Components responsible for the surface tension of hum

Current Eye Research 19, 4-11 DOI: 10.1076/ceyr.19.1.4.5341

Citation Report

#	Article		CITATIONS
1	Interaction of Tear Lipocalin with Lysozyme and Lactoferrin. Biochemical and Biophysical Research Communications, 1999, 265, 322-325.	1.0	36
2	Towards a closed eye model of the pre-ocular tear layer. Progress in Retinal and Eye Research, 2000, 19, 649-668.	7.3	127
3	Modulation of tear film protein secretion with phosphodiesterase inhibitors. Clinical and Experimental Ophthalmology, 2000, 28, 208-211.	1.3	7
4	Human tear lipocalin. BBA - Proteins and Proteomics, 2000, 1482, 241-248.	2.1	110
5	Poliomyelitic-like illness in central European encephalitis. Neurology, 2000, 55, 299-302.	1.5	61
6	Functional cavity dimensions of tear lipocalin. Current Eye Research, 2000, 21, 824-832.	0.7	22
7	The Ocular Surface and Tear Film and Their Dysfunction in Dry Eye Disease. Survey of Ophthalmology, 2001, 45, S203-S210.	1.7	287
8	Human tear lipocalin acts as an oxidative-stress-induced scavenger of potentially harmful lipid peroxidation products in a cell culture system. Biochemical Journal, 2001, 356, 129.	1.7	52
9	Human tear lipocalin acts as an oxidative-stress-induced scavenger of potentially harmful lipid peroxidation products in a cell culture system. Biochemical Journal, 2001, 356, 129-135.	1.7	79
10	Host-Defense Mechanism of the Ocular Surfaces. Bioscience Reports, 2001, 21, 463-480.	1.1	93
11	The Lipid Layer: The Outer Surface of the Ocular Surface Tear Film. Bioscience Reports, 2001, 21, 407-418.	1.1	76
12	Lipid, lipase and lipocalin differences between tolerant and intolerant contact lens wearers. Current Eye Research, 2002, 25, 227-235.	0.7	85
13	Histology, Histochemistry and Fine Structure of the Lacrimal and Nictitans Gland in the South American ArmadilloChaetophractus villosus (Xenarthra, Mammalia). Experimental Eye Research, 2002, 75, 731-744.	1.2	16
14	The role of different phospholipids on tear break-up time using a model eye. Current Eye Research, 2002, 25, 55-60.	0.7	27
15	The Use of Xanthan Gum in An Ophthalmic Liquid Dosage Form: Rheological Characterization of the Interaction With Mucin. Journal of Pharmaceutical Sciences, 2002, 91, 1117-1127.	1.6	77
16	Analysis of tear film rupture: effect of non-Newtonian rheology. Journal of Colloid and Interface Science, 2003, 262, 130-148.	5.0	68
17	Surfactant driven flows overlying a hydrophobic epithelium: film rupture in the presence of slip. Journal of Colloid and Interface Science, 2003, 264, 160-175.	5.0	30
18	Tears in health and disease. Eye, 2003, 17, 923-926.	1.1	118

ARTICLE IF CITATIONS # Meibomian Gland Dysfunction: A Clinical Scheme for Description, Diagnosis, Classification, and 19 2.2 426 Grading. Ocular Surface, 2003, 1, 107-126. Modification of Pseudomonas aeruginosa Interactions with Corneal Epithelial Cells by Human Tear 1.0 Fluid. Infection and Immunity, 2003, 71, 3866-3874. Modelling drainage of the precorneal tear film after a blink. Mathematical Medicine and Biology, 2003, 21 0.8 81 20, 1-28. The Effects of Novel Amphipathic Block Copolymers on Stabilization of the Rat Tear Film. , 2003, 44, 5089. Hyaluronan in the Treatment of Ocular Surface Disorders., 2004, , 529-551. 24 14 Changes in the tear film and ocular surface from dry eye syndrome. Progress in Retinal and Eye 7.3 Research, 2004, 23, 449-474. 27 Functional aspects of the tear film lipid layer. Experimental Eye Research, 2004, 78, 347-360. 