State of the art of applied fast pyrolysis of lignocellulosi

Bioresource Technology 68, 71-77

DOI: 10.1016/s0960-8524(98)00086-8

Citation Report

#	Article	IF	CITATIONS
1	Title is missing!. Journal of Applied Phycology, 2000, 12, 147-152.	2.8	87
2	Flash Vacuum Pyrolysis of Methoxy-Substituted Lignin Model Compounds. Journal of Organic Chemistry, 2000, 65, 1376-1389.	3.2	240
5	Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology, 2001, 80, 1-7.	9.6	197
6	Title is missing!. Journal of Applied Phycology, 2001, 13, 5-12.	2.8	74
7	The Effect of a Sweeping Gas Flow Rate on the Fast Pyrolysis of Biomass. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2002, 24, 633-642.	0.5	14
8	Production and characterization of pyrolysis liquids from sunflower-pressed bagasse. Bioresource Technology, 2002, 85, 113-117.	9.6	74
9	Lignocellulosic Materials as Potential Biosorbents of Trace Toxic Metals from Wastewater. Industrial & Description of the State of Trace Toxic Metals from Wastewater. Industrial & Description of the Material & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Wastewater. Industrial & Description of Trace Toxic Metals from Metal	3.7	165
10	Carbonisation of Fir (Abies bornmulleriana) wood in an open pyrolysis system at 50–300°C. Journal of Analytical and Applied Pyrolysis, 2003, 67, 11-22.	5.5	26
11	Fate of polyaromatic hydrocarbons in the pyrolysis of industrial waste oils. Journal of Analytical and Applied Pyrolysis, 2003, 67, 237-246.	5 . 5	34
12	Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1 : emulsion production. Biomass and Bioenergy, 2003, 25, 85-99.	5.7	239
13	Continuous Thermochemical Conversion Process to Produce Oil from Swine Manure., 2003,,.		0
14	Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 2004, 45, 651-671.	9.2	985
15	Rapid pyrolysis of wood block by microwave heating. Journal of Analytical and Applied Pyrolysis, 2004, 71, 187-199.	5 . 5	265
16	Pyrolysis–GC/MS studies of vegetable oils from Macauba fruit. Journal of Analytical and Applied Pyrolysis, 2004, 72, 103-111.	5.5	65
17	Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polymer Degradation and Stability, 2004, 86, 567-576.	5.8	189
18	Performance of Porous CaO Obtained from the Decomposition of Calcium-Enriched Bio-Oil as Sorbent for SO2 and H2S Removal. Industrial & Engineering Chemistry Research, 2004, 43, 1340-1348.	3.7	16
19	High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 2004, 110, 85-93.	3.8	529
20	Production and Characterization of Pyrolysis Oil from Herbaceous Biomass (Achnatherum) Tj ETQq1 1 0.784314	rgBT/Ove	rlock 10 Tf 5

#	Article	IF	Citations
21	Catalytic pyrolysis of perennial shrub, Euphorbia rigida in the water vapour atmosphere. Journal of Analytical and Applied Pyrolysis, 2005, 73, 299-304.	5.5	31
22	Fixed bed pyrolysis of Euphorbia rigida with different catalysts. Energy Conversion and Management, 2005, 46, 421-432.	9.2	62
23	Development of a Small-Scale Reactor System for the Continuous Hydrothermal Processing of Swine Manure Into Oil., 2005,,.		0
24	Pyrolysis of Waste Paper: Characterization and Composition of Pyrolysis Oil. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2005, 27, 867-873.	0.5	33
25	Thermoset Phenolic Matrices Reinforced with Unmodified and Surface-Grafted Furfuryl Alcohol Sugar Cane Bagasse and Curaua Fibers:Â Properties of Fibers and Composites. Biomacromolecules, 2005, 6, 2485-2496.	5.4	114
26	Biomass Pyrolysis in a Fluidized Bed Reactor. Part 1:Â Literature Review and Model Simulations. Industrial & Description of the Company of the Research, 2005, 44, 8773-8785.	3.7	193
27	Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor. Energy & E	5.1	122
28	Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & 2006, 20, 1321-1328.	5.1	149
29	Multiphase Structure of Bio-oils. Energy & Samp; Fuels, 2006, 20, 364-375.	5.1	108
30	Pyrolysis of Wood/Biomass for Bio-oil:  A Critical Review. Energy & Fuels, 2006, 20, 848-889.	5.1	4,483
31	Stable carbon isotope analysis of wood hydropyrolysis residues: A potential indicator for the extent of cross-linking between lignin and polysaccharides. Organic Geochemistry, 2006, 37, 64-71.	1.8	11
32	HYDROTHERMAL PROCESSING OF SWINE MANURE INTO OIL USING A CONTINUOUS REACTOR SYSTEM: DEVELOPMENT AND TESTING. Transactions of the ASABE, 2006, 49, 533-541.	1.1	40
33	Pyrolysis of Lignocellulosic Biomass to Maximize Bio-oil Yield: An Overview., 2006,,.		0
34	Wine waste treatment methodology. International Journal of Food Science and Technology, 2006, 41, 1117-1151.	2.7	63
35	Fast pyrolysis of soybean cake: Product yields and compositions. Bioresource Technology, 2006, 97, 569-576.	9.6	147
36	Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel, 2006, 85, 2202-2212.	6.4	255
37	Production of hydrogen by lignins fast pyrolysis. International Journal of Hydrogen Energy, 2006, 31, 2179-2192.	7.1	72
38	Formation of phenols from the low-temperature fast pyrolysis of Radiata pine (Pinus radiata). Journal of Analytical and Applied Pyrolysis, 2006, 76, 38-47.	5.5	36

