Propagation and senescence of human marrow stromal colony-forming assay identifies samples with the greate differentiate

British Journal of Haematology 107, 275-281 DOI: 10.1046/j.1365-2141.1999.01715.x

Citation Report

#	Article	IF	CITATIONS
1	Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system. Biochemical Society Transactions, 2000, 28, 341.	1.6	18
2	Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system. Biochemical Society Transactions, 2000, 28, 341-345.	1.6	44
3	Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Current Opinion in Hematology, 2000, 7, 358-363.	1.2	137
4	Biology and clinical utilization of mesenchymal progenitor cells. Brazilian Journal of Medical and Biological Research, 2000, 33, 881-887.	0.7	70
5	Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3213-3218.	3.3	811
7	Identification of a Discrete Population of Human Bone Marrow-Derived Mesenchymal Cells Exhibiting Properties of Uncommitted Progenitors. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 749-758.	1.8	35
8	Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy, 2001, 3, 393-396.	0.3	179
9	In Vitro Differentiation of Human Marrow Stromal Cells into Early Progenitors of Neural Cells by Conditions That Increase Intracellular Cyclic AMP. Biochemical and Biophysical Research Communications, 2001, 282, 148-152.	1.0	455
10	BMP-6 Enhances Chondrogenesis in a Subpopulation of Human Marrow Stromal Cells. Biochemical and Biophysical Research Communications, 2001, 284, 411-418.	1.0	278
11	Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7841-7845.	3.3	832
12	What is in a name? Defining the molecular phenotype of marrow stromal cells and their relationship to other stem/progenitor cells. Cytotherapy, 2001, 3, 409-411.	0.3	4
13	Stem cell and gene therapy approaches for skeletal disorders. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 268-276.	0.6	0
14	Mesenchymal Stem Cells. Experimental Biology and Medicine, 2001, 226, 507-520.	1.1	776
15	Rat Marrow Stromal Cells are More Sensitive to Plating Density and Expand More Rapidly from Single-Cell-Derived Colonies than Human Marrow Stromal Cells. Stem Cells, 2001, 19, 219-225.	1.4	237
16	MicroSAGE Analysis of 2,353 Expressed Genes in a Single Cell-Derived Colony of Undifferentiated Human Mesenchymal Stem Cells Reveals mRNAs of Multiple Cell Lineages. Stem Cells, 2001, 19, 408-418.	1.4	245
17	Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001, 98, 2396-2402.	0.6	1,235
18	Induction and characterization of hypoxanthine-phosphoribosyltransferase (Hprt [–]) deficient cell lines of <i>Akodon cursor</i> (Rodentia, Sigmodontinae). Cytogenetic and Genome Research, 2001, 92, 153-156.	0.6	3
19	In VitroOsteogenic Differentiation of Rat Bone Marrow Cells Subcultured with and without Dexamethasone. Tissue Engineering, 2002, 8, 321-331.	4.9	73

#	Article	IF	CITATIONS
20	Marrow Stem Cells, Mesenchymal Progenitor Cells, and Stromal Progeny. Cancer Investigation, 2002, 20, 110-123.	0.6	15
21	Establishment of a Rat Long-Term Culture Expressing the Osteogenic Phenotype: Dependence on Dexamethasone and FGF-2. Connective Tissue Research, 2002, 43, 606-612.	1.1	19
22	In VitroControl of Human Bone Marrow Stromal Cells for Bone Tissue Engineering. Tissue Engineering, 2002, 8, 941-953.	4.9	70
23	Advances in Osteogenesis Imperfecta. Clinical Orthopaedics and Related Research, 2002, 401, 6-16.	0.7	55
24	Human marrow stromal cell therapy for stroke in rat. Neurology, 2002, 59, 514-523.	1.5	862
25	Expansion of Human Adult Stem Cells from Bone Marrow Stroma: Conditions that Maximize the Yields of Early Progenitors and Evaluate Their Quality. Stem Cells, 2002, 20, 530-541.	1.4	864
26	Modulation of Integrin Expression on Rat Bone Marrow Cells by Substrates with Different Surface Characteristics. Tissue Engineering, 2002, 8, 615-626.	4.9	37
27	Treatment of neural injury with marrow stromal cells. Lancet Neurology, The, 2002, 1, 92-100.	4.9	576
28	Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology, 2002, 30, 783-791.	0.2	507
29	Building a consensus regarding the nature and origin of mesenchymal stem cells. Journal of Cellular Biochemistry, 2002, 85, 7-12.	1.2	103
30	Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Die Naturwissenschaften, 2002, 89, 338-351.	0.6	196
31	Multilineage Differentiation of Adult Human Bone Marrow Progenitor Cells Transduced with Human Papilloma Virus Type 16 E6/E7 Genes. Calcified Tissue International, 2002, 71, 447-458.	1.5	35
32	Initial interaction of rat bone marrow cells with non-coated and calcium phosphate coated titanium substrates. Biomaterials, 2002, 23, 3269-3277.	5.7	42
33	Isolation and Characterization of Size-Sieved Stem Cells from Human Bone Marrow. Stem Cells, 2002, 20, 249-258.	1.4	258
34	Mesenchymal stem cells. Bulletin of Experimental Biology and Medicine, 2002, 133, 103-109.	0.3	27
35	Adipogenic Differentiation of Human Adult Stem Cells From Bone Marrow Stroma (MSCs). Journal of Bone and Mineral Research, 2003, 19, 256-264.	3.1	254
36	Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis. Cell and Tissue Research, 2003, 311, 227-237.	1.5	64
37	New aspects of galectin functionality in nuclei of cultured bone marrow stromal and epidermal cells: biotinylated galectins as tool to detect specific binding sites. Biology of the Cell, 2003, 95, 535-545.	0.7	74

#	Article	IF	CITATIONS
38	Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols. Brain Research, 2003, 991, 46-55.	1.1	84
39	CD34+CDw90(Thy-1)+ subset colocated with mesenchymal progenitors in human normal bone marrow hematon units is enriched in colony-forming unit megakaryocytes and long-term culture-initiating cells. Experimental Hematology, 2003, 31, 1275-1283.	0.2	20
40	Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. Journal of Cellular Biochemistry, 2003, 89, 1235-1249.	1.2	434
41	Ceramic hydroxyapatite coating on titanium implants drives selective bone marrow stromal cell adhesion. Clinical Oral Implants Research, 2003, 14, 569-577.	1.9	11
42	Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by realtime PCR. Cytotherapy, 2003, 5, 7-18.	0.3	102
43	Functional and immunophenotypic characteristics of isolated CD105+ and fibroblast+ stromal cells from AML: implications for their plasticity along endothelial lineage. Cytotherapy, 2003, 5, 66-79.	0.3	22
44	One strategy for cell and gene therapy: Harnessing the power of adult stem cells to repair tissues. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11917-11923.	3.3	392
45	Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells,. Bone, 2003, 33, 919-926.	1.4	1,037
46	Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Experimental Cell Research, 2003, 287, 98-105.	1.2	343
47	Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Research, 2003, 5, 32.	2.0	656
48	The Wnt Signaling Inhibitor Dickkopf-1 Is Required for Reentry into the Cell Cycle of Human Adult Stem Cells from Bone Marrow. Journal of Biological Chemistry, 2003, 278, 28067-28078.	1.6	249
49	Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation?. Cardiovascular Research, 2003, 58, 460-468.	1.8	104
50	Treatment of Traumatic Brain Injury in Adult Rats with Intravenous Administration of Human Bone Marrow Stromal Cells. Neurosurgery, 2003, 53, 697-703.	0.6	340
51	Comparison of in Vitro Mineralization by Murine Embryonic and Adult Stem Cells Cultured in an Osteogenic Medium. Tissue Engineering, 2004, 10, 1386-1398.	4.9	36
52	Mesengenic Progenitor Cells Derived from Human Placenta. Tissue Engineering, 2004, 10, 1136-1147.	4.9	74
53	Generation of Neuroprogenitor-like Cells from Adult Mammalian Bone Marrow Stromal Cells In Vitro. Stem Cells and Development, 2004, 13, 409-420.	1.1	31
54	Evaluation of Mineralized Collagen and α-Tricalcium Phosphate as Scaffolds for Tissue Engineering of Bone Using Human Mesenchymal Stem Cells. Cells Tissues Organs, 2004, 177, 68-78.	1.3	91
55	Clonal Population of Adult Stem Cells: Life Span and Differentiation Potential. Cell Transplantation, 2004, 13, 93-101.	1.2	45

	CITATION	Report	
#	Article	IF	CITATIONS
56	Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. British Journal of Haematology, 2004, 124, 666-675.	1.2	71
57	Stable transfection of MSCs by electroporation. Gene Therapy, 2004, 11, 224-228.	2.3	57
58	Human Mesenchymal Stem Cells Tissue Development in 3D PET Matrices. Biotechnology Progress, 2004, 20, 905-912.	1.3	138
59	Mesenchymal stem cells: paradoxes of passaging. Experimental Hematology, 2004, 32, 414-425.	0.2	466
60	Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Experimental Hematology, 2004, 32, 502-509.	0.2	156
61	Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Experimental Hematology, 2004, 32, 1212-1225.	0.2	246
62	Mesenchymal stem cells from the bone marrow stroma: basic biology and potential for cell therapy. Current Anaesthesia and Critical Care, 2004, 15, 410-417.	0.3	13
63	Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. Journal of Cell Science, 2004, 117, 2971-2981.	1.2	616
64	Sustained In Vitro Expansion of Bone Progenitors Is Cell Density Dependent. Stem Cells, 2004, 22, 39-50.	1.4	75
65	Interactions of Chemokines and Chemokine Receptors Mediate the Migration of Mesenchymal Stem Cells to the Impaired Site in the Brain After Hypoglossal Nerve Injury. Stem Cells, 2004, 22, 415-427.	1.4	402
66	Study of Telomere Length Reveals Rapid Aging of Human Marrow Stromal Cells following In Vitro Expansion. Stem Cells, 2004, 22, 675-682.	1.4	662
67	An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry, 2004, 329, 77-84.	1.1	1,291
68	Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification. Biomaterials, 2004, 25, 1331-1337.	5.7	179
69	Isolation of a Highly Clonogenic and Multipotential Subfraction of Adult Stem Cells from Bone Marrow Stroma. Stem Cells, 2004, 22, 823-831.	1.4	207
70	Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Experimental Cell Research, 2004, 297, 313-313.	1.2	0
71	Circulating mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 2004, 36, 585-597.	1.2	258
72	Mesenchymal stem cells: clinical applications and biological characterization. International Journal of Biochemistry and Cell Biology, 2004, 36, 568-584.	1.2	1,455
73	Telomerase deficiency impairs differentiation of mesenchymal stem cells. Experimental Cell Research, 2004, 294, 1-8.	1.2	123

#	Article	IF	CITATIONS
74	Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Experimental Cell Research, 2004, 297, 313-328.	1.2	75
75	Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood, 2004, 103, 1647-1652.	0.6	227
76	Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 2004, 103, 1662-1668.	0.6	897
77	Characterization and Neural Differentiation of Fetal Lung Mesenchymal Stem Cells. Cell Transplantation, 2005, 14, 311-321.	1.2	87
78	How Wnt Signaling Affects Bone Repair by Mesenchymal Stem Cells from the Bone Marrow. Annals of the New York Academy of Sciences, 2005, 1049, 97-106.	1.8	131
79	Polyamine Depletion Reduces TNFα/MG132-Induced Apoptosis in Bone Marrow Stromal Cells. Stem Cells, 2005, 23, 983-991.	1.4	32
80	Mesenchymal stem cell aging. Experimental Gerontology, 2005, 40, 926-930.	1.2	251
81	FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. Journal of Cellular Physiology, 2005, 203, 398-409.	2.0	443
82	Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. Journal of Cellular Physiology, 2005, 205, 194-201.	2.0	257
83	Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis and Rheumatism, 2005, 52, 2521-2529.	6.7	1,314
84	Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: Dynamic cell seeding and construct development. Biotechnology and Bioengineering, 2005, 91, 482-493.	1.7	227
85	Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnology and Bioengineering, 2005, 92, 492-500.	1.7	133
86	lsolation and phenotypical characterization of mesenchymal stem cells from human fetal thymus. Bulletin of Experimental Biology and Medicine, 2005, 139, 134-140.	0.3	25
87	Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell and Tissue Research, 2005, 319, 243-253.	1.5	166
88	Development of the osteoblast phenotype of serial cell subcultures from human bone marrow. Brazilian Dental Journal, 2005, 16, 225-230.	0.5	15
89	Neuronal Differentiation of Bone Marrow-derived Stromal Stem Cells Involves Suppression of Discordant Phenotypes through Gene Silencing. Journal of Biological Chemistry, 2005, 280, 23691-23697.	1.6	58
90	Cardiac Stem Cells and Mechanisms of Myocardial Regeneration. Physiological Reviews, 2005, 85, 1373-1416.	13.1	400

91	Human Bone Marrow–Derived Mesenchymal Stem Cells in the Treatment of Gliomas. Cancer Research, 2005, 65, 3307-3318.	0.4	1,001
----	---	-----	-------

#	Article	IF	CITATIONS
92	Long-Term Self-Renewal of Postnatal Muscle-derived Stem Cells. Molecular Biology of the Cell, 2005, 16, 3323-3333.	0.9	152
93	Adult Bone Marrow Stem/Progenitor Cells (MSCs) Are Preconditioned by Microenvironmental "Niches" in Culture: A Two-Stage Hypothesis for Regulation of MSC Fate. Science Signaling, 2005, 2005, pe37-pe37.	1.6	109
94	Bone Repair and Adult Stem Cells. , 2005, , 442-465.		1
95	Dkk-1-derived Synthetic Peptides and Lithium Chloride for the Control and Recovery of Adult Stem Cells from Bone Marrow. Journal of Biological Chemistry, 2005, 280, 2309-2323.	1.6	86
96	Immunobiology of Human Mesenchymal Stem Cells and Future Use in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2005, 11, 321-334.	2.0	429
97	Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation. Biochemical and Biophysical Research Communications, 2005, 326, 527-538.	1.0	234
98	Role of Adult Mesenchymal Stem Cells in Bone Tissue Engineering Applications: Current Status and Future Prospects. Tissue Engineering, 2005, 11, 787-802.	4.9	240
99	High-Potential Human Mesenchymal Stem Cells. Stem Cells and Development, 2005, 14, 70-80.	1.1	38
100	Bone marrow-derived mesenchymal stem cells. Leukemia and Lymphoma, 2005, 46, 1531-1544.	0.6	151
101	Gene Transfer into Rat Mesenchymal Stem Cells: A Comparative Study of Viral and Nonviral Vectors. Stem Cells and Development, 2006, 15, 87-96.	1.1	142
102	Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochemistry and Cell Biology, 2006, 84, 93-101.	0.9	102
103	Mesenchymal stem cells for tissue engineering and regenerative medicine. Biomedical Materials (Bristol), 2006, 1, 63-71.	1.7	54
104	Use of CFDA-SE for evaluating the in vitro proliferation pattern of human mesenchymal stem cells. Cytotherapy, 2006, 8, 243-253.	0.3	46
105	Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy, 2006, 8, 228-242.	0.3	60
106	Mesenchymal Stem Cells in Tissue Engineering. Cells Tissues Organs, 2006, 183, 112-122.	1.3	63
107	Chondrogenic Differentiation of Mesenchymal Stem Cells Isolated from Patients in Late Adulthood: The Optimal Conditions of Growth Factors. Tissue Engineering, 2006, 12, 527-536.	4.9	118
110	Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006, 108, 3938-3944.	0.6	500
111	Good Manufacturing Practices: Clinical-Scale Production of Mesenchymal Stem Cells. , 2006, , 91-105.		2

