A free-air enrichment system for exposing tall forest ve CO2

Global Change Biology 5, 293-309 DOI: 10.1046/j.1365-2486.1999.00228.x

Citation Report

#	Article	IF	CITATIONS
1	Does Free-Air Carbon Dioxide Enrichment Affect Photochemical Energy Use by Evergreen Trees in Different Seasons? A Chlorophyll Fluorescence Study of Mature Loblolly Pine1. Plant Physiology, 1999, 120, 1183-1192.	4.8	85
2	CO2enrichment in a maturing pine forest: are CO2exchange and water status in the canopy affected?. Plant, Cell and Environment, 1999, 22, 461-472.	5.7	225
3	Photosynthetic capacity of loblolly pine (Pinus taedaL.) trees during the first year of carbon dioxide enrichment in a forest ecosystem. Plant, Cell and Environment, 1999, 22, 473-481.	5.7	67
4	Net Primary Production of a Forest Ecosystem with Experimental CO2 Enrichment. Science, 1999, 284, 1177-1179.	12.6	460
5	Elongated chambers for field studies across atmospheric CO2 gradients. Functional Ecology, 2000, 14, 388-396.	3.6	27
6	Optimum experimental design for Free-Air Carbon dioxide Enrichment (FACE) studies. Global Change Biology, 2000, 6, 843-854.	9.5	76
7	Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology, 2000, 6, 967-979.	9.5	189
8	Modelling assimilation and intercellular CO2 from measured conductance: a synthesis of approaches. Plant, Cell and Environment, 2000, 23, 1313-1328.	5.7	139
9	Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2. Soil Biology and Biochemistry, 2000, 32, 699-706.	8.8	169
10	EFFECTS OF FREE-AIR CO ₂ ENRICHMENT (FACE) ON BELOWGROUND PROCESSES IN A <i>PINUS TAEDA</i> FOREST. , 2000, 10, 437-448.		48
11	Soil CO2dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2enrichment. Global Biogeochemical Cycles, 2001, 15, 149-162.	4.9	267
12	Influence of atmospheric CO2enrichment on nitrous oxide flux in a temperate forest ecosystem. Global Biogeochemical Cycles, 2001, 15, 741-752.	4.9	40
13	FOREST LITTER PRODUCTION, CHEMISTRY, AND DECOMPOSITION FOLLOWING TWO YEARS OF FREE-AIR CO2ENRICHMENT. Ecology, 2001, 82, 470-484.	3.2	62
14	Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone. Environmental Pollution, 2001, 115, 359-371.	7.5	132
15	Increased leaf area expansion of hybrid poplar in elevated CO2. From controlled environments to open-top chambers and to FACE. Environmental Pollution, 2001, 115, 463-472.	7.5	42
16	A Movable Miniature Free Air CO 2 Enrichment (Mini-FACE) Facility for Field-grown Crops. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2001, 51, 167-172.	0.6	0
17	Inferring scalar sources and sinks within canopies using forward and inverse methods. Water Science and Application, 2001, , 31-45.	0.3	1
18	GROSS PRIMARY PRODUCTIVITY IN DUKE FOREST: MODELING SYNTHESIS OF CO2EXPERIMENT AND EDDY–FLUX DATA. , 2001, 11, 239-252.		33

#	Article	IF	CITATIONS
19	Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Global Change Biology, 2001, 7, 557-563.	9.5	58
20	The influence of elevated atmospheric CO2 on fine root dynamics in an intact temperate forest. Global Change Biology, 2001, 7, 829-837.	9.5	39
21	Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytologist, 2001, 150, 489-498.	7.3	101
22	Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytologist, 2001, 150, 251-260.	7.3	188
23	Allometric determination of tree growth in a CO2 -enriched sweetgum stand. New Phytologist, 2001, 150, 477-487.	7.3	155
24	Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytologist, 2001, 150, 465-476.	7.3	238
25	Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant, Cell and Environment, 2001, 24, 305-315.	5.7	107
26	Crown carbon gain and elevated [CO2] responses of understorey saplings with differing allometry and architecture. Functional Ecology, 2001, 15, 263-273.	3.6	24
27	Germination of CO2-enrichedPinus taedaL. seeds and subsequent seedling growth responses to CO2enrichment. Functional Ecology, 2001, 15, 344-350.	3.6	34
28	Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant, Cell and Environment, 2001, 24, 975-982.	5.7	90
29	Transient ecosystem responses to free-air CO2 enrichment (FACE): experimental evidence and methods of analysis. New Phytologist, 2001, 152, 3-8.	7.3	24
30	Glass Domes with Adjustable Windows: A Novel Technique for Exposing Juvenile Forest Stands to Elevated CO ₂ Concentration. Photosynthetica, 2001, 39, 395-401.	1.7	43
31	Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 2001, 411, 466-469.	27.8	482
32	Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 2001, 411, 469-472.	27.8	957
33	Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2473-2478.	7.1	113
34	Rising CO2 Levels and the Fecundity of Forest Trees. Science, 2001, 292, 95-98.	12.6	169
35	ELEVATED CO2DIFFERENTIATES ECOSYSTEM CARBON PROCESSES: DECONVOLUTION ANALYSIS OF DUKE FOREST FACE DATA. Ecological Monographs, 2001, 71, 357-376.	5.4	97
36	NET PRIMARY PRODUCTIVITY OF A CO2-ENRICHED DECIDUOUS FOREST AND THE IMPLICATIONS FOR CARBON STORAGE. , 2002, 12, 1261-1266.		91