#	Article	IF	CITATIONS
39	Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 2006, 76, 230-237.	5 . 5	361
40	Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 403-427.	2.1	2,198
41	Miscanthus \tilde{A} — Giganteus straw and pellets as sustainable fuels and raw material for activated carbon. Environmental Chemistry Letters, 2006, 4, 185-189.	16.2	35
42	Influence of polystyrene addition to cellulose on chemical structure and properties of bio-oil obtained during pyrolysis. Energy Conversion and Management, 2006, 47, 716-731.	9.2	98
43	Autothermal Fluidized Bed Pyrolysis of Cuban Pine Sawdust. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 695-704.	2.3	7
45	Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere. Chemosphere, 2007, 67, 1477-1484.	8.2	63
46	Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks. Energy & Energ	5.1	68
47	Production and Fuel Properties of Pine Chip Bio-oil/Biodiesel Blends. Energy & Energ	5.1	101
48	Sisal Fibers: Surface Chemical Modification Using Reagent Obtained from a Renewable Source; Characterization of Hemicellulose and Lignin as Model Study. Journal of Agricultural and Food Chemistry, 2007, 55, 8576-8584.	5.2	52
49	Influence of Temperature on the Formation of Oil from Pyrolyzing Palm Oil Wastes in a Fixed Bed Reactor. Energy & Energy	5.1	54
50	Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chemical Engineering Journal, 2007, 134, 51-57.	12.7	231
51	Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis. Microporous and Mesoporous Materials, 2007, 99, 132-139.	4.4	135
52	Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues. Journal of Analytical and Applied Pyrolysis, 2007, 79, 205-209.	5 . 5	12
53	Composition of products obtained via fast pyrolysis of olive-oil residue: Effect of pyrolysis temperature. Journal of Analytical and Applied Pyrolysis, 2007, 79, 147-153.	5 . 5	125
54	Transformations of biomass internal oxygen at varied pyrolysis conditions. Journal of Analytical and Applied Pyrolysis, 2007, 79, 121-127.	5. 5	20
55	In situ X-ray diffraction investigation of thermal decomposition of wood cellulose. Journal of Analytical and Applied Pyrolysis, 2007, 80, 134-140.	5 . 5	65
56	Current and potential uses of thermally treated olive oil waste. International Journal of Food Science and Technology, 2007, 42, 852-867.	2.7	38
57	Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chemical Engineering Journal, 2007, 133, 239-246.	12.7	148

#	ARTICLE	IF	Citations
58	Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation. Journal of Analytical and Applied Pyrolysis, 2008, 81, 243-246.	5 . 5	22
59	Online upgrading of organic vapors from the fast pyrolysis of biomass. Journal of Fuel Chemistry and Technology, 2008, 36, 666-671.	2.0	41
60	Ionizedâ€Airâ€Treated Curaua Fibers as Reinforcement for Phenolic Matrices. Macromolecular Materials and Engineering, 2008, 293, 521-528.	3.6	18
61	Analysis and upgrading of bio-petroleum from biomass by direct deoxy-liquefaction. Journal of Analytical and Applied Pyrolysis, 2008, 81, 199-204.	5.5	41
62	Improvements of Brazilian carbonization industry as part of the creation of a global biomass economy. Renewable and Sustainable Energy Reviews, 2008, 12, 1063-1086.	16.4	52
63	Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews, 2008, 12, 2092-2116.	16.4	450
64	Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake in a fixed-bed reactor: Part 2. Structural characterization of pyrolysis bio-oils. Bioresource Technology, 2008, 99, 5498-5504.	9.6	83
65	Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresource Technology, 2008, 99, 7911-7922.	9.6	269
66	Biofuels from Microalgae. Biotechnology Progress, 2008, 24, 815-820.	2.6	794
67	Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 2008, 49, 3498-3504.	9.2	316
68	Design, Construction, and Operation of a Transported Fluid Bed Process Development Unit for Biomass Fast Pyrolysis:Â Effect of Pyrolysis Temperature. Industrial & Engineering Chemistry Research, 2008, 47, 742-747.	3.7	36
69	Effects of Temperature on the Formation of Lignin-Derived Oligomers during the Fast Pyrolysis of Mallee Woody Biomass. Energy & E	5.1	207
70	Fast Pyrolysis of Oil Mallee Woody Biomass:  Effect of Temperature on the Yield and Quality of Pyrolysis Products. Industrial & Engineering Chemistry Research, 2008, 47, 1846-1854.	3.7	323
71	Food Waste Treatment Methodologies. , 2008, , 345-410.		17
72	Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. Energy & Samp; Fuels, 2008, 22, 614-625.	5.1	393
73	Ultrastructural development of the softwood cell wall during pyrolysis. Holzforschung, 2009, 63, .	1.9	25
74	Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management, 2009, 50, 1376-1383.	9.2	683
75	Low temperature conversion (LTC) of castor seeds—A study of the oil fraction (pyrolysis oil). Journal of Analytical and Applied Pyrolysis, 2009, 86, 53-57.	5 . 5	16

#	Article	IF	Citations
76	Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 2009, 88, 1810-1817.	6.4	307
77	Influence of zinc chloride addition on the chemical structure of bio-oil obtained during co-pyrolysis of wood/synthetic polymer blends. Waste Management, 2009, 29, 2983-2993.	7.4	31
78	Production of biofuels via co-processing in conventional refining processes. Catalysis Today, 2009, 145, 55-62.	4.4	240
79	Current technologies for analysis of biomass thermochemical processing: A review. Analytica Chimica Acta, 2009, 651, 117-138.	5.4	252
80	Energy recovery from sugarcane biomass residues: Challenges and opportunities of bio-oil production in the light of second generation biofuels. Journal of Renewable and Sustainable Energy, 2009, 1, .	2.0	17
81	Gas Phase Chemistry in Cellulose Fast Pyrolysis. Industrial & Engineering Chemistry Research, 2009, 48, 1391-1399.	3.7	33
82	Synthesis of the components of engine fuels on the basis of renewable raw materials: Trends and prospects. Petroleum Chemistry, 2010, 50, 325-331.	1.4	7
83	Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydrate Polymers, 2010, 80, 655-664.	10.2	84
84	Thermogravimetric characteristics and pyrolysis kinetics of Giheung Respia sewage sludge. Korean Journal of Chemical Engineering, 2010, 27, 163-167.	2.7	28
85	Nextâ€Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues. ChemSusChem, 2010, 3, 1106-1133.	6.8	270
86	Production and fuel properties of fast pyrolysis oil/bio-diesel blends. Fuel Processing Technology, 2010, 91, 296-305.	7.2	104
87	Supercritical CO2 fractionation of bio-oil produced from wheat–hemlock biomass. Bioresource Technology, 2010, 101, 7605-7613.	9.6	61
88	Influence of pine wood shavings on the pyrolysis of poultry litter. Waste Management, 2010, 30, 2537-2547.	7.4	37
89	Characteristics and kinetics of cattle litter pyrolysis in a tubing reactor. Bioresource Technology, 2010, 101, S104-S108.	9.6	17
90	Parametric studies on the pyrolysis of poultry litter. , 2010, , .		0
91	Pyrolysis of Lignocellulosic Biomass from Northeast China. , 2010, , .		0
92	Biodiesel as a renewable energy source. , 2010, , 1-49.		2
93	Study on Catalytic Pyrolysis of Manchurian Ash for Production of Bio-Oil. International Journal of Green Energy, 2010, 7, 300-309.	3.8	29

