Chiral nematic order in liquid crystals imposed by an er

Nature 399, 764-766

DOI: 10.1038/21612

Citation Report

#	Article	IF	Citations
2	Optical devices fabricated from porous thin films embedded with liquid crystals. , 0, , .		1
3	Alignment and switching of nematic liquid crystals embedded in porous chiral thin films. Liquid Crystals, 2000, 27, 387-391.	2.2	44
4	Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 158-166.	2.1	101
5	Field emission from carbon and silicon films with pillar microstructure. Thin Solid Films, 2001, 389, 1-4.	1.8	32
6	Nematic liquid-crystalline physical gels exhibiting faster responses to electric fields in twisted nematic cells. Displays, 2001, 22, 33-37.	3.7	25
7	Optical activity of chiral thin film and liquid crystal hybrids. Liquid Crystals, 2001, 28, 1799-1803.	2.2	29
8	Cholesteric Thermo-reversible Liquid-Crystal Gels: Phase Behaviour and Electro-optical Response. Japanese Journal of Applied Physics, 2001, 40, 2372-2377.	1.5	4
9	Macroscopic chirality of a liquid crystal from nonchiral molecules. Physical Review E, 2001, 63, 061710.	2.1	34
10	NATURAL FORMATION OF NANOSTRUCTURES: FROM FUNDAMENTALS IN METAL HETEROEPITAXY TO APPLICATIONS IN OPTICS AND BIOMATERIALS SCIENCE. Surface Review and Letters, 2001, 08, 169-228.	1.1	31
11	Optical behavior of chiral thin film-liquid crystal composite materials. , 2002, , .		O
12	Twist Defect in Chiral Photonic Structures. Physical Review Letters, 2002, 89, 033901.	7.8	174
13	Fabrication of Periodic Arrays of Nanoscale Square Helices. Materials Research Society Symposia Proceedings, 2002, 728, 9101.	0.1	2
14	Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances. Optics Communications, 2002, 210, 201-211.	2.1	61
15	Fast and High-Contrast Electro-optical Switching of Liquid-Crystalline Physical Gels: Formation of Oriented Microphase-Separated Structures. Advanced Functional Materials, 2003, 13, 313-317.	14.9	103
16	Lasing in chiral photonic structures. Progress in Quantum Electronics, 2003, 27, 369-416.	7.0	222
17	Self-Assembly of Spherical Colloids into Helical Chains with Well-Controlled Handedness. Journal of the American Chemical Society, 2003, 125, 2048-2049.	13.7	138
18	Transmission through chiral twist defects in anisotropic periodic structures. Optics Letters, 2003, 28, 349.	3.3	26
19	Double-helix chiral fibers. Optics Letters, 2003, 28, 1876.	3.3	53

#	Article	IF	CITATIONS
20	Optical performance of porous TiO2 chiral thin films., 2003,,.		0
21	Controlled growth of periodic pillars by glancing angle deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 23.	1.6	117
22	Thin film/liquid crystal composite optical materials. , 2003, , .		0
23	Effect of Thermal Annealing on Structural Properties and Electrochemical Performance of Carbon Films with Porous Microstructure. Journal of the Electrochemical Society, 2004, 151, E194.	2.9	12
24	Low-Temperature, Surface-Mediated Foaming of Polymer Films. Advanced Materials, 2004, 16, 989-994.	21.0	100
25	Effect of the incomplete interaction on the nematic–isotropic transition at the nematic–wall interface. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 324, 198-202.	2.1	5
26	Spatial solitons in chiral media. Physical Review E, 2004, 70, 061701.	2.1	3
27	Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Review of Scientific Instruments, 2004, 75, 1089-1097.	1.3	174
28	Optical properties of porous helical thin films and the effects of post-deposition annealing. , 2004, , .		15
29	Birefringent omnidirectional reflector. Applied Optics, 2004, 43, 1570.	2.1	53
30	Enhanced birefringence in vacuum evaporated silicon thin films. Applied Optics, 2004, 43, 5343.	2.1	51
31	Photonic device applications of nano-engineered thin film materials. , 2005, , .		3
32	Numerical investigation of reflection, refraction, and diffraction of pulsed optical beams by chiral sculptured thin films. Optics Communications, 2005, 252, 307-320.	2.1	9
33	Metal-Containing Nanostructured Materials through In Situ Polymerization of Reactive Metallomesogens. Angewandte Chemie - International Edition, 2005, 44, 6618-6621.	13.8	30
35	Nanostructure fabrication by glancing angle ion beam assisted deposition of silicon. Applied Physics A: Materials Science and Processing, 2005, 81, 481-486.	2.3	29
36	State of the art in thin film thickness and deposition rate monitoring sensors. Reports on Progress in Physics, 2005, 68, 385-409.	20.1	59
37	Nanostaircases: An atomic shadowing instability during epitaxial CrN(001) layer growth. Applied Physics Letters, 2005, 87, 053107.	3.3	11
38	Tunable defect mode in a three-dimensional photonic crystal. Applied Physics Letters, 2005, 87, 241108.	3.3	38