#	Article	IF	CITATIONS
37	Antioxidant status in herbaceous plants growing under elevated CO2 in mini-FACE rings. Journal of Plant Physiology, 2002, 159, 1005-1013.	3.5	21
38	Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell and Environment, 2002, 25, 379-393.	5.7	131
39	Crown architecture of Populus spp. is differentially modified by free-air CO2 enrichment (POPFACE). New Phytologist, 2002, 153, 91-99.	7.3	34
40	Sensitivity of stomatal and canopy conductance to elevated CO 2 concentration–Âinteracting variables and perspectives of scale. New Phytologist, 2002, 153, 485-496.	7.3	158
41	Competitive status influences tree-growth responses to elevated CO2 and O3 in aggrading aspen stands. Functional Ecology, 2002, 16, 792-801.	3.6	74
42	Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Global Change Biology, 2002, 8, 895-911.	9.5	158
43	Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Global Change Biology, 2002, 8, 1217-1229.	9.5	58
44	Atmospheric CO 2 enrichment of alpine treeline conifers. New Phytologist, 2002, 156, 363-375.	7.3	124
45	Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated p CO2 (FACE). Plant, Cell and Environment, 2002, 25, 851-858.	5.7	132
46	Estimation of carbon transfer coefficients using Duke Forest free-air CO2 enrichment data. Applied Mathematics and Computation, 2002, 130, 101-120.	2.2	16
47	Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature, 2002, 420, 403-407.	27.8	275
48	Soil?Nitrogen Cycling in a Pine Forest Exposed to 5 Years of Elevated Carbon Dioxide. Ecosystems, 2003, 6, 444-456.	3.4	57
49	Photosynthetic CO 2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO 2. Planta, 2003, 218, 152-158.	3.2	63
50	Leaf dynamics of a deciduous forest canopy: no response to elevated CO 2. Oecologia, 2003, 136, 574-584.	2.0	106
51	Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under F ree A ir C O2 E nrichment (FACE). Plant, Cell and Environment, 2003, 26, 705-714.	5.7	172
52	Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2 : a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 2003, 17, 289-304.	3.6	269
53	Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Global Change Biology, 2003, 9, 276-285.	9.5	69
54	Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-year-old loblolly pine stands. Global Change Biology, 2003, 9, 849-861.	9.5	108

#	Article	IF	CITATIONS
55	Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Global Change Biology, 2003, 9, 818-825.	9.5	123
56	Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biology, 2003, 9, 826-837.	9.5	175
57	Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology, 2003, 9, 1378-1400.	9.5	133
58	Fineâ€root respiration in a loblolly pine and sweetgum forest growing in elevated CO 2. New Phytologist, 2003, 160, 511-522.	7.3	75
59	Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach. Global Biogeochemical Cycles, 2003, 17, .	4.9	191
60	PATTERNS ANDMECHANISMS OF THEFORESTCARBONCYCLE. Annual Review of Environment and Resources, 2003, 28, 169-204.	13.4	167
61	Effect of global climate change and human disturbances on tree diversity of the forest regenerating from clear-cuts of mixed broadleaved Korean pine forest in Northeast China. Chemosphere, 2003, 51, 215-226.	8.2	9
62	Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps. Environment International, 2003, 29, 161-169.	10.0	104
63	Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research, 2003, 83, 261-270.	5.1	156
64	Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Applied Soil Ecology, 2003, 24, 263-271.	4.3	139
65	TREE LAYER SPATIAL STRUCTURE CAN AFFECT SAVANNA PRODUCTION AND WATER BUDGET: RESULTS OF A 3-D MODEL. Ecology, 2003, 84, 1879-1894.	3.2	50
66	Growth responses of aspen clones to elevated carbon dioxide and ozone. Developments in Environmental Science, 2003, 3, 411-435.	0.5	1
67	SOIL NITROGEN CYCLING UNDER ELEVATED CO2: A SYNTHESIS OF FOREST FACE EXPERIMENTS. , 2003, 13, 1508-1514.		114
68	Air pollution and global change impacts on forest ecosystems: Monitoring and research needs. Developments in Environmental Science, 2003, 3, 447-459.	0.5	8
69	Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9689-9693.	7.1	349
70	Biogeochemistry: Some Opportunities and Challenges for the Future. , 2004, , 5-24.		1
71	Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biology, 2004, 10, 2121-2138.	9.5	265
72	A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology, 2004, 10, 1027-1042.	9.5	155

#	Article	IF	CITATIONS
73	Response of an understory plant community to elevated [CO 2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist, 2004, 161, 827-835.	7.3	88
74	Functional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions?. New Phytologist, 2004, 162, 253-280.	7.3	624
75	The CO 2 fertilising effect – does it occur in the real world?. New Phytologist, 2004, 163, 221-225.	7.3	52
76	Elevated CO2 alters functional attributes of nematode communities in forest soils. Functional Ecology, 2004, 18, 584-591.	3.6	65
77	A portable LIDAR system for rapid determination of forest canopy structure. Journal of Applied Ecology, 2004, 41, 755-767.	4.0	171
78	Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biology and Biochemistry, 2004, 36, 1521-1524.	8.8	58
79	Insect herbivory in an intact forest understory under experimental CO 2 enrichment. Oecologia, 2004, 138, 566-573.	2.0	52
80	More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect?. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	135
81	Impact of elevated atmospheric CO2on forest floor respiration in a temperate pine forest. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	30
82	RISING ATMOSPHERIC CARBON DIOXIDE: Plants FACE the Future. Annual Review of Plant Biology, 2004, 55, 591-628.	18.7	1,472
83	Reverberations of Change: The Responses of the Earth System to Human Activities. Global Change - the IGBP Series, 2005, , 143-202.	2.1	0
84	The Global Carbon Cycle and Climate Change. Advances in the Economics of Environmental Resources, 0, , 31-53.	0.0	8
85	Towards Earth System Science and Global Sustainability. Global Change - the IGBP Series, 2005, , 255-303.	2.1	1
86	SOIL CARBON SEQUESTRATION AND TURNOVER IN A PINE FOREST AFTER SIX YEARS OF ATMOSPHERIC CO2ENRICHMENT. Ecology, 2005, 86, 1835-1847.	3.2	113
87	What have we learned from 15 years of freeâ€air CO 2 enrichment (FACE)? A metaâ€analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytologist, 2005, 165, 351-372.	7.3	3,081
88	Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytologist, 2005, 167, 207-218.	7.3	86
89	Tropospheric O 3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO 2. New Phytologist, 2005, 168, 623-636.	7.3	183
90	Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment, 2005, 28, 965-981.	5.7	236