#	Article	IF	CITATIONS
94	Catalysts in Biomass Pyrolysis. RSC Energy and Environment Series, 2010, , 263-287.	0.5	7
95	OXIDATIVE CRACKING OF LINEAR HYDROCARBONS AT LOW TEMPERATURES. Chemical Engineering Communications, 2010, 198, 416-424.	2.6	10
96	Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions. International Journal of Molecular Sciences, 2010, 11, 4035-4050.	4.1	63
97	Cyclic CO ₂ Capture Behavior of Limestone Modified with Pyroligneous Acid (PA) during Calcium Looping Cycles. Industrial & Engineering Chemistry Research, 2011, 50, 10222-10228.	3.7	66
98	Wood Bio-Oil Noncatalytic Gasification: Influence of Temperature, Dilution by an Alcohol and Ash Content. Energy & Energ	5.1	23
99	Microalgae as a Feedstock for Biofuels. , 2011, , 1-69.		21
100	Microalgae as a Feedstock for Biofuels. , 2011, , .		72
101	A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews, 2011, 15, 4171-4186.	16.4	401
102	Parametric study on the pyrolysis of manure and wood shavings. Biomass and Bioenergy, 2011, 35, 4417-4425.	5.7	25
103	The effect of alkaline pretreatment on the thermal decomposition of hemp. Journal of Thermal Analysis and Calorimetry, 2011, 105, 1061-1069.	3.6	41
104	Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresource Technology, 2011, 102, 4890-4896.	9.6	344
105	Liquid and Solid Products from Liquid-Phase Pyrolysis of Softwood. Bioenergy Research, 2011, 4, 294-302.	3.9	30
106	Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks. Journal of Analytical and Applied Pyrolysis, 2011, 91, 190-198.	5.5	64
107	Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 2011, 15, 1258-1270.	16.4	196
108	Synthesis of polymers from organic solvent liquefied biomass: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 3454-3463.	16.4	111
109	Fast Pyrolysis of Biomass in Bubbling Fluidized Bed: A Model Study. Chemical Product and Process Modeling, 2011, 6, .	0.9	0
110	Thermogravimetric analysis and kinetic modelling of rice-straw pyrolysis in molten salt of alkali carbonates. , 2011 , , .		3
111	Biofuels Production from Biomass by Thermochemical Conversion Technologies. International Journal of Chemical Engineering, 2012, 2012, 1-18.	2.4	135

#	Article	IF	CITATIONS
112	Oil Palm Biomass Fibres and Recent Advancement in Oil Palm Biomass Fibres Based Hybrid Biocomposites. , 0, , .		30
113	Biofuel production: Prospects, challenges and feedstock in Australia. Renewable and Sustainable Energy Reviews, 2012, 16, 6022-6031.	16.4	105
114	Application of the Conduct-like Screening Models for Real Solvent and Segment Activity Coefficient for the Predictions of Partition Coefficients and Vapor–Liquid and Liquid–Liquid Equilibria of Bio-oil-Related Mixtures. Energy & Fuels, 2012, 26, 3756-3768.	5.1	11
115	The characteristics of gas–solid flow and wall heat transfer in a fluidized bed reactor. Heat and Mass Transfer, 2012, 48, 1513-1524.	2.1	6
116	Thermal stability during pyrolysis of sunflower oil produced in the northeast of Brazil. Journal of Thermal Analysis and Calorimetry, 2012, 109, 967-974.	3.6	13
117	Uncommon Crop Residues as Ni(II) and Cd(II) Biosorbents. Industrial & Engineering Chemistry Research, 0, , 120913092325000.	3.7	4
118	Characterization of Red Pine Pyrolysis Bio-oil by Gas Chromatography–Mass Spectrometry and Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Damp; Fuels, 2012, 26, 4532-4539.	5.1	105
119	Novel Approach to Hydrogen Production with Suppressed CO _{<i>x</i>} Generation from a Model Biomass Feedstock. Energy & Suppressed CO _{<i>x</i>}	5.1	22
120	Kinetic Study on the Reduction Reaction of Biomass-Tar-Infiltrated Iron Ore. Energy & Energy	5.1	41
121	A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 2012, 16, 5101-5109.	16.4	482
122	Effect of Ionic Liquid Treatment on Pyrolysis Products from Bamboo. Industrial & Engineering Chemistry Research, 2012, 51, 2280-2289.	3.7	60
123	Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC–MS/FID. Bioresource Technology, 2012, 123, 296-302.	9.6	36
124	Formation of liquid and solid products from liquid phase pyrolysis. Bioresource Technology, 2012, 124, 90-94.	9.6	18
125	Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality. Energy, 2012, 47, 17-24.	8.8	102
127	Effect of Temperature on Biochar Product Yield from Selected Lignocellulosic Biomass in a Pyrolysis Process. Waste and Biomass Valorization, 2012, 3, 311-318.	3.4	72
128	Fast Pyrolysis of Corn Stover and Sawdust in a Novel Reactor. , 2012, , .		1
129	Applications of Chromatography Hyphenated Techniques in the Field of Lignin Pyrolysis. , 0, , .		1
130	Heat transfer characteristics of KIMMâ€fast pyrolysis reactor. Environmental Progress and Sustainable Energy, 2012, 31, 245-250.	2.3	2

