Self-shadowing and surface diffusion effects in obliquel

Thin Solid Films 339, 88-94 DOI: 10.1016/s0040-6090(98)01154-7

Citation Report

#	Article	IF	CITATIONS
1	Periodic magnetic microstructures by glancing angle deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1838-1844.	0.9	90
2	Origin and evolution of sculptured thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1538-1545.	0.9	221
3	Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 158-166.	0.9	101
4	Thin film microstructure and thermal transport simulation using 3D-films. Thin Solid Films, 2001, 391, 88-100.	0.8	9
5	Shadowing effects on the microstructure of obliquely deposited films. Journal of Applied Physics, 2002, 91, 1963-1972.	1.1	68
6	Glancing-angle ion-assisted deposition of ZnO thin films. Surface Science, 2003, 538, L460-L464.	0.8	10
7	An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). Journal of Non-Crystalline Solids, 2003, 320, 255-280.	1.5	231
8	Rugate filters grown by Glancing Angle Deposition. , 2003, , .		2
9	Effects of film structure on photoluminescent emission properties of nanostructured Y 2 O 3 :Eu thin films. , 2004, 5510, 78.		5
10	Continuum model for nanocolumn growth during oblique angle deposition. Journal of Applied Physics, 2004, 95, 4346-4351.	1.1	31
11	A computer model for the growth of thin films in structure zone model. Nanotechnology, 2004, 15, 311-319.	1.3	41
12	Enhancement of light extraction in GaN light-emitting diodes by omni-directional reflectors with ITO nanorod low-refractive-index layer. , 2005, , .		0
13	Porosity engineering in glancing angle deposition thin films. Applied Physics A: Materials Science and Processing, 2005, 80, 763-768.	1.1	100
14	Studies of niobium thin film produced by energetic vacuum deposition. Thin Solid Films, 2005, 489, 56-62.	0.8	16
15	Direct deposition of aligned nanorod array onto cylindrical objects. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 947.	1.6	21
16	Optical Thin Films with Very Low Refractive Index and Their Application in Photonics Devices. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
17	Optical properties of porous nanostructured Y2O3:Eu thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 856-861.	0.9	25
18	Square spiral 3D photonic bandgap crystals at telecommunications frequencies. Optics Express, 2005, 13, 3348.	1.7	61

#	Article	IF	CITATIONS
19	Periodically Structured Glancing Angle Deposition Thin Films. IEEE Nanotechnology Magazine, 2005, 4, 269-277.	1.1	87
20	Critical height and growth mode in epitaxial copper nanowire arrays fabricated using glancing angle deposition. Applied Physics Letters, 2005, 86, 123114.	1.5	13
22	GalnN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer. Applied Physics Letters, 2006, 88, 013501.	1.5	128
23	Surface Functionalization of Porous Nanostructured Metal Oxide Thin Films Fabricated by Glancing Angle Deposition. Chemistry of Materials, 2006, 18, 5260-5266.	3.2	35
24	Solid-state lighting—a benevolent technology. Reports on Progress in Physics, 2006, 69, 3069-3099.	8.1	268
25	Controlled growth of Fe catalyst film for synthesis of vertically aligned carbon nanotubes by glancing angle deposition. Surface and Coatings Technology, 2006, 201, 938-942.	2.2	23
26	Omni-directional reflectors for light-emitting diodes. , 2006, , .		9
27	Effects of three-dimensional Ehrlich-Schwoebel barrier on texture selection during Cu nanorod growth. Applied Physics Letters, 2007, 91, 121914.	1.5	16
28	Metal and dielectric duality for an aligned Al nanorod array. Applied Physics Letters, 2007, 91, .	1.5	7
29	Structural and optical properties of nanostructured TiO2 thin films fabricated by glancing angle deposition. Journal of Alloys and Compounds, 2007, 431, 287-291.	2.8	68
30	Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1317-1335.	0.9	758
31	Transparent conductors as solar energy materials: A panoramic review. Solar Energy Materials and Solar Cells, 2007, 91, 1529-1598.	3.0	1,362
32	Study of porous carbon thin films produced by pulsed laser deposition. Applied Surface Science, 2007, 253, 7964-7968.	3.1	7
33	Preparation of thin palladium membranes on a porous support with rough surface. Journal of Membrane Science, 2007, 302, 160-170.	4.1	114
34	Thin-film-growth characteristics by computer simulation: Nanostructural changes as a function of deposition conditions. Physica Status Solidi (B): Basic Research, 2007, 244, 3115-3136.	0.7	21
35	Low-refractive-index materials: A new class of optical thin-film materials. Physica Status Solidi (B): Basic Research, 2007, 244, 3002-3008.	0.7	87
36	Nanostructure engineering in porous columnar thin films: recent advances. Journal of Materials Science: Materials in Electronics, 2007, 18, 367-379.	1.1	101
37	The effect of diffusion and overhangs/vacancies on the microstructure of zig-zag thin film. Applied Surface Science, 2007, 253, 3004-3008.	3.1	7