#	Article	IF	CITATIONS
91	Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biology, 2005, 11, 1828-1836.	9.5	100
92	Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Global Change Biology, 2005, 11, 644-656.	9.5	45
93	Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 2005, 11, 749-756.	9.5	124
94	Effect of elevated atmospheric CO2 on oviposition behavior in Manduca sexta moths. Global Change Biology, 2005, 11, 1272-1282.	9.5	28
95	The transcriptome of Populus in elevated CO2. New Phytologist, 2005, 167, 143-154.	7.3	88
96	Palatability trials on hardwood leaf litter grown under elevated CO2: a stable carbon isotope study. Soil Biology and Biochemistry, 2005, 37, 1105-1112.	8.8	15
97	Long-term effects of elevated atmospheric CO2 on species composition and productivity of a southern African C4 dominated grassland in the vicinity of a CO2 exhalation. Plant Ecology, 2005, 178, 211-224.	1.6	21
98	Reconstruction of Past Co2 Concentration at a Natural Co2 Vent Site Using Radiocarbon Dating of Tree Rings. Radiocarbon, 2005, 47, 257-263.	1.8	14
99	Seasonal Changes in Canopy Photosynthesis and Respiration, and Partitioning of Photosynthate, in Rice (Oryza sativa L.) Grown Under Free-Air CO2 Enrichment. Plant and Cell Physiology, 2005, 46, 1704-1712.	3.1	28
100	Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the United States of America, 2005, 102, 18052-18056.	7.1	880
101	Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle. Global Biogeochemical Cycles, 2005, 19, .	4.9	72
102	Modern and Future Forests in a Changing Atmosphere. , 2005, , 394-414.		3
103	Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 2011-2020.	4.0	227
104	Impacts of Elevated Atmospheric [CO2] and [O3] on Northern Temperate Forest Ecosystems: Results from the Aspen FACE Experiment. , 2006, , 213-229.		4
105	Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	200
106	Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO ₂ atmosphere. Journal of Geophysical Research, 2006, 111, .	3.3	50
107	CO2-ENRICHMENT AND NUTRIENT AVAILABILITY ALTER ECTOMYCORRHIZAL FUNGAL COMMUNITIES. Ecology, 2006, 87, 2278-2287.	3.2	134
108	PROGRESSIVE NITROGEN LIMITATION OF ECOSYSTEM PROCESSES UNDER ELEVATED CO2IN A WARM-TEMPERATE FOREST. Ecology, 2006, 87, 15-25.	3.2	210

#	Article	IF	CITATIONS
109	Atmospheric carbon dioxide enrichment effects on ecosystems — experiments and the real world. , 2006, , 441-459.		24
110	Issues in Modelling Plant Ecosystem Responses to Elevated CO2: Interactions with Soil Nitrogen. , 0, , 165-186.		0
111	A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change. Plant, Cell and Environment, 2006, 29, 1853-1869.	5.7	64
112	Pollen production byPinus taedagrowing in elevated atmospheric CO2. Functional Ecology, 2006, 20, 541-547.	3.6	65
113	Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Global Change Biology, 2006, 12, 883-896.	9.5	140
114	Elevated CO2 and tree fecundity: the role of tree size, interannual variability, and population heterogeneity. Global Change Biology, 2006, 12, 822-833.	9.5	51
115	The turnover of carbon pools contributing to soil CO2 and soil respiration in a temperate forest exposed to elevated CO2 concentration. Global Change Biology, 2006, 12, 983-994.	9.5	71
116	Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth. Clobal Change Biology, 2006, 12, 1054-1068.	9.5	53
117	Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air carbon dioxide enrichment. Global Change Biology, 2006, 12, 1367-1377.	9.5	56
118	Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Global Change Biology, 2006, 12, 2115-2135.	9.5	219
119	Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Global Change Biology, 2006, 12, 2136-2145.	9.5	134
120	Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter. Plant and Soil, 2006, 281, 15-24.	3.7	345
121	Free Atmospheric CO2 Enrichment (FACE) Increased Labile and Total Carbon in the Mineral Soil of a Short Rotation Poplar Plantation. Plant and Soil, 2006, 281, 247-254.	3.7	64
122	Overstory Community Composition and Elevated Atmospheric CO2 and O3 Modify Understory Biomass Production and Nitrogen Acquisition. Plant and Soil, 2006, 282, 251-259.	3.7	17
123	Long-term Effects of Free Air CO2 Enrichment (FACE) on Soil Respiration. Biogeochemistry, 2006, 77, 91-116.	3.5	109
124	Microbial Community Responses to Atmospheric Carbon Dioxide Enrichment in a Warm-Temperate Forest. Ecosystems, 2006, 9, 215-226.	3.4	95
125	Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia, 2006, 149, 221-232.	2.0	114
126	The TasFACE climate-change impacts experiment: design and performance of combined elevated CO2 and temperature enhancement in a native Tasmanian grassland. Australian Journal of Botany, 2006, 54, 1.	0.6	62