#	ARTICLE	IF	CITATIONS
132	Heterogeneous and homogeneous reactions of pyrolysis vapors from pine wood. AICHE Journal, 2012, 58, 2830-2842.	3.6	80
133	Catalytic Hydroprocessing of p-Cresol: Metal, Solvent and Mass-Transfer Effects. Topics in Catalysis, 2012, 55, 129-139.	2.8	109
134	Analysis of products from pyrolysis of Brazilian sugar cane straw. Fuel Processing Technology, 2012, 101, 35-43.	7.2	66
135	Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. Journal of Analytical and Applied Pyrolysis, 2012, 94, 163-169.	5 . 5	141
136	A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresource Technology, 2012, 107, 487-493.	9.6	177
137	Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresource Technology, 2012, 114, 663-669.	9.6	263
138	Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions. Renewable Energy, 2012, 42, 131-135.	8.9	106
139	Sewage sludge pyrolysis for liquid production: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 2781-2805.	16.4	443
140	Recovery of renewable phenolic fraction from pyrolysis oil. Separation and Purification Technology, 2012, 86, 157-170.	7.9	86
141	A new process developed for separation of lignin from ammonium hydroxide pretreatment solutions. Environmental Progress and Sustainable Energy, 2012, 31, 130-138.	2.3	9
142	Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology, 2013, , .	0.6	32
143	Valorization of bark for chemicals and materials: A review. Renewable and Sustainable Energy Reviews, 2013, 26, 560-578.	16.4	188
144	Studies on Sodium Lignosulfonate Depolymerization Over Al2O3 Supported Catalysts Loaded with Metals and Metal Oxides in a Continuous Flow Reactor. Topics in Catalysis, 2013, 56, 794-799.	2.8	7
145	Effects of solvents and catalysts in liquefaction of pinewood sawdust for the production of bio-oils. Biomass and Bioenergy, 2013, 59, 158-167.	5.7	123
146	Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–GC–MS/FID. Journal of Analytical and Applied Pyrolysis, 2013, 100, 88-94.	5 . 5	52
147	Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading. Journal of Analytical and Applied Pyrolysis, 2013, 103, 343-351.	5.5	97
148	Landfills as a biorefinery to produce biomass and capture biogas. Bioresource Technology, 2013, 135, 578-587.	9.6	55
149	Thermochemical processes for biofuels production from biomass. Sustainable Chemical Processes, 2013, 1, .	2.3	77

#	Article	IF	CITATIONS
150	Fast pyrolysis of biomass for the production of liquids. , 2013, , 130-171.		25
151	Characterization of bioresidues for biooil production through pyrolysis. Bioresource Technology, 2013, 138, 71-78.	9.6	91
152	Variation of Lignin Monomeric Composition During Kraft Pulping of <i>Eucalyptus globulus </i> Heartwood and Sapwood. Journal of Wood Chemistry and Technology, 2013, 33, 1-18.	1.7	28
153	Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews, 2013, 23, 179-213.	16.4	623
154	The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresource Technology, 2013, 135, 659-664.	9.6	128
155	Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production. , 2013, , 351-396.		7
156	Stalk Inhomogeneity and Steam Explosion Integrated Fractional Refining Technology System. Green Energy and Technology, 2013, , 77-92.	0.6	1
157	Effect of pretreatment temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas fir wood. Fuel, 2013, 103, 672-682.	6.4	71
158	Novel Gas Chromatography–Mass Spectrometry Methods for Characterization of Volatile Organic Compounds and Water in Fast Pyrolysis Liquids. Energy & Samp; Fuels, 2013, 27, 7413-7423.	5.1	3
159	Chemical Composition and Efficiency of Bio-oil Obtained from Giant Cane (Arundo donax L.) as a Wood Preservative. BioResources, 2013, 8, .	1.0	27
160	Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass., 2014, , 1-26.		2
161	Pyrolysis of Peach Pulp: Effect of Chemical Additives. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 36, 2546-2554.	2.3	2
162	Synthesis of alcohol-soluble phenol-formaldehyde resins from pyrolysis oil of <i>Cunninghamia lanceolata</i> wood and properties of molding plates made of resin-impregnated materials. Holzforschung, 2014, 68, 217-222.	1.9	6
163	Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 2014, 4, 157-191.	4.6	290
164	Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase. Applied Catalysis B: Environmental, 2014, 145, 10-23.	20.2	151
165	Hydrothermal liquefaction of wheat straw in hot compressed water and subcritical water–alcohol mixtures. Journal of Supercritical Fluids, 2014, 93, 121-129.	3.2	65
166	Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. Journal of Analytical and Applied Pyrolysis, 2014, 105, 55-74.	5.5	179
167	Fuel-oils from co-pyrolysis of scrap tyres with coal and a bituminous waste. Influence of oven configuration. Fuel, 2014, 125, 155-163.	6.4	36

#	Article	IF	CITATIONS
168	Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresource Technology, 2014, 166, 518-526.	9.6	137
169	Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor. Bioresource Technology, 2014, 167, 551-554.	9.6	45
170	Model compound approach to design process and select catalysts for in-situ bio-oil upgrading. Renewable and Sustainable Energy Reviews, 2014, 36, 286-303.	16.4	32
171	Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresource Technology, 2014, 156, 267-274.	9.6	166
172	Production and Characterization of Biochar from Agricultural By-Products: Overview and Use of Cotton Biomass Residues. SSSA Special Publication Series, 0, , 63-86.	0.2	13
173	BiomassPyrolysisRefinery – Herstellung von nachhaltigen Treibstoffen. Chemie-Ingenieur-Technik, 2015, 87, 803-809.	0.8	6
174	POTENTIAL OF OIL PALM FROND LIQUID EXTRACT AND FIBER AS FEEDSTOCK FOR BIO-BUTANOL PRODUCTION. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	3
176	Biogas from Lignocellulosic Materials. Biofuel and Biorefinery Technologies, 2015, , 207-251.	0.3	16
177	Mild hydrotreatment of the light fraction of fast-pyrolysis oil produced from straw over nickel-based catalysts. Biomass and Bioenergy, 2015, 83, 525-538.	5.7	47
178	Analytical Techniques as a Tool to Understand the Reaction Mechanism. , 2015, , 75-108.		14
179	Lignocellulose-Based Bioproducts. Biofuel and Biorefinery Technologies, 2015, , .	0.3	17
180	Effect of pyrolysis temperature and catalyst on production of bio-oil and bio-char from avocado seeds. Research on Chemical Intermediates, 2015, 41, 8067-8097.	2.7	44
181	An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renewable and Sustainable Energy Reviews, 2015, 50, 1469-1484.	16.4	295
182	Effect of Combining Chemical and Irradiation Pretreatment Process to Characteristic of Oil Palm's Empty Fruit Bunches as Raw Material for Second Generation Bioethanol. Energy Procedia, 2015, 68, 195-204.	1.8	27
183	Review of recent developments to improve storage and transportation stability of bio-oil. Renewable and Sustainable Energy Reviews, 2015, 50, 859-870.	16.4	138
184	Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor. Arabian Journal for Science and Engineering, 2015, 40, 3019-3027.	1.1	20
185	Phenols and aromatics from fast pyrolysis of variously prepared lignins from hard- and softwoods. Journal of Analytical and Applied Pyrolysis, 2015, 115, 214-223.	5.5	96
186	A numerical study on biomass fast pyrolysis process: A comparison between full lumped modeling and hybrid modeling combined with CFD. Computers and Chemical Engineering, 2015, 82, 202-215.	3.8	29