#	Article	IF	CITATIONS
39	Thickness and density evaluation for nanostructured thin films by glancing angle deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2545.	1.6	34
40	Mueller matrix ellipsometry of multilayer porous columnar thin films with applications to square spiral photonic crystals., 2005, 5733, 432.		O
41	Resonant oscillations of the Stokes parameters in non-linear twisted birefringent media. Europhysics Letters, 2005, 71, 751-756.	2.0	10
42	Selective Diffraction Reflection in Helical Periodical Media with Large Anisotropy. Molecular Crystals and Liquid Crystals, 2005, 432, 69-82.	0.9	8
43	Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals. Optics Express, 2005, 13, 1090.	3.4	112
44	Chiral microstructures (spirals) fabrication by holographic lithography. Optics Express, 2005, 13, 7615.	3.4	116
45	Polarization gaps in spiral photonic crystals. Optics Express, 2005, 13, 8083.	3.4	59
46	Azobenzene-Containing Polyamic Acid with Excellent Langmuirâ^'Blodgettâ^'Kuhn Film Formation Behavior Suitable for All-Optical Switching. Langmuir, 2005, 21, 7036-7043.	3.5	9
47	Growth of Y-Shaped Nanorods through Physical Vapor Deposition. Nano Letters, 2005, 5, 2505-2508.	9.1	133
48	Circularly polarized luminescence from chiral thin films. , 2006, 6135, 222.		3
50	Anisotropic broadening of Cu nanorods during glancing angle deposition. Applied Physics Letters, 2006, 89, 203121.	3.3	50
51	Optical behaviour of hybrid LC/inorganic nanostructures. , 2006, , .		1
52	ãfŠãfŽç©ºé−"å^¶å¾¡æ³∙ã®æœ€è;'ã®é€²æ© 第1回é…,åŒ−物系ã§ã®ã,µã,¤,º, 形態å^¶å¾¡. Materia	ıJaponan, 20	06 ₀ 45, 359-3
53	Investigation of the phase transition at the nematic liquid crystal–wall interface with -interaction. Physica A: Statistical Mechanics and Its Applications, 2006, 369, 509-516.	2.6	2
54	Chiral silicon nanostructures. Nuclear Instruments & Methods in Physics Research B, 2006, 244, 40-44.	1.4	17
55	Two-component nanopillar arrays grown by Glancing Angle Deposition. Thin Solid Films, 2006, 494, 234-239.	1.8	67
56	Developing 1D nanostructure arrays for future nanophotonics. Nanoscale Research Letters, 2006, 1, 99-119.	5.7	46
57	Liquid-Crystal Composites Composed of Photopolymerized Self-Assembled Fibers and Aligned Smectic Molecules. Advanced Functional Materials, 2006, 16, 2218-2224.	14.9	38