#	Article	IF	CITATIONS
127	Aboveground sink strength in forests controls the allocation of carbon below ground and its [CO2]-induced enhancement. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19362-19367.	7.1	109
128	Coral reefs and changing seawater carbonate chemistry. Coastal and Estuarine Studies, 2006, , 73-110.	0.4	129
129	Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9086-9089.	7.1	136
130	NITROGEN UPTAKE, DISTRIBUTION, TURNOVER, AND EFFICIENCY OF USE IN A CO2-ENRICHED SWEETGUM FOREST. Ecology, 2006, 87, 5-14.	3.2	117
131	Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19356-19361.	7.1	94
132	Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14014-14019.	7.1	353
133	Foliage of Oaks Grown Under Elevated Co2 Reduces Performance of Antheraea polyphemus (Lepidoptera: Saturniidae). Environmental Entomology, 2007, 36, 609-617.	1.4	22
134	Foliage of Oaks Grown Under Elevated CO ₂ Reduces Performance of <i>Antheraea polyphemus</i> (Lepidoptera: Saturniidae). Environmental Entomology, 2007, 36, 609-617.	1.4	22
135	Flowering, seed production and seed mass in a species-rich temperate grassland exposed to FACE and warming. Australian Journal of Botany, 2007, 55, 780.	0.6	26
136	LONG-TERM CO2ENRICHMENT OF A FOREST ECOSYSTEM: IMPLICATIONS FOR FOREST REGENERATION AND SUCCESSION. , 2007, 17, 1198-1212.		64
137	Perspectives regarding 50years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution, 2007, 147, 489-506.	7.5	201
138	Air quality in natural areas: Interface between the public, science and regulation. Environmental Pollution, 2007, 149, 256-267.	7.5	12
139	Effect of free-air CO2 enrichment on the storage of carbohydrate fixed at different stages in rice (Oryza sativa L.). Field Crops Research, 2007, 100, 24-31.	5.1	41
140	Free atmospheric CO2 enrichment (FACE) increased respiration and humification in the mineral soil of a poplar plantation. Geoderma, 2007, 138, 204-212.	5.1	30
141	lsoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1677-1695.	3.4	121
142	Carbon Dioxide Effects on Heterotrophic Dinitrogen Fixation in a Temperate Pine Forest. Soil Science Society of America Journal, 2007, 71, 140-144.	2.2	37
143	Effects of elevated atmospheric carbon dioxide on amino acid and NH ₄ ⁺ â€N cycling in a temperate pine ecosystem. Global Change Biology, 2007, 13, 1950-1959.	9.5	37
144	Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO ₂ . Global Change Biology, 2007, 13, 2479-2497.	9.5	107

#	Article	IF	CITATIONS
145	Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 2007, 175, 11-28.	7.3	239
146	Warming and freeâ€air CO ₂ enrichment alter demographics in four coâ€occurring grassland species. New Phytologist, 2007, 176, 365-374.	7.3	96
147	Effects of Elevated Atmospheric CO2and/or O3on Intra- and Interspecific Competitive Ability of Aspen. Plant Biology, 2007, 9, 342-355.	3.8	75
148	Free-Air Exposure Systems to Scale up Ozone Research to Mature Trees. Plant Biology, 2007, 9, 181-190.	3.8	132
149	Increased moisture and methanogenesis contribute to reduced methane oxidation in elevated CO2 soils. Biology and Fertility of Soils, 2008, 44, 623-631.	4.3	35
150	Changing pollen types/concentrations/distribution in the United States: Fact or fiction?. Current Allergy and Asthma Reports, 2008, 8, 418-424.	5.3	40
151	The effect of carbon dioxide enrichment on apparent stem respiration from Pinus taeda L. is confounded by high levels of soil carbon dioxide. Oecologia, 2008, 158, 1-10.	2.0	38
152	Increased mercury in forest soils under elevated carbon dioxide. Oecologia, 2008, 158, 343-354.	2.0	16
153	Flowering phenology in a speciesâ€rich temperate grassland is sensitive to warming but not elevated CO ₂ . New Phytologist, 2008, 178, 815-822.	7.3	73
154	New approach for capturing soluble root exudates in forest soils. Functional Ecology, 2008, 22, 990-999.	3.6	219
155	Fine root dynamics in a loblolly pine forest are influenced by freeâ€airâ€CO ₂ â€enrichment: a sixâ€yearâ€minirhizotron study. Global Change Biology, 2008, 14, 588-602.	9.5	132
156	Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO ₂ and N fertilization. Global Change Biology, 2008, 14, 1025-1036.	9.5	108
157	Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of freeâ€air O ₂ â€enrichment. Global Change Biology, 2008, 14, 1252-1264.	9.5	65
158	CO ₂ fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology, 2008, 14, 1531-1542.	9.5	276
159	Soil carbon sequestration in a pine forest after 9 years of atmospheric CO ₂ enrichment. Global Change Biology, 2008, 14, 2910-2922.	9.5	82
160	Next generation of elevated [CO ₂] experiments with crops: a critical investment for feeding the future world. Plant, Cell and Environment, 2008, 31, 1317-1324.	5.7	154
161	Fineâ€root respiration in a loblolly pine (<i>Pinus taeda</i> L.) forest exposed to elevated CO ₂ and N fertilization. Plant, Cell and Environment, 2008, 31, 1663-1672.	5.7	60
162	Decomposition kinetics of soil carbon of different age from a forest exposed to 8 years of elevated atmospheric CO2 concentration. Soil Biology and Biochemistry, 2008, 40, 2670-2677.	8.8	21