1.2 647 Is the cystatin-like domain of TSL functionally active in external ocular infections and during the 28 1.2 normal diurnal cycle?. Experimental Eye Research, 2004, 78, 371-378. 29 The Contribution of Meibomian Disease to Dry Eye. Ocular Surface, 2004, 2, 149-164. 2.2 275 Surface Pressure Measurements of Human Tears and Individual Tear Film Components Indicate That Proteins Are Major Contributors to the Surface Pressure. Cornea, 2005, 24, 189-200. Human tear viscosity: An interactive role for proteins and lipids. Biochimica Et Biophysica Acta -31 79 1.1 Proteins and Proteomics, 2005, 1753, 155-163. Insertion of tear proteins into a meibomian lipids film. Colloids and Surfaces B: Biointerfaces, 2005, 44, 49-55. The use of mucoadhesive polymers in ocular drug delivery. Advanced Drug Delivery Reviews, 2005, 57, 33 6.6 715 1595-1639. Tear urea nitrogen and creatinine levels in horse and their correlation with serum values. Veterinary Ophthalmology, 2005, 8, 207-209. Interaction of Purified Tear Lipocalin with Lipid Membranes., 2005, 46, 3649. 35 25 Decreased tear lipocalin concentration in patients with meibomian gland dysfunction. British Journal 50 of Ophthalmology, 2005, 89, 803-805. The Surface Pressure Dynamics and Appearance of Mixed Monolayers of Cholesterol and Different 37 1.6 5 Sized Polystyrenes at an Airâ[^]Water Interface. Langmuir, 2005, 21, 1338-1345. Interactions of Poly(tert-butyl acrylate) a "Poly(styrene) Diblock Copolymers with Lipids at the Airâ^'Water Interface. Langmuir, 2006, 22, 7672-7677.

	CHATION R		
#	Article	IF	Citations
39	Temporal changes in the tear menisci following a blink. Experimental Eye Research, 2006, 83, 517-525.	1.2	49
40	The Surface Activity of Purified Ocular Mucin at the Air-Liquid Interface and Interactions With Meibomian Lipids. Cornea, 2006, 25, 91-100.	0.9	64
41	Phospholipids and Their Degrading Enzyme in the Tears of Soft Contact Lens Wearers. Cornea, 2006, 25, S68-S72.	0.9	38
42	Adsorption of lysozyme to phospholipid and meibomian lipid monolayer films. Colloids and Surfaces B: Biointerfaces, 2006, 48, 128-137.	2.5	67
43	The Effect of the Lipid Layer on Tear Film Behaviour. Bulletin of Mathematical Biology, 2006, 68, 1355-1381.	0.9	44
45	Human Tear Fluid Protects against Pseudomonas aeruginosa Keratitis in a Murine Experimental Model. Infection and Immunity, 2007, 75, 2325-2332.	1.0	56
46	Research in Dry Eye: Report of the Research Subcommittee of the International Dry Eye WorkShop (2007). Ocular Surface, 2007, 5, 179-193.	2.2	282
48	Coadsorption of Human Milk Lactoferrin into the Dipalmitoylglycerolphosphatidylcholine Phospholipid Monolayer Spread at the Air/Water Interface. Biophysical Journal, 2007, 92, 1254-1262.	0.2	23
49	Temperature-induced conformational changes in human tearlipids hydrocarbon chains. Biopolymers, 2007, 87, 124-133.	1.2	65
50	Oligomeric state of lipocalin-1 (LCN1) by multiangle laser light scattering and fluorescence anisotropy decay. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1307-1315.	1.1	16
51	Spectroscopic evaluation of human tear lipids. Chemistry and Physics of Lipids, 2007, 147, 87-102.	1.5	85
52	Elastohydrodynamics of the Eyelid Wiper. Bulletin of Mathematical Biology, 2008, 70, 323-343.	0.9	75
53	Effect of Lysozyme Adsorption on the Interfacial Rheology of DPPC and Cholesteryl Myristate Films. Langmuir, 2008, 24, 11728-11733.	1.6	36
54	Adsorption of apo- and holo-tear lipocalin to a bovine Meibomian lipid film. Experimental Eye Research, 2008, 86, 622-628.	1.2	33