#	Article	IF	Citations
58	Molecular diffusion in liquid crystals and chiral discrimination. II. Model calculations. Journal of Chemical Physics, 2006, 125, 104903.	3.0	11
59	Chiral fiber gratings: perspectives and challenges for sensing applications. Proceedings of SPIE, 2007, 6619, 80.	0.8	3
60	High Sensitivity Photonic Crystal Biosensor Incorporating Nanorod Structures for Enhanced Surface Area. Materials Research Society Symposia Proceedings, 2007, 1010, 1.	0.1	2
61	Single- and double-helix chiral fiber sensors. Journal of the Optical Society of America B: Optical Physics, 2007, 24, A48.	2.1	58
62	Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1317-1335.	2.1	758
63	Chiral Fibers. , 2007, , 401-427.		0
64	Cholesteric Liquid Crystals in Distributed Feedback Lasers. , 2007, , .		1
65	Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method. Applied Physics Letters, 2007, 90, 221501.	3.3	61
66	Alignment of Liquid Crystals Infiltrated into Porous Thin Films with Tailored Nanostructures Grown by Glancing Angle Deposition. Molecular Crystals and Liquid Crystals, 2007, 475, 85-96.	0.9	3
67	Onset of shadowing-dominated growth in glancing angle deposition. Applied Physics Letters, 2007, 91, .	3.3	33
68	Inâ€Situ Synthesis and Assembly of Gold Nanoparticles Embedded in Glass-Forming Liquid Crystals. Angewandte Chemie - International Edition, 2007, 46, 3269-3274.	13.8	49
70	Investigation of the phase transition at the nematic liquid crystal–wall interface within nonextensivity. Physica A: Statistical Mechanics and Its Applications, 2007, 383, 391-400.	2.6	1
71	Influence of dielectric boundaries, angle of incidence, and polarization of light on the optical properties of chiral photonic crystals. Journal of Contemporary Physics, 2007, 42, 271-276.	0.6	3
72	Structure and optical properties of Nb2O5 sculptured thin films by glancing angle deposition. Applied Surface Science, 2008, 255, 2192-2195.	6.1	61
73	Twoâ€Component Nanorod Arrays by Glancingâ€Angle Deposition. Small, 2008, 4, 1351-1354.	10.0	33
74	Evolution of Homochiral Helical Dye Assemblies: Involvement of Autocatalysis in the "Majorityâ€Rules― Effect. Angewandte Chemie - International Edition, 2008, 47, 1232-1236.	13.8	112
75	A Birefringent and Transparent Electrical Conductor. Advanced Functional Materials, 2008, 18, 2147-2153.	14.9	38
77	Nanocolumnar CulnS2 thin films by glancing angle deposition. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2577-2582.	2.7	12

#	ARTICLE	IF	CITATIONS
78	Bloch oscillations for circularly polarized light. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6986-6991.	2.1	0
79	High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area. Sensors and Actuators B: Chemical, 2008, 131, 279-284.	7.8	96
80	Peculiarities of radiation in chiral photonic crystals without local refraction. Technical Physics, 2008, 53, 737-742.	0.7	1
81	Selective reflection of light from a layer of cholesteric liquid crystal with induced inhomogeneity of helix pitch. Journal of Contemporary Physics, 2008, 43, 109-113.	0.6	1
82	Effects of angle of incidence and polarization in the chiral photonic crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 105, 624-632.	0.6	11
83	Direct Growth of Al Nanowire Arrays:  Thermal Expansion and Field Emission Properties. Journal of Physical Chemistry C, 2008, 112, 5328-5332.	3.1	25
84	Periodic nanoscale Si structures by ion beam induced glancing angle deposition. , 2008, , .		1
85	Ta nanotubes grown by glancing angle deposition. Journal of Vacuum Science & Technology B, 2008, 26, 678-681.	1.3	18
86	Dielectric response of tantalum oxide subject to induced ion bombardment during oblique sputter deposition. Journal of Applied Physics, 2009, 106, .	2.5	6
87	A facile process to improve linear birefringence of SiO2thin films. Journal Physics D: Applied Physics, 2009, 42, 165305.	2.8	3
88	Nanorodâ€Driven Orientational Control of Liquid Crystal for Polarizationâ€Tailored Electroâ€Optic Devices. Advanced Materials, 2009, 21, 989-993.	21.0	55
89	The Effect of the Incident Collision Energy on the Porosity of Vapor-Deposited Amorphous Solid Water Films. Journal of Physical Chemistry B, 2009, 113, 4000-4007.	2.6	27
90	X-ray reflectometry characterization of porous silicon films prepared by a glancing-angle deposition method. Physical Review B, 2009, 79, .	3.2	15
91	Dynamics of structural interfaces: Filtering and focussing effects for elastic waves. Journal of the Mechanics and Physics of Solids, 2010, 58, 1212-1224.	4.8	75
92	Free-standing mesoporous silica films with tunable chiral nematic structures. Nature, 2010, 468, 422-425.	27.8	837
93	Understanding Nickel Thin Film crystallization using X-Ray Diffractometry. Journal of Applied Sciences and Environmental Management, 2010, 11, .	0.1	3
94	Deposited nanorod films for photonic crystal biosensor applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 996-1001.	2.1	13
95	Thin Film Deposition Using Energetic Ions. Materials, 2010, 3, 4109-4141.	2.9	74