#	Article	IF	CITATIONS
112	Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 2006, 7, 14.	3.0	695
113	Age-related impairment of mesenchymal progenitor cell function. Aging Cell, 2006, 5, 213-224.	3.0	204
114	Cartilage, SOX9 and Notch signals in chondrogenesis. Journal of Anatomy, 2006, 209, 469-480.	0.9	122
115	Stem cell properties of human periodontal ligament cells. Journal of Periodontal Research, 2006, 41, 303-310.	1.4	290
116	Possibility of selection of chondrogenic progenitor cells by telomere length in FGF-2-expanded mesenchymal stromal cells. Cell Proliferation, 2006, 39, 575-584.	2.4	48
117	Local signals in stem cell-based bone marrow regeneration. Cell Research, 2006, 16, 189-195.	5.7	58
118	Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials, 2006, 27, 1859-1867.	5.7	220
119	Comparison of standard surface chemistries for culturing mesenchymal stem cells prior to neural differentiation. Biomaterials, 2006, 27, 4333-4339.	5.7	29
120	Review:Ex VivoEngineering of Living Tissues with Adult Stem Cells. Tissue Engineering, 2006, 12, 3007-3019.	4.9	218
121	Characterization of the Optimal Culture Conditions for Clinical Scale Production of Human Mesenchymal Stem Cells. Stem Cells, 2006, 24, 462-471.	1.4	551
122	Mesenchymal Stem Cells and Adipogenesis in Hemangioma Involution. Stem Cells, 2006, 24, 1605-1612.	1.4	122
123	Nucleostemin Is a Marker of Proliferating Stromal Stem Cells in Adult Human Bone Marrow. Stem Cells, 2006, 24, 1113-1120.	1.4	111
124	Formation of Neurons by Non-Neural Adult Stem Cells: Potential Mechanism Implicates an Artifact of Growth in Culture. Stem Cells, 2006, 24, 1841-1851.	1.4	84
125	Autocrine Fibroblast Growth Factor 2 Signaling Is Critical for Self-Renewal of Human Multipotent Adipose-Derived Stem Cells. Stem Cells, 2006, 24, 2412-2419.	1.4	227
126	Mesenchymal Stem Cells: Isolation, In Vitro Expansion and Characterization. Handbook of Experimental Pharmacology, 2006, , 249-282.	0.9	316
127	Mesenchymal Stem Cell Engineering and Transplantation. , 2006, , 1-44.		10
129	Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. European Journal of Haematology, 2006, 76, 309-316.	1.1	128
130	Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radical Biology and Medicine, 2006, 41, 326-338.	1.3	62

#	Article	IF	CITATIONS
131	Adult mesenchymal stem cells rescue dorsal root ganglia neurons from dying. Brain Research, 2006, 1116, 75-81.	1.1	41
132	Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis and Rheumatism, 2006, 54, 2605-2615.	6.7	161
133	In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. Journal of Cellular Biochemistry, 2006, 97, 84-97.	1.2	270
134	Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. Journal of Cellular Biochemistry, 2006, 97, 744-754.	1.2	289
135	Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. Journal of Cellular Physiology, 2006, 207, 331-339.	2.0	374
137	Tissue Stem Cells. , 0, , .		6
139	Recovery of Function Following Grafting of Human Bone Marrow-Derived Stromal Cells into the Injured Spinal Cord. Neurorehabilitation and Neural Repair, 2006, 20, 278-296.	1.4	202
140	Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. Journal of Cell Biology, 2006, 172, 433-440.	2.3	231
141	Clonal Isolation and Characterization of Bone Marrow Stromal Cells from Patients with Osteoarthritis. Tissue Engineering, 2007, 13, 819-829.	4.9	99
142	Effects of Serial Passaging on the Adipogenic and Osteogenic Differentiation Potential of Adipose-Derived Human Mesenchymal Stem Cells. Tissue Engineering, 2007, 13, 1291-1298.	4.9	156
143	Clinical Grade Expansion of Human Bone Marrow Mesenchymal Stem Cells. Methods in Molecular Biology, 2007, 407, 245-263.	0.4	10
144	Autotransplantation of Bone Marrow-Derived Stem Cells as a Therapy for Neurodegenerative Diseases. Handbook of Experimental Pharmacology, 2007, , 219-242.	0.9	51
145	Impact of Aging on Rat Bone Marrow-Derived Stem Cell Chondrogenesis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 136-148.	1.7	80
146	Mesenchymal Stem Cells Contribute to Insulin-Producing Cells Upon Microenvironmental Manipulation In Vitro. Transplantation Proceedings, 2007, 39, 3363-3368.	0.3	30
147	Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells. Bone, 2007, 41, 575-583.	1.4	86
148	High-Yield Isolation, Expansion, and Differentiation of Murine Bone Marrow-Derived Mesenchymal Stem Cells Using Fibrin Microbeads (FMB). Cloning and Stem Cells, 2007, 9, 157-175.	2.6	31
149	GMP-grade preparation of biomimetic scaffolds with osteo-differentiated autologous mesenchymal stromal cells for the treatment of alveolar bone resorption in periodontal disease. Cytotherapy, 2007, 9, 427-438.	0.3	20
150	Stem Cell Assays. Methods in Molecular Biology, 2007, , .	0.4	3

~			<u> </u>	
		ION		PORT
C	IIAI	IUN	I NEI	UKI

#	Article	IF	CITATIONS
152	Immune Plasticity of Bone Marrow-Derived Mesenchymal Stromal Cells. Handbook of Experimental Pharmacology, 2007, , 45-66.	0.9	51
153	Identification of Cord Blood-Derived Mesenchymal Stem/stromal Cell Populations with Distinct Growth Kinetics, Differentiation Potentials, and Gene Expression Profiles. Stem Cells and Development, 2007, 16, 53-74.	1.1	100
154	Mesenchymal stromal cell-like characteristics of corneal keratocytes. Cytotherapy, 2007, 9, 252-258.	0.3	46
155	Could the effect of modeled microgravity on osteogenic differentiation of human mesenchymal stem cells be reversed by regulation of signaling pathways?. Biological Chemistry, 2007, 388, 755-63.	1.2	30
156	Effect of Aging on the Pluripotential Capacity of Human Bone Marrow Derived Mesenchymal Stem Cells. The Journal of the Korean Orthopaedic Association, 2007, 42, 701.	0.0	1
157	Human bone marrow-derived mesenchymal stem cells. Libyan Journal of Medicine, 2007, 2, 190-201.	0.8	12
159	Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnology and Bioengineering, 2007, 96, 584-595.	1.7	187
160	Fundamentals of Culture and Characterization of Mesenchymal Stem/Progenitor Cells (MSCs) from Bone Marrow Stroma. , 0, , 207-232.		13
161	Quantitative polymerase chain reaction as a reliable method to determine functional lentiviral titer afterex vivo gene transfer in human mesenchymal stem cells. Journal of Gene Medicine, 2007, 9, 585-595.	1.4	20
162	Ex vivo expansion, adipogenesis and neurogenesis of cryopreserved human bone marrow mesenchymal stem cells. Cell Biology International, 2007, 31, 444-450.	1.4	135
163	Optimization of serum free medium for cord blood mesenchymal stem cells. Biochemical Engineering Journal, 2007, 33, 1-9.	1.8	46
164	Self-assembled collagen–human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials, 2007, 28, 4652-4666.	5.7	158
165	Organization of mesenchymal stem cells is controlled by micropatterned silicon substrates. Materials Science and Engineering C, 2007, 27, 117-121.	3.8	31
166	A Microcarrier-Based Cultivation System for Expansion of Primary Mesenchymal Stem Cells. Biotechnology Progress, 2007, 23, 187-193.	1.3	156
167	Mesenchymal content of fresh bone marrow: a proposed quality control method for cell therapy. British Journal of Haematology, 2007, 139, 312-320.	1.2	54
168	Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair and Regeneration, 2007, 15, 350-359.	1.5	137
169	Stromal progenitor cell therapy corrects the woundâ€healing defect in the ischemic rabbit ear model of chronic wound repair. Wound Repair and Regeneration, 2007, 15, 736-747.	1.5	17
170	Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 2007, 6, 745-757.	3.0	442

#	Article	IF	CITATIONS
171	Two steps to functional mesenchymal stromal cells for clinical application. Transfusion, 2007, 47, 1426-1435.	0.8	114
172	Mesenchymal stem cell tissue engineering: Techniques for isolation, expansion and application. Injury, 2007, 38, S23-S33.	0.7	168
173	Stem cell enrichment approaches. Seminars in Cancer Biology, 2007, 17, 257-264.	4.3	20
174	Extracellular Matrix Made by Bone Marrow Cells Facilitates Expansion of Marrow-Derived Mesenchymal Progenitor Cells and Prevents Their Differentiation Into Osteoblasts. Journal of Bone and Mineral Research, 2007, 22, 1943-1956.	3.1	319
175	Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells. Journal of Zhejiang University: Science B, 2007, 8, 136-146.	1.3	31
176	Mesenchymal stem cell therapy in equine musculoskeletal disease: scientific fact or clinical fiction?. Equine Veterinary Journal, 2007, 39, 172-180.	0.9	77
177	An efficient method for isolation of murine bone marrow mesenchymal stem cells. International Journal of Developmental Biology, 2007, 51, 723-729.	0.3	145
178	Bone tissue engineering using marrow stromal cells. Biotechnology and Bioprocess Engineering, 2007, 12, 48-53.	1.4	14
179	Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells. Molecular and Cellular Biochemistry, 2007, 304, 167-179.	1.4	66
180	Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure. Cell and Tissue Research, 2007, 329, 301-311.	1.5	102
181	Mesenchymal Stem Cell Preparations—Comparing Apples and Oranges. Stem Cell Reviews and Reports, 2007, 3, 239-248.	5.6	242
182	Human platelet lysate enhances the proliferative activity of cultured human fibroblast-like cells from different tissues. Cell and Tissue Banking, 2008, 9, 1-10.	0.5	60
183	Stem Cells: Implications in Experimental Ischaemic Stroke Therapy. Stem Cell Reviews and Reports, 2008, 4, 227-233.	5.6	4
184	Mature adipocyteâ€derived dedifferentiated fat cells exhibit multilineage potential. Journal of Cellular Physiology, 2008, 215, 210-222.	2.0	341
185	Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogenâ€stimulated Bâ€cell immunoglobulin production <i>in vitro</i> . Cell Biology International, 2008, 32, 384-393.	1.4	153
186	Molecular and ultrastructural characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells. Cell Biology International, 2008, 32, 1183-1192.	1.4	47
187	Human Multipotent Stromal Cells Undergo Sharp Transition from Division to Development in Culture. Stem Cells, 2008, 26, 193-201.	1.4	90
188	Comparative characterization of mesenchymal bone marrow stromal cells at early and late stages of culturing. Biology Bulletin, 2008, 35, 132-138.	0.1	6

#	Article	IF	CITATIONS
189	Effects of growth factors on multipotent bone marrow mesenchymal stromal cells. Biology Bulletin, 2008, 35, 555-570.	0.1	3
190	Human mesenchymal stem cells: from basic biology to clinical applications. Gene Therapy, 2008, 15, 109-116.	2.3	330
191	Effects of Oxygen Transport on 3-D Human Mesenchymal Stem Cell Metabolic Activity in Perfusion and Static Cultures: Experiments and Mathematical Model. Biotechnology Progress, 2008, 21, 1269-1280.	1.3	112
192	Murine bone marrow derived stromal progenitor cells fail to prevent or treat acute graft-versus-host disease. British Journal of Haematology, 2008, 141, 224-234.	1.2	43
193	Self-renewal and differentiation capacity of young and aged stem cells. Experimental Cell Research, 2008, 314, 1937-1944.	1.2	246
194	Different media and supplements modulate the clonogenic and expansion properties of rabbit bone marrow mesenchymal stem cells. BMC Research Notes, 2008, 1, 53.	0.6	33
195	Optimization of mesenchymal stem cell expansion procedures by cell separation and culture conditions modification. Experimental Hematology, 2008, 36, 1014-1021.	0.2	143
196	Reversible commitment to differentiation by human multipotent stromal cells in single-cell–derived colonies. Experimental Hematology, 2008, 36, 1390-1402.	0.2	46
197	Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. Journal of Cellular and Molecular Medicine, 2008, 12, 537-552.	1.6	172
198	Introducing a singleâ€cellâ€derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. Journal of Cellular and Molecular Medicine, 2008, 12, 1347-1359.	1.6	177
199	Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. Journal of Cellular and Molecular Medicine, 2008, 12, 2552-2565.	1.6	129
200	Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mechanisms of Ageing and Development, 2008, 129, 163-173.	2.2	1,031
202	Isolation of Human Mesenchymal Stem Cells from Bone and Adipose Tissue. Methods in Cell Biology, 2008, 86, 257-278.	0.5	59
203	Mesenchymal Stem Cells. , 2008, 449, v-vii.		33
204	Colony Forming Unit Assays for MSCs. , 2008, 449, 83-91.		92
205	Long-Term Serial Passage and Neuronal Differentiation Capability of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 2008, 17, 883-896.	1.1	55
206	Cryopreserved human bone marrow mononuclear cells as a source of mesenchymal stromal cells: application in osteoporosis research. Cytotherapy, 2008, 10, 460-468.	0.3	38
207	Characterization of mesenchymal stromal cells derived from full-term umbilical cord blood. Cytotherapy, 2008, 10, 54-68.	0.3	55