#	Article	IF	CITATIONS
187	Biorenewable chemicals: Feedstocks, technologies and the conflict with food production. Renewable and Sustainable Energy Reviews, 2015, 51, 506-520.	16.4	89
188	Evolution of Inherent Oxygen in Solid Fuels during Pyrolysis. Energy & 2015, 29, 2268-2276.	5.1	13
189	Inherent process variations between fast pyrolysis technologies: A case study on Eucalyptus grandis. Fuel Processing Technology, 2015, 131, 389-395.	7.2	23
190	Microwave-Assisted Conversion of Lignin. Biofuels and Biorefineries, 2015, , 61-82.	0.5	17
191	Characterization Scheme for Property Prediction of Fluid Fractions Originating from Biomass. Energy & Lamp; Fuels, 2015, 29, 7230-7241.	5.1	3
192	Big bluestem as a bioenergy crop: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 740-756.	16.4	25
193	A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models. Renewable and Sustainable Energy Reviews, 2015, 52, 1580-1595.	16.4	191
194	Extraction of value-added chemicals from pyrolysis liquids with supercritical carbon dioxide. Journal of Analytical and Applied Pyrolysis, 2015, 113, 174-185.	5.5	37
195	Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii. Growth studies on the recovered hydrothermal aqueous phase. Biomass and Bioenergy, 2015, 73, 23-31.	5.7	97
196	Techno-economic analysis of transportation fuels from defatted microalgae via hydrothermal liquefaction and hydroprocessing. Biomass and Bioenergy, 2015, 72, 45-54.	5.7	136
197	Pyrolysis of Lignocellulosic Biomass. , 2015, , 413-442.		15
198	The use of oil palm biomass (OPB) fibers as reinforcements in composites. , 2015, , 342-382.		5
199	Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 2015, 43, 1446-1466.	16.4	134
200	Combustion Characteristics of Waste Tyre Pyrolysis Fuel as Industrial Burner Fuel., 0, , .		5
201	Formation of Liquid Products at the Filtration Combustion of Solid Fuels. Journal of Combustion, 2016, 2016, 1-7.	1.0	20
202	Biomass Energy from Revegetation of Landfill Sites. , 2016, , 99-109.		8
204	Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw. Scientific Reports, 2016, 6, 39354.	3.3	86
205	The influence of feedstock supply risk on location of stoverâ€based bioâ€gasoline plants. GCB Bioenergy, 2016, 8, 495-508.	5.6	2

#	Article	IF	CITATIONS
206	Properties, Chemical Characteristics and Application of Lignin and Its Derivatives. Biofuels and Biorefineries, 2016, , 3-33.	0.5	14
207	Modification of Dulong's formula to estimate heating value of gas, liquid and solid fuels. Fuel Processing Technology, 2016, 152, 399-405.	7.2	84
210	Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review. Energy & E	5.1	108
211	Biomass Pyrolysis for Biochar Production: Kinetics, Energetics and Economics. , 2016, , 227-238.		6
212	Understanding Uncertainties in the Economic Feasibility of Transportation Fuel Production using Biomass Gasification and Mixed Alcohol Synthesis. Energy Technology, 2016, 4, 441-448.	3.8	15
213	Cotton shell utilization as a source of biomass energy for bio-oil by flash pyrolysis on electrically heated fluidized bed reactor. Journal of Material Cycles and Waste Management, 2016, 18, 146-155.	3.0	33
214	Experimental investigation of compression ignition engine fuelled by a catalytic fuel reformer. International Journal of Ambient Energy, 2016, 37, 354-362.	2.5	4
215	A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Conversion and Management, 2016, 117, 273-280.	9.2	120
216	Evaluation of Sugars and Bio-oil Production Using Lead Contaminated Switchgrass Feedstock. Waste and Biomass Valorization, 2016, 7, 1091-1104.	3.4	5
217	Enhanced thermal cracking of VOCs evolved from the thermal degradation of lignin using CO2. Energy, 2016, 100, 51-57.	8.8	41
218	A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element. Combustion and Flame, 2016, 163, 301-316.	5.2	34
219	Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catalysis Today, 2016, 277, 171-181.	4.4	116
220	Predicting Properties of Gas and Solid Streams by Intrinsic Kinetics of Fast Pyrolysis of Wood. Energy & Energy	5.1	7
221	Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor. Energy Conversion and Management, 2016, 109, 175-183.	9.2	61
222	Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 2016, 57, 1126-1140.	16.4	1,460
223	Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization. Bioresource Technology, 2016, 200, 680-690.	9.6	97
224	Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor. AIP Conference Proceedings, 2017, , .	0.4	4
225	Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis. Wood Science and Technology, 2017, 51, 1155-1171.	3.2	19

