Molecular characterization of H9N2 influenza viruses: "internal" genes of H5N1 viruses in Hong Kong?

Proceedings of the National Academy of Sciences of the Unite 96, 9363-9367

DOI: 10.1073/pnas.96.16.9363

Citation Report

ARTICLE IF CITATIONS Who's that lady?. Nature Medicine, 1999, 5, 1351-1352. 15.2 20 1 Human infection with influenza H9N2. Lancet, The, 1999, 354, 916-917. 6.3 949 Molecular aspects of avian influenza (H5N1) viruses isolated from humans. Reviews in Medical 3 3.9 52 Virology, 2000, 10, 337-348. Interspecies transmission of influenza viruses: H5N1 virus and a Hong Kong SAR perspective. Veterinary 0.8 98 Microbiology, 2000, 74, 141-147. The neuraminidase inhibitor GS4104 (oseltamivir phosphate) is efficacious against A/Hong Kong/156/97 1.9 151 6 (H5N1) and A/Hong Kong/1074/99 (H9N2) influenza viruses. Antiviral Research, 2000, 48, 101-115. H9N2 Subtype Influenza A Viruses in Poultry in Pakistan Are Closely Related to the H9N2 Viruses 1.1 Responsible for Human Infection in Hong Kong. Virology, 2000, 278, 36-41. Characterization of the Pathogenicity of Members of the Newly Established H9N2 Influenza Virus 8 1.1 411 Lineages in Asia. Virology, 2000, 267, 279-288. Emerging and Re-emerging Infectious Diseases. Journal of Infection, 2000, 40, 3-15. 0 1.7 10 Influenza Virus: a Master of Metamorphosis. Journal of Infection, 2000, 40, 218-228. 100 1.7 Avian influenza viruses infecting humans. Cellular and Molecular Life Sciences, 2000, 57, 1770-1784. 2.4 Precursor genes of future pandemic influenza viruses are perpetuated in ducks nesting in Siberia. 12 109 0.9 Archives of Virology, 2000, 145, 885-893. Continued Circulation in China of Highly Pathogenic Avian Influenza Viruses Encoding the Hemagglutinin Gene Associated with the 1997 H5N1 Outbreak in Poultry and Humans. Journal of 1.5 Virology, 2000, 74, 6592-6599. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 14 human isolates. Proceedings of the National Academy of Sciences of the United States of America, 3.3 560 2000, 97, 9654-9658. Characterization of the Influenza A Virus Gene Pool in Avian Species in Southern China: Was H6N1 a Derivative or a Precursor of H5N1?. Journal of Virology, 2000, 74, 6309-6315. 1.5 204 A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of 3.3 1,409 16 the National Academy of Sciences of the United States of America, 2000, 97, 6108-6113. Isolation and Characterization of H4N6 Avian Influenza Viruses from Pigs with Pneumonia in Canada. 196 Journal of Virology, 2000, 74, 9322-9327. Distinct Pathogenesis of Hong Kong-Origin H5N1 Viruses in Mice Compared to That of Other Highly 18 1.5119 Pathogenic H5 Avian Influenza Viruses. Journal of Virology, 2000, 74, 1443-1450. H9N2 Influenza Viruses Possessing H5N1-Like Internal Genomes Continue To Circulate in Poultry in 1.5 351 Southeastern China. Journal of Virology, 2000, 74, 9372-9380.