#	Article	IF	CITATIONS
208	Mesenchymal stroma cells improve hyperglycemia and insulin deficiency in the diabetic porcine pancreatic microenvironment. Cytotherapy, 2008, 10, 796-805.	0.3	27
209	Loss of Thy-1 (CD90) antigen expression on mesenchymal stromal cells from hematologic malignancies is induced by in vitro angiogenic stimuli and is associated with peculiar functional and phenotypic characteristics. Cytotherapy, 2008, 10, 69-82.	0.3	37
210	In vivo bioimaging using photogenic rats: Fate of injected bone marrow-derived mesenchymal stromal cells. Journal of Autoimmunity, 2008, 30, 163-171.	3.0	48
211	Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Experimental Neurology, 2008, 211, 588-592.	2.0	91
212	A Simple and Reliable Electroporation Method for Human Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 2008, 17, 837-848.	1.1	47
213	Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy, 2008, 10, 320-330.	0.3	239
214	Culture medium study of human mesenchymal stem cells for practical use of tissue engineering and regenerative medicine. Bio-Medical Materials and Engineering, 2008, 18, 129-136.	0.4	6
215	Engineering Robust and Functional Vascular Networks In Vivo With Human Adult and Cord Blood–Derived Progenitor Cells. Circulation Research, 2008, 103, 194-202.	2.0	449
216	Mesenchymal Progenitor Cells: Tissue Origin, Isolation And Culture. Transfusion Medicine and Hemotherapy, 2008, 35, 160-167.	0.7	27
217	Characteristics of Mesenchymal Stem Cells – New Stars in Regenerative Medicine or Unrecognized Old Fellows in Autologous Regeneration?. Transfusion Medicine and Hemotherapy, 2008, 35, 154-159.	0.7	10
218	Changes of the Functional Capacity of Mesenchymal Stem Cells due to Aging or Age-Associated Disease – Implications for Clinical Applications and Donor Recruitment. Transfusion Medicine and Hemotherapy, 2008, 35, 299-305.	0.7	18
219	Growth, Differentiation, and Biochemical Signatures of Rhesus Monkey Mesenchymal Stem Cells. Stem Cells and Development, 2008, 17, 185-198.	1.1	32
220	GMP-Compliant Propagation of Human Multipotent Mesenchymal Stromal Cells. , 0, , 97-115.		3
221	Clonal Analysis of Hematopoiesis-Supporting Activity of Human Mesenchymal Stem Cells in Association with Jagged1 Expression and Osteogenic Potential. Cell Transplantation, 2008, 17, 1169-1179.	1.2	17
222	Mesenchymal Stromal Cells Can Be Derived From Bone Marrow CD133 ⁺ Cells: Implications for Therapy. Stem Cells and Development, 2009, 18, 497-510.	1.1	33
223	Leukemia Inhibitory Factor Secretion is a Predictor and Indicator of Early Progenitor Status in Adult Bone Marrow Stromal Cells. Tissue Engineering - Part A, 2009, 15, 33-44.	1.6	30
224	Human Neonatal Thymus–Derived Mesenchymal Stromal Cells: Characterization, Differentiation, and Immunomodulatory Properties. Tissue Engineering - Part A, 2009, 15, 1787-1796.	1.6	34
225	Amniotic Fluid Stem Cells Produce Robust Mineral Deposits on Biodegradable Scaffolds. Tissue Engineering - Part A, 2009, 15, 3129-3138.	1.6	62

#	Article	IF	CITATIONS
226	Culture Conditions Allow Selection of Different Mesenchymal Progenitors from Adult Mouse Bone Marrow. Tissue Engineering - Part A, 2009, 15, 2525-2536.	1.6	19
227	Human Bone Marrow–Derived Mesenchymal Stem Cells for Intravascular Delivery of Oncolytic Adenovirus Δ24-RGD to Human Gliomas. Cancer Research, 2009, 69, 8932-8940.	0.4	215
228	Isolation and <i>ex vivo</i> expansion of human umbilical cord blood-derived CD34 ⁺ stem cells and their cotransplantation with or without mesenchymal stem cells. Hematology, 2009, 14, 125-132.	0.7	31
229	Effect of a Novel Recombinant Protein of FibronectinIII7-10/Cadherin 11 EC1-2 on Osteoblastic Adhesion and Differentiation. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1999-2006.	0.6	11
230	Application of Stem Cells for Articular Cartilage Regeneration. Journal of Knee Surgery, 2009, 22, 60-71.	0.9	42
231	Bone marrow mesenchymal stromal cells of patients with myeloproliferative disorders do not carry the JAK2-V617F mutation. Experimental Hematology, 2009, 37, 416-420.	0.2	16
232	Endogenous bone morphogenetic proteins in human bone marrow-derived multipotent mesenchymal stromal cells. European Journal of Cell Biology, 2009, 88, 257-271.	1.6	46
233	Leptin receptor/CD295 is upregulated on primary human mesenchymal stem cells of advancing biological age and distinctly marks the subpopulation of dying cells. Experimental Gerontology, 2009, 44, 57-62.	1.2	37
234	Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. Journal of Cellular Physiology, 2009, 219, 421-429.	2.0	45
235	Role of poly-l-lysine-coated plates and fetal calf serum concentration in sheep chondroprogenitor cell culturing. Journal of Artificial Organs, 2009, 12, 118-122.	0.4	3
236	Effect of protocatechuic acid from AlpiniaÂoxyphylla on proliferation of human adipose tissue-derived stromal cells inÂvitro. Molecular and Cellular Biochemistry, 2009, 330, 47-53.	1.4	9
237	Influence of lactic acid on the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells. Cell Biology and Toxicology, 2009, 25, 573-586.	2.4	36
238	Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Veterinary Research Communications, 2009, 33, 811-821.	0.6	92
239	Biological characterization of long-term cultured human mesenchymal stem cells. Archives of Pharmacal Research, 2009, 32, 117-126.	2.7	134
240	Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice. BMC Cell Biology, 2009, 10, 3.	3.0	29
241	Murine mesenchymal progenitor cells from different tissues differentiated via mesenchymal microspheres into the mesodermal direction. BMC Cell Biology, 2009, 10, 92.	3.0	13
242	Identification of a bone marrow-derived mesenchymal progenitor cell subset that can contribute to the gastric epithelium. Laboratory Investigation, 2009, 89, 1410-1422.	1.7	42
243	A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature Protocols, 2009, 4, 102-106.	5.5	719

#	Article	IF	CITATIONS
244	Characteristic changes of periodontal ligamentâ€derived cells during passage. Journal of Periodontal Research, 2009, 44, 425-433.	1.4	56
245	Mesenchymal Stromal Cells. Annals of the New York Academy of Sciences, 2009, 1176, 101-117.	1.8	269
246	Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy, 2009, 214, 759-767.	0.9	117
247	The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Biomaterials, 2009, 30, 3415-3427.	5.7	35
248	In Vitro Differentiation of Embryonic and Adult Stem Cells into Hepatocytes: State of the Art. Stem Cells, 2009, 27, 577-605.	1.4	225
249	Isolation and Culture of Epithelial Progenitors and Mesenchymal Stem Cells from Human Endometrium1. Biology of Reproduction, 2009, 80, 1136-1145.	1.2	425
250	In vitro cultures of human pancreatic stem cells: Gene and protein expression of designated markers varies with passage. Annals of Anatomy, 2009, 191, 94-103.	1.0	6
251	Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells. Annals of Anatomy, 2009, 191, 23-32.	1.0	27
252	Proteome Analysis of Rat Bone Marrow Mesenchymal Stem Cell Subcultures. Journal of Proteome Research, 2009, 8, 2164-2172.	1.8	30
253	A Comprehensive Review on Mesenchymal Stem Cell Growth and Senescence. Rejuvenation Research, 2009, 12, 105-116.	0.9	118
254	Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 364-370.	1.8	82
255	In vitro initial expansion of mesenchymal stem cells is influenced by the culture parameters used in the isolation process. Bio-Medical Materials and Engineering, 2009, 19, 301-309.	0.4	9
256	Repair of Tissues by Adult Stem/Progenitor Cells (MSCs): Controversies, Myths, and Changing Paradigms. Molecular Therapy, 2009, 17, 939-946.	3.7	524
257	Cellular Biology of Hematopoiesis. , 0, , 72-87.		0
258	Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells. Cytotherapy, 2009, 11, 129-136.	0.3	69
259	Mesenchymal Stromal Cells Expanded in Human Allogenic Cord Blood Serum Display Higher Self-Renewal and Enhanced Osteogenic Potential. Stem Cells and Development, 2009, 18, 559-572.	1.1	55
260	Engineered Extracellular Matrices Modulate the Expression Profile and Feeder Properties of Bone Marrow-Derived Human Multipotent Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2009, 15, 3161-3171.	1.6	26
261	Mesenchymal Stem Cells Adopt β-Cell Fate Upon Diabetic Pancreatic Microenvironment. Pancreas, 2009, 38, 275-281.	0.5	21

ARTICLE IF CITATIONS Stem cells and tissue scaffolds for bone repair., 2009, , 291-312. 0 262 The CD34-like protein PODXL and α6-integrin (CD49f) identify early progenitor MSCs with increased 169 clonogenicity and migration to infarcted heart in mice. Blood, 2009, 113, 816-826. 264 Fetal Mesenchymal Stem Cells., 2010, , 339-367. 0 Emerging use of stem cells in regenerative medicine. Biochemical Journal, 2010, 428, 11-23. Multilineage potential of adult human mesenchymal stromal cells derived from bone marrow of 266 0.8 0 patients with polycytaemia vera. Biologia (Poland), 2010, 65, 372-378. Mesenchymal Stem Cells and Cancer: Tumor-Specific Delivery Vehicles or Therapeutic Targets?. Human 1.4 Gene Therapy, 2010, 21, 1506-1512. Human Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: A User's Guide. Stem Cells and 268 1.1 297 Development, 2010, 19, 1449-1470. Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold. International Orthopaedics, 269 2010, 34, 1341-1349 Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. 270 0.8 54 Annals of Hematology, 2010, 89, 701-713. Fabrication and characterization of a recombinant fibronectin/cadherin bio-inspired ceramic surface 271 4.1 and its influence on adhesion and ossification in vitro. Acta Biomaterialia, 2010, 6, 776-785. Micromanipulation of culture niche permits long-term expansion of dental pulp stem cellsâ€"an economic and commercial angle. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 272 0.7 32 764-773. Metformin reverses the deleterious effects of high glucose on osteoblast function. Journal of 1.2 134 Diabetes and Its Complications, 2010, 24, 334-344 Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of 274 1.1 75 neurotrophins to the Parkinsonian rat brain. Brain Research, 2010, 1359, 33-43. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell 1.2 39 lineages. Experimental Cell Research, 2010, 316, 2365-2376. Precise conditional immortalization of mouse cells using tetracyclineâ€regulated SV40 large Tâ€antigen. 276 0.8 17 Genesis, 2010, 48, 220-232. <i>N</i>à€isopropylacrylamideâ€based thermoresponsive polyelectrolyte multilayer films for human 33 mesenchymal stem cell expansion. Biotechnology Progress, 2010, 26, 1705-1713. Largeâ€scale extraction and characterization of CD271+ multipotential stromal cells from trabecular 278 bone in health and osteoarthritis: Implications for bone regeneration strategies based on uncultured 6.7 123 or minimally cultured multipotential stromal cells. Arthritis and Rheumatism, 2010, 62, 1944-1954. Extracellular matrix provides an optimal niche for the maintenance and propagation of mesenchymal 279 stem cells. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 45-54.

#	Article	IF	CITATIONS
280	Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. Journal of Biotechnology, 2010, 146, 194-197.	1.9	158
281	In Vitro High-Capacity Assay to Quantify the Clonal Heterogeneity in Trilineage Potential of Mesenchymal Stem Cells Reveals a Complex Hierarchy of Lineage Commitment. Stem Cells, 2010, 28, 788-798.	1.4	376
282	Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 565-576.	1.3	38
283	Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective singleâ€step plasticâ€adherent method. Cell Proliferation, 2010, 43, 235-248.	2.4	28
284	Cell proliferation of human bone marrow mesenchymal stem cells on biodegradable microcarriers enhances <i>in vitro</i> differentiation potential. Cell Proliferation, 2010, 43, 445-456.	2.4	60
285	Neuro-Muscular Differentiation of Adult Porcine Skin Derived Stem Cell-Like Cells. PLoS ONE, 2010, 5, e8968.	1.1	25
286	Mesenchymal stem cells: Molecular characteristics and clinical applications. World Journal of Stem Cells, 2010, 2, 67.	1.3	176
287	Artificial cell microencapsulated stem cells in regenerative medicine, tissue engineering and cell therapy. Advances in Experimental Medicine and Biology, 2010, 670, 68-79.	0.8	25
288	Fibroblast Growth Factor-2 Enhances Proliferation and Delays Loss of Chondrogenic Potential in Human Adult Bone-Marrow-Derived Mesenchymal Stem Cells. Tissue Engineering - Part A, 2010, 16, 1009-1019.	1.6	181
289	Therapeutic Applications of Cell Microencapsulation. Advances in Experimental Medicine and Biology, 2010, , .	0.8	3
290	Isolation of Osteogenic Progenitor Cells from Trabecular Bone for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 933-942.	1.6	11
291	Tissue Engineering of Cartilage; Can Cannabinoids Help?. Pharmaceuticals, 2010, 3, 2970-2985.	1.7	9
292	Defining the Probability that a Cell Therapy Will Produce a Malignancy. Molecular Therapy, 2010, 18, 1249-1250.	3.7	21
293	Stem cells in genetic myelin disorders. Regenerative Medicine, 2010, 5, 425-439.	0.8	8
294	Mesenchymal Stromal Cells, Colony-Forming Unit Fibroblasts, From Bone Marrow of Untreated Advanced Breast and Lung Cancer Patients Suppress Fibroblast Colony Formation From Healthy Marrow. Stem Cells and Development, 2010, 19, 359-370.	1.1	23
295	Adult Stem Cell-Based Therapy for the Heart. , 2010, , 899-935.		0
296	Mesenchymal Stem Cell Mechanics from the Attached to the Suspended State. Biophysical Journal, 2010, 99, 2479-2487.	0.2	146
297	Anti-L-NGFR and -CD34 Monoclonal Antibodies Identify Multipotent Mesenchymal Stem Cells in Human Adipose Tissue. Stem Cells and Development, 2010, 19, 915-925.	1.1	101