_

#	Article	IF	CITATIONS
38	Production of porous nanostructured zinc oxide thin films by pulsed laser deposition. Optical Materials, 2007, 29, 1111-1114.	1.7	24
39	WO3 pillar-type and helical-type thin film structures to be used in microbatteries. Journal of Power Sources, 2007, 172, 422-427.	4.0	15
40	Growth and properties of the CulnS2 thin films produced by glancing angle deposition. Materials Science and Engineering C, 2008, 28, 692-696.	3.8	15
41	Shadowing growth of three-dimensional nanostructures on finite size seeds. Journal of Applied Physics, 2008, 103, 103531.	1.1	14
42	Residual stress in obliquely deposited MgF_2 thin films. Applied Optics, 2008, 47, C266.	2.1	17
43	Achieving Thin Films with Micro/Nano-Scale Controllable Morphology by Glancing Angle Deposition Technique. Chinese Physics Letters, 2008, 25, 4368-4370.	1.3	1
44	Monte Carlo Simulation of Sculptured Thin Films Growth of SiO ₂ on Si for Applications. Chinese Physics Letters, 2008, 25, 4456-4458.	1.3	3
45	Microstructures, surface areas, and oxygen absorption of Ti and Ti–Zr–V films grown using glancing-angle sputtering. Journal of Materials Research, 2008, 23, 579-587.	1.2	7
46	Enhanced birefingence of MgF2 thin film at 193 nm by serial bideposition. Optical Review, 2009, 16, 562-565.	1.2	3
47	Biaxial stresses, surface roughness and microstructure in evaporated TiO2 films with different deposition geometries. Applied Surface Science, 2009, 256, 870-875.	3.1	8
48	Engineered nanoporous and nanostructured films. Materials Today, 2009, 12, 36-45.	8.3	53
49	Needle-like LiFePO4 thin films prepared by an off-axis pulsed laser deposition technique. Thin Solid Films, 2009, 517, 2618-2622.	0.8	29
50	The Effect of the Incident Collision Energy on the Porosity of Vapor-Deposited Amorphous Solid Water Films. Journal of Physical Chemistry B, 2009, 113, 4000-4007.	1.2	27
51	Hydrogen storage and cycling properties of a vanadium decorated Mg nanoblade array on a Ti coated Si substrate. Nanotechnology, 2009, 20, 204008.	1.3	29
52	X-ray reflectometry characterization of porous silicon films prepared by a glancing-angle deposition method. Physical Review B, 2009, 79, .	1.1	15
53	Backward wave phenomenon for light propagating through a silver nanorod array. , 2009, , .		0
54	Single dielectric columnar thin film as a broadband polarization conversion device. , 2010, , .		0
55	Mg Nanostructures Tailored by Glancing Angle Deposition. Crystal Growth and Design, 2010, 10, 440-448.	1.4	21