#	Article	IF	CITATIONS
96	Huygens, Mackintosh, Dal $\tilde{\rm A}_7$ and Medusa: Polarization engineering (and more?). Proceedings of SPIE, 2010, , .	0.8	1
97	Ultranarrow PbS Nanorod-Nematic Liquid Crystal Blend for Enhanced Electro-optic Properties. ACS Applied Materials & Diterfaces, 2010, 2, 2759-2766.	8.0	35
98	Glancing Angle Deposition., 2010,, 621-678.		63
100	Nematic to smectic texture transformation in MBBA by in situ synthesis of silver nanoparticles. New Journal of Chemistry, 2010, 34, 420.	2.8	15
101	Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization. Chemical Communications, 2011, 47, 505-507.	4.1	64
102	Helical Nanostructures: Synthesis and Potential Applications. , 2011, , 167-204.		2
103	Nanoscale helices from inorganic materials. Journal of Materials Chemistry, 2011, 21, 6775.	6.7	87
104	Three-Dimensional Nanoarchitectures., 2011,,.		19
105	Control of the principal refractive indices in biaxial metal oxide films. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1830.	1.5	26
106	Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells. Optics Express, 2011, 19, A1155.	3.4	42
107	Slanted S-shaped nano-columnar thin films for broadband and wide-angle polarization conversion. Optical Materials Express, 2011, 1, 525.	3.0	5
108	A non-template hydrothermal route to uniform 3D macroporous films with switchable optical properties. Journal of Non-Crystalline Solids, 2011, 357, 1768-1773.	3.1	1
109	D-Limonene as a Chiral Dopant for Thermotropic Liquid Crystalline Systems. Applied Physics Express, 2011, 4, 061701.	2.4	2
110	Anisotropic Ti x Sn1- x O2 nanostructures prepared by magnetron sputter deposition. Nanoscale Research Letters, 2011, 6, 326.	5.7	14
111	Thermally Induced, Multicolored Hyperâ€Reflective Cholesteric Liquid Crystals. Advanced Materials, 2011, 23, 1453-1457.	21.0	84
112	Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography. Journal of Optics (United Kingdom), 2011, 13, 095102.	2.2	7
113	Liquid crystal active nanophotonics and plasmonics: from science to devices. Journal of Nanophotonics, 2012, 6, 061001.	1.0	56
114	Cholesteric Liquid Crystals with a Broad Light Reflection Band. Advanced Materials, 2012, 24, 6260-6276.	21.0	438

