology. , 2013, , 5-21. River Distance, Forest Basal Area, and Climatic Conditions are the Main Drivers Influencing Lying Deadwood in Riparian Forests. SSRN Electronic Journal, 0, , .	0.4	0
496 497 498	A River Runs Through It: Conceptual Models in Fluvial Geomorphology. , 2013, , 5-21. River Distance, Forest Basal Area, and Climatic Conditions are the Main Drivers Influencing Lying Deadwood in Riparian Forests. SSRN Electronic Journal, 0, , . Confluence analysis at basin scale in a tropical bedrock river – The IvaÃ-River, Southern Brazil. Journal of South American Earth Sciences, 2022, 116, 103877.	0.4	0 0 1
496 497 498 499	A River Runs Through It: Conceptual Models in Fluvial Geomorphology., 2013, , 5-21. River Distance, Forest Basal Area, and Climatic Conditions are the Main Drivers Influencing Lying Deadwood in Riparian Forests. SSRN Electronic Journal, 0, , . Confluence analysis at basin scale in a tropical bedrock river – The IvaÃ-River, Southern Brazil. Journal of South American Earth Sciences, 2022, 116, 103877. Characterizing coarse sediment grain size variability along the upper Sandy River, Oregon, via UAV remote sensing. Geomorphology, 2022, 417, 108447.	0.4 1.4 2.6	0 0 1 3
 496 497 498 499 500 	A River Runs Through It: Conceptual Models in Fluvial Geomorphology. , 2013, , 5-21. River Distance, Forest Basal Area, and Climatic Conditions are the Main Drivers Influencing Lying Deadwood in Riparian Forests. SSRN Electronic Journal, 0, , . Confluence analysis at basin scale in a tropical bedrock river – The IvaÃ-River, Southern Brazil. Journal of South American Earth Sciences, 2022, 116, 103877. Characterizing coarse sediment grain size variability along the upper Sandy River, Oregon, via UAV remote sensing. Geomorphology, 2022, 417, 108447. Characteristics and Process Interactions in Natural Fluvial–Riparian Ecosystems: A Synopsis of the Watershed-Continuum Model. , 0,	0.4 1.4 2.6	0 0 1 3 0
 496 497 498 499 500 501 	A River Runs Through It: Conceptual Models in Fluvial Geomorphology. , 2013, , 5-21. River Distance, Forest Basal Area, and Climatic Conditions are the Main Drivers Influencing Lying Deadwood in Riparian Forests. SSRN Electronic Journal, 0, , . Confluence analysis at basin scale in a tropical bedrock river – The IvaÃ-River, Southern Brazil. Journal of South American Earth Sciences, 2022, 116, 103877. Characterizing coarse sediment grain size variability along the upper Sandy River, Oregon, via UAV remote sensing. Geomorphology, 2022, 417, 108447. Characteristics and Process Interactions in Natural Fluvial–Riparian Ecosystems: A Synopsis of the Watershed-Continuum Model. , 0, Natural variation of physical-habitat conditions among least-disturbed streams of a neotropical river basin in Brazil. , 2023, 2, 100091.	0.4 1.4 2.6	0 0 1 3 0
 496 497 498 499 500 501 502 	A River Runs Through It: Conceptual Models in Fluvial Geomorphology., 2013, , 5-21. River Distance, Forest Basal Area, and Climatic Conditions are the Main Drivers Influencing Lying Deadwood in Riparian Forests. SSRN Electronic Journal, 0, , . Confluence analysis at basin scale in a tropical bedrock river – The IvaĂ-River, Southern Brazil. Journal of South American Earth Sciences, 2022, 116, 103877. Characterizing coarse sediment grain size variability along the upper Sandy River, Oregon, via UAV remote sensing. Geomorphology, 2022, 417, 108447. Characteristics and Process Interactions in Natural Fluvial–Riparian Ecosystems: A Synopsis of the Watershed-Continuum Model., 0, Natural variation of physical-habitat conditions among least-disturbed streams of a neotropical river basin in Brazil., 2023, 2, 100091. A multi-scale analysis and classification of the hydrogeomorphological characteristics of Irish headwater streams. Hydrobiologia, 0,	0.4 1.4 2.6	0 0 1 3 0 0
 496 497 498 499 500 501 502 503 	A River Runs Through It: Conceptual Models in Fluvial Geomorphology., 2013, , 5-21. River Distance, Forest Basal Area, and Climatic Conditions are the Main Drivers Influencing Lying Deadwood in Riparian Forests. SSRN Electronic Journal, 0, , . Confluence analysis at basin scale in a tropical bedrock river âC ⁴⁴ The IvaÃ-River, Southern Brazil. Journal of South American Earth Sciences, 2022, 116, 103877. Characterizing coarse sediment grain size variability along the upper Sandy River, Oregon, via UAV remote sensing. Geomorphology, 2022, 417, 108447. Characteristics and Process Interactions in Natural Fluvialâ€"Riparian Ecosystems: A Synopsis of the Watershed-Continuum Model., 0, . Natural variation of physical-habitat conditions among least-disturbed streams of a neotropical river basin in Brazil., 2023, 2, 100091. Amulti-scale analysis and classification of the hydrogeomorphological characteristics of Irish headwater streams. Hydrobiologia, 0, Golden mussel geographic distribution paradox: how can stream theories explain?. International Journal of Hydrology, 2022, 6, 73-77.	0.4 1.4 2.6 2.0	0 0 1 3 0 0 2 1