#	Article	IF	CITATIONS
56	Single dielectric columnar thin film as a humidity sensor. Sensors and Actuators B: Chemical, 2010, 149, 67-70.	4.0	4
57	Oblique angle deposition of TiO2 thin films prepared by electron-beam evaporation. Applied Surface Science, 2010, 257, 1149-1153.	3.1	46
58	Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4430-4437.	0.9	21
59	The ion capturing effect of 5° SiOx alignment films in liquid crystal devices. Journal of Applied Physics, 2010, 108, 064502.	1.1	20
60	The effect of SiOx alignment layer thickness on the switching of SmCâ^— bistable liquid crystal devices. Journal of Applied Physics, 2010, 107, 014103.	1.1	1
61	Self-Aligned Memristor Cross-Point Arrays Fabricated with One Nanoimprint Lithography Step. Nano Letters, 2010, 10, 2909-2914.	4.5	98
62	Large-Area Oblique-Aligned ZnO Nanowires through a Continuously Bent Columnar Buffer: Growth, Microstructure, and Antireflection. Crystal Growth and Design, 2010, 10, 3297-3301.	1.4	18
63	Influence of shadowing effect on shear mode acoustic properties in the c-axis tilted AlN films. , 2010, ,		5
64	Comparative study of titanium carbide and nitride coatings grown by cathodic vacuum arc technique. Applied Surface Science, 2011, 258, 1164-1174.	3.1	36
65	Thermal expansion coefficients of obliquely deposited MgF_2 thin films and their intrinsic stress. Applied Optics, 2011, 50, C159.	2.1	6
66	Microstructure and optical properties of Al_2O_3 prepared by oblique deposition using microsphere shell templates. Applied Optics, 2011, 50, C246.	2.1	3
67	Anisotropic optical property of an asymmetric bideposition Ta 2 O 5 film: fabrication and measurement. , 2011, , .		0
68	The research of relationships between residual stress and columnar angles in oblique deposition of magnesium fluoride thin films. , 2011, , .		0
69	Effects of sputtering power and pressure on properties of ZnO:Ga thin films prepared by oblique-angle deposition. Thin Solid Films, 2011, 520, 1233-1237.	0.8	13
70	Glancing angle deposition of crystalline zinc oxide nanorods. Thin Solid Films, 2011, 519, 3530-3537.	0.8	27
71	Effect of deposition angle on the structure and properties of pulsed-DC magnetron sputtered TiAlN thin films. Thin Solid Films, 2011, 519, 4262-4270.	0.8	32
72	Growth of group III nitride nanostructures on nano-imprinted sapphire substrates. Thin Solid Films, 2011, 519, 6534-6537.	0.8	0
73	Three-layered thin film system for broadband polarization conversion reflectance. Journal of Nanophotonics, 2011, 5, 051508.	0.4	1

#	Article	IF	CITATIONS
74	Fabrication of ZnO nanostructures and their application in biomedicine. , 2012, , .		1
75	Oblique Angle Sputtering of ZnO:Ga Thin Films. Physics Procedia, 2012, 32, 456-463.	1.2	4
76	Growth mode transition of Ni thin films on nanopatterned substrate: Kinetic Monte Carlo simulations. Applied Surface Science, 2012, 258, 4857-4860.	3.1	2
77	Texture mechanisms and microstructure of biaxial thin films grown by oblique angle deposition. Physica Status Solidi (B): Basic Research, 2012, 249, 1531-1540.	0.7	16
78	Optical H2 sensing properties of vertically aligned Pd/WO3 nanorods thin films deposited via glancing angle rf magnetron sputtering. Sensors and Actuators B: Chemical, 2013, 182, 795-801.	4.0	30
79	Morphology evolution of glancing angle deposition Ag films on nanosphere-array substrates: Kinetic Monte Carlo simulation. Computational Materials Science, 2013, 79, 31-35.	1.4	8
80	Onset of shadowing-dominated growth of Ag films in glancing angle deposition: Kinetic Monte Carlo simulation. Applied Surface Science, 2013, 264, 552-556.	3.1	16
81	NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering. Sensors and Actuators B: Chemical, 2013, 176, 685-691.	4.0	93
82	Aluminum-doped zinc oxide film with gradient property deposited at oblique angle. Thin Solid Films, 2013, 545, 205-209.	0.8	10
83	Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films. Thin Solid Films, 2013, 536, 99-110.	0.8	11
84	Roughness scaling in titanium thin films: A three-dimensional molecular dynamics study of rotational and static glancing angle deposition. Applied Surface Science, 2013, 268, 270-273.	3.1	8
85	Structure and morphology of magnetron sputtered W films studied by x-ray methods. Journal Physics D: Applied Physics, 2013, 46, 095304.	1.3	33
86	Growth of large-area non-polar ZnO film without constraint to substrate using oblique-angle sputtering deposition. Journal of the European Ceramic Society, 2013, 33, 1809-1814.	2.8	12
87	Layer-plus-wire growth of copper by small incident angle deposition. Materials Letters, 2013, 92, 304-307.	1.3	4
88	Preparation of metal nanorods substrates for SERS application. Proceedings of SPIE, 2013, , .	0.8	2
89	Comparative study of structural and morphological properties of nanostructured Culn _{2n+1} S _{3n+2} (nÂ=Â0, 1 and 2) thin films produced by oblique angle deposition. EPJ Applied Physics, 2013, 64, 20301.	0.3	5
90	Surface diffusion driven morphological instability in free-standing nickel nanorod arrays. Journal of Applied Physics, 2014, 116, 043501.	1.1	4
91	Nanohelices by shadow growth. Nanoscale, 2014, 6, 9457-9466.	2.8	105