55	Sex hormone regulation of tear lipocalin in the rabbit lacrimal gland. Experimental Eye Research, 2008, 87, 184-190.	1.2	12
56	Understanding and Analyzing Meibomian Lipids—A Review. Current Eye Research, 2008, 33, 405-420.	0.7	176
57	Ocular Drug Delivery. , 0, , 729-767.		5
58	On the Lipid Composition of Human Meibum and Tears: Comparative Analysis of Nonpolar Lipids. , 2008, 49, 3779.		161

# 59	ARTICLE Adsorption of Human Tear Lipocalin to Human Meibomian Lipid Films. , 2009, 50, 140.	IF	Citations 60
60	Turnover rate of tear-film lipid layer determined by fluorophotometry. British Journal of Ophthalmology, 2009, 93, 1535-1538.	2.1	39
61	The Meibomian Puzzle: Combining pieces together. Progress in Retinal and Eye Research, 2009, 28, 483-498.	7.3	124
63	Development of an Ex Vivo Method for Evaluation of Precorneal Residence of Topical Ophthalmic Formulations. AAPS PharmSciTech, 2009, 10, 796-805.	1.5	19
64	Characterization of Human Meibum Lipid using Raman Spectroscopy. Current Eye Research, 2009, 34, 824-835.	0.7	47
65	Human Lipocalin-1 Association with3H-Testosterone and3H-Estradiol. Current Eye Research, 2009, 34, 1042-1049.	0.7	4
66	The Effect of Meibomian Lipids and Tear Proteins on Evaporation Rate under ControlledIn VitroConditions. Current Eye Research, 2009, 34, 589-597.	0.7	32
67	Historical Brief on Composition of Human Meibum Lipids. Ocular Surface, 2009, 7, 145-153.	2.2	27
68	Factors Affecting Evaporation Rates of Tear Film Components Measured In Vitro. Eye and Contact Lens, 2009, 35, 32-37.	0.8	76
69	Tear film dynamics on an eye-shaped domain. Part 2. Flux boundary conditions. Journal of Fluid Mechanics, 2010, 647, 361-390.	1.4	39
70	Contact Lenses Wettability In Vitro: Effect of Surface-Active Ingredients. Optometry and Vision Science, 2010, 87, 440-447.	0.6	51
71	Effect of a liposomal spray on the pre-ocular tear film. Contact Lens and Anterior Eye, 2010, 33, 83-87.	0.8	76
72	Apatite Deposition on NaOHâ€Treated PEEK and UHMWPE Films for Sclera Materials in Artificial Cornea Implants. Advanced Engineering Materials, 2010, 12, B234.	1.6	5
73	Interactions of Meibomian gland secretion with polar lipids in Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2010, 78, 317-327.	2.5	48
74	Abnormalities of eyelid and tear film lipid. , 2010, , 131-137.		0
75	Evaluation of ocular surface glycocalyx using lectin-conjugated fluorescein. Clinical Ophthalmology, 2010, 4, 925.	0.9	8
76	Eyelid Pressure and Contact with the Ocular Surface. , 2010, 51, 1911.		80
77	Tear film dynamics on an eye-shaped domain I: pressure boundary conditions. Mathematical Medicine and Biology, 2010, 27, 227-254.	0.8	28

#	Article	IF	Citations
79	Detection and Quantification of Tear Phospholipids and Cholesterol in Contact Lens Deposits: The Effect of Contact Lens Material and Lens Care Solution. , 2010, 51, 2843.		66
80	Novel Ocular Lubricant Containing an Intelligent Delivery System: Details of Its Mechanism of Action. Developments in Ophthalmology, 2010, 45, 139-147.	0.1	21
81	Meibomian Glands and Lipid Layer. , 2010, , 13-20.		1
82	Tear Lipids Interfacial Rheology: Effect of Lysozyme and Lens Care Solutions. Optometry and Vision Science, 2010, 87, 10-20.	0.6	31
83	Physical Changes in Human Meibum with Age as Measured by Infrared Spectroscopy. Ophthalmic Research, 2010, 44, 34-42.	1.0	53
84	The interfacial viscoelastic properties and structures of human and animal Meibomian lipids. Experimental Eye Research, 2010, 90, 598-604.	1.2	62
85	Ocular discomfort by environmental and personal risk factors altering the precorneal tear film. Toxicology Letters, 2010, 199, 203-212.	0.4	81