#	Article	IF	CITATIONS
163	Contribution of increasing CO ₂ and climate change to the carbon cycle in China's ecosystems. Journal of Geophysical Research, 2008, 113, .	3.3	46
164	Elevated CO2 and warming impacts on flowering phenology in a southern Australian grassland are related to flowering time but not growth form, origin or longevity. Australian Journal of Botany, 2008, 56, 630.	0.6	17
165	Exploitation of aeroelastic effects for drift reduction in an all-polymer air flow sensor. , 2009, , .		0
166	Forest soil carbon cycle under elevated CO2 - a case of increased throughput?. Forestry, 2009, 82, 75-86.	2.3	43
167	Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine). Tree Physiology, 2009, 29, 789-797.	3.1	16
168	Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Tree Physiology, 2009, 29, 1367-1380.	3.1	84
169	Increased belowground biomass and soil CO ₂ fluxes after a decade of carbon dioxide enrichment in a warmâ€ŧemperate forest. Ecology, 2009, 90, 3352-3366.	3.2	145
170	Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biology and Biochemistry, 2009, 41, 514-520.	8.8	84
171	Plant and Soil Mediation of Elevated CO2 Impacts on Trace Metals. Ecosystems, 2009, 12, 715-727.	3.4	32
172	Expression of genes involved in symbiotic carbon and nitrogen transport in Pinus taeda mycorrhizal roots exposed to CO2 enrichment and nitrogen fertilization. Mycorrhiza, 2009, 19, 469-479.	2.8	14
173	The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest. Biogeochemistry, 2009, 94, 271-287.	3.5	27
174	Effects of elevated carbon dioxide and nitrogen fertilization on nitrate reductase activity in sweetgum and loblolly pine trees in two temperate forests. Plant and Soil, 2009, 314, 197-210.	3.7	32
175	Comparison of gas use efficiency and treatment uniformity in a forest ecosystem exposed to elevated [CO ₂] using pure and prediluted freeâ€air CO ₂ enrichment technology. Global Change Biology, 2009, 15, 388-395.	9.5	20
176	How far do experimentally elevated CO ₂ levels reach into the surrounding? – An example using the ¹³ C label of soil organic matter as an archive. Global Change Biology, 2009, 15, 1598-1602.	9.5	7
177	Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO ₂]: a simulation analysis. Global Change Biology, 2009, 15, 2274-2294.	9.5	78
178	Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics. Environmental Pollution, 2009, 157, 1657-1665.	7.5	18
179	Acclimation of leaf hydraulic conductance and stomatal conductance of <i>Pinus taeda</i> (loblolly) Tj ETQq0 0	O rgBT /Ov	erlock 10 Tf
117	Nâ€fertilization. Plant, Cell and Environment, 2009, 32, 1500-1512.	5.7	102

#	Article	IF	CITATIONS
181	Reduced net atmospheric CH4 consumption is a sustained response to elevated CO2 in a temperate forest. Biology and Fertility of Soils, 2010, 46, 597-606.	4.3	26
182	Effects of elevated atmospheric CO2 and tropospheric O3 on tree branch growth and implications for hydrologic budgeting. Environmental Pollution, 2010, 158, 1079-1087.	7.5	7
183	Response and potential of agroforestry crops under global change. Environmental Pollution, 2010, 158, 1095-1104.	7.5	71
184	DNA damage in Populus tremuloides clones exposed to elevated O3. Environmental Pollution, 2010, 158, 969-976.	7.5	18
185	Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment. Environmental Pollution, 2010, 158, 2023-2031.	7.5	29
186	Reâ€assessment of plant carbon dynamics at the Duke freeâ€air CO ₂ enrichment site: interactions of atmospheric [CO ₂] with nitrogen and water availability over stand development. New Phytologist, 2010, 185, 514-528.	7.3	242
187	Greater seed production in elevated CO ₂ is not accompanied by reduced seed quality in <i>Pinus taeda</i> L. Global Change Biology, 2010, 16, 1046-1056.	9.5	50
188	Altered microbial community structure and organic matter composition under elevated CO ₂ and N fertilization in the duke forest. Global Change Biology, 2010, 16, 2104-2116.	9.5	106
189	My Facts Are Better Than Your Facts: Spreading Good News about Global Warming. , 2010, , 136-166.		15
190	Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration. Tree Physiology, 2010, 30, 1001-1015.	3.1	91
191	CO2 enrichment accelerates successional development of an understory plant community. Journal of Plant Ecology, 2010, 3, 33-39.	2.3	28
192	CO ₂ enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19368-19373.	7.1	814
193	Open top chamber and free air CO2 enrichment - approaches to investigate tree responses to elevated CO2. IForest, 2010, 3, 102-105.	1.4	21
194	A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany, 2010, 105, 431-442.	2.9	282
195	Experimental evidence supporting the concept of light-mediated modulation of stem hydraulic conductance. Tree Physiology, 2010, 30, 1528-1535.	3.1	42
196	Turnover rates of hydrolysable aliphatic lipids in Duke Forest soils determined by compound specific 13C isotopic analysis. Organic Geochemistry, 2010, 41, 573-579.	1.8	44
197	Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment. Journal of Environmental Monitoring, 2011, 13, 2436.	2.1	2
198	Ecological Lessons from Free-Air CO ₂ Enrichment (FACE) Experiments. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 181-203.	8.3	558

#	Article	IF	CITATIONS
199	Performance characteristics of an area distributed free air carbon dioxide enrichment (FACE) system. Agricultural and Forest Meteorology, 2011, 151, 1152-1157.	4.8	20
200	Measuring and modelling the isotopic composition of soil respiration: insights from a grassland tracer experiment. Biogeosciences, 2011, 8, 1333-1350.	3.3	31
201	Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO ₂ enrichment. Biogeosciences, 2011, 8, 3077-3092.	3.3	30
202	Relative information contributions of model vs. data to short- and long-term forecasts of forest carbon dynamics. , 2011, 21, 1490-1505.		69
203	Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters, 2011, 14, 349-357.	6.4	374
204	Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale 15N study. Global Change Biology, 2011, 17, 3338-3350.	9.5	40
205	An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environmental and Experimental Botany, 2011, 72, 432-438.	4.2	90
206	Carbonaceous aerosol characteristics over a Pinus taeda plantation: Results from the CELTIC experiment. Atmospheric Environment, 2011, 45, 794-801.	4.1	9
207	Integrated modelling approaches to analysis of climate change impacts on forests and forest management. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 247-266.	2.1	30
208	A free-air system for long-term stable carbon isotope labeling of adult forest trees. Trees - Structure and Function, 2011, 25, 187-198.	1.9	22
209	Nitrogen footprint in a long-term observation of forest growth over the twentieth century. Trees - Structure and Function, 2011, 25, 237-251.	1.9	54
211	Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO ₂ . Ecohydrology, 2011, 4, 196-210.	2.4	96
212	Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor. Sensors and Actuators A: Physical, 2011, 165, 66-72.	4.1	29
213	Uncertainty analysis of forest carbon sink forecast with varying measurement errors: a data assimilation approach. Journal of Plant Ecology, 2011, 4, 178-191.	2.3	16
214	Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environmental Research Letters, 2011, 6, 045504.	5.2	109
215	Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology, 2011, 31, 117-130.	3.1	152
216	Litterfall ¹⁵ N abundance indicates declining soil nitrogen availability in a free-air CO ₂ enrichment experiment. Ecology, 2011, 92, 133-139.	3.2	55
217	Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree Physiology, 2012, 32, 752-763.	3.1	41