#	ARTICLE	IF	CITATIONS
226	Historical Developments of Pyrolysis Reactors: A Review. Energy &	5.1	208
227	Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. Journal of Supercritical Fluids, 2017, 128, 6-17.	3.2	18
228	Toward Fast Pyrolysis-Based Biorefinery: Selective Production of Platform Chemicals from Biomass by Organosolv Fractionation Coupled with Fast Pyrolysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 6507-6516.	6.7	41
229	Chemical and morphological evaluation of chars produced from primary biomass constituents: Cellulose, xylan, and lignin. Biomass and Bioenergy, 2017, 104, 17-35.	5.7	62
230	Hydrothermal liquefaction of biomass for the production of diluents for bitumen transport. Biofuels, Bioproducts and Biorefining, 2017, 11, 811-829.	3.7	19
231	Pyrolysis Oil Biorefinery. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 301-337.	1.1	1
232	Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis. Renewable and Sustainable Energy Reviews, 2017, 70, 814-821.	16.4	42
233	Grinding pyrolysis of Mallee wood: Effects of pyrolysis conditions on the yields of bio-oil and biochar. Fuel Processing Technology, 2017, 167, 215-220.	7.2	32
234	Thermochemical valorization of camelina straw waste via fast pyrolysis. Biomass Conversion and Biorefinery, 2017, 7, 277-287.	4.6	27
235	Advances in Applications of Industrial Biomaterials. , 2017, , .		22
236	Optimization and characterization of bio-oil produced from cotton shell by flash pyrolysis using artificial neural network. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 2173-2180.	2.3	12
237	Thermal degradation behavior of lignin-modified porous styrene-divinylbenzene and styrene-bisphenol A glycerolate diacrylate copolymer microspheres. Journal of Analytical and Applied Pyrolysis, 2017, 123, 364-375.	5.5	25
238	Facile synthesis of Ag/Ag 3 PO 4 /AMB composite with improved photocatalytic performance. Chemical Engineering Journal, 2017, 308, 889-896.	12.7	58
239	Catalytic fast pyrolysis of lignocellulosic biomass for aromatic production: chemistry, catalyst and process. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e234.	4.1	38
240	BIOMASS PYROLYSIS KINETICS: A REVIEW OF MOLECULAR-SCALE MODELING CONTRIBUTIONS. Brazilian Journal of Chemical Engineering, 2017, 34, 1-18.	1.3	24
241	Pyrolysis of microalgae for fuel production. , 2017, , 259-281.		12
242	Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials. Materials, 2017, 10, 668.	2.9	50
243	Effects of Pretreatments on Yields, Selectivity and Properties of Products from Pyrolysis of Phragmites australis (Common Reeds). Environments - MDPI, 2017, 4, 96.	3.3	12

#	ARTICLE	IF	CITATIONS
244	A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. Journal of Analytical and Applied Pyrolysis, 2018, 131, 52-75.	5.5	103
245	Conversion of cotton residues to bio-oil and chemicals through flash pyrolysis in a fluidised bed reactor. International Journal of Energy Technology and Policy, 2018, 14, 20.	0.2	13
246	Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews, 2018, 90, 292-315.	16.4	208
247	Thermal decomposition of chemically treated cellulosic fibers. Journal of Thermal Analysis and Calorimetry, 2018, 132, 433-443.	3.6	9
248	Biomass to hydrogen-rich gas via steam reforming of raw bio-oil over Ni/La2O3-αAl2O3 catalyst: Effect of space-time and steam-to-carbon ratio. Fuel, 2018, 216, 445-455.	6.4	79
249	Prediction of elemental composition, water content and heating value of upgraded biofuel from the catalytic cracking of pyrolysis bio-oil vapors by infrared spectroscopy and partial least square regression models. Journal of Analytical and Applied Pyrolysis, 2018, 132, 102-110.	5 . 5	6
250	Potential use of coconut shell pyrolytic oil distillate (CSPOD) as wood protectant against decay fungi. European Journal of Wood and Wood Products, 2018, 76, 767-773.	2.9	9
251	Flash Pyrolysis of Lemon Grass (Cymbopogon flexuosus) for Bio-oil Production in an Electrically Heated Fluidized Bed Reactor. Waste and Biomass Valorization, 2018, 9, 1037-1046.	3.4	27
252	Roaming-like Mechanism for Dehydration of Diol Radicals. Journal of Physical Chemistry A, 2018, 122, 9738-9754.	2.5	7
253	A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation., 2018,, 227-259.		22
254	Recent Advancements in Biofuels and Bioenergy Utilization. , 2018, , .		16
255	Comprehensive evaluation of various pyrolysis reaction mechanisms for pyrolysis process simulation. Chemical Engineering and Processing: Process Intensification, 2018, 130, 19-35.	3.6	22
256	An evaluative comparison of lignocellulosic pyrolysis products derived from various parts of Populus deltoides trees and Panicum virgatum grass in an inductively heated reactor. Energy Conversion and Management, 2018, 171, 710-720.	9.2	19
257	Opportunities and Barriers to Bioenergy Conversion Techniques and Their Potential Implementation on Swine Manure. Energies, 2018, 11, 957.	3.1	18
258	Integration of biocrude production from fast pyrolysis of biomass with solar PV for dispatchable electricity production. Clean Energy, 2018, , .	3.2	6
259	Biomass as Renewable Source of Energy: Possible Conversion Routes. , 2019, , 353-389.		3
260	Performance of Catalytic Fast Pyrolysis using a \hat{I}^3 -Al2O3 Catalyst with Compound Modification of ZrO2 and CeO2. Catalysts, 2019, 9, 849.	3.5	10
261	Effects of Ionic Liquid-Assisted Pretreatment of Heavy Metal-Contaminated Biomass on the Yield and Composition of Syngas Production Using Noncatalytic and Catalytic Pyrolysis and Gasification Processes. ACS Sustainable Chemistry and Engineering, 2019, 7, 18303-18312.	6.7	7