#	Article	IF	CITATIONS
298	Survival and Immunogenicity of Mesenchymal Stem Cells From the Green Fluorescent Protein Transgenic Rat in the Adult Rat Brain. Neurorehabilitation and Neural Repair, 2010, 24, 645-656.	1.4	42
299	Proteome Analysis of Rat Bone Marrow Mesenchymal Stem Cell Differentiation. Journal of Proteome Research, 2010, 9, 5217-5227.	1.8	40
300	Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells. Cytotherapy, 2010, 12, 637-657.	0.3	91
301	Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neuroscience Letters, 2010, 472, 94-98.	1.0	94
302	Isolation and differentiation of nestin positive cells from rat oral mucosal lamina propria. Differentiation, 2010, 79, 9-14.	1.0	10
303	Regenerative Stromal Cell Therapy in Allogeneic Hematopoietic Stem Cell Transplantation: Current Impact and Future Directions. Biology of Blood and Marrow Transplantation, 2010, 16, 891-906.	2.0	39
304	Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochemical and Biophysical Research Communications, 2010, 393, 377-383.	1.0	303
305	Equine embryos and embryonic stem cells: Defining reliable markers of pluripotency. Theriogenology, 2010, 74, 516-524.	0.9	53
306	Osteogenic Potential of Human Mesenchymal Stem Cells and Human Embryonic Stem Cell-Derived Mesodermal Progenitors: A Tissue Engineering Perspective. Tissue Engineering - Part A, 2010, 16, 3413-3426.	1.6	46
307	Different Facets of Aging in Human Mesenchymal Stem Cells. Tissue Engineering - Part B: Reviews, 2010, 16, 445-453.	2.5	187
308	<i>Sox11</i> Is Expressed in Early Progenitor Human Multipotent Stromal Cells and Decreases with Extensive Expansion of the Cells. Tissue Engineering - Part A, 2010, 16, 3385-3394.	1.6	60
309	shRNA-Mediated Decreases in c-Met Levels Affect the Differentiation Potential of Human Mesenchymal Stem Cells and Reduce Their Capacity for Tissue Repair. Tissue Engineering - Part A, 2010, 16, 2627-2639.	1.6	11
310	Reconstitution of Marrow-Derived Extracellular Matrix Ex Vivo: A Robust Culture System for Expanding Large-Scale Highly Functional Human Mesenchymal Stem Cells. Stem Cells and Development, 2010, 19, 1095-1107.	1.1	180
312	Isolation and Characterization of Mesenchymal Stem Cells From the Sub-Amniotic Human Umbilical Cord Lining Membrane. Stem Cells and Development, 2010, 19, 491-502.	1.1	165
313	Defining the risks of mesenchymal stromal cell therapy. Cytotherapy, 2010, 12, 576-578.	0.3	279
314	Stem Cell–Related Gene Expression in Clonal Populations of Mesenchymal Stromal Cells from Bone Marrow. Tissue Engineering - Part A, 2010, 16, 749-758.	1.6	27
315	Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells: Tips and Tricks. Methods in Molecular Biology, 2011, 698, 253-278.	0.4	161
316	Mesenchymal Progenitor Cells from Canine Fetal Tissues: Yolk Sac, Liver, and Bone Marrow. Tissue Engineering - Part A, 2011, 17, 2165-2176.	1.6	59

#	Article	IF	CITATIONS
317	Low-Intensity Ultrasound Increased Colony Forming Unit-Fibroblasts of Mesenchymal Stem Cells During Primary Culture. Tissue Engineering - Part C: Methods, 2011, 17, 517-526.	1.1	26
319	A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). American Heart Journal, 2011, 161, 1078-1087.e3.	1.2	167
320	Extracellular signal-regulated kinase1/2 activated by fluid shear stress promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through novel signaling pathways. International Journal of Biochemistry and Cell Biology, 2011, 43, 1591-1601.	1.2	36
321	Fetal adnexa derived stem cells from domestic animal: progress and perspectives. Theriogenology, 2011, 75, 1400-1415.	0.9	55
322	A scaffold-free in vitro model for osteogenesis of human mesenchymal stem cells. Tissue and Cell, 2011, 43, 91-100.	1.0	66
323	Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Experimental Neurology, 2011, 228, 242-252.	2.0	160
324	The Role of MicroRNAs in Regulating Cancer Stem Cells. , 0, , .		0
325	Fibroblast Growth Factor-2 Enhances Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells without Diminishing Their Immunosuppressive Potential. Stem Cells International, 2011, 2011, 1-10.	1.2	36
326	"Humanized―Stem Cell Culture Techniques: The Animal Serum Controversy. Stem Cells International, 2011, 2011, 1-14.	1.2	152
327	Epigenetic Regulation of Mesenchymal Stem Cells: A Focus on Osteogenic and Adipogenic Differentiation. Stem Cells International, 2011, 2011, 1-18.	1.2	92
328	Effects of Osteogenic Differentiation Inducers on in Vitro Expanded Adult Mesenchymal Stromal Cells. International Journal of Artificial Organs, 2011, 34, 998-1011.	0.7	29
329	The Secretory Profiles of Cultured Human Articular Chondrocytes and Mesenchymal Stem Cells: Implications for Autologous Cell Transplantation Strategies. Cell Transplantation, 2011, 20, 1381-1394.	1.2	55
330	Inhibition of T-Cell Proliferation by Murine Multipotent Mesenchymal Stromal Cells is Mediated by CD39 Expression and Adenosine Generation. Cell Transplantation, 2011, 20, 1221-1230.	1.2	74
331	Promises and Challenges of Stem Cell Research for Regenerative Medicine. Annals of Internal Medicine, 2011, 155, 706.	2.0	18
332	Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. Cell Proliferation, 2011, 44, 428-440.	2.4	100
333	The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 2011, 12, 126-131.	16.1	544
334	Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Laboratory Investigation, 2011, 91, 363-378.	1.7	109
335	The subpopulation of mesenchymal stem cells that differentiate toward cardiomyocytes is cardiac progenitor cells. Experimental Cell Research, 2011, 317, 2661-2670.	1.2	24

#	Article	IF	CITATIONS
336	Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells—Potential and pitfalls. Advanced Drug Delivery Reviews, 2011, 63, 342-351.	6.6	64
337	Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Advanced Drug Delivery Reviews, 2011, 63, 277-290.	6.6	155
338	IL-17 and FGF signaling involved in mouse mesenchymal stem cell proliferation. Cell and Tissue Research, 2011, 346, 305-316.	1.5	23
339	The Origins of Mesenchymal Stromal Cell Heterogeneity. Stem Cell Reviews and Reports, 2011, 7, 560-568.	5.6	212
340	Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies. Journal of Biomedical Science, 2011, 18, 87.	2.6	33
341	Mesenchymal Stem Cell-Mediated Delivery of the Sodium Iodide Symporter Supports Radionuclide Imaging and Treatment of Breast Cancer. Stem Cells, 2011, 29, 1149-1157.	1.4	76
342	Bone Marrow Stromal Cells Produce Long-Term Pain Relief in Rat Models of Persistent Pain. Stem Cells, 2011, 29, 1294-1303.	1.4	86
343	Expansion of mesenchymal stem cells on fibrinogen-rich protein surfaces derived from blood plasma. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 600-611.	1.3	22
344	Repair of bone defect with vascularized tissue engineered bone graft seeded with mesenchymal stem cells in rabbits. Microsurgery, 2011, 31, 130-137.	0.6	25
345	Clonal analysis of the proliferation potential of human bone marrow mesenchymal stem cells as a function of potency. Biotechnology and Bioengineering, 2011, 108, 2716-2726.	1.7	70
346	Nasal Septum-Derived Multipotent Progenitors: A Potent Source for Stem Cell-Based Regenerative Medicine. Stem Cells and Development, 2011, 20, 2077-2091.	1.1	73
347	p85α Regulates Osteoblast Differentiation by Cross-talking with the MAPK Pathway. Journal of Biological Chemistry, 2011, 286, 13512-13521.	1.6	20
348	Mechanisms of Oxidative Damage in Multiple Sclerosis and a Cell Therapy Approach to Treatment. Autoimmune Diseases, 2011, 2011, 1-11.	2.7	80
349	Mesenchymal Stem Cells: Angels or Demons?. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	119
350	The use of the reamer-irrigator-aspirator to harvest mesenchymal stem cells. Journal of Bone and Joint Surgery: British Volume, 2011, 93-B, 517-524.	3.4	52
351	<i>Ex Vivo</i> Expansion of Human Mesenchymal Stem Cells in Defined Serum-Free Media. Stem Cells International, 2012, 2012, 1-21.	1.2	154
352	Multipotent Mesenchymal Stromal Stem Cell Expansion by Plating Whole Bone Marrow at a Low Cellular Density: A More Advantageous Method for Clinical Use. Stem Cells International, 2012, 2012, 1-10.	1.2	63
353	Bone marrow mesenchymal progenitor and stem cell biology and therapy. , 2012, , 345-390.		Ο

#	Article	IF	CITATIONS
354	Comparison of mesenchymal stem cells released from poly(<i>N</i> -isopropylacrylamide) copolymer film and by trypsinization. Biomedical Materials (Bristol), 2012, 7, 035003.	1.7	38
355	Quantitative Approaches to Detect Donor and Passage Differences in Adipogenic Potential and Clonogenicity in Human Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2012, 18, 877-889.	1.1	85
356	Normal Collagen and Bone Production by Gene-targeted Human Osteogenesis Imperfecta iPSCs. Molecular Therapy, 2012, 20, 204-213.	3.7	74
357	Genome-scale DNA methylation pattern profiling of human bone marrow mesenchymal stem cells in long-term culture. Experimental and Molecular Medicine, 2012, 44, 503.	3.2	49
358	Effect of In Vitro Passaging on the Stem Cell-Related Properties of Tendon-Derived Stem Cells—Implications in Tissue Engineering. Stem Cells and Development, 2012, 21, 790-800.	1.1	84
359	The Effect of Serial Passaging on the Proliferation and Differentiation of Bovine Adipose-Derived Stem Cells. Cells Tissues Organs, 2012, 195, 414-427.	1.3	33
360	Markers for Characterization of Bone Marrow Multipotential Stromal Cells. Stem Cells International, 2012, 2012, 1-12.	1.2	220
361	Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs. International Journal of Biomaterials, 2012, 2012, 1-11.	1.1	26
362	Heparan Sulfate Enhances the Self-Renewal and Therapeutic Potential of Mesenchymal Stem Cells from Human Adult Bone Marrow. Stem Cells and Development, 2012, 21, 1897-1910.	1.1	46
363	Culture on fibrin matrices maintains the colony-forming capacity and osteoblastic differentiation of mesenchymal stem cells. Biomedical Materials (Bristol), 2012, 7, 045015.	1.7	18
364	Effects of the pro-inflammatory milieu on the dedifferentiation of cultured fibroblast-like synoviocytes. Molecular Medicine Reports, 2012, 5, 1023-1026.	1.1	12
365	Adipose Cell-Derived Stem Cells: Neurogenic and Immunomodulatory Potentials. Advances in Neuroimmune Biology, 2012, 3, 19-30.	0.7	3
366	New Cell-Based Therapy Paradigm: Induction of Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells into Pro-Inflammatory MSC1 and Anti-inflammatory MSC2 Phenotypes. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 163-197.	0.6	20
367	Cytoplasmic NANOG-Positive Stromal Cells Promote Human Cervical Cancer Progression. American Journal of Pathology, 2012, 181, 652-661.	1.9	62
368	Self-Renewal and Multipotency Coexist in a Long-Term Cultured Adult Rat Dental Pulp Stem Cell Line: An Exception to the Rule?. Stem Cells and Development, 2012, 21, 3278-3288.	1.1	10
369	Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia. Neuroscience Letters, 2012, 513, 25-30.	1.0	46
370	Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion. Biochemical and Biophysical Research Communications, 2012, 422, 121-127.	1.0	19
371	High abundance of CD271+ multipotential stromal cells (MSCs) in intramedullary cavities of long bones. Bone, 2012, 50, 510-517.	1.4	48

#	Article	IF	Citations
372	Bone Tissue Engineering: Current Strategies and Techniques—Part II: Cell Types. Tissue Engineering - Part B: Reviews, 2012, 18, 258-269.	2.5	83
373	Generation of Human Adult Mesenchymal Stromal/Stem Cells Expressing Defined Xenogenic Vascular Endothelial Growth Factor Levels by Optimized Transduction and Flow Cytometry Purification. Tissue Engineering - Part C: Methods, 2012, 18, 283-292.	1.1	27
374	Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages. Proteome Science, 2012, 10, 46.	0.7	22
375	Immunosuppressive Properties of Mesenchymal Stromal Cells. , 2012, , 281-301.		2
376	Preactivation of Human MSCs with TNF-α Enhances Tumor-Suppressive Activity. Cell Stem Cell, 2012, 11, 825-835.	5.2	116
377	A Specific Subpopulation of Mesenchymal Stromal Cell Carriers Overrides Melanoma Resistance to an Oncolytic Adenovirus. Stem Cells and Development, 2012, 21, 2689-2702.	1.1	30
378	Gene expression during long-term culture of mesenchymal stem cells obtained from patients with amyotrophic lateral sclerosis. Biochip Journal, 2012, 6, 342-353.	2.5	2
380	Differences in Surface Marker Expression and Chondrogenic Potential among Various Tissue-Derived Mesenchymal Cells from Elderly Patients with Osteoarthritis. Cells Tissues Organs, 2012, 196, 231-40.	1.3	30
381	Somatic Stem Cells. Methods in Molecular Biology, 2012, , .	0.4	6
382	Efficient Differentiation of Human Pluripotent Stem Cells into Mesenchymal Stem Cells by Modulating Intracellular Signaling Pathways in a Feeder/Serum-Free System. Stem Cells and Development, 2012, 21, 1165-1175.	1.1	33
383	From tendon to nerve: an MSC for all seasons. Canadian Journal of Physiology and Pharmacology, 2012, 90, 295-306.	0.7	16
385	Low-density expansion protects human synovium-derived stem cells from replicative senescence: a preliminary study. Drug Delivery and Translational Research, 2012, 2, 363-374.	3.0	11
386	Targeting Lysophosphatidic Acid Signaling Retards Culture-Associated Senescence of Human Marrow Stromal Cells. PLoS ONE, 2012, 7, e32185.	1.1	20
387	Isolation and Characterization of Novel Murine Epiphysis Derived Mesenchymal Stem Cells. PLoS ONE, 2012, 7, e36085.	1.1	32
388	Differential Expression of Surface Markers in Mouse Bone Marrow Mesenchymal Stromal Cell Subpopulations with Distinct Lineage Commitment. PLoS ONE, 2012, 7, e51221.	1.1	60
389	Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering. Biologics: Targets and Therapy, 2012, 6, 47.	3.0	28
390	Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments. Korean Journal of Orthodontics, 2012, 42, 307.	0.8	18
391	Mesenchymal Stromal Cells and Neural Stem Cells Potential for Neural Repair in Spinal Cord Injury and Human Neurodegenerative Disorders. , 2012, , .		1