#	Article	IF	CITATIONS
218	Responses of cotton and wheat photosynthesis and growth to cyclic variation in carbon dioxide concentration. Photosynthetica, 2012, 50, 395-400.	1.7	36
219	Elevated atmospheric CO2 alters the arthropod community in a forest understory. Acta Oecologica, 2012, 43, 80-85.	1.1	17
220	Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO 2] and N fertilization. Agricultural and Forest Meteorology, 2012, 165, 43-52.	4.8	27
221	Climate Change at Northern Latitudes: Rising Atmospheric Humidity Decreases Transpiration, N-Uptake and Growth Rate of Hybrid Aspen. PLoS ONE, 2012, 7, e42648.	2.5	62
222	Multi-objective environment chamber system for studying plant responses to climate change. Photosynthetica, 2012, 50, 24-34.	1.7	15
223	Depth-dependency of trembling aspen and paper birch small-root responses to eCO2 and eO3. Plant and Soil, 2012, 355, 215-229.	3.7	5
224	Size-dependent variability of leaf and shoot hydraulic conductance in silver birch. Trees - Structure and Function, 2012, 26, 821-831.	1.9	17
225	Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100Âm. Theoretical and Applied Climatology, 2012, 108, 247-265.	2.8	25
226	Elevated <scp><scp>CO</scp>₂</scp> affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10Âyears: a synthesis from <scp>D</scp> uke <scp>FACE</scp> . Global Change Biology, 2012, 18, 223-242.	9.5	133
227	Long-Term Leaf Production Response to Elevated Atmospheric Carbon Dioxide and Tropospheric Ozone. Ecosystems, 2012, 15, 71-82.	3.4	14
228	Effects of elevated carbon dioxide and soil nitrogen on growth of two leafy <i>Brassica</i> vegetables. New Zealand Journal of Crop and Horticultural Science, 2013, 41, 69-77.	1.3	9
229	Humidityâ€driven changes in growth rate, photosynthetic capacity, hydraulic properties and other functional traits in silver birch (<i>Betula pendula</i>). Ecological Research, 2013, 28, 523-535.	1.5	56
230	Growth response of three plantation species of the tropics exposed to elevated CO2 levels. Journal of Forestry Research, 2013, 24, 449-456.	3.6	4
231	Belowground Carbon Cycling at Aspen FACE. Developments in Environmental Science, 2013, , 209-226.	0.5	10
232	The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE. Tree Physiology, 2013, 33, 135-151.	3.1	54
233	Elevated <scp>CO</scp> ₂ increases treeâ€level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest <scp>FACE</scp> sites. New Phytologist, 2013, 197, 544-554.	7.3	210
234	Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 2013, 60, 23-32.	8.8	52
235	Greenhouse gas fluxes in an open air humidity manipulation experiment. Landscape Ecology, 2013, 28, 637-649.	4.2	26

#	Article	IF	CITATIONS
236	Forest water use and water use efficiency at elevated <scp><scp>CO₂</scp></scp> : a modelâ€data intercomparison at two contrasting temperate forest <scp>FACE</scp> sites. Global Change Biology, 2013, 19, 1759-1779.	9.5	314
237	Monitoring of CO2 exchange and carbon pools in vegetation and soil. Indian Journal of Plant Physiology, 2013, 18, 98-117.	0.8	0
238	Hydraulic time constants for transpiration of loblolly pine at a free-air carbon dioxide enrichment site. Tree Physiology, 2013, 33, 123-134.	3.1	28
239	Effects of pulses of elevated carbon dioxide concentration on stomatal conductance and photosynthesis in wheat and rice. Physiologia Plantarum, 2013, 149, 214-221.	5.2	23
241	Longâ€ŧerm dynamics of mycorrhizal root tips in a loblolly pine forest grown with freeâ€eir <scp><scp>CO₂</scp></scp> enrichment and soil N fertilization for 6Âyears. Global Change Biology, 2014, 20, 1313-1326.	9.5	26
242	Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Global Change Biology, 2014, 20, 2492-2504.	9.5	60
243	Growth environment determines light sensitivity of shoot hydraulic conductance. Ecological Research, 2014, 29, 143-151.	1.5	10
244	Fungal functioning in a pine forest: evidence from a ¹⁵ <scp>N</scp> â€labeled global change experiment. New Phytologist, 2014, 201, 1431-1439.	7.3	37
245	Wood properties of <scp><i>P</i></scp> <i>opulus</i> and <scp><i>B</i></scp> <i>etula</i> in longâ€ŧerm exposure to elevated <scp><scp>CO₂</scp></scp> and <scp><scp>O₃</scp></scp> . Plant, Cell and Environment, 2014, 37, 1452-1463.	5.7	30
246	Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Tree Physiology, 2014, 34, 955-965.	3.1	27
247	Relation between visitors' behaviour and characteristics of green spaces in the city of Granada, south-eastern Spain. Urban Forestry and Urban Greening, 2014, 13, 534-542.	5.3	59
248	Moderate warming increases PSII performance, antioxidant scavenging systems and biomass production in Stylosanthes capitata Vogel. Environmental and Experimental Botany, 2014, 102, 58-67.	4.2	56
249	Fungal carbon sources in a pine forest: evidence from a 13C-labeled global change experiment. Fungal Ecology, 2014, 10, 91-100.	1.6	17
250	Comprehensive ecosystem modelâ€data synthesis using multiple data sets at two temperate forest freeâ€air CO ₂ enrichment experiments: Model performance at ambient CO ₂ concentration. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 937-964.	3.0	95
251	Forest soil carbon oxidation state and oxidative ratio responses to elevated CO 2. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1797-1811.	3.0	19
252	Water use and yield of bioenergy poplar in future climates: modelling the interactive effects of elevated atmospheric <scp>CO</scp> ₂ and climate on productivity and water use. GCB Bioenergy, 2015, 7, 958-973.	5.6	3
253	Largeâ€scale plant growth chamber design for elevated <i>p</i> CO ₂ and δ ¹³ C studies. Rapid Communications in Mass Spectrometry, 2015, 29, 440-446.	1.5	4
254	Ecophysiology of deciduous trees native to Northeast Asia grown under FACE (Free Air) Tj ETQq1 1 0.784314 rg	BT (Qve <u>rlo</u>	ck,10 Tf 5 <u>0</u> 6