#	Article	IF	CITATIONS
115	Three-dimensional complex-shaped photopolymerized microparticles at liquid crystal interfaces. Soft Matter, 2012, 8, 2432.	2.7	21
116	On alignment of nematic liquid crystals infiltrating chiral sculptured thin films. , 2012, , .		0
117	Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nature Communications, 2012, 3, 1215.	12.8	149
118	Effect of cadmium sulfide nanorod content on Freedericksz threshold voltage, splay and bend elastic constants in liquid-crystal nanocomposites. Journal Physics D: Applied Physics, 2012, 45, 235303.	2.8	10
119	Dynamic high contrast reflective coloration from responsive polymer/cholesteric liquid crystal architectures. Soft Matter, 2012, 8, 318-323.	2.7	38
120	Instability types at ion-assisted alloy deposition: From two-dimensional to three-dimensional nanopattern growth. Physical Review B, 2012, 86, .	3.2	14
121	Controllable nanostructure and optical properties of ZrO2 thin films by glancing angle deposition. Applied Physics A: Materials Science and Processing, 2012, 107, 227-232.	2.3	7
122	Thermal Switching of the Reflection in Chiral Nematic Mesoporous Organosilica Films Infiltrated with Liquid Crystals. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6854-6859.	8.0	63
123	Morphology evolution of glancing angle deposition Ag films on nanosphere-array substrates: Kinetic Monte Carlo simulation. Computational Materials Science, 2013, 79, 31-35.	3.0	8
124	New Structure of Cathode Function Layer of SOFC by Nanoporous Columnar YSZ Films. ECS Transactions, 2013, 58, 109-114.	0.5	0
125	Chiral Plasmonic Nanostructures on Achiral Nanopillars. Nano Letters, 2013, 13, 5277-5283.	9.1	125
126	Generalized ellipsometry effective medium approximation analysis approach for porous slanted columnar thin films infiltrated with polymer. Applied Physics Letters, 2013, 103, 111906.	3.3	13
127	Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition. Thin Solid Films, 2013, 534, 275-281.	1.8	70
128	Synthesis of chiral metal oxide complexes with tunable electron transition-based optical activity. Chemical Communications, 2013, 49, 11686.	4.1	14
130	Smallest Metallic Nanorods Using Physical Vapor Deposition. Physical Review Letters, 2013, 110, 136102.	7.8	40
131	Generalized Ellipsometry Characterization of Sculptured Thin Films Made by Glancing Angle Deposition., 2013,, 341-410.		7
132	Hidden Chirality in Superficially Racemic Patchy Silver Films. Nano Letters, 2013, 13, 6228-6232.	9.1	62
133	On alignment of nematic liquid crystals infiltrating chiral sculptured thin films. Journal of Nanophotonics, 2013, 7, 073591.	1.0	8

#	Article	IF	CITATIONS
134	Phase transitions and continuously variable scaling in a chiral quenched disordered model. Physical Review E, $2013, 87, .$	2.1	2
135	Electron Transitionâ€Based Optical Activity (ETOA) of Achiral Metal Oxides Derived from Chiral Mesoporous Silica. Chemistry - A European Journal, 2013, 19, 10468-10472.	3.3	12
137	PbS sculptured thin film and their effect on liquid crystals alignment. Proceedings of SPIE, 2014, , .	0.8	1
139	Biopolymer Templated Glass with a Twist: Controlling the Chirality, Porosity, and Photonic Properties of Silica with Cellulose Nanocrystals. Advanced Functional Materials, 2014, 24, 327-338.	14.9	119
140	Helical nanostructures based on DNA self-assembly. Nanoscale, 2014, 6, 9331.	5.6	27
141	The characteristic length study of Si spirals during growth. Computational Materials Science, 2014, 90, 148-152.	3.0	2
142	The contribution of chirality and crosslinker concentration to reflection wavelength tuning in structurally chiral nematic gels. Journal of Materials Chemistry C, 2014, 2, 132-138.	5.5	9
143	The fabrication of three-dimensional plasmonic chiral structures by dynamic shadowing growth. Nanoscale, 2014, 6, 9467.	5.6	35
144	Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle. Nanoscale, 2014, 6, 9401-9409.	5.6	38
145	Evaluation of form birefringence in chiral nematic mesoporous materials. Journal of Materials Chemistry C, 2014, 2, 5093.	5.5	18
146	Liquid Crystals Nanophotonics. , 2014, , 273-311.		0
147	Optically Active Chiral CuO "Nanoflowers― Journal of the American Chemical Society, 2014, 136, 7193-7196.	13.7	126
148	Helices in micro-world: Materials, properties, and applications. Journal of Materiomics, 2015, 1 , 296-306.	5.7	21
150	Optically Active Nanostructured ZnO Films. Angewandte Chemie - International Edition, 2015, 54, 15170-15175.	13.8	82
151	Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device. Scientific Reports, 2015, 5, 10845.	3.3	49
152	Optically Active Chiral DNA–Silica Hybrid Free-Standing Films. Chemistry of Materials, 2015, 27, 7844-7851.	6.7	11
153	Hard-templating of chiral TiO ₂ nanofibres with electron transition-based optical activity. Science and Technology of Advanced Materials, 2015, 16, 054206.	6.1	13
154	Diastereomeric liquid crystal domains at the mesoscale. Nature Communications, 2015, 6, 7763.	12.8	33