#	Article	IF	CITATIONS
92	Fabrication of TiN nanostructure as a hydrogen peroxide sensor by oblique angle deposition. Nanoscale Research Letters, 2014, 9, 105.	3.1	16
93	Effects of oblique-angle deposition on intrinsic stress evolution during polycrystalline film growth. Acta Materialia, 2014, 77, 284-293.	3.8	18
94	Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films. Nanoscale, 2014, 6, 8177-8184.	2.8	41
95	Oblique Angle Sputtering of Chalcogenide Thin Absorbing Film. Procedia Technology, 2014, 14, 219-227.	1.1	4
96	Fabrication of porous and pillar-shaped Mg by magnetron sputtering. Thin Solid Films, 2014, 550, 220-226.	0.8	4
97	Configuration, Dimension and Density Control of 3-D Gold Nanostructures on Various Type-B GaAs Surfaces by the Systematic Variation of Annealing Temperature, Annealing Duration and Deposition Amount. 3D Research, 2015, 6, 1.	1.8	1
98	Improved biomolecular detection based on a plasmonic nanoporous gold film fabricated by oblique angle deposition. Optics Express, 2015, 23, 18777.	1.7	10
99	Effect of incident deposition angle on optical properties and surface roughness of TiO ₂ thin films. Proceedings of SPIE, 2016, , .	0.8	1
100	Structure, mechanical and corrosion properties of TiN films deposited on stainless steel substrates with different inclination angles by DCMS and HPPMS. Surface and Coatings Technology, 2016, 292, 54-62.	2.2	41
101	Non-volatile resistive memory device fabricated from CdSe quantum dot embedded in thermally grown In2O3 nanostructure by oblique angle deposition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3743-3747.	0.9	8
102	Temperature dependence of electrical resistivity in oxidized vanadium films grown by the GLAD technique. Surface and Coatings Technology, 2016, 304, 476-485.	2.2	17
103	Facile Route to NiO Nanostructured Electrode Grown by Oblique Angle Deposition Technique for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 17220-17225.	4.0	60
104	The influence of the pressure on the microstructure of yttria-stabilized zirconia thin films deposited by dual magnetron sputtering. Vacuum, 2016, 125, 118-122.	1.6	5
105	Physical properties of Sn 4 Sb 6 S 13 thin films prepared by a glancing angle deposition method. Materials Science in Semiconductor Processing, 2016, 41, 450-456.	1.9	15
106	Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Science, 2016, 76, 59-153.	16.0	564
107	Correlation between structure and electrical resistivity of W-Cu thin films prepared by GLAD co-sputtering. Surface and Coatings Technology, 2017, 313, 1-7.	2.2	24
108	Modeling the influence of incident angle and deposition rate on a nanostructure grown by oblique angle deposition. Journal Physics D: Applied Physics, 2017, 50, 065302.	1.3	6
109	Nanoscale structure of submicron-thick sputter-deposited Pd films: Effect of the adatoms diffusivity by the film-substrate interaction. Surface and Coatings Technology, 2017, 315, 123-129.	2.2	23