#	Article	IF	CITATIONS
392	The Role of Mesenchymal Stem Cells in the Tumor Microenvironment. , 0, , .		2
393	Human mesenchymal stem cell culture: rapid and efficient isolation and expansion in a defined serum-free medium. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 391-403.	1.3	47
394	Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 622-635.	1.3	92
395	Atmospheric Oxygen Inhibits Growth and Differentiation of Marrowâ€Derived Mouse Mesenchymal Stem Cells via a p53â€Dependent Mechanism: Implications for Longâ€Term Culture Expansion. Stem Cells, 2012, 30, 975-987.	1.4	100
396	Cell Senescence: A Challenge in Cartilage Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2012, 18, 270-287.	2.5	94
397	Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy. Journal of Cellular Biochemistry, 2012, 113, 2806-2812.	1.2	344
398	Largeâ€scale production of human mesenchymal stem cells for clinical applications. Biotechnology and Applied Biochemistry, 2012, 59, 106-120.	1.4	84
399	Isolation and characterization of mesenchymal stem cells from whole human umbilical cord applying a single enzyme approach. Cell Biochemistry and Function, 2012, 30, 643-649.	1.4	36
400	Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy, 2012, 14, 401-411.	0.3	99
401	Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. Biomechanics and Modeling in Mechanobiology, 2012, 11, 391-401.	1.4	56
402	Perivascular localization of dermal stem cells in human scalp. Experimental Dermatology, 2012, 21, 78-80.	1.4	27
403	The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials, 2012, 33, 2656-2672.	5.7	138
404	Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: Implication to age-associated bone diseases and defects. Mechanisms of Ageing and Development, 2012, 133, 215-225.	2.2	160
405	In vitro expansion and differentiation of fresh and revitalized adult canine bone marrow-derived and adipose tissue-derived stromal cells. Veterinary Journal, 2012, 191, 231-239.	0.6	38
406	Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells. Experimental Cell Research, 2012, 318, 416-423.	1.2	41
407	Highly osteogenic PDL stem cell clones specifically express elevated levels of ICAM1, ITGB1 and TERT. Cytotechnology, 2012, 64, 53-63.	0.7	22
410	Increased invasiveness of osteosarcoma mesenchymal stem cells induced by bone-morphogenetic protein-2. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 270-278.	0.7	27
411	Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: <i>In vitro</i> proliferative and multilineage potential assessment. Equine Veterinary Journal, 2013, 45, 737-744.	0.9	42

	Ο ΓΙΤΑΤΙΟΝ Ι	Report	
#	Article	IF	CITATIONS
412	Senescence bypass in mesenchymal stem cells: a potential pathogenesis and implications of pro-senescence therapy in sarcomas. Expert Review of Anticancer Therapy, 2013, 13, 983-996.	1.1	10
413	Possibilities and effects of telomerase activation. Molecular Biology, 2013, 47, 476-487.	0.4	5
414	Continuous and Uninterrupted Oxygen Tension Influences the Colony Formation and Oxidative Metabolism of Human Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2013, 19, 68-79.	1.1	109
415	Mesenchymal Stem Cells - Basics and Clinical Application II. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	2
416	Osteogenic Potential of BMP-2-Releasing Self-Assembled Membranes. Tissue Engineering - Part A, 2013, 19, 2664-2673.	1.6	22
417	Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2013, 4, 81.	2.4	75
418	Alteration of gene expression levels during osteogenic induction of human adipose derived stem cells in long-term culture. Cell and Tissue Banking, 2013, 14, 289-301.	0.5	18
419	Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: Molecular changes associated with BMSC senescence. Stem Cell Research, 2013, 11, 1060-1073.	0.3	57
420	Porous Coated Titanium Implants do Not Inhibit Mesenchimal Stem Cells Proliferation and Osteogenic Differentiation. Biotechnology and Biotechnological Equipment, 2013, 27, 4290-4293.	0.5	2
421	Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. Journal of Cellular and Molecular Medicine, 2013, 17, 823-832.	1.6	187
422	The Biology of Mesenchymal Stem Cells in Health and Disease and Its Relevance to MSC-Based Cell Delivery Therapies. , 2013, , 63-86.		0
423	Mesenchymal Stem Cell Therapy for Heart Disease. , 2013, , 241-270.		7
424	Automated microscopy as a quantitative method to measure differences in adipogenic differentiation in preparations of human mesenchymal stromal cells. Cytotherapy, 2013, 15, 1527-1540.	0.3	79
425	Effect of calcium on the proliferation kinetics of synovium-derived mesenchymal stromal cells. Cytotherapy, 2013, 15, 805-819.	0.3	18
426	Mobilization of progenitor cells into peripheral blood by gamma-tocotrienol: A promising radiation countermeasure. International Immunopharmacology, 2013, 15, 557-564.	1.7	23
427	Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy, 2013, 15, 140-145.	0.3	106
428	Assessing the potential of colony morphology for dissecting the CFU-F population from human bone marrow stromal cells. Cell and Tissue Research, 2013, 352, 237-247.	1.5	30
429	Recapitulating Aspects of the Oxygen and Substrate Environment of the Damaged Joint Milieu for Stem Cell-Based Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2013, 19, 117-127.	1.1	15

#	Article	IF	CITATIONS
430	Human MSCs from Bone Marrow, Umbilical Cord Blood, and Adipose Tissue: All the Same?. , 2013, , 193-208.		0
431	Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes. Biotechnology Advances, 2013, 31, 312-317.	6.0	37
432	Tracking of Replicative Senescence in Mesenchymal Stem Cells by Colony-Forming Unit Frequency. Methods in Molecular Biology, 2013, 976, 143-154.	0.4	19
433	Isolation of Mesenchymal Stem Cells from Human Dermis. Methods in Molecular Biology, 2013, 989, 265-274.	0.4	3
434	Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials, 2013, 34, 5025-5035.	5.7	77
435	Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction. Integrative Biology (United Kingdom), 2013, 5, 291-299.	0.6	22
436	Comparative Evaluation of Human Mesenchymal Stem Cells of Fetal (Wharton's Jelly) and Adult (Adipose Tissue) Origin during Prolonged <i>In Vitro</i> Expansion: Considerations for Cytotherapy. Stem Cells International, 2013, 2013, 1-12.	1.2	98
438	The mesenchymal stromal cells dilemma—does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road?. Cytotherapy, 2013, 15, 2-8.	0.3	369
439	The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials, 2013, 34, 1942-1953.	5.7	226
440	Can We Teach Old Dogs New Tricks? Neuroprotective Cell Therapy in Alzheimer's and Parkinson's Disease. Journal of Alzheimer's Disease, 2013, 37, 251-272.	1.2	10
441	After repeated division, bone marrow stromal cells express inhibitory factors with osteogenic capabilities, and EphA5 is a primary candidate. Bone, 2013, 57, 343-354.	1.4	24
442	Mesenchymal Stromal Cell Phenotype is not Influenced by Confluence during Culture Expansion. Stem Cell Reviews and Reports, 2013, 9, 44-58.	5.6	19
443	Human Mesenchymal Stromal Cells: Identifying Assays to Predict Potency for Therapeutic Selection. Stem Cells Translational Medicine, 2013, 2, 151-158.	1.6	60
444	Characteristics and neural-like differentiation of mesenchymal stem cells derived from foetal porcine bone marrow. Bioscience Reports, 2013, 33, e00032.	1.1	21
445	Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Research and Therapy, 2013, 4, 133.	2.4	37
446	Mesenchymal stem cells derived from breast cancer tissue promote the proliferation and migration of the MCF-7 cell line in vitro. Oncology Letters, 2013, 6, 1577-1582.	0.8	34
447	Isolation and Characterization of Human Mesenchymal Stem Cells Derived From Shoulder Tissues Involved in Rotator Cuff Tears. American Journal of Sports Medicine, 2013, 41, 657-668.	1.9	110
448	A Comparative Study on Culture Conditions and Routine Expansion of Amniotic Fluid-Derived Mesenchymal Progenitor Cells. Fetal Diagnosis and Therapy, 2013, 34, 225-235.	0.6	10

#	Article	IF	CITATIONS
449	Human Gingiva-Derived Mesenchymal Stromal Cells Contribute to Periodontal Regeneration in Beagle Dogs. Cells Tissues Organs, 2013, 198, 428-437.	1.3	60
450	Mesenchymal Stem Cells – An Oversimplified Nomenclature for Extremely Heterogeneous Progenitors. , 2013, , 413-431.		0
451	Prospective Isolation of Murine and Human Bone Marrow Mesenchymal Stem Cells Based on Surface Markers. Stem Cells International, 2013, 2013, 1-7.	1.2	58
452	Assessing Adipogenic Potential of Mesenchymal Stem Cells: A Rapid Three-Dimensional Culture Screening Technique. Stem Cells International, 2013, 2013, 1-8.	1.2	12
453	Cells Isolated from Human Periapical Cysts Express Mesenchymal Stem Cell-like Properties. International Journal of Biological Sciences, 2013, 9, 1070-1078.	2.6	92
454	Human bone marrow-derived mesenchymal stem cell gene expression patterns vary with culture conditions. Blood Research, 2013, 48, 107.	0.5	32
455	Distinct Effects of RGD-glycoproteins on Integrin-Mediated Adhesion and Osteogenic Differentiation of Human Mesenchymal Stem Cells. International Journal of Medical Sciences, 2013, 10, 1846-1859.	1.1	35
456	Bone marrow mesenchymal stem cells in hepatocellular carcinoma. Frontiers in Bioscience - Landmark, 2013, 18, 811.	3.0	6
458	Impact of adipogenic differentiation on stemness and osteogenic gene expression in extensive culture of human adipose-derived stem cells. Archives of Medical Science, 2014, 3, 597-606.	0.4	16
459	Are MSCs angiogenic cells? New insights on human nestin-positive bone marrow-derived multipotent cells. Frontiers in Cell and Developmental Biology, 2014, 2, 20.	1.8	51
460	Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Frontiers in Cell and Developmental Biology, 2014, 2, 50.	1.8	47
461	Large-Scale Clinical Expansion of Mesenchymal Stem Cells in the GMP-Compliant, Closed Automated Quantum® Cell Expansion System: Comparison with Expansion in Traditional T-Flasks. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	35
462	NOTCH-Mediated Maintenance and Expansion of Human Bone Marrow Stromal/Stem Cells: A Technology Designed for Orthopedic Regenerative Medicine. Stem Cells Translational Medicine, 2014, 3, 1456-1466.	1.6	33
463	Senescence suppressors: their practical importance in replicative lifespan extension in stem cells. Cellular and Molecular Life Sciences, 2014, 71, 4207-4219.	2.4	19
464	Fluorescence activated enrichment of CD146+ cells during expansion of human bone-marrow derived mesenchymal stromal cells augments proliferation and GAG/DNA content in chondrogenic media. BMC Musculoskeletal Disorders, 2014, 15, 322.	0.8	28
465	Decellularized ECM effects on human mesenchymal stem cell stemness and differentiation. Differentiation, 2014, 88, 131-143.	1.0	60
466	Comparative study of different centrifugation protocols for a density gradient separation media in isolation of osteoprogenitors from bone marrow aspirate. Journal of Oral Biology and Craniofacial Research, 2014, 4, 160-168.	0.8	15
467	Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta. Frontiers in Pharmacology, 2014, 5, 223.	1.6	34

#	Article	IF	CITATIONS
468	Multipotent stromal cells for arthritic joint pain therapy and beyond. Pain Management, 2014, 4, 153-162.	0.7	8
469	Changes in the composition of the extracellular matrix accumulated by mesenchymal stem cells during in vitro expansion. Animal Science Journal, 2014, 85, 706-713.	0.6	6
470	Concise Review: Optimizing Expansion of Bone Marrow Mesenchymal Stem/Stromal Cells for Clinical Applications. Stem Cells Translational Medicine, 2014, 3, 643-652.	1.6	114
471	Establishing a Bone Marrow Stromal Cell Transplant Program at the National Institutes of Health Clinical Center. Tissue Engineering - Part B: Reviews, 2014, 20, 200-205.	2.5	21
472	<scp>CD</scp> 146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. Journal of Cellular and Molecular Medicine, 2014, 18, 104-114.	1.6	120
473	Mitochondrial Transfer of Induced Pluripotent Stem Cell–Derived Mesenchymal Stem Cells to Airway Epithelial Cells Attenuates Cigarette Smoke–Induced Damage. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 455-465.	1.4	241
474	Disease-in-a-Dish. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S155-S168.	0.7	18
475	Effect of DiD Carbocyanine Dye Labeling on Immunoregulatory Function and Differentiation of Mice Mesenchymal Stem Cells. Stem Cells International, 2014, 2014, 1-10.	1.2	32
476	The interaction between <i>β</i> 1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 85-96.	1.3	45
477	Role of mesenchymal stem cells in leukaemia: Dr. Jekyll or Mr. Hyde?. Clinical and Experimental Medicine, 2014, 14, 235-248.	1.9	10
478	Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. Journal of Translational Medicine, 2014, 12, 8.	1.8	391
479	Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 43-77.	1.1	147
480	Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Research and Therapy, 2014, 5, 2.	2.4	60
481	Concise Review: Bone Marrow-Derived Mesenchymal Stem Cells Change Phenotype Following In Vitro Culture: Implications for Basic Research and the Clinic. Stem Cells, 2014, 32, 1713-1723.	1.4	262
482	Sequential sub-passage decreases the differentiation potential of canine adipose-derived mesenchymal stem cells. Research in Veterinary Science, 2014, 96, 267-275.	0.9	28
483	Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: Proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow. Cell Biology International, 2014, 38, 198-210.	1.4	61
484	Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell and Tissue Research, 2014, 355, 89-102.	1.5	26
485	TSC-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16766-16771.	3.3	169