#	Article	IF	CITATIONS
155	Investigation of growth and characterization of nanostructured Culn5S8 thin films produced by glancing angle deposition. Thin Solid Films, 2015, 590, 111-117.	1.8	13
156	Three-Dimensional Metal-Oxide Nanohelix Arrays Fabricated by Oblique Angle Deposition: Fabrication, Properties, and Applications. Nanoscale Research Letters, 2015, 10, 369.	5.7	36
157	Photonic and Semiconductor Materials Based on Cellulose Nanocrystals. Advances in Polymer Science, 2015, , 287-328.	0.8	13
158	Functional Materials from Celluloseâ€Derived Liquidâ€Crystal Templates. Angewandte Chemie - International Edition, 2015, 54, 2888-2910.	13.8	324
159	Funktionsmaterialien mit Celluloseâ€basierten Flüssigkristallâ€Templaten. Angewandte Chemie, 2015, 127, 2930-2953.	2.0	12
160	Growth of Optically Active Chiral Inorganic Films through DNA Self-Assembly and Silica Mineralisation. Scientific Reports, 2014, 4, 4866.	3.3	18
161	Curved-Lattice Epitaxial Growth of In _{<i>x</i>} Al _{1â€"<i>x</i>} N Nanospirals with Tailored Chirality. Nano Letters, 2015, 15, 294-300.	9.1	19
162	Nonlinear fracture dynamics of laminates with finite thickness adhesives. Mechanics of Materials, 2015, 80, 183-192.	3.2	24
163	Band-Limited Filters and Bragg Reflectors in Perturbed Defect Nanostructures of Chiral Sculptured Thin Films. IEEE Photonics Journal, 2016, 8, 1-12.	2.0	3
164	A Scalable Fabrication Process for Liquid Crystal-Based Uncooled Thermal Imagers. Journal of Microelectromechanical Systems, 2016, 25, 479-488.	2.5	4
165	Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform. Nano Letters, 2016, 16, 5823-5828.	9.1	71
166	Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews, 2016, 116, 13752-13990.	47.7	1,444
167	Ultrabroadband Optical Superchirality in a 3D Stackedâ€Patch Plasmonic Metamaterial Designed by Twoâ€Step Glancing Angle Deposition. Advanced Functional Materials, 2016, 26, 7807-7816.	14.9	58
168	Resonant mode at the band edge. , 2016, , .		0
169	Oriented Chiral DNA–Silica Film Guided by a Natural Mica Substrate. Angewandte Chemie, 2016, 128, 2077-2081.	2.0	7
170	Oriented Chiral DNA–Silica Film Guided by a Natural Mica Substrate. Angewandte Chemie - International Edition, 2016, 55, 2037-2041.	13.8	26
171	Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Advances in Polymer Science, 2016, , .	0.8	72
172	Tailorable chiroptical activity of metallic nanospiral arrays. Nanoscale, 2016, 8, 4504-4510.	5.6	51