86	Lipidomics of human Meibomian gland secretions: Chemistry, biophysics, and physiological role of Meibomian lipids. Progress in Lipid Research, 2011, 50, 278-301.	5.3	104
87	Measurement of ocular surface protection under natural blink conditions. Clinical Ophthalmology, 2011, 5, 1349.	0.9	10
88	Surface Chemistry Study of the Interactions of Benzalkonium Chloride with Films of Meibum, Corneal Cells Lipids, and Whole Tears. , 2011, 52, 4645.		43
89	In Vitro Analysis of the Physical Properties of Contact Lens Blister Pack Solutions. Optometry and Vision Science, 2011, 88, 493-501.	0.6	24
90	Tear Analysis and Lens-tear Interactions: Part II. Ocular Lipids—Nature and Fate of Meibomian Gland Phospholipids. Cornea, 2011, 30, 325-332.	0.9	20
91	The Effect of Polar Lipids on Tear Film Dynamics. Bulletin of Mathematical Biology, 2011, 73, 1171-1201.	0.9	35
92	The conserved disulfide bond of human tear lipocalin modulates conformation and lipid binding in a ligand selective manner. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 671-683.	1.1	16
93	Surfactant Properties of Human Meibomian Lipids. , 2011, 52, 1661.		52
94	Divalent Cations in Tears, and Their Influence on Tear Film Stability in Humans and Rabbits. , 2012, 53, 3280.		22
95	Role of Neutral Lipids in Tear Fluid Lipid Layer: Coarse-Grained Simulation Study. Langmuir, 2012, 28, 17092-17100.	1.6	27
96	Surface Chemistry Study of the Interactions of Pharmaceutical Ingredients with Human Meibum Films. , 2012, 53, 4605.		28

#	Article	IF	CITATIONS
97	The Origin of Tears. II. The Mucinic Component in the XIX and XX Centuries. Ocular Surface, 2012, 10, 126-136.	2.2	6
98	The Origin of Tears. III. The Lipid Component in the XIX and XX Centuries. Ocular Surface, 2012, 10, 200-209.	2.2	20
99	Consequences of Interfacial Viscoelasticity on Thin Film Stability. Langmuir, 2012, 28, 14238-14244.	1.6	40
100	Wax-tear and meibum protein, wax–β-carotene interactions inÂvitro using infrared spectroscopy. Experimental Eye Research, 2012, 100, 32-39.	1.2	20
101	Transport and interaction of cosmetic product material within the ocular surface: Beauty and the beastly symptoms of toxic tears. Contact Lens and Anterior Eye, 2012, 35, 247-259.	0.8	41
102	Dynamics of the Tear Film. Annual Review of Fluid Mechanics, 2012, 44, 267-297.	10.8	140
103	Coupling Fluid and Solute Dynamics Within the Ocular Surface Tear Film: A Modelling Study of Black Line Osmolarity. Bulletin of Mathematical Biology, 2012, 74, 2062-2093.	0.9	29
104	Molecular Structure of Interfacial Human Meibum Films. Langmuir, 2012, 28, 11858-11865.	1.6	42
105	Mass Spectrometric Identification of Phospholipids in Human Tears and Tear Lipocalin. , 2012, 53, 1773.		64
106	A model for the human tear film with heating from within the eye. Physics of Fluids, 2012, 24, .	1.6	20
107	Thin film dynamics on a prolate spheroid with application to the cornea. Journal of Engineering Mathematics, 2012, 73, 121-138.	0.6	41
108	Osmolality and tear film dynamics. Australasian journal of optometry, The, 2012, 95, 3-11.	0.6	122
109	Tear film stability: A review. Experimental Eye Research, 2013, 117, 28-38.	1.2	166
110	4. Contemporary research in contact lens care. Contact Lens and Anterior Eye, 2013, 36, S22-S27.	0.8	6
111	Surface chemistry study of the interactions of hyaluronic acid and benzalkonium chloride with meibomian and corneal cell lipids. Soft Matter, 2013, 9, 10841.	1.2	23
112	Lipid order, saturation and surface property relationships: A study of human meibum saturation. Experimental Eye Research, 2013, 116, 79-85.	1.2	30