		15	0
#	ARTICLE Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film	IF	CITATIONS
110	morphology. Superlattices and Microstructures, 2017, 111, 81-89.	1.4	4
111	Anisotropic optical properties of ZnS thin films with zigzag structure. Bulletin of Materials Science, 2017, 40, 897-905.	0.8	6
112	An outlook on tunable superhydrophobic nanostructural surfaces and their possible impact on ice mitigation. Progress in Organic Coatings, 2017, 112, 304-318.	1.9	34
113	Film growth of c-axis tilted ScAlN on the sapphire substrate for SAW devices. , 2017, , .		3
114	Film growth of c-axis tilted ScAlN on the sapphire substrate for SAW devices. , 2017, , .		1
115	Effect of GLAD technique on optical properties of ZnS multilayer antireflection coatings. Materials Research Bulletin, 2018, 100, 265-274.	2.7	16
116	Extinction Properties of Obliquely Deposited TiN Nanorod Arrays. Coatings, 2018, 8, 465.	1.2	10
117	Simulation of high efficiency SnS-based solar cells with SCAPS. Solar Energy, 2018, 176, 520-525.	2.9	108
118	Omnidirectional antireflection and electrochromic properties of WO3 nanorods prepared by oblique angle deposition. AIP Conference Proceedings, 2018, , .	0.3	1
119	Morphological Characteristics of Au Films Deposited on Ti: A Combined SEM-AFM Study. Coatings, 2018, 8, 121.	1.2	15
120	Investigation on Target Erosion and Effect of Deposition Rate on Microstructure and Properties of Sputtered Be Coating. Journal of Materials Engineering and Performance, 2018, 27, 4043-4049.	1.2	3
121	Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique. Current Applied Physics, 2018, 18, 1399-1402.	1.1	3
122	Nanostructure and Physical Properties Control of Indium Tin Oxide Films Prepared at Room Temperature through Ion Beam Sputtering Deposition at Oblique Angles. Journal of Physical Chemistry C, 2019, 123, 14036-14046.	1.5	12
123	Broadband and antireflective characteristics of glancing angle deposited titanium dioxide nanostructures for photovoltaic applications. Thin Solid Films, 2019, 685, 53-58.	0.8	6
124	Phase transition and changing properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique, as a function of tungsten dopant. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	22
125	Non-equilibrium adatom thermal state enables rapid additive nanomanufacturing. Physical Chemistry Chemical Physics, 2019, 21, 10449-10456.	1.3	3
126	On evaporation via an inclined rotating circular lift-off shadow or stencil mask. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 011602.	0.6	5
127	Nanostructured Ti1-xCux thin films with tailored electrical and morphological anisotropy. Thin Solid Films, 2019, 672, 47-54.	0.8	10