#	Article	IF	Citations
173	Self-directing chiral information in solid–solid transformation: unusual chiral-transfer without racemization from amorphous silica to crystalline silicon. Nanoscale Horizons, 2017, 2, 147-155.	8.0	15
174	Self-Assembled DNA Tubes Forming Helices of Controlled Diameter and Chirality. ACS Nano, 2017, 11, 1301-1306.	14.6	52
176	Chiral Nanostructured CuO Films with Multiple Optical Activities. Advanced Optical Materials, 2017, 5, 1601013.	7.3	21
177	Silver Films with Hierarchical Chirality. Angewandte Chemie - International Edition, 2017, 56, 8657-8662.	13.8	30
178	Materials and 3D Designs of Helix Nanostructures for Chirality at Optical Frequencies. Advanced Optical Materials, 2017, 5, 1601079.	7.3	61
179	Silver Films with Hierarchical Chirality. Angewandte Chemie, 2017, 129, 8783-8788.	2.0	3
180	Chiral Mesoporous Silica Materials., 0,, 121-177.		0
181	Strain Hardening and Pore Size Harmonization by Uniaxial Densification: A Facile Approach toward Superinsulating Aerogels from Nematic Nanofibrillated 2,3-Dicarboxyl Cellulose. Chemistry of Materials, 2017, 29, 6630-6641.	6.7	7 5
182	Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light. Nano Letters, 2018, 18, 3209-3212.	9.1	114
183	Conformal Ultrathin Coating by scCO ₂ -Mediated PMMA Deposition: A Facile Approach To Add Moisture Resistance to Lightweight Ordered Nanocellulose Aerogels. Chemistry of Materials, 2018, 30, 2322-2330.	6.7	25
184	Liquid crystals alignment with PbS nanosculptured thin films. Liquid Crystals, 2018, 45, 3-10.	2.2	11
185	Photoelastic modulator-based broadband mid-infrared Stokes polarimeter. Journal of Modern Optics, 2018, 65, 75-84.	1.3	10
186	Co-occurrence of linear and circular dichroism in chiral sculptured ZrO2 thin films. Optical Materials, 2018, 75, 319-324.	3.6	7
187	Facile method for decorations of Au nanoparticles on TiO2 nanorod arrays toward high-performance recyclable SERS substrates. Sensors and Actuators B: Chemical, 2018, 277, 102-113.	7.8	38
188	Improvement in electro-optical and dielectric characteristics of ZnO nanoparticles dispersed in a nematic liquid crystal mixture. Bulletin of Materials Science, 2019, 42, 1.	1.7	21
189	Cellulose nanocrystals in nanoarchitectonics $\hat{a}\in$ " towards photonic functional materials. Molecular Systems Design and Engineering, 2019, 4, 29-48.	3.4	59
190	Chiral mesostructured SnO2 films with tunable optical activities. Optical Materials, 2019, 94, 21-27.	3.6	9
191	Optical Properties and Applications of Photonic Shells. ACS Applied Materials & Distribution (2019), 11, 20350-20359.	8.0	18

#	Article	IF	CITATIONS
192	Electro-Optical and Dielectric Responses of ZnO Nanoparticles Doped Nematic Liquid Crystal in In-Plane Switching (IPS) Mode. Integrated Ferroelectrics, 2019, 202, 52-66.	0.7	10
193	Natureâ€Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Selfâ€Assembly to DNA Mesophase and Nanocolloids. Advanced Materials, 2020, 32, e1801335.	21.0	263
194	Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. Advanced Materials, 2020, 32, e1900110.	21.0	602
195	Photoinvertible Chiral Liquid Crystal that Affords Helicity ontrolled Aromatic Conjugated Polymers. Advanced Optical Materials, 2020, 8, 2000936.	7.3	25
196	Photoinduced Chirality Switching of Metal-Inorganic Plasmonic Nanostructures. ACS Nano, 2020, 14, 3603-3609.	14.6	43
197	Effect of Cell Thickness on the Electro-optic Response of Polymer Stabilized Cholesteric Liquid Crystals with Negative Dielectric Anisotropy. Materials, 2020, 13, 746.	2.9	8
198	Chiral Reaction Field with Thermally Invertible Helical Sense that Controls the Helicities of Conjugated Polymers. Advanced Materials, 2020, 32, e1906665.	21.0	30
199	Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nature Chemistry, 2020, 12, 551-559.	13.6	90
200	Gallium chiral nanoshaping for circular polarization handling. Materials Horizons, 2021, 8, 187-196.	12.2	9
201	High Thermal Conductivity in Anisotropic Aligned Polymeric Materials. ACS Applied Polymer Materials, 2021, 3, 578-587.	4.4	26
202	The Beginner's Guide to Chiral Plasmonics: Mostly Harmless Theory and the Design of Largeâ€Area Substrates. Advanced Optical Materials, 2021, 9, 2100378.	7.3	51
203	Self-Assembly of Ferrocenyl Phenylalanine into Nanohelical Arrays via Kinetic Control. ACS Applied Bio Materials, 2021, 4, 4744-4752.	4.6	5
204	Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal: Surfaceâ€Modified Cellulose Nanocrystals. Angewandte Chemie, 2021, 133, 17484-17489.	2.0	3
205	Observation of exceptional points in helically structured thin films. Optics Letters, 2021, 46, 3135.	3.3	3
206	Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal: Surfaceâ€Modified Cellulose Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 17344-17349.	13.8	24
207	Chiral Mesostructured BiOBr Films with Circularly Polarized Colour Response. Angewandte Chemie - International Edition, 2021, 60, 19024-19029.	13.8	18
208	Spontaneous chiral self-assembly of CdSe@CdS nanorods. CheM, 2021, 7, 2695-2707.	11.7	16
209	Chiral Mesostructured BiOBr Films with Circularly Polarized Colour Response. Angewandte Chemie, 2021, 133, 19172-19177.	2.0	3