#	Article	IF	CITATIONS
255	Changes in root architecture under elevated concentrations of <scp>CO</scp> ₂ and nitrogen reflect alternate soil exploration strategies. New Phytologist, 2015, 205, 1153-1163.	7.3	50
256	The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated <scp>CO</scp> ₂ . New Phytologist, 2015, 205, 1164-1174.	7.3	84
257	A Free Air CO2 Enrichment (FACE) Facility in a Wetland to Study the Effects of Elevated Atmospheric Carbon Dioxide: System Description and Performance. Wetlands, 2015, 35, 193-205.	1.5	1
258	Plant-Mediated Ecosystem Effects of Tropospheric Ozone. Progress in Botany Fortschritte Der Botanik, 2015, , 395-438.	0.3	4
259	Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment. AoB PLANTS, 2015, 7, .	2.3	51
260	A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biology, 2015, 119, 917-928.	2.5	79
261	Modelling CO2 Impacts on Forest Productivity. Current Forestry Reports, 2015, 1, 69-80.	7.4	54
262	Increases in atmospheric CO ₂ have little influence on transpiration of a temperate forest canopy. New Phytologist, 2015, 205, 518-525.	7.3	61
263	Isotopic Analysis of Sporocarp Protein and Structural Material Improves Resolution of Fungal Carbon Sources. Frontiers in Microbiology, 2016, 7, 1994.	3.5	7
264	Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorusâ€limited <i>Eucalyptus</i> woodland. Global Change Biology, 2016, 22, 1628-1643.	9.5	55
265	Conserved stomatal behaviour under elevated CO ₂ and varying water availability in a mature woodland. Functional Ecology, 2016, 30, 700-709.	3.6	74
266	Response to <scp>CO</scp> ₂ enrichment of understory vegetation in the shade of forests. Global Change Biology, 2016, 22, 944-956.	9.5	29
267	Canopy leaf area of a mature evergreen <i>Eucalyptus</i> woodland does not respond to elevated atmospheric [<scp>CO</scp> ₂] but tracks water availability. Global Change Biology, 2016, 22, 1666-1676.	9.5	83
268	Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO ₂ and nitrogen fertilization. New Phytologist, 2016, 211, 874-885.	7.3	60
269	Inverse analysis of coupled carbon–nitrogen cycles against multiple datasets at ambient and elevated CO ₂ . Journal of Plant Ecology, 2016, 9, 285-295.	2.3	28
270	Influence of CO ₂ leakage from oil-producing wells on crop growth based on improved CASA model. International Journal of Remote Sensing, 2016, 37, 290-308.	2.9	5
271	Shortâ€ŧerm carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric <scp>CO</scp> ₂ concentration. Global Change Biology, 2016, 22, 380-390.	9.5	55
272	Production dynamics of Cenococcum geophilum ectomycorrhizas in response to long-term elevated CO2 and N fertilization. Fungal Ecology, 2017, 26, 11-19.	1.6	11

#	Article	IF	Citations
273	On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment. Agricultural and Forest Meteorology, 2017, 232, 367-383.	4.8	41
274	Coastal blue carbon: Concept, study method, and the application to ecological restoration. Science China Earth Sciences, 2018, 61, 637-646.	5.2	70
275	Endogeic earthworm densities increase in response to higher fine-root production in a forest exposed to elevated CO2. Soil Biology and Biochemistry, 2018, 122, 31-38.	8.8	8
276	Elevated <scp>CO</scp> ₂ concentrations reduce C ₄ cover and decrease diversity of understorey plant community in a <i>Eucalyptus</i> woodland. Journal of Ecology, 2018, 106, 1483-1494.	4.0	25
277	Local plant responses to global problems: Dactylis glomerata responses to different traffic pollutants on roadsides. Journal of Environmental Management, 2018, 212, 440-449.	7.8	8
278	The impact of spatiotemporal variability in atmospheric CO ₂ concentration on global terrestrial carbon fluxes. Biogeosciences, 2018, 15, 5635-5652.	3.3	9
279	Evapotranspiration and water yield of a pineâ€broadleaf forest are not altered by longâ€term atmospheric [CO ₂] enrichment under native or enhanced soil fertility. Global Change Biology, 2018, 24, 4841-4856.	9.5	16
280	Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height. International Journal of Environmental Research and Public Health, 2018, 15, 1257.	2.6	15
281	Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment. Biogeochemistry, 2018, 139, 85-101.	3.5	17
282	Fire, CO2, and climate effects on modeled vegetation and carbon dynamics in western Oregon and Washington. PLoS ONE, 2019, 14, e0210989.	2.5	5
283	Increasing Atmospheric CO2 Concentration Stand Development in Trembling Aspen Forests: Are Outdated Density Management Guidelines in Need of Revision for All Species?. Journal of Forestry, 2019, 117, 38-45.	1.0	6
284	Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Scientific Reports, 2019, 9, 19142.	3.3	67
285	Characteristics of free air carbon dioxide enrichment of a northern temperate mature forest. Global Change Biology, 2020, 26, 1023-1037.	9.5	21
286	Advancing global change biology through experimental manipulations: Where have we been and where might we go?. Global Change Biology, 2020, 26, 287-299.	9.5	36
287	The Carbon Cycle of Terrestrial Ecosystems. , 2020, , 141-182.		4
288	Sunlit, controlledâ€environment chambers are essential for comparing plant responses to various climates. Agronomy Journal, 2020, 112, 4531-4549.	1.8	7
289	Forest responses to simulated elevated CO ₂ under alternate hypotheses of size―and ageâ€dependent mortality. Global Change Biology, 2020, 26, 5734-5753.	9.5	18
290	Effects of elevated CO ₂ and temperature on survival and wing dimorphism of two species of rice planthoppers (Hemiptera: Delphacidae) under interaction. Pest Management Science, 2020, 76, 2087-2094.	3.4	11