113	Historical overview of imaging the meibomian glands. Journal of Optometry, 2013, 6, 1-8.	0.7	14
114	Comparison of IgA, TNF-α and surface tension of the tear film in two different times of the day. Contact Lens and Anterior Eye, 2013, 36, 140-145.	0.8	24

#	Article	IF	CITATIONS
115	13C and 1H NMR ester region resonance assignments and the composition of human infant and child meibum. Experimental Eye Research, 2013, 112, 151-159.	1.2	35
116	Racial Variations in Interfacial Behavior of Lipids Extracted From Worn Soft Contact Lenses. Optometry and Vision Science, 2013, 90, 1361-1369.	0.6	19
117	Structural and Rheological Properties of Meibomian Lipid. , 2013, 54, 2720.		63
118	The TFOS International Workshop on Contact Lens Discomfort: Report of the Contact Lens Interactions With the Tear Film Subcommittee. , 2013, 54, TFOS123.		167
119	Protein Deposition and Its Effect on Bacterial Adhesion to Contact Lenses. Optometry and Vision Science, 2013, 90, 557-564.	0.6	15
120	Effects of Keratin and Lung Surfactant Proteins on the Surface Activity of Meibomian Lipids. , 2013, 54, 2571.		24
121	A MODEL FOR THE TEAR FILM AND OCULAR SURFACE TEMPERATURE FOR PARTIAL BLINKS. Interfacial Phenomena and Heat Transfer, 2013, 1, 357-381.	0.3	20
122	Organization of Lipids in the Tear Film: A Molecular-Level View. PLoS ONE, 2014, 9, e92461.	1.1	41
123	Lipidomic analysis of human tear fluid reveals structure-specific lipid alterations in dry eye syndrome. Journal of Lipid Research, 2014, 55, 299-306.	2.0	82
124	Heat transfer and tear film dynamics over multiple blink cycles. Physics of Fluids, 2014, 26, .	1.6	12
125	Comparison of Tear Lipid Profile among Basal, Reflex, and Flush Tear Samples. Optometry and Vision Science, 2014, 91, 1391-1395.	0.6	46
126	Interfacial Phenomena and the Ocular Surface. Ocular Surface, 2014, 12, 178-201.	2.2	53
127	Evaporation-driven instability of the precorneal tear film. Advances in Colloid and Interface Science, 2014, 206, 250-264.	7.0	114
128	Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain. Physics of Fluids, 2014, 26, 052101.	1.6	28
129	Design and Characterization of an Ocular Topical Liposomal Preparation to Replenish the Lipids of the Tear Film. Investigative Ophthalmology and Visual Science, 2014, 55, 7839-7847.	3.3	42
131	Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids. Soft Matter, 2014, 10, 5579-5588.	1.2	69
132	Lens-care-solution-induced alterations in dynamic interfacial properties of human tear-lipid films. Contact Lens and Anterior Eye, 2014, 37, 368-376.	0.8	6
133	The influence of non-polar lipids on tear film dynamics. Journal of Fluid Mechanics, 2014, 746, 565-605.	1.4	27

#	Article		CITATIONS
134	Evaluation of Dry Eye and Meibomian Gland Dysfunction With Meibography in Patients With Rosacea. Cornea, 2015, 34, 497-499.	0.9	59
135	Evaluation of cationic nanosystems with melatonin using an eye-related bioavailability prediction model. European Journal of Pharmaceutical Sciences, 2015, 75, 142-150.	1.9	37
136	The real reason for having a meibomian lipid layer covering the outer surface of the tear film – A review. Experimental Eye Research, 2015, 137, 125-138.	1.2	107
137	The Presence and Significance of Polar Meibum and Tear Lipids. Ocular Surface, 2015, 13, 26-42.	2.2	60
138	Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids and Surfaces B: Biointerfaces, 2015, 133, 331-338.	2.5	79