#	ARTICLE	IF	CITATIONS
210	Non-origami DNA for functional nanostructures: From structural control to advanced applications. Nano Today, 2021, 39, 101154.	11.9	22
211	Chiral hierarchical structure of bone minerals. Nano Research, 2022, 15, 1295-1302.	10.4	15
212	Chiral transferâ€dictated selfâ€assembly of chiral block copolymers. Aggregate, 0, , e122.	9.9	12
214	Thin-Film Metamaterials Called Sculptured Thin Films. Engineering Materials, 2010, , 59-71.	0.6	9
215	Natural Formation of Nanostructures from Fundamentals in Metal Heteroepitaxy to Applications in Optics and Biomaterials Science. Surface Review and Letters, 2001, 8, 169-228.	1.1	9
216	Periodic nanostructure-induced change of director profiles and variable stop bands of photonic crystals infiltrated by nematic liquid crystals. Applied Optics, 2019, 58, 9846.	1.8	1
217	Controlling spatial hole burning in lasers using anisotropic laser mirrors. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 3322.	2.1	11
218	Sculptured Thin Films., 2006, , 357-381.		1
220	Evolutionary Design, Deposition and Characterization Techniques for Interference Optical Thin-Film Multilayer Coatings and Devices. Materials Horizons, 2020, , 281-343.	0.6	0
221	Transient helix formation in charged semiflexible polymers without confinement effects. Journal of Physics Condensed Matter, 2021, 33, 044001.	1.8	2
222	Spin Selectivity of Chiral Mesostructured Iron Oxides with Different Magnetisms. Small, 2022, 18, e2104509.	10.0	13
223	Enantioselective Interaction between Cells and Chiral Hydroxyapatite Films. Chemistry of Materials, 2022, 34, 53-62.	6.7	12
224	Chiral Mesostructured Carbonate with Vibrational Circular Dichroism. Advanced Optical Materials, 2022, 10, .	7.3	3
225	Research Progress of Cholesteric Liquid Crystals with Broadband Reflection. Molecules, 2022, 27, 4427.	3.8	14
226	Scattering of plane-wave and twisted photons by helical media. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 395301.	2.1	4
227	Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal 2: Lyotropic Chromonic Liquid Crystals. ChemPhysChem, 2023, 24, .	2.1	4
228	Azobenzene-decorated cellulose nanocrystals as photo-switchable chiral solutes in nematic liquid crystals. Journal of Materials Chemistry C, 2022, 10, 18120-18126.	5.5	4
229	Perovskite photonic crystal photoelectric devices. Applied Physics Reviews, 2022, 9, .	11.3	6

CITATION REPORT

#	ARTICLE	IF	CITATIONS
230	Advances in Two-dimensional (2D) Inorganic Chiral Materials and 2D Organic-inorganic Hybrid Chiral Materials. Current Chinese Science, 2023, 03, .	0.5	0
231	Recent Advances in Electro-Optic Response of Polymer-Stabilized Cholesteric Liquid Crystals. Materials, 2023, 16, 2248.	2.9	11
232	Twisting, untwisting, and retwisting of elastic Co-based nanohelices. Nature Communications, 2023, 14 , .	12.8	1
233	Morphological, Structural and Optical Analysis of Chevronic TiO2 Thin Film Fabricated by Oblique Angle Deposition. Lecture Notes in Electrical Engineering, 2024, , 89-99.	0.4	0
234	Chiral mesostructured hydroxyapatite on 3D macroporous coralline scaffolds for enantio-selective osteogenesis. Materials Advances, 2023, 4, 5817-5826.	5.4	2
235	Resorcinarene appended benzothiazole based light-emitting macrocyclic compounds with nematic liquid crystalline phase and bio-imaging applications. Journal of Molecular Liquids, 2024, 397, 124110.	4.9	O