# 486	ARTICLE In-vitro culture system for mesenchymal progenitor cells derived from waste human ovarian	IF 1.1	CITATIONS
487	follicular fluid. Réproductive BioMedicine Online, 2014, 29, 457-469. Generation of handmade cloned embryos from adipose tissue derived mesenchymal stem cells in goat. Small Ruminant Research, 2014, 121, 340-350.	0.6	5
488	Secreted adiponectin as a marker to evaluate in vitro the adipogenic differentiation of human mesenchymal stromal cells. Cytotherapy, 2014, 16, 1476-1485.	0.3	35
489	The Chronic Lymphocytic Leukemia Clone Disrupts the Bone Marrow Microenvironment. Stem Cells and Development, 2014, 23, 2972-2982.	1.1	18
490	Sox2 Is a Potent Inhibitor of Osteogenic and Adipogenic Differentiation in Human Mesenchymal Stem Cells. Cellular Reprogramming, 2014, 16, 355-365.	0.5	17
491	Interleukinâ€6 induces the lineage commitment of bone marrowâ€derived mesenchymal multipotent cells through downâ€regulation of Sox2 by osteogenic transcription factors. FASEB Journal, 2014, 28, 3273-3286.	0.2	35
492	Different protective mechanisms of human embryonic and endometrium-derived mesenchymal stem cells under oxidative stress. Cell and Tissue Biology, 2014, 8, 11-21.	0.2	7
493	Expansion of human amniotic fluid stem cells in 3-dimensional fibrous scaffolds in a stirred bioreactor. Biochemical Engineering Journal, 2014, 82, 71-80.	1.8	10
494	In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Research, 2014, 12, 428-440.	0.3	126
495	The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials, 2014, 35, 2752-2759.	5.7	89
496	Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Research, 2014, 1573, 92-107.	1.1	17
497	Mesenchymal stem cells in treating autism: Novel insights. World Journal of Stem Cells, 2014, 6, 173.	1.3	21
498	The Expression of p63 and Ck HMW in Magnum and Infundibulum of <i>Gallus domesticus</i> Oviduct. Folia Biologica, 2014, 62, 179-185.	0.1	3
499	Low-density subculture: a technical note on the importance of avoiding cell-to-cell contact during mesenchymal stromal cell expansion. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1200-1203.	1.3	19
500	Boneâ€ f orming capacity of adult human nasal chondrocytes. Journal of Cellular and Molecular Medicine, 2015, 19, 1390-1399.	1.6	18
501	Inhibition of Transforming Growth Factor-Î ² Receptor signaling promotes culture expansion of undifferentiated human Endometrial Mesenchymal Stem/stromal Cells. Scientific Reports, 2015, 5, 15042.	1.6	67
502	Density Gradient Centrifugation for the Isolation of Cells of Multiple Lineages. Journal of Cellular Biochemistry, 2015, 116, 2709-2714.	1.2	9
503	Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species?. Stem Cell Research and Therapy, 2015, 6, 143.	2.4	47

#	Article	IF	CITATIONS
504	Density-Dependent Metabolic Heterogeneity in Human Mesenchymal Stem Cells. Stem Cells, 2015, 33, 3368-3381.	1.4	34
505	Diabetic Mesenchymal Stem Cells Are Ineffective for Improving Limb Ischemia Due to Their Impaired Angiogenic Capability. Cell Transplantation, 2015, 24, 1571-1584.	1.2	60
506	Thermoresponsive Substrates Used for the Growth and Controlled Differentiation of Human Mesenchymal Stem Cells. Macromolecular Rapid Communications, 2015, 36, 1897-1901.	2.0	10
507	Differential Properties of Human ALP+ Periodontal Ligament Stem Cells vs Their ALP- Counterparts. Journal of Stem Cell Research & Therapy, 2015, 05, .	0.3	11
508	Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds. Frontiers in Bioengineering and Biotechnology, 2015, 3, 169.	2.0	18
509	Pre-Clinical Efficacy and Safety Evaluation of Human Amniotic Fluid-Derived Stem Cell Injection in a Mouse Model of Urinary Incontinence. Yonsei Medical Journal, 2015, 56, 648.	0.9	11
510	Bioactive magnetic near Infra-Red fluorescent core-shell iron oxide/human serum albumin nanoparticles for controlled release of growth factors for augmentation of human mesenchymal stem cell growth and differentiation. Journal of Nanobiotechnology, 2015, 13, 34.	4.2	43
511	Fibrin As a Scaffold for Delivery of GDNF Overexpressing Stem Cells to the Adult Rat Brain. ACS Biomaterials Science and Engineering, 2015, 1, 559-566.	2.6	9
512	Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells. International Journal of Molecular Medicine, 2015, 36, 915-922.	1.8	68
513	Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies. Drug Metabolism Reviews, 2015, 47, 431-454.	1.5	28
514	Peculiarity of Porcine Amniotic Membrane and Its Derived Cells: A Contribution to the Study of Cell Therapy from a Large Animal Model. Cellular Reprogramming, 2015, 17, 472-483.	0.5	9
515	Effects of Tanshinone IIA on osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 1201-1209.	1.4	14
516	Effect of Aging on Human Mesenchymal Stem Cell Therapy in Ischemic Cardiomyopathy Patients. Journal of the American College of Cardiology, 2015, 65, 125-132.	1.2	85
517	Comparison of Mesenchymal Stem Cell Source Differentiation Toward Human Pediatric Aortic Valve Interstitial Cells within 3D Engineered Matrices. Tissue Engineering - Part C: Methods, 2015, 21, 795-807.	1.1	36
518	Chromatin Changes at the <i>PPAR-γ2</i> Promoter During Bone Marrow-Derived Multipotent Stromal Cell Culture Correlate With Loss of Gene Activation Potential. Stem Cells, 2015, 33, 2169-2181.	1.4	15
519	Three-dimensional culture and characterization of mononuclear cells from human bone marrow. Cytotherapy, 2015, 17, 458-472.	0.3	14
520	GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson's disease. Neuroscience, 2015, 303, 402-411.	1.1	74
522	TLR4 plays a crucial role in MSC-induced inhibition of NK cell function. Biochemical and Biophysical Research Communications, 2015, 464, 541-547.	1.0	43

#	Article	IF	CITATIONS
523	Angiotensin receptor I stimulates osteoprogenitor proliferation through TGFβ-mediated signaling. Journal of Cellular Physiology, 2015, 230, 1466-1474.	2.0	22
524	Zinc Enhances Bone Metabolism in Ovariectomized Rats and Exerts Anabolic Osteoblastic/Adipocytic Marrow Effects Ex Vivo. Biological Trace Element Research, 2015, 163, 202-207.	1.9	26
525	Impact of source tissue and ex vivo expansion on the characterization of goat mesenchymal stem cells. Journal of Animal Science and Biotechnology, 2015, 6, 1.	2.1	77
526	Potential antitumor therapeutic application of G rimontia hollisae thermostable direct hemolysin mutants. Cancer Science, 2015, 106, 447-454.	1.7	1
527	Retention of the Stemness of Mouse Adipose-Derived Stem Cells by Their Expansion on Human Bone Marrow Stromal Cell-Derived Extracellular Matrix. Tissue Engineering - Part A, 2015, 21, 1886-1894.	1.6	32
528	Comparative studies on proliferation, molecular markers and differentiation potential of mesenchymal stem cells from various tissues (adipose, bone marrow, ear skin, abdominal skin, and) Tj ETQq1 1 0 Science, 2015, 100, 115-124.	.784314 r 0.9	gBT /Overloc 42
529	Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies. Stem Cell Research, 2015, 14, 297-306.	0.3	30
530	Correlation between in vitro expansion-related cell stiffening and differentiation potential of human mesenchymal stem cells. Differentiation, 2015, 90, 1-15.	1.0	11
531	Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids. Journal of Natural Products, 2015, 78, 2598-2608.	1.5	7
532	Aging of Human Mesenchymal Stem Cells. , 2015, , 227-244.		1
533	Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Integrative Biology (United Kingdom), 2015, 7, 1574-1586.	0.6	6
534	Comparison of osteogenic differentiation potential of human adult stem cells loaded on bioceramicâ€coated electrospun poly (Lâ€lactide) nanofibres. Cell Proliferation, 2015, 48, 47-58.	2.4	55
535	Mesenchymal Autologous Stem Cells. World Neurosurgery, 2015, 83, 236-250.	0.7	1
536	Effect of High-Dose Irradiation on Human Bone-Marrow-Derived Mesenchymal Stromal Cells. Tissue Engineering - Part C: Methods, 2015, 21, 112-122.	1.1	38
537	Increased cell seeding efficiency in bioplotted three-dimensional PEOT/PBT scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 679-689.	1.3	34
538	Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells. International Journal of Stem Cells, 2016, 9, 124-136.	0.8	69
539	Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells. Stem Cells International, 2016, 2016, 1-18.	1.2	48
540	Effects of Oxidative Stress on Mesenchymal Stem Cell Biology. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	1.9	227

#	Article	IF	CITATIONS
541	Qualitative Aspects of Bone Marrow Adiposity in Osteoporosis. Frontiers in Endocrinology, 2016, 7, 139.	1.5	34
542	Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. International Journal of Molecular Sciences, 2016, 17, 1164.	1.8	372
543	An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells. PLoS ONE, 2016, 11, e0162332.	1.1	19
544	Spatial distribution and survival of human and goat mesenchymal stromal cells on hydroxyapatite andβ-tricalcium phosphate. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 233-244.	1.3	12
545	Unraveling mechanisms of mesenchymal stromal cell–mediated immunomodulation through patient monitoring and product characterization. Annals of the New York Academy of Sciences, 2016, 1370, 15-23.	1.8	28
547	Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor. Connective Tissue Research, 2016, 57, 454-465.	1.1	54
548	Protocols for in vitro Differentiation of Human Mesenchymal Stem Cells into Osteogenic, Chondrogenic and Adipogenic Lineages. Methods in Molecular Biology, 2016, 1416, 149-158.	0.4	82
549	Mesenchymal Stem Cells. Methods in Molecular Biology, 2016, , .	0.4	15
550	Transplantation of Scaffold-Free Cartilage-Like Cell-Sheets Made from Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair. Cartilage, 2016, 7, 361-372.	1.4	33
551	Bone repair with skeletal stem cells: rationale, progress to date and clinical application. Therapeutic Advances in Musculoskeletal Disease, 2016, 8, 57-71.	1.2	24
552	Mesenchymal Stromal Cells (MSC). , 2016, , 295-313.		3
553	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
554	Adipose-derived stem cells undergo spontaneous osteogenic differentiation in vitro when passaged serially or seeded at low density. Biotechnic and Histochemistry, 2016, 91, 369-376.	0.7	14
555	Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfusion Medicine and Hemotherapy, 2016, 43, 268-274.	0.7	308
556	Concise Review: When Colonies Are Not Clones: Evidence and Implications of Intracolony Heterogeneity in Mesenchymal Stem Cells. Stem Cells, 2016, 34, 1135-1141.	1.4	74
557	αSMA Expression in Large Colonies of Colony-Forming Units-Fibroblast as an Early Predictor of Bone Marrow MSC Expandability. Cell Medicine, 2016, 8, 79-85.	5.0	4
558	Means of enhancing bone fracture healing: optimal cell source, isolation methods and acoustic stimulation. BMC Biotechnology, 2016, 16, 89.	1.7	3
559	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2

#	Article	IF	Citations
560	Isolation of Mouse Bone Marrow Mesenchymal Stem Cells. Methods in Molecular Biology, 2016, 1416, 205-223.	0.4	33
561	Isolation and characterization of human gingiva-derived mesenchymal stem cells using limiting dilution method. Journal of Dental Sciences, 2016, 11, 304-314.	1.2	31
562	Guidelines for Preclinical Development. , 2016, , 51-82.		0
563	Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cells. ACS Nano, 2016, 10, 5789-5799.	7.3	62
564	Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta. Placenta, 2016, 39, 134-146.	0.7	38
565	Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle. Biochemical and Biophysical Research Communications, 2016, 470, 657-662.	1.0	31
566	Triphasic scaffolds for the regeneration of the bone–ligament interface. Biofabrication, 2016, 8, 015009.	3.7	67
567	Cryopreservation and recovery ofÂhuman endometrial epithelial cellsÂwith high viability, purity, andÂfunctional fidelity. Fertility and Sterility, 2016, 105, 501-510.e1.	0.5	9
568	Transcriptional Profiling Identifies the Signaling Axes of IGF and Transforming Growth Factor-Î ² as Involved in the Pathogenesis of Osteosarcoma. Clinical Orthopaedics and Related Research, 2016, 474, 178-189.	0.7	22
569	Cell-secreted matrices perpetuate the bone-forming phenotype of differentiated mesenchymal stem cells. Biomaterials, 2016, 74, 178-187.	5.7	69
570	The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells. Journal of Magnetism and Magnetic Materials, 2016, 398, 235-245.	1.0	37
571	Study of the involvement of allogeneic MSCs in bone formation using the model of transgenic mice. Cell Adhesion and Migration, 2017, 11, 233-244.	1.1	10
572	High Quality Independent From a Donor: Human Amniotic Fluid Derived Stem Cells—A Practical Analysis Based on 165 Clinical Cases. Journal of Cellular Biochemistry, 2017, 118, 116-126.	1.2	10
573	CaracterÃsticas, aplicaciones y perspectivas de las células madre mesenquimales en terapia celular. Medicina ClÃnica, 2017, 148, 408-414.	0.3	51
574	Dynamic changes of epigenetic signatures during chondrogenic and adipogenic differentiation of mesenchymal stem cells. Biomedicine and Pharmacotherapy, 2017, 89, 719-731.	2.5	30
575	iPS-derived MSCs from an expandable bank to deliver a prodrug-converting enzyme that limits growth and metastases of human breast cancers. Cell Death Discovery, 2017, 3, 16064.	2.0	17
576	Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine. Bio-Medical Materials and Engineering, 2017, 28, S57-S63.	0.4	37
577	Manufacturing Differences Affect Human Bone Marrow Stromal Cell Characteristics and Function: Comparison of Production Methods and Products from Multiple Centers. Scientific Reports, 2017, 7, 46731.	1.6	64

#	Article	IF	CITATIONS
578	Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Medicina ClÂnica (English Edition), 2017, 148, 408-414.	0.1	25
579	Comparative efficiency of goat mesenchymal stem cell isolation from bone marrow and bone chip. Small Ruminant Research, 2017, 153, 87-94.	0.6	6
580	Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli–Induced Acute Respiratory Distress Syndrome. Critical Care Medicine, 2017, 45, e202-e212.	0.4	67
581	3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomaterialia, 2017, 55, 310-322.	4.1	16
582	Senescence of mesenchymal stem cells (Review). International Journal of Molecular Medicine, 2017, 39, 775-782.	1.8	201
583	Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells. Free Radical Biology and Medicine, 2017, 103, 226-235.	1.3	41
584	Optimization of culture conditions for rapid clinicalâ€scale expansion of human umbilical cord bloodâ€derived mesenchymal stem cells. Clinical and Translational Medicine, 2017, 6, 38.	1.7	19
585	Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. ACS Applied Materials & Interfaces, 2017, 9, 38187-38200.	4.0	97
586	Mesenchymal stromal/stem cell separation methods: concise review. Cell and Tissue Banking, 2017, 18, 443-460.	0.5	22
587	Cell-mediated enzyme prodrug cancer therapies. Advanced Drug Delivery Reviews, 2017, 118, 35-51.	6.6	41
588	Expansion of Bone Marrow Mesenchymal Stromal Cells in Perfused 3D Ceramic Scaffolds Enhances In Vivo Bone Formation. Biotechnology Journal, 2017, 12, 1700071.	1.8	11
589	Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides. Cell Proliferation, 2017, 50, .	2.4	16
590	Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. Journal of Chemical Technology and Biotechnology, 2017, 92, 1577-1589.	1.6	21
591	Preparation of dexamethasone-loaded calcium phosphate nanoparticles for the osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 6801-6810.	2.9	18
592	Properties of Dental Pulp–derived Mesenchymal Stem Cells and the Effects of Culture Conditions. Journal of Endodontics, 2017, 43, S31-S34.	1.4	29
593	Age-related Changes in Bone Marrow Mesenchymal Stromal Cells. Cell Transplantation, 2017, 26, 1520-1529.	1.2	170
594	Passage-dependent accumulation of somatic mutations in mesenchymal stromal cells during in vitro culture revealed by whole genome sequencing. Scientific Reports, 2017, 7, 14508.	1.6	50
595	Focal adhesion kinase signaling regulates anti-inflammatory function of bone marrow mesenchymal stromal cells induced by biomechanical force. Cellular Signalling, 2017, 38, 1-9.	1.7	17