#	Article	lF	CITATIONS
128	Tungsten self-organization nanowires prepared by DC magnetron sputtering. Applied Surface Science, 2019, 464, 360-366.	3.1	6
129	Optimization and Contact Reliability of TiN-Coated Microswitches in Various Gas Environments. Journal of Microelectromechanical Systems, 2019, 28, 95-106.	1.7	5
130	Spectroscopic ellipsometry study of non-hydrogenated fully amorphous silicon films deposited by room-temperature radio-frequency magnetron sputtering on glass: Influence of the argon pressure. Journal of Non-Crystalline Solids, 2020, 547, 120305.	1.5	12
131	Efficiency improvement of the heterojunction solar cell using an antireflection Hf-doped In2O3 thin film prepared via glancing angle magnetron sputtering technology. Optical Materials, 2020, 109, 110323.	1.7	8
132	Microstructure-Induced Anisotropic Optical Properties of YF3 Columnar Thin Films Prepared by Glancing Angle Deposition. Nanomaterials, 2020, 10, 2413.	1.9	3
133	Cobalt nanowire arrays grown on vicinal sapphire templates by DC magnetron sputtering. Journal of Magnetism and Magnetic Materials, 2020, 507, 166854.	1.0	5
134	Analysis of ZnS and MgF ₂ layered nanostructures grown by glancing angle deposition for optical design. Nanotechnology, 2020, 31, 245301.	1.3	1
135	A plasmon-enhanced broadband absorber fabricated by black silicon with self-assembled gold nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 4696-4701.	1.1	7
136	Effect of insertion of bathocuproine buffer layer at grating-structured cathode–organic-layer interface in bulk-heterojunction solar cells. AlP Advances, 2020, 10, 015144.	0.6	3
137	Lowâ€Temperatureâ€Deposited TiO ₂ Nanopillars for Efficient and Flexible Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001512.	1.9	11
138	Structural, morphological and optical properties of lead iodide thin film for the two step coated perovskite. Materials Today: Proceedings, 2021, 46, 6883-6887.	0.9	0
139	Enhancing the light absorptance of stain-etched black silicon decorated by TiN nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 11503-11510.	1.1	4
140	Recent Advancement of GLAD Technique for Growth of Nanostructures and its Applications. , 2021, , .		0
141	Effect of temperature on the growth of TiN thin films by oblique angle sputter-deposition: A three-dimensional atomistic computational study. Computational Materials Science, 2021, 197, 110662.	1.4	5
142	Study of Structural, Morphological and Optical Properties of Sb2S3 Thin Films Deposited by Oblique Angle Deposition. International Journal of Thin Film Science and Technology, 2014, 3, 19-25.	0.6	16
143	Elimination of spatial hole burning in solid-state lasers using nanostructured thin films. Applied Optics, 2020, 59, A83.	0.9	6
144	Sculptured Thin Films. , 2006, , 357-381.		1
145	Fabrication of Microvillus-structured Nitride Films by Using Glancing-angle Deposition in Reactive Plasma Processes. Journal of the Vacuum Society of Japan, 2009, 52, 191-196.	0.3	1

#	Article	IF	Citations
146	Achromatic Polarization Switch by Using a Single Anisotropic Columnar Thin Film. , 2010, , .		0
147	Fabrication and Optical Property of ZnO/SiO2Branch Hierarchical Nanostructures. Applied Science and Convergence Technology, 2011, 20, 381-386.	0.3	2
148	Properties of Sputter Deposited Cr Thin Film on Polymer Substrate by Glancing Angle Deposition. Korean Journal of Materials Research, 2015, 25, 54-59.	0.1	0
149	Optical anisotropy due to perpendicular azimuth serial bideposition. , 2017, , .		0
150	Designs of Nanostructured Materials made by Glancing Angle Deposition for Improved Spectral Brightness of Solid-State Lasers. , 2018, , .		0
151	Capping metallic nanohelixes with SiO2 nanohelixes to enhance broadband and wide-angle light extinction. Optics Express, 2018, 26, 21510.	1.7	1
152	Understanding the effect of sputtering pressures on the thermoelectric properties of GeTe films. Journal of Alloys and Compounds, 2022, 893, 162342.	2.8	10
153	Deposition of titanium films on complex bowl-shaped workpieces using DCMS and HiPIMS. Surface and Coatings Technology, 2022, 442, 128192.	2.2	7
154	Structural development and phase transformation behavior of thermally-oxidization Ti by sputtering power and OAD technique. Materials Chemistry and Physics, 2022, 280, 125814.	2.0	0
155	Flexible TiCu _{<i>x</i>} Thin Films with Dual Antimicrobial and Piezoresistive Characteristics. ACS Applied Bio Materials, 2022, 5, 1267-1272.	2.3	3
156	Creating hot spots within air for better sensitivity through design of oblique-wire-bundle metamaterial perfect absorbers. Scientific Reports, 2022, 12, 3557.	1.6	0
157	Polarization eigenstates analysis of helically structured thin films. Optics Express, 2022, 30, 35500.	1.7	0