#	Article	IF	CITATIONS
291	Fluctuations of CO2 in Free-Air CO2 Enrichment (FACE) depress plant photosynthesis, growth, and yield. Agricultural and Forest Meteorology, 2020, 284, 107899.	4.8	48
292	The evolution of biogeochemistry: revisited. Biogeochemistry, 2021, 154, 141-181.	3.5	19
293	Canopy position affects photosynthesis and anatomy in mature <i>Eucalyptus</i> trees in elevated CO2. Tree Physiology, 2021, 41, 206-222.	3.1	16
295	Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology, 2021, 27, 3336-3349.	9.5	50
296	Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old <i>Quercus robur</i> ?. Tree Physiology, 2022, 42, 130-144.	3.1	15
297	The Duke Forest FACE Experiment: CO2 Enrichment of a Loblolly Pine Forest. , 2006, , 197-212.		15
298	CO2 Enrichment of a Deciduous Forest: The Oak Ridge FACE Experiment. , 2006, , 231-251.		13
299	The Response of Foliar Carbohydrates to Elevated [CO2]. , 2006, , 293-308.		21
300	FACE Technology: Past, Present, and Future. , 2006, , 15-43.		21
301	Gradual Global Environmental Change in the Real World and Step Manipulative Experiments in Laboratory and Field: The Necessity of Inverse Analysis. , 2009, , 267-291.		3
302	Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change. , 2007, , 175-192.		222
303	Impact of Ozone on Trees: an Ecophysiological Perspective. Progress in Botany Fortschritte Der Botanik, 2003, , 349-404.	0.3	216
304	Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance. Crop and Pasture Science, 2009, 60, 697.	1.5	87
305	Understand distribution of carbon dioxide to interpret crop growth data: Australian grains free-air carbon dioxide enrichment experiment. Crop and Pasture Science, 2011, 62, 883.	1.5	27
306	Nutrient Transformations in the Rhizosphere. Books in Soils, Plants, and the Environment, 2007, , 111-133.	0.1	15
307	Productivity and Carbon Sequestration of Forests in theÂSouthern United States. , 2013, , 193-248.		8
310	Long-term Climate Change Research Facility for Trees: CO2-Enriched Open Top Chamber System. Korean Journal of Agricultural and Forest Meteorology, 2012, 14, 19-27.	0.2	11
311	Hotter and drier climate made the Mediterranean Europe and Northern Africa region a shrubbier landscape. Oecologia, 2021, 197, 1111-1126.	2.0	4

#	Article	IF	CITATIONS
312	Growth and Yield of Paddy Rice Under Free-air CO2 Enrichment. Advances in Agroecology, 2001, , 371-395.	0.3	0
314	The Changing Role of Forests in the Global Carbon Cycle. Books in Soils, Plants, and the Environment, 2005, , 187-222.	0.1	0
315	Elevated CO2and tree fecundity: the role of tree size, interannual variability, and population heterogeneity. Global Change Biology, 2007, .	9.5	0
316	Impacts of Climatic Changes on Biogeochemical Cycling in Terrestrial Ecosystems. , 2012, , 433-470.		2
319	Review of Long-term Climate Change Research Facilities for Forests. Korean Journal of Agricultural and Forest Meteorology, 2016, 18, 274-286.	0.2	2
326	The response of coarse root biomass to longâ€ŧerm CO ₂ enrichment and nitrogen application in a maturing <i>Pinus taeda</i> stand with a large broadleaved component. Global Change Biology, 2022, 28, 1458-1476.	9.5	4
327	Satellite evidence of canopy-height dependence of forest drought resistance in southwestern China. Environmental Research Letters, 2022, 17, 025005.	5.2	5
328	Quantification and uncertainty of root growth stimulation by elevated CO2 in a mature temperate deciduous forest. Science of the Total Environment, 2023, 854, 158661.	8.0	4
329	The world of underground ecology in a changing environment. Elementa, 2023, 11, .	3.2	0
330	Changes in Mangrove Blue Carbon under Elevated Atmospheric CO ₂ . Ecosystem Health and Sustainability, 2023, 9, .	0.0	3
331	Leaf Gas Exchange and Photosystem II Fluorescence Responses to CO2 Cycling. Plants, 2023, 12, 1620.	3.5	1
332	Stimulation of soil gross nitrogen transformations and nitrous oxide emission under Free air CO2 enrichment in a mature temperate oak forest at BIFoR-FACE. Soil Biology and Biochemistry, 2023, 184, 109072.	8.8	1