ARTICLE IF CITATIONS Data against a Common Assumption: Xenogeneic Mouse Models Can Be Used to Assay Suppression of 596 3.7 26 Immunity by Human MSCs. Molecular Therapy, 2017, 25, 1748-1756. Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta 4.1 93 Biomaterialia, 2017, 59, 82-93. Comparison of fibrin clots derived from peripheral blood and bone marrow. Connective Tissue 598 1.1 16 Research, 2017, 58, 208-214. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochemistry International, 2017, 111, 69-81. 599 290 Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells. 600 1.9 57 Molecular Neurobiology, 2017, 54, 4672-4682. Concise Review: Mesenchymal Stem Cell Therapy for Pediatric Disease: Perspectives on Success and Potential Improvements. Stem Cells Translational Medicine, 2017, 6, 539-565. 44 1.6 In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, 602 2.4 63 and adipose tissue: a donor-matched comparative study. Stem Cell Research and Therapy, 2017, 8, 218. Role of mesenchymal stem cells in the pathogenesis of psoriasis: current perspectives. Psoriasis: 1.2 Targets and Therapy, 2017, Volume 7, 73-85. Human Adipose-Derived Stem Cells Exhibit Enhanced Proliferative Capacity and Retain Multipotency 604 Longer than Donor-Matched Bone Marrow Mesenchymal Stem Cells during Expansion In Vitro. Stem 1.2 69 Cells International, 2017, 2017, 1-15. Bone Marrow-Derived Stem Cell Populations Are Differentially Regulated by Thyroid or/and Ovarian 1.8 Hormone Loss. International Journal of Molecular Sciences, 2017, 18, 2139 Exploiting Heparan Sulfate Proteoglycans in Human Neurogenesisâ€"Controlling Lineage Specification 606 1.0 46 and Fate. Frontiers in Integrative Neuroscience, 2017, 11, 28. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis. Stem Cells International, 2017, 1.2 2017, 1-6. Predicting the Remaining Lifespan and Cultivation-Related Loss of Osteogenic Capacity of Bone 608 Marrow Multipotential Stromal Cells Applicable across a Broad Donor Age Range. Stem Cells 1.2 20 International, 2017, 2017, 1-10. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools 609 144 for single cell analysis. , 2017, 34, 217-231. 610 6.12 Tissue Engineering Approaches to Regeneration of Anterior Cruciate Ligament a⁺†., 2017, 194-215. 2 Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages. 168 Development & Reproduction, 2017, 21, 1-10. A Novel Stem Cell Paradigm: Past Controversies, Present Challenges & Future Prospects. Journal of 612 0.3 0 Stem Cell Research & Therapy, 2017, 7, . Mesenchymal Stromal Cell Production in Academic Centers: Challenges and Opportunities., 2017, 121-138.

#	Article	IF	CITATIONS
614	Myocardial healing using cardiac fat. Expert Review of Cardiovascular Therapy, 2018, 16, 305-311.	0.6	3
615	MSCs—cells with many sides. Cytotherapy, 2018, 20, 273-278.	0.3	91
616	Mineralization by mesenchymal stromal cells is variously modulated depending on commercial platelet lysate preparations. Cytotherapy, 2018, 20, 335-342.	0.3	11
617	Craniofacial Tissue Engineering. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a025775.	2.9	40
618	Cytoglobin inhibits migration through PI3K/AKT/mTOR pathway in fibroblast cells. Molecular and Cellular Biochemistry, 2018, 437, 133-142.	1.4	19
619	The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. Journal of Trauma and Acute Care Surgery, 2018, 84, 183-191.	1.1	31
620	Time-lapse microscopic observation of non-dividing cells in cultured human osteosarcoma MG-63 cell line. Cell Cycle, 2018, 17, 174-181.	1.3	4
621	Human adipose-derived stem cells (ADSC) and human periodontal ligament stem cells (PDLSC) as cellular substrates of a toxicity prediction assay. Regulatory Toxicology and Pharmacology, 2018, 92, 75-82.	1.3	12
622	Aging of mesenchymal stem cells: Implication in regenerative medicine. Regenerative Therapy, 2018, 9, 120-122.	1.4	70
623	Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Research and Therapy, 2018, 9, 336.	2.4	86
624	Adipogenic and Osteogenic Differentiation of In Vitro Aged Human Mesenchymal Stem Cells. Methods in Molecular Biology, 2018, 2045, 107-117.	0.4	1
625	Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research and Therapy, 2018, 9, 131.	2.4	384
626	Clonal Analysis Delineates Transcriptional Programs of Osteogenic and Adipogenic Lineages of Adult Mouse Skeletal Progenitors. Stem Cell Reports, 2018, 11, 212-227.	2.3	9
627	Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Stem Cells International, 2018, 2018, 1-22.	1.2	62
628	Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS ONE, 2018, 13, e0202922.	1.1	60
629	Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. Advances in Experimental Medicine and Biology, 2018, 1107, 91-112.	0.8	9
630	Effects of Passage Number and Differentiation Protocol on the Generation of Dopaminergic Neurons from Rat Bone Marrow-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2018, 19, 720.	1.8	22
631	Aging of Human Mesenchymal Stem Cells. , 2018, , 975-994.		2

ARTICLE IF CITATIONS Peripheral Blood Stem Cells., 2019, , 307-333. 632 0 Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic 1.8 69 Opportunities. International Journal of Molecular Sciences, 2019, 20, 3738. Phenotypic Characterization of Bone Marrow Mononuclear Cells and Derived Stromal Cell 634 Populations from Human Iliac Crest, Vertebral Body and Femoral Head. International Journal of 1.8 34 Molecular Sciences, 2019, 20, 3454. Progenitor Cells. Methods in Molecular Biology, 2019, , . 635 Bone Marrow-Derived Progenitor Cells Mediate Immune Cell Regulation. Methods in Molecular 636 0.4 2 Biology, 2019, 2029, 215-234. The Effect of Early Rounds of ex vivo Expansion and Cryopreservation on the Adipogenic Differentiation Capacity of Adipose-Derived Stromal/Stem Cells. Scientific Reports, 2019, 9, 15943. 1.6 638 A quantitative method to analyse F-actin distribution in cells. MethodsX, 2019, 6, 2562-2569. 0.7 31 Enriching Stem/Progenitor Cells from Dental Pulp Cells by Low-density Culturing. In Vivo, 2019, 33, 0.6 23-29. 640 Apelin receptor (Aplnr) signaling promotes fibroblast migration. Tissue and Cell, 2019, 56, 98-106. 1.0 10 Multiplicity of Mesenchymal Stromal Cells: Finding the Right Route to Therapy. Frontiers in 641 2.2 Immunology, 2019, 10, 1112. Emergent heterogeneity in putative mesenchymal stem cell colonies: Single-cell time lapsed analysis. 642 1.1 27 PLoS ONE, 2019, 14, e0213452. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods 0.3 28 and future directions. Cytotherapy, 2019, 21, 803-819. Hydroxyl radicals generated by hydrogen peroxide photolysis recondition biofilm-contaminated 644 1.6 14 titanium surfaces for subsequent osteoblastic cell proliferation. Scientific Reports, 2019, 9, 4688. Spontaneous differentiation of periodontal ligament stem cells into myofibroblast during ex vivo expansion. Journal of Cellular Physiology, 2019, 234, 20377-20391. 645 Accumulating Transcriptome Drift Precedes Cell Aging in Human Umbilical Cord-Derived Mesenchymal Stromal Cells Serially Cultured to Replicative Senescence. Stem Cells Translational Medicine, 2019, 8, 646 1.6 36 945-958. Effect of tumor necrosis factor \hat{I}_{\pm} on ability of SHED to promote osteoclastogenesis during 647 physiological root resorption. Biomedicine and Pharmacotherapy, 2019, 114, 108803. Mesenchymal Stromal Cells from the Epidermis and Dermis of Psoriasis Patients: Morphology, 648 Immunophenotype, Differentiation Patterns, and Regulation of T Cell Proliferation. Stem Cells 1.2 25 International, 2019, 2019, 1-13. MiR-27a targets DKK2 and SFRP1 to promote reosseointegration in the regenerative treatment of 649 3.1 34 peri-implantitis. Journal of Bone and Mineral Research, 2019, 34, 123-134.

		15	0
#	Article	IF	CITATIONS
650	Maintained Properties of Aged Dental Pulp Stem Cells for Superior Periodontal Tissue Regeneration. , 2019, 10, 793.		42
651	Comparative effect of platelet-rich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clinical Oral Investigations, 2019, 23, 2455-2463.	1.4	16
652	Expression of interferon regulatory factors (IRF-1 and IRF-2) during radiation-induced damage and regeneration of bone marrow by transplantation in mouse. Molecular Biology Reports, 2019, 46, 551-567.	1.0	7
653	Maintenance and Culture of MSCs. , 2019, , 39-61.		4
654	Use of MSCs in Antiaging Strategies. , 2019, , 443-461.		0
655	Bone development and remodeling in metabolic disorders. Journal of Inherited Metabolic Disease, 2020, 43, 133-144.	1.7	12
656	DNA methylation microarray uncovers a permissive methylome for cardiomyocyte differentiation in human mesenchymal stem cells. Genomics, 2020, 112, 1384-1395.	1.3	18
657	Survival of aging CD264 ⁺ and CD264 ^{â^²} populations of human bone marrow mesenchymal stem cells is independent of colonyâ€forming efficiency. Biotechnology and Bioengineering, 2020, 117, 223-237.	1.7	11
658	Assessment of Post-thaw Quality of Dental Mesenchymal Stromal Cells After Long-Term Cryopreservation by Uncontrolled Freezing. Applied Biochemistry and Biotechnology, 2020, 191, 728-743.	1.4	9
659	Osteogenic differentiation potential of porcine bone marrow mesenchymal stem cell subpopulations selected in different basal media. Biology Open, 2020, 9, .	0.6	31
660	Identification and characterization of a large source of primary mesenchymal stem cells tightly adhered to bone surfaces of human vertebral body marrow cavities. Cytotherapy, 2020, 22, 617-628.	0.3	9
661	Innate Biomineralization. International Journal of Molecular Sciences, 2020, 21, 4820.	1.8	4
662	Extrinsic modulation of integrin α6 and progenitor cell behavior in mesenchymal stem cells. Stem Cell Research, 2020, 47, 101899.	0.3	16
663	Alveolar Type II Cells or Mesenchymal Stem Cells: Comparison of Two Different Cell Therapies for the Treatment of Acute Lung Injury in Rats. Cells, 2020, 9, 1816.	1.8	15
664	Actomyosin and the MRTF-SRF pathway downregulate FGFR1 in mesenchymal stromal cells. Communications Biology, 2020, 3, 576.	2.0	2
665	From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Progress and Challenges. Stem Cell Reviews and Reports, 2020, 16, 1156-1172.	1.7	28
666	Ubiquitin-specific protease 7 downregulation suppresses breast cancer in vitro. Turkish Journal of Biology, 2020, 44, 145-157.	2.1	10
667	Tsc1 Regulates the Proliferation Capacity of Bone-Marrow Derived Mesenchymal Stem Cells. Cells, 2020, 9, 2072.	1.8	7

#	Article	IF	Citations
	Superiority of synovial membrane mesenchymal stem cells in chondrogenesis, osteogenesis,		
668	myogenesis and tenogenesis in a rabbit model. Injury, 2020, 51, 2855-2865.	0.7	10
669	Comprehensive Molecular Profiles of Functionally Effective MSC-Derived Extracellular Vesicles in Immunomodulation. Molecular Therapy, 2020, 28, 1628-1644.	3.7	71
670	Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. Stem Cells, 2020, 38, 948-959.	1.4	5
671	Therapeutic potential of mature adipocyte-derived dedifferentiated fat cells for inflammatory bowel disease. Pediatric Surgery International, 2020, 36, 799-807.	0.6	4
672	Peripheral Blood As a Source of Stem Cells for Regenerative Medicine: Emphasis Towards Corneal Epithelial Reconstruction—An In Vitro Study. Tissue Engineering and Regenerative Medicine, 2020, 17, 495-510.	1.6	6
673	Decreased immunomodulatory and secretory capability of aging human umbilical cord mesenchymal stem cells inÂvitro. Biochemical and Biophysical Research Communications, 2020, 525, 633-638.	1.0	9
674	Genetic barcoding reveals clonal dominance in iPSC-derived mesenchymal stromal cells. Stem Cell Research and Therapy, 2020, 11, 105.	2.4	13
675	NEWER ADVANCES IN MESENCHYMAL STEM CELL THERAPY. Asian Journal of Pharmaceutical and Clinical Research, 2020, , 5-10.	0.3	0
676	Exposure of Patient-Derived Mesenchymal Stromal Cells to TGFB1 Supports Fibrosis Induction in a Pediatric Acute Megakaryoblastic Leukemia Model. Molecular Cancer Research, 2020, 18, 1603-1612.	1.5	1
677	The Importance of Stem Cell Senescence in Regenerative Medicine. Advances in Experimental Medicine and Biology, 2020, 1288, 87-102.	0.8	10
678	Dimensionality changes actin network through lamin A/C and zyxin. Biomaterials, 2020, 240, 119854.	5.7	15
679	Quantitative Bioimage Analysis of Passaging Effect on the Migratory Behavior of Human Mesenchymal Stem Cells During Spheroid Formation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 394-406.	1.1	3
680	Complicity of degradable polymers in health-care applications. Materials Today Chemistry, 2020, 16, 100236.	1.7	38
681	Control of mesenchymal stem cell biology by histone modifications. Cell and Bioscience, 2020, 10, 11.	2.1	31
682	Cell Senescence and Mesenchymal Stromal Cells. Human Physiology, 2020, 46, 85-93.	0.1	2
683	Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering. Materials Today Bio, 2020, 6, 100051.	2.6	19
684	Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cellular and Molecular Life Sciences, 2021, 78, 447-467.	2.4	157
685	E7â€Modified Substrates to Promote Adhesion and Maintain Stemness of Mesenchymal Stem Cells. Macromolecular Bioscience, 2021, 21, e2000384.	2.1	5