139	Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates. Journal of Colloid and Interface Science, 2015, 449, 428-435.	5.0	10
140	Spontaneous Blinking from a Tribological Viewpoint. Ocular Surface, 2015, 13, 236-249.	2.2	84
141	Tear film dynamics with evaporation, osmolarity and surfactant transport. Applied Mathematical Modelling, 2015, 39, 255-269.	2.2	22
142	Microsponges: A Pioneering Tool for Biomedical Applications. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33, 77-105.	1.2	26
143	Biophysical characterization of monofilm model systems composed of selected tear film phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 403-414.	1.4	18
144	Ocular Drug Delivery: Advances, Challenges and Applications. , 2016, , .		17
145	Progress of Controlled Drug Delivery Systems in Topical Ophthalmology: Focus on Nano and Micro Drug Carriers. , 2016, , 131-163.		4
146	Dry Eye Therapy. , 2016, , 97-143.		1
147	Contact Lens-Induced Discomfort and Protein Changes in Tears. Optometry and Vision Science, 2016, 93, 955-962.	0.6	27
148	Dynamic interfacial properties of human tear-lipid films and their interactions with model-tear proteins in vitro. Advances in Colloid and Interface Science, 2016, 233, 4-24.	7.0	32
149	Fluorophotometric Analysis of the Ocular Surface Glycocalyx in Soft Contact Lens Wearers. Current Eye Research, 2016, 41, 9-14.	0.7	24
150	Computed tear film and osmolarity dynamics on an eye-shaped domain. Mathematical Medicine and Biology, 2016, 33, 123-157.	0.8	19
151	Effect of saliva on physical food properties in fat texture perception. Critical Reviews in Food Science and Nutrition, 2017, 57, 1061-1077.	5.4	22

#	ARTICLE	IF	CITATIONS
152	Control of human skin wettability using the pH of anionic surfactant solution treatments. Colloids and Surfaces B: Biointerfaces, 2017, 157, 366-372.	2.5	12
153	Structure-function relationship of tear film lipid layer: AÂcontemporary perspective. Experimental Eye Research, 2017, 163, 17-28.	1.2	111
154	Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2289-2296.		21
155	TFOS DEWS II Tear Film Report. Ocular Surface, 2017, 15, 366-403.	2.2	610
156	Duplex Tear Film Evaporation Analysis. Bulletin of Mathematical Biology, 2017, 79, 2814-2846.	0.9	10
157	Tear fluid-eye drops compatibility assessment using surface tension. Drug Development and Industrial Pharmacy, 2017, 43, 275-282.	0.9	28
158	Enhanced Tearing by Electrical Stimulation of the Anterior Ethmoid Nerve. , 2017, 58, 2341.		34
159	On tear film breakup (TBU): dynamics and imaging. Mathematical Medicine and Biology, 2018, 35, 145-180.	0.8	17
160	Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Contact Lens and Anterior Eye, 2018, 41, 93-96.	0.8	41
161	Computed flow and fluorescence over the ocular surface. Mathematical Medicine and Biology, 2018, 35, i51-i85.	0.8	3
162	Lipid Saturation and the Rheology of Human Tear Lipids. International Journal of Molecular Sciences, 2019, 20, 3431.	1.8	14
163	Changes in Total Tear Protein and Lipocalin Concentration According to Frequency of Artificial Tear Usage. Journal of Korean Ophthalmological Society, 2019, 60, 414.	0.0	0
164	Ocular surface assessment and morphological alterations in meibomian glands with meibography in obstructive sleep apnea Syndrome. Ocular Surface, 2019, 17, 771-776.	2.2	26
165	RECENT TRENDS IN MANAGEMENT OF KERATOCONJUNCTIVITIS SICCA (DRY EYE DISEASE). International Journal of Applied Pharmaceutics, 2019, , 30-36.	0.3	0
166	Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2019, , .	0.4	9
167	<i>In vitro</i> evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery. Acta Pharmaceutica, 2019, 69, 621-634.	0.9	20