#	Article	IF	CITATIONS
505	Geomorphology and season interactively determine benthic metabolism and nutrient uptake in a lowland river. Freshwater Science, 0, , .	1.8	0
506	Channel abandonment alters trophic characteristics of highland rivers. Water Research, 2023, 230, 119590.	11.3	1
507	Watersheds and stream networks viewed longitudinally: Example insights from novel spatial portrayals of watershed characteristics. River Research and Applications, 2023, 39, 819-831.	1.7	1
508	Monitoring of Rivers and Streams Conditions Using Biological Indices with Emphasis on Algae: A Comprehensive Descriptive Review toward River Management. , 0, , .		3
509	The discontinuum of river networks: the importance of geomorphic boundaries. Landscape Ecology, 2023, 38, 1307-1319.	4.2	2
510	Emergence phenology of the giant salmonfly and responses by birds in Idaho river networks. Frontiers in Ecology and Evolution, 0, 11, .	2.2	0
511	Uncovering the hidden biodiversity of streams at the upper distribution limit of fish. Journal of Biogeography, 2023, 50, 1151-1162.	3.0	1
512	Geomorphic response of low-gradient, meandering and braided alluvial river channels to increased sediment supply. Earth-Science Reviews, 2023, 241, 104429.	9.1	2
513	An environmental resistance model to inform the biogeography of aquatic invasions in complex stream networks. Journal of Biogeography, 2023, 50, 1422-1436.	3.0	3
514	Aquatic food web expansion and trophic redundancy along the <scp>R</scp> ocky <scp>M</scp> ountain– <scp>G</scp> reat <scp>P</scp> lains ecotone. Ecology, 2023, 104, .	3.2	1
515	Nutrients in tropical and temperate rivers and floodplains – comparison of the Rivers Songkhram (Thailand) and Narew (Poland). Wetlands, 2023, 43, .	1.5	2
517	Viewing river corridors through the lens of critical zone science. Frontiers in Water, 0, 5, .	2.3	4
518	Determining the Flow State of Channels Under Vegetation With Airborne Lidar. Water Resources Research, 2023, 59, .	4.2	0
519	Changes in Ecosystem Structure and Composition Influence Groundwater Chemistry in Herbaceous Wetlands. Ecosystems, 2023, 26, 1603-1621.	3.4	1
520	The ecological nature of whole river macrosystems: new perspectives from the riverine ecosystem synthesis. Frontiers in Ecology and Evolution, 0, 11, .	2.2	2
521	Cascading Processes and Multiple Hazards and Risks in Chilean Rivers: Lessons Learnt and Remaining Challenges. The Latin American Studies Book Series, 2023, , 235-250.	0.2	0
522	Hypoxia vulnerability in the salmon watersheds of Southeast Alaska. Science of the Total Environment, 2023, 896, 165247.	8.0	0
524	Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sensing, 2023, 15, 3563.	4.0	2

#	Article	IF	CITATIONS
525	Ecological Disturbances by Transportation Infrastructure. Earth and Environmental Sciences Library, 2023, , 189-203.	0.4	0
526	An automated approach towards generation of stream attributes for use in GIS applications. Multimedia Tools and Applications, 2024, 83, 20307-20356.	3.9	0
527	Responses of Stream Water Temperature to Water Levels in Forested Catchments of South Korea. Forests, 2023, 14, 2085.	2.1	0
528	Large-scale stresses, decay of River Jamuna and resilience strategies in the Anthropocene. Quaternary Science Advances, 2023, 12, 100111.	1.9	0
529	Precipitation as a key control on erosion rates in the tectonically inactive northeastern Sonoran Desert, central Arizona, USA. Physical Geography, 2024, 45, 53-83.	1.4	0
530	Habitat overlap among native and introduced cold-water fishes in the Himalayas. Scientific Reports, 2023, 13, .	3.3	1
531	Assessment of the viable effects of structural reconstruction of habitats in a mountain stream: A long-term study. Science of the Total Environment, 2023, 905, 167230.	8.0	0
532	Drainage area is not enough: multivariate hydraulic geometry in the Southern Blue Ridge Mountains, U.S.A International Journal of River Basin Management, 0, , 1-13.	2.7	0
533	Sediment sources and connectivity linked to hydrologic pathways and geomorphic processes: a conceptual model to specify sediment sources and pathways through space and time. Frontiers in Water, 0, 5, .	2.3	0
534	Snow Avalanches as a Driver of Large Wood Dynamics in Mountain Streams. Geophysical Research Letters, 2023, 50, .	4.0	1
535	Classification and Assessment of Riparian Ecosystems in Northwest Oregon for Restoration Planning. Northwest Science, 2023, 96, .	0.2	0
536	Geomorphic context in processâ€based river restoration. River Research and Applications, 2024, 40, 322-340	1.7	0
537	Water isotopic composition traces source and dynamics of water supply in a semiâ€arid agricultural landscape. Hydrological Processes, 2024, 38, .	2.6	0