#	Article	IF	CITATIONS
262	Coating layer preparation with mixed vegetable oil and nutrient release regulation of fertilizer. European Polymer Journal, 2019, 120, 109194.	5.4	13
263	Process Scheme for the Production of Liquid Fuel from used tires via Fast Pyrolysis. Procedia Manufacturing, 2019, 35, 847-853.	1.9	6
264	The evaluation of the potential ecotoxicity of pyroligneous acid obtained from fast pyrolysis. Ecotoxicology and Environmental Safety, 2019, 180, 616-623.	6.0	15
265	The use of p-sulfonic acid calix[4]arene as organocatalyst for pretreatment of sugarcane bagasse increased the production of levoglucosan. Industrial Crops and Products, 2019, 134, 382-387.	5.2	24
266	A study of coke and char formation during pyrolysis of rice husk. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3587-3601.	3.6	6
267	A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel, 2019, 251, 352-367.	6.4	111
268	Steam Reforming of Biomass Pyrolysis Oil: A Review. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	29
269	Catalytic Cracking of Oleic Acid over Zeolites. Key Engineering Materials, 0, 814, 517-521.	0.4	1
270	Fluidized bed fast pyrolysis of corn stover: Effects of fluidizing gas flow rate and composition. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0 , $1-13$.	2.3	3
271	Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Progress in Materials Science, 2019, 102, 1-71.	32.8	129
272	Pyrolytic behavior of lignocellulosic-based polysaccharides. Journal of Thermal Analysis and Calorimetry, 2019, 137, 121-131.	3.6	26
273	Oil Palm (Elaeis guineensis) Biomass in Malaysia: The Present and Future Prospects. Waste and Biomass Valorization, 2019, 10, 2099-2117.	3.4	128
274	Biomass pyrolysis in a twin-screw reactor to produce green fuels. Biofuels, 2020, 11, 101-107.	2.4	10
275	High-temperature CO2 capture by Li4SiO4 adsorbents: Effects of pyroligneous acid (PA) modification and existence of CO2 at desorption stage. Fuel Processing Technology, 2020, 197, 106186.	7.2	26
276	Model and sensitivity analysis of the reciprocating biomass conversion reactor (RBCR). International Journal of Heat and Mass Transfer, 2020, 147, 118988.	4.8	2
277	Multicriterial model for selecting a charcoal kiln. Energy, 2020, 190, 116377.	8.8	13
278	Investigation of physicochemical properties of oil palm biomass for evaluating potential of biofuels production via pyrolysis processes. Biomass Conversion and Biorefinery, 2021, 11, 1987-2001.	4.6	30
279	Reinforcing agents based on cellulose fibers modified by insertion of end-alkyl groups obtained from pyrolytic bio-oil of sugarcane bagasse. Polymer Bulletin, 2020, 77, 5711-5724.	3.3	6

#	Article	IF	CITATIONS
280	ASPEN Plus predictive simulation of soft and hard wood pyrolysis for bio-energy recovery. International Journal of Environment and Waste Management, 2020, 26, 234.	0.3	16
281	A review on prospective production of biofuel from microalgae. Biotechnology Reports (Amsterdam,) Tj ETQq $1\ 1$	0.784314	rgBT/Overlo
282	The effect of heat storage to properties and energy recovery of pyrolysis products from agricultural waste. IOP Conference Series: Earth and Environmental Science, 2020, 463, 012018.	0.3	0
283	Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System. Water (Switzerland), 2020, 12, 2847.	2.7	31
284	CFD analysis of fast pyrolysis process in a pilot-scale auger reactor. Fuel, 2020, 273, 117782.	6.4	16
286	Thermal degradation of crab shell biomass, a nitrogen-containing carbon precursor. Journal of Thermal Analysis and Calorimetry, 2020, 142, 301-308.	3.6	23
287	Review of solar-biomass pyrolysis systems: Focus on the configuration of thermal-solar systems and reactor orientation. Journal of King Saud University, Engineering Sciences, 2021, 33, 413-423.	2.0	15
288	Oxidation of phenolic compounds during autothermal pyrolysis of lignocellulose. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104853.	5. 5	16
289	Oxidation kinetics of biochar from woody and herbaceous biomass. Chemical Engineering Journal, 2020, 401, 126043.	12.7	33
290	Co-pyrolysis of oil sludge with polyolefins: Evaluation of different Y zeolites to obtain paraffinic products. Journal of Environmental Chemical Engineering, 2020, 8, 103805.	6.7	37
291	Biomethane Production from Pyrolytic Aqueous Phase: Biomass Acid Washing and Condensation Temperature Effect on the Bio-oil and Aqueous Phase Composition. Bioenergy Research, 2020, 13, 878-886.	3.9	11
293	Kinetic and mechanistic investigation of catalytic alkaline thermal treatment of xylan producing high purity H2 with in-situ carbon capture. Journal of Industrial and Engineering Chemistry, 2020, 85, 219-225.	5 . 8	9
294	Pyrolysis of lignocellulosic biomass: oil, char, and gas. , 2020, , 581-619.		12
295	Hydrogen: Current advances and patented technologies of its renewable production. Journal of Cleaner Production, 2021, 286, 124970.	9.3	83
296	Nigeria's Energy deficit: The challenges and Eco- friendly approach in reducing the energy gap. International Journal of Sustainable Engineering, 2021, 14, 442-459.	3 . 5	7
297	Valorization of guava (Psidium guajava L.) seeds for levoglucosan production by fast pyrolysis. Cellulose, 2021, 28, 71-79.	4.9	8
298	Notes on useful materials and synthesis through various chemical solution techniques., 2021,, 29-78.		1
299	Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environment, Development and Sustainability, 2021, 23, 14324-14378.	5.0	77

#	Article	IF	CITATIONS
300	The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia. Sustainability, 2021, 13, 3877.	3.2	10
301	Design and development of a rotating heater pyrolysis reactor. Canadian Journal of Chemical Engineering, 0, , .	1.7	1
302	Fast pyrolysis as a tool for obtaining levoglucosan after pretreatment of biomass with niobium catalysts. Waste Management, 2021, 126, 274-282.	7.4	15
303	Role of Catalysis in Biofuels Production Process – A Review. ChemBioEng Reviews, 2021, 8, 417-438.	4.4	4
304	Production and characterization of bio-oils from fast pyrolysis of tobacco processing wastes in an ablative reactor under vacuum. PLoS ONE, 2021, 16, e0254485.	2.5	30
305	Mechanisms of aromatic molecule - Oxygen-containing functional group interactions on carbonaceous material surfaces. Chemosphere, 2021, 275, 130021.	8.2	4
306	Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review. Energies, 2021, 14, 5426.	3.1	17
307	Desulfurizing of Pyrolysis Oil of Used Tires Using a 3D-Printed Vortex Diode and Modeling of Process. Journal of Marine Science and Engineering, 2021, 9, 876.	2.6	3
308	Assessing the implementation levels of oil palm waste conversion methods in Malaysia and the challenges of commercialisation: Towards sustainable energy production. Biomass and Bioenergy, 2021, 151, 106179.	5.7	22
309	Pitch oil production – An intangible cultural heritage in Central Europe. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105309.	5.5	2
310	A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling, 2021, 173, 105734.	10.8	109
311	Role of dolomite as an in-situ CO2 sorbent and deoxygenation catalyst in fast pyrolysis of beechwood in a bench scale fluidized bed reactor. Fuel Processing Technology, 2021, 224, 107029.	7.2	10
312	State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications. Processes, 2021, 9, 87.	2.8	14
313	Biomass biomass as Renewable Source of Energy biomass as renewable source of energy , Possible Conversion Routes. , 2012, , 1198-1231.		2
314	Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass. , 2015, , 1219-1250.		1
315	Bio-char Sequestration in Terrestrial Ecosystems – A Review. , 2006, 11, 403.		2
316	Auger reactor for biomass fast pyrolysis: Design and operation. , 2016, , .		4
317	Kraft lignin and polyethylene terephthalate blends: effect on thermal and mechanical properties. Polimeros, 2019, 29, .	0.7	5