168	A model of tear-film breakup with continuous mucin concentration and viscosity profiles. Journal of Fluid Mechanics, 2019, 858, 352-376.	1.4	16
169	Dynamics of Fluorescent Imaging for Rapid Tear Thinning. Bulletin of Mathematical Biology, 2019, 81, 39-80.	0.9	8

#	Article		CITATIONS
170	Mathematical modelling of glob-driven tear film breakup. Mathematical Medicine and Biology, 2019, 36, 55-91.	0.8	15
171	Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. International Journal of Pharmaceutics, 2020, 576, 118979.	2.6	36
172	Differences in Meibum and Tear Lipid Composition and Conformation. Cornea, 2020, 39, 122-128.	0.9	18
173	Improving Stability of Tear Film Lipid Layer via Concerted Action of Two Drug Molecules: A Biophysical View. International Journal of Molecular Sciences, 2020, 21, 9490.	1.8	8
174	Parameter Estimation for Evaporation-Driven Tear Film Thinning. Bulletin of Mathematical Biology, 2020, 82, 71.	0.9	6
175	Interactions of polar lipids with cholesteryl ester multilayers elucidate tear film lipid layer structure. Ocular Surface, 2020, 18, 545-553.	2.2	27
176	Lipid conformational order and the etiology of cataract and dry eye. Journal of Lipid Research, 2021, 62, 100039.	2.0	32
177	Fluid Interfaces with Physiological Relevance. SSRN Electronic Journal, 0, , .	0.4	0
178	Development and Characterization of a Tacrolimus/Hydroxypropyl-β-Cyclodextrin Eye Drop. Pharmaceutics, 2021, 13, 149.	2.0	17
179	The Properties and Role of <i>O</i> -Acyl-ï‰-hydroxy Fatty Acids and Type I-St and Type II Diesters in the Tear Film Lipid Layer Revealed by a Combined Chemistry and Biophysics Approach. Journal of Organic Chemistry, 2021, 86, 4965-4976.	1.7	10
180	The Impact of Incubation Conditions on In Vitro Phosphatidylcholine Deposition on Contact Lens Materials. Optometry and Vision Science, 2021, 98, 341-349.	0.6	1
181	BCLA CLEAR - Contact lens wettability, cleaning, disinfection and interactions with tears. Contact Lens and Anterior Eye, 2021, 44, 157-191.	0.8	41
182	Parameter Estimation for Mixed-Mechanism Tear Film Thinning. Bulletin of Mathematical Biology, 2021, 83, 56.	0.9	4
183	BCLA CLEAR - Anatomy and physiology of the anterior eye. Contact Lens and Anterior Eye, 2021, 44, 132-156.	0.8	37
184	Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomaterialia, 2021, 130, 32-53.	4.1	24
185	Tear Film Lipid Layer Structure: Self-Assembly of <i>O</i> -Acyl-ï‰-hydroxy Fatty Acids and Wax Esters into Evaporation-Resistant Monolayers. Nano Letters, 2021, 21, 7676-7683.	4.5	10
186	Protection against corneal hyperosmolarity with soft-contact-lens wear. Progress in Retinal and Eye Research, 2022, 87, 101012.	7.3	10
187	2D numerical simulation of tear film dynamics: Effects of shear-thinning properties. European Journal of Mechanics, B/Fluids, 2021, 90, 128-136.	1.2	5

		CITATION REPORT		
#	Article		IF	CITATIONS
188	Tear-film breakup: The role of membrane-associated mucin polymers. Physical Review E, 2021,	103, 013108.	0.8	7
189	Dynamics and mechanisms for tear breakup (TBU) on the ocular surface. Mathematical Bioscie Engineering, 2021, 18, 5146-5175.	ences and	1.0	3
190	Ocular Delivery of Biopharmaceuticals. , 2014, , 221-259.			2
191	Interface Properties of Simplified Tear-Like Fluids in Relation to Lipid and Aqueous Layers Com Advances in Experimental Medicine and Biology, 2002, 506, 405-417.	position.	0.8	23
192	Tear Lipocalin: Structure, Function and Molecular Mechanisms of Action. Advances in Experim Medicine and Biology, 2002, 506, 555-565.	ental	0.8	21