#	Article	IF	CITATIONS
686	Identification of Molecules Responsible for Therapeutic Effects of Extracellular Vesicles Produced from iPSC-Derived MSCs on Sjo¨gren's Syndrome. , 2021, 12, 1409.		16
687	Sirtuins and stem cell maintenance, proliferation, and differentiation. , 2021, , 175-190.		Ο
688	Epigenetic regulationâ^'The guardian of cellular homeostasis and lineage commitment. Biocell, 2021, 45, 501-515.	0.4	3
689	Transcriptome Analysis of Dnmt3l Knock-Out Mice Derived Multipotent Mesenchymal Stem/Stromal Cells During Osteogenic Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 615098.	1.8	2
690	Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduction and Targeted Therapy, 2021, 6, 65.	7.1	137
691	Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nature Communications, 2021, 12, 1031.	5.8	43
692	Comparison of immune modulatory properties of human multipotent mesenchymal stromal cells derived from bone marrow and placenta. Biotechnic and Histochemistry, 2021, , 1-11.	0.7	4
694	Biological Aspects and Clinical Applications of Mesenchymal Stem Cells: Key Features You Need to be Aware of. Current Pharmaceutical Biotechnology, 2021, 22, 200-215.	0.9	6
695	Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity. Free Radical Biology and Medicine, 2021, 167, 193-200.	1.3	13
696	No Detectable Alteration of Inorganic Allogeneic Bone Matrix Colonizing Mesenchymal Cells: A Step Towards Personalized Bone Grafts. Journal of Bone Metabolism, 2021, 28, 161-169.	0.5	0
697	Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 7536.	1.8	6
698	Characterization of Odontoblasts in Supernumerary Tooth-derived Dental Pulp Stem Cells between Passages by Real-Time PCR. The Journal of the Korean Academy of Pedtatric Dentistry, 2021, 48, 291-301.	0.1	1
699	MSCs from polytrauma patients: preliminary comparative study with MSCs from elective-surgery patients. Stem Cell Research and Therapy, 2021, 12, 451.	2.4	1
700	Human Adipose-Derived Mesenchymal Stromal Cells Exhibit High HLA-DR Levels and Altered Cellular Characteristics under a Xeno-free and Serum-free Condition. Stem Cell Reviews and Reports, 2021, 17, 2291-2303.	1.7	6
701	Isolation and Expansion of Mesenchymal Stem Cells from Human Conjunctival Tissue. Current Protocols in Stem Cell Biology, 2015, 33, 1F.14.1-8.	3.0	5
703	Gene Expression Profiles of Mesenchymal Stem Cells. , 2006, , 59-80.		4
704	Human Embryonic Stem Cells — Realising the Potential. Advances in Experimental Medicine and Biology, 2003, 534, 11-25.	0.8	2
705	Isolation and Culture of Bone Marrow-Derived Human Multipotent Stromal Cells (hMSCs). , 2008, 449, 3-25.		46

#	Article	IF	CITATIONS
706	Freezing Harvested hMSCs and Recovery of hMSCs from Frozen Vials for Subsequent Expansion, Analysis, and Experimentation. , 2008, 449, 109-116.		5
707	Human Mesenchymal Stem Cells: Basic Biology and Clinical Applications for Bone Tissue Regeneration. , 2009, , 177-190.		4
708	Human Salivary Gland Stem Cells: Isolation, Propagation, and Characterization. Methods in Molecular Biology, 2012, 879, 403-442.	0.4	15
709	Properties of Mesenchymal Stem Cells to Consider for Cancer Cell Therapy. , 2009, , 79-98.		2
710	Mesenchymal Stem Cells: An Oversimplified Nomenclature for Extremely Heterogeneous Progenitors. , 2011, , 377-395.		3
711	Chondrogenesis from Human Mesenchymal Stem Cells: Role of Culture Conditions. , 2012, , 269-280.		6
712	Major Signaling Pathways Regulating the Proliferation and Differentiation of Mesenchymal Stem Cells. , 2013, , 75-100.		4
713	Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3213-8.	3.3	440
714	SENP1 is required for the growth, migration, and survival of human adipose-derived stem cells. Adipocyte, 2021, 10, 38-47.	1.3	4
716	Aging Increases the Susceptivity of MSCs to Reactive Oxygen Species and Impairs Their Therapeutic Potency for Myocardial Infarction. PLoS ONE, 2014, 9, e111850.	1.1	30
717	Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines. PLoS ONE, 2016, 11, e0164199.	1.1	27
718	Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion. PLoS ONE, 2017, 12, e0171488.	1.1	40
719	Generation of Insulin Producing Cells using Mesenchymal Stem Cells Derived from Bone Marrow of New-Zealand White Rabbits. Canadian Journal of Clinical Nutrition, 2013, 1, 47-66.	0.1	2
720	A SAGE View of Mesenchymal Stem Cells. International Journal of Stem Cells, 2009, 2, 1-10.	0.8	9
721	Effect of Recombinant Human Erythropoietin On the Stemness of Bone Marrow-derived Mesenchymal Stem Cells in vitro. International Journal of Stem Cells, 2010, 3, 175-182.	0.8	4
722	Mesenchymal Stem Cells; Defining the Future of Regenerative Medicine. Journal of Genes and Cells, 2015, 1, 34.	1.0	6
723	New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget, 2016, 7, 71998-72010.	0.8	13
724	Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget, 2015, 6, 6326-6340.	0.8	76

#	Article	IF	CITATIONS
725	Mesenchymal Stromal Cells; Role in Tissue Repair, Drug Discovery and Immune Modulation. Current Drug Delivery, 2013, 11, 561-571.	0.8	27
726	Prediction of in vivo bone forming potency of bone marrow-derived human mesenchymal stem cells. , 2011, 21, 488-577.		79
727	Does aging of mesenchymal stem cells limit their potential application in clinical practice?. Aging Clinical and Experimental Research, 2012, 24, 404-11.	1.4	21
728	Resveratrol rescues TNFâ€'αâ€'induced inhibition of osteogenesis in human periodontal ligament stem cells via the ERK1/2 pathway. Molecular Medicine Reports, 2020, 21, 2085-2094.	1.1	8
729	Pleiotropic effects of Erythropoietin. Influence of Erythropoietin on processes of mesenchymal stem cells differentiation. Research Results in Pharmacology, 2019, 5, 53-66.	0.1	5
730	The Proliferation and Differentiation Capacity of Bone Marrow Derived- Human Mesenchymal Stem Cells in Early and Late Doubling. Asian Journal of Biochemistry, 2011, 7, 27-36.	0.5	13
731	Human Bone Marrow-Derived Mesenchymal Stem Cells. Libyan Journal of Medicine, 2007, 2, 190-201.	0.8	10
732	Clonal characterization of bone marrow derived stem cells and their application for bone regeneration. International Journal of Oral Science, 2010, 2, 127-35.	3.6	40
733	Role of stem cell therapies in treating chronic wounds: A systematic review. World Journal of Stem Cells, 2020, 12, 659-675.	1.3	24
734	Development of Human Fetal Mesenchymal Stem Cell Mediated Tissue Engineering Bone Grafts. , 0, , .		3
735	Morphological characteristics of mesenchymal stem cells from Wharton jelly, cultivated under physiological oxygen tensions, in various gas mixtures. Biopolymers and Cell, 2016, 32, 262-270.	0.1	6
736	Changes in the hepatic differentiation potential of human mesenchymal stem cells aged in vitro. Annals of Translational Medicine, 2021, 9, 1628-1628.	0.7	5
737	Uncommitted Progenitors in Cultures of Bone Marrow-Derived Mesenchymal Stem Cells. , 2006, , 127-133.		0
738	Chondrogenic Differentiation of Mesenchymal Stem Cells Isolated from Patients in Late Adulthood: The Optimal Conditions of Growth Factors. Tissue Engineering, 2006, .	4.9	0
739	Review:Ex VivoEngineering of Living Tissues with Adult Stem Cells. Tissue Engineering, 2006, .	4.9	0
741	The Immunoregulatory Role of Mesenchymal Stem Cells. , 2007, , 35-48.		0
742	Mesenchymal Stem Cells: Applications in Cell and Gene Therapy. , 2009, , 97-122.		1
743	Multipotent Stromal Cells (hMSCs). Human Cell Culture, 2009, , 45-72.	0.1	0

#	Article	IF	CITATIONS
744	Therapeutic Potential of Mesenchymal Stem Cells in Hematopoietic Stem Cell Transplantation. , 2010, , 477-490.		0
745	Stem Cells and Cartilage Repair. , 2010, , 248-272.		1
746	Derivation of Hepatocytes from Human Umbilical Cord Lining Epithelial Stem Cells. , 2010, , 323-337.		0
749	Cellular Therapies for Immunosuppression. , 0, , .		0
750	Potential of Mesenchymal Stem Cells for Liver Regeneration. , 0, , .		0
751	MSCs: Changing Hypotheses, Paradigms, and Controversies on Mechanisms of Action in Repairing Tissues. , 2013, , 17-42.		Ο
752	Biology of MSCs Isolated from Different Tissues. , 2013, , 17-32.		0
753	Musculoskeletal Stem Cells. , 2016, , 315-343.		0
755	High Dose of FGF-2 Induced Growth Retardation via ERK1/2 De-phosphorylation in Bone Marrow-derived Mesenchymal Stem Cells. Biomedical Science Letters, 2017, 23, 49-56.	0.0	0
756	Differentiation Potential And Tumorigenic Risk of Rat Bone Marrow Stem Cells Are Affected By Long-Term In Vitro Expansion. Turkish Journal of Haematology, 2019, 36, 255-265.	0.2	2
759	BORON INCREASES THE VIABILITY OF HUMAN CANCER AND MURINE FIBROBLAST CELLS AFTER LONG TIME OF CRYOPRESERVATION. Trakya University Journal of Natural Sciences, 0, , .	0.4	0
760	Expansion and Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Methods in Molecular Biology, 2021, 2221, 15-28.	0.4	5
761	A review from mesenchymal stem-cells and their small extracellular vesicles in tissue engineering. Biocell, 2022, 46, 325-338.	0.4	0
764	Types and Origin of Stem Cells. , 2021, , 33-68.		1
765	Mesenchymal cells from limbal stroma of human eye. Molecular Vision, 2008, 14, 431-42.	1.1	124
766	In vitro evaluation of isolation possibility of stem cells from intra oral soft tissue and comparison of them with bone marrow stem cells. Journal of Dentistry of Tehran University of Medical Sciences, 2012, 9, 1-6.	0.4	4
768	Systemically transplanted human gingiva-derived mesenchymal stem cells contributing to bone tissue regeneration. International Journal of Clinical and Experimental Pathology, 2014, 7, 4922-9.	0.5	34
769	Co-culture with periodontal ligament stem cells enhanced osteoblastic differentiation of MC3T3-E1 cells and osteoclastic differentiation of RAW264.7 cells. International Journal of Clinical and Experimental Pathology, 2015, 8, 14596-607.	0.5	16

ARTICLE IF CITATIONS Senolytic controls bone marrow mesenchymal stem cells fate improving bone formation. American 770 0.0 6 Journal of Translational Research (discontinued), 2020, 12, 3078-3088. Long term expansion profile of mesenchymal stromal cells at protein nanosheet-stabilised 771 2.6 bioemulsions for next generation cell culture microcarriers. Materials Today Bio, 2021, 12, 100159. Fresh and Cryopreserved Human Umbilical-Cord-Derived Mesenchymal Stromal Cells Attenuate Injury and Enhance Resolution and Repair following Ventilation-Induced Lung Injury. International Journal 772 9 1.8 of Molecular Sciences, 2021, 22, 12842. Mesenchymal Stem Cells in the Treatment of Human Spinal Cord Injury: The Effect on Individual Values of pNF-H, GFAP, S100 Proteins and Selected Growth Factors, Cytokines and Chemokines. Current Issues in Molecular Biology, 2022, 44, 578-596. Effective Label-Free Sorting of Multipotent Mesenchymal Stem Cells from Clinical Bone Marrow 774 1.6 8 Samples. Bioengineering, 2022, 9, 49. A critical review of<i>in vitro</i>research methodologies used to study mineralization in human dental pulp cell cultures. International Endodontic Journal, 2022, 55, 3-13. 2.3 The fate of human SUSD2+ endometrial mesenchymal stem cells during decidualization. Stem Cell 776 0.3 5 Research, 2022, 60, 102671. Improvement of Mesenchymal Stromal Cell Proliferation and Differentiation via Decellularized Extracellular Matrix on Substrates With a Range of Surface Chemistries. Frontiers in Medical 1.3 Technology, 2022, 4, 834123. Small Noncoding RNAome Changes During Human Bone Marrow Mesenchymal Stem Cells Senescence 782 3 1.5 In Vitro. Frontiers in Endocrinology, 2022, 13, . JAK-STAT signaling mediates the senescence of cartilage-derived stem/progenitor cells. Journal of 1.0 Molecular Histology, 2022, 53, 635-643. Biological activity reduction and mitochondrial and lysosomal dysfunction of mesenchymal stem 784 2 2.4 cells aging in vitro. Stem Cell Research and Therapy, 2022, 13, . Oxidative Stress Response in Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells. International 1.8 Journal of Molecular Sciences, 2022, 23, 13435. Installation of click-type functional groups enable the creation of an additive manufactured 787 3.7 3 construct for the osteochondral interface. Biofabrication, 2023, 15, 014106. Autologous Orthobiologics., 2022, , 70-88. 789 Recent Emerging Trend in Stem Cell Therapy Risk Factors. Current Stem Cell Research and Therapy, 790 0.6 2 2023, 18, 1076-1089. Barriers to mesenchymal stromal cells for low back pain. World Journal of Stem Cells, 0, 14, 815-821. 791 792 Cellular expansion of <scp>MSCs</scp>: Shifting the regenerative potential. Aging Cell, 2023, 22, . 3.011 Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells 793 and promote therapy resistance. British Journal of Pharmacology, 2024, 181, 216-237.

		CITATION R	Citation Report	
	-			
#	Article		IF	CITATIONS
794	Rejuvenation of Mesenchymal Stem Cells to Ameliorate Skeletal Aging. Cells, 2023, 12,	998.	1.8	3
799	The other side of the coin: mesenchymal stromal cell immortalization beyond evasion o Human Cell, 2023, 36, 1593-1603.	f senescence.	1.2	1
803	Does aging of mesenchymal stem cells limit their potential application in clinical practic Clinical and Experimental Research, 2012, 24, 404-411.	e?. Aging	1.4	2
805	Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms?. (Moscow), 2023, 88, 1763-1777.	Biochemistry	0.7	Ο
806	Molecular Basis of Stem Cell Senescence. , 2024, , .			0
807	Circadian Clocks in Ageing. , 2024, , 505-535.			Ο