#	Article	IF	CITATIONS
321	CFD (Computational Fluid Dynamics) Study on Partial-Load Combustion Characteristics of a 4-Step-Grate Wood Pellet Boiler. Transactions of the Korean Society of Mechanical Engineers, B, 2014, 38, 365-371.	0.1	5
322	Advances in Modeling and Simulation of Biomass Pyrolysis. Asian Journal of Scientific Research, 2008, 2, 1-27.	0.1	30
323	Efficacy of Some Microbial Control Agents Against Cabbage Pests in Egypt. Pakistan Journal of Biological Sciences, 2005, 8, 1351-1356.	0.5	16
324	Utilization of Sub and Supercritical Water Reactions in Resource Recovery of Biomass Wastes. Engineering Journal, 2013, 17, 1-12.	1.0	41
325	THE FAST PYROLYSIS CHARACTERISTICS OF LIGNOCELLULOSIC BIOMASS IN A BUBBLING FLUIDIZED BED REACTOR. Journal of Computational Fluids Engineering, 2011, 16, 94-101.	0.0	1
326	Product Distribution of Chemical Product Using Catalytic Depolymerization of Lignin. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 432-453.	1.1	5
327	Thermochemische Umwandlung. , 2001, , 427-505.		0
328	Fast Pyrolysis of Safflower Seed in the Presence of Catalyst. , 2008, , .		0
329	Thermochemical Conversion Of Food Processing Wastes For Energy Utilization. , 2008, , .		0
330	10.2478/s11814-009-0338-9., 2011, 27, 163.		0
331	Biomass biomass as Renewable Source of Energy biomass as renewable source of energy , Possible Conversion Routes. , 2013, , 257-289.		0
332	Model of Fast Pyrolysis of a Small Volume-Fraction of Biomass Within an Gas of Transient Temperature and Pressure., 2015,,.		0
334	Pyrolyse., 2016,, 1183-1265.		1
335	Review of Synthetic Fuels and New Materials Production Based on Pyrolysis Technologies. , 2017, , 65-85.		2
336	The Effect of Molecular Sieves on the Thermolysis of Cedar in a Tubular Furnace Reactor. International Journal of Environmental Science and Development, 2017, 8, 327-330.	0.6	0
337	Biomass as Renewable Source of Energy, Possible Conversion Routes. , 2017, , 1-38.		3
338	From Biomass to Bio-oil: Processes and Treatments to Convert Raw Material into Energy. International Journal of Chemical Engineering Research, 2018, 5, 1-10.	0.3	0
339	Production of Biofuel from Microalgae. SpringerBriefs in Energy, 2019, , 45-66.	0.3	0

#	Article	IF	CITATIONS
341	Technical readiness level of biohydrogen production process and its value chain., 2022, , 335-355.		5
342	Techno-economic analysis of biomass thermochemical conversion to biofuels. , 2022, , 379-394.		1
343	23. Les biocarburants et les biocombustibles liquides. , 2013, , 209-227.		0
344	10. La pyrolyse. , 2013, , 133-141.		O
345	Improving of Pyrolysis Oil from Macroalgae Cladophora glomerata with HDPE Pyrolysis Oil. Journal of Marine Science and Engineering, 2022, 10, 131.	2.6	1
346	Fast pyrolysis of elephant grass: Intensification of levoglucosan yield and other value-added pyrolytic by-products. Journal of the Energy Institute, 2022, 101, 254-264.	5.3	10
347	Making biomass from phytoremediation fruitful: Future goal of phytoremediation., 2022,, 275-317.		0
348	Pyrolytic valorization of an invasive crop (Phragmites) to high-value biofuels and bioproducts. , 2022, , 89-115.		1
349	Volatile Organic Compounds Released During the Fast Pyrolysis of Peanut Shells and Environmental Implications. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 1139-1146.	2.7	2
350	Biomass carbonization technologies. , 2022, , 39-92.		3
351	Hydrothermal Treatment of Pretreated Castor Residue for the Production of Bio-oil. Bioenergy Research, 2023, 16, 517-527.	3.9	4
352	Electromagnetic induction-assisted pyrolysis of pre-treated MSW: Modelling and experimental analysis. Fuel Processing Technology, 2022, 233, 107297.	7.2	3
353	Preparation of Lignosulfonateâ€Based Phenol Formaldehyde Foam with Excellent Thermal Performance. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	7
354	Reviewing the use of zeolites and clay based catalysts for pyrolysis of plastics and oil fractions. Brazilian Journal of Chemical Engineering, 2023, 40, 287-319.	1.3	5
355	An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural wastes. Energy Nexus, 2022, 7, 100125.	7.7	33
356	Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production. Energy, 2023, 262, 125437.	8.8	2
357	Catalytic pyrolysis of Reutealis trisperma oil using raw dolomite for bio-oil production. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105852.	5.5	4
360	Availability, sustainability and accessibility of agro crop residue production and solar radiation in Egypt for producing highly chemical products through pyrolysis processes. Clean Energy, 2023, 7, 654-670.	3.2	0

#	Article	IF	CITATIONS
361	Converting Agricultural Waste Biomass Into Value-added Fuels <i>Via</i> Thermochemical Processes. , 2023, , 201-224.		0
362	Navigating Pyrolysis Implementation—A Tutorial Review on Consideration Factors and Thermochemical Operating Methods for Biomass Conversion. Materials, 2024, 17, 725.	2.9	О