193	The Role of Lipocalin in Determining the Physical Properties of Tears. Advances in Experimenta Medicine and Biology, 2002, 506, 581-585.	l	0.8	18
194	Age-Related Changes in Human Tear Composition and Stability. Advances in Experimental Med Biology, 2002, 506, 587-591.	dicine and	0.8	8
195	Mathematical Models of the Tear Film. Modeling and Simulation in Science, Engineering and Technology, 2019, , 387-432.		0.4	4
196	Pseudomonas aeruginosa Survival at Posterior Contact Lens Surfaces after Daily Wear. Optometry and Vision Science, 2015, 92, 659-664.		0.6	13
197	A novel lipocalin homologue from the venom gland of Deinagkistrodon acutus similar to mam lipocalins. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2012, 18, 16-2	malian 23.	0.8	3
199	THE PREPARATION OF VARIOUS TEAR-CONTAINING CREAMS AND INVESTIGATION OF THEIR A PROPERTIES. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 2		0.1	1
200	Evaluation of tear and serum trace elements (copper, selenium, and cobalt) in sheep. Turkish J of Veterinary and Animal Sciences, 2016, 40, 34-39.	ournal	0.2	1
201	Meibomian Glands and Lipid Layer â~†. , 2017, , .			1
202	Effect of illuminating wavelength on the contrast of meibography images. OSA Continuum, 20 1041.	018, 1,	1.8	7
203	Terahertz-based system for dehydration analysis of hydrogel contact lenses. Optica Applicata,	2019, 49,	0.1	2
204	Kontakt lens kullanımının oküler yüzey ve Meibomian bezleri üzerine etkileri. Ege	Tıp Dergisi, 0, , .	0.1	0
205	Evaluation of In Vitro Wettability of Soft Contact Lenses Using Tear Supplements. Eye and Co Lens, 2021, 47, 244-248.	ntact	0.8	8
206	Contact lens physical properties and lipid deposition in a novel characterized artificial tear solu Molecular Vision, 2011, 17, 3392-405.	ution.	1.1	34

#	Article	IF	CITATIONS
207	Biophysical properties of tear film lipid layer I. Surface tension and surface rheology. Biophysical Journal, 2022, 121, 439-450.	0.2	12
208	Mechanistic determination of tear film thinning via fitting simplified models to tear breakup. Modeling and Artificial Intelligence in Ophthalmology, 2021, 3, 71-100.	0.1	1
209	Viscoelastic properties of the human tear film. Experimental Eye Research, 2022, 219, 109083.	1.2	10
210	An Evaluation of the Physicochemical Properties of Preservative-Free 0.005% (w/v) Latanoprost Ophthalmic Solutions, and the Impact on In Vitro Human Conjunctival Goblet Cell Survival. Journal of Clinical Medicine, 2022, 11, 3137.	1.0	4
211	In-vitro evaluation of the evaporation retardation by Meibomian lipids in homogeneous and non-homogeneous evaporation. Journal of Colloid and Interface Science, 2022, 625, 210-219.	5.0	1
212	The role of Meibomian glands on the development of dry eye disease in patients with unilateral pseudoexfoliation. Journal Francais D'Ophtalmologie, 2022, , .	0.2	0
213	Biophysical profiling of synthetic ultra-long tear film lipids. Colloids and Surfaces B: Biointerfaces, 2023, 223, 113145.	2.5	2
214	Nonpolar Lipids Contribute to Midday Fogging During Scleral Lens Wear. , 2023, 64, 7.		1
215	A biophysical study of tear film lipid layer model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2023, 1865, 184102.	1.4	2
216	Effect of Model Tear Film Lipid Layer on Water Evaporation. , 2023, 64, 13.		1
217	Biopolymers in Mucoadhesive Eye Drops for Treatment of Dry Eye and Allergic Conditions: Application and Perspectives. Pharmaceutics, 2023, 15, 470.	2.0	4
221	Recent advances in ocular lubrication. Friction, 0, , .	3.4	Ο