#	Article	IF	CITATIONS
20	Sequence Analysis of the Hemagglutinin Gene of H9N2 Korean Avian Influenza Viruses and Assessment of the Pathogenic Potential of Isolate MS96. Avian Diseases, 2000, 44, 527.	0.4	88
21	Global Epidemiology of Influenza: Past and Present. Annual Review of Medicine, 2000, 51, 407-421.	5.0	686
22	Characterization of a human H9N2 influenza virus isolated in Hong Kong. Vaccine, 2001, 20, 125-133.	1.7	138
23	Place des oiseaux dans l'écologie grippale. Médecine Et Maladies Infectieuses, 2001, 31, 175-177.	5.1	0
24	Seven integrated influenza surveillance systems in Taiwan. International Congress Series, 2001, 1219, 107-118.	0.2	7
25	Surveillance of influenza viruses in Guangdong Province, China in 1998: a preliminary report. International Congress Series, 2001, 1219, 123-129.	0.2	2
26	Recent examples of human infection by animal and avian influenza a viruses in Hong Kong. International Congress Series, 2001, 1219, 179-185.	0.2	1
27	Vaccines against avian influenza A H9N2 viruses. International Congress Series, 2001, 1219, 783-788.	0.2	0
28	Infection with H9N2 influenza viruses confers immunity against lethal H5N1 infection. International Congress Series, 2001, 1219, 775-781.	0.2	3
29	Two lineages of H9N2 influenza viruses continue to circulate in land-based poultry in southeastern China. International Congress Series, 2001, 1219, 187-193.	0.2	4
30	Co-circulation of avian H9N2 and human H3N2 viruses in pigs in southern China. International Congress Series, 2001, 1219, 195-200.	0.2	5
31	Influenza surveillance in poultry market and its inter-species transmission in Taiwan. International Congress Series, 2001, 1219, 201-211.	0.2	3
32	Comparison of Efficacies of RWJ-270201, Zanamivir, and Oseltamivir against H5N1, H9N2, and Other Avian Influenza Viruses. Antimicrobial Agents and Chemotherapy, 2001, 45, 2723-2732.	1.4	219
33	Cocirculation of Avian H9N2 and Contemporary "Human―H3N2 Influenza A Viruses in Pigs in Southeastern China: Potential for Genetic Reassortment?. Journal of Virology, 2001, 75, 9679-9686.	1.5	359
34	Potential of influenza A viruses to cause pandemics. , 2001, , 89-104.		0
35	Nationale und globale Influenzasurveillance als Basis der jĤrlichen Impfstoffempfehlung. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 2001, 44, 1153-1161.	7.2	2
36	Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 2001, 146, 2275-2289.	0.9	1,769
37	Planning for the next pandemic of influenza. Reviews in Medical Virology, 2001, 11, 59-70.	3.9	33

		CITATION R	EPORT	
#	Article		IF	Citations
38	The pathogenesis of influenza in humans. Reviews in Medical Virology, 2001, 11, 227-24	1.	3.9	143
39	H9N2 Influenza A Viruses from Poultry in Asia Have Human Virus-like Receptor Specificity 2001, 281, 156-162.	v. Virology,	1.1	410
40	Current research on respiratory viral infections: Third International Symposium. Antiviral 2001, 50, 157-196.	Research,	1.9	31
41	Influenza a infections: from chickens to humans. Clinical Microbiology Newsletter, 2001,	23, 9-13.	0.4	3
42	Immunity to Influenza A H9N2 Viruses Induced by Infection and Vaccination. Journal of V 75, 4896-4901.	irology, 2001,	1.5	56
43	X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian receptor analogs. Proceedings of the National Academy of Sciences of the United States 2001, 98, 11181-11186.	and human of America,	3.3	402
44	Imported Parakeets Harbor H9N2 Influenza A Viruses That Are Genetically Closely Related Transmitted to Humans in Hong Kong. Journal of Virology, 2001, 75, 3490-3494.	d to Those	1.5	56
45	Pandemic Threat Posed by Avian Influenza A Viruses. Clinical Microbiology Reviews, 2001	., 14, 129-149.	5.7	409
46	Cross-Reactive, Cell-Mediated Immunity and Protection of Chickens from Lethal H5N1 In Infection in Hong Kong Poultry Markets. Journal of Virology, 2001, 75, 2516-2525.	fluenza Virus	1.5	205
47	Efficacy of Zanamivir against Avian Influenza A Viruses That Possess Genes Encoding H51 Proteins and Are Pathogenic in Mammals. Antimicrobial Agents and Chemotherapy, 2001	N1 Internal 1, 45, 1216-1224.	1.4	54
48	Emergence of influenza A viruses. Philosophical Transactions of the Royal Society B: Biolo Sciences, 2001, 356, 1817-1828.	ogical	1.8	211
49	Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Pro National Academy of Sciences of the United States of America, 2002, 99, 8950-8955.	oceedings of the	3.3	321
50	Molecular Evolution of H6 Influenza Viruses from Poultry in Southeastern China: Prevaler Influenza Viruses Possessing Seven A/Hong Kong/156/97 (H5N1)-Like Genes in Poultry. Ja Virology, 2002, 76, 507-516.	nce of H6N1 ournal of	1.5	150
51	Characterization of a Highly Pathogenic H5N1 Avian Influenza A Virus Isolated from Duck Journal of Virology, 2002, 76, 6344-6355.	R Meat.	1.5	161
52	Cooperation between the Hemagglutinin of Avian Viruses and the Matrix Protein of Hum Viruses. Journal of Virology, 2002, 76, 1781-1786.	an Influenza A	1.5	55
53	Outbreak of Avian Influenza A(H5N1) Virus Infection in Hong Kong in 1997. Clinical Infec 2002, 34, S58-S64.	tious Diseases,	2.9	383
54	Emerging issues in occupationally relevant zoonoses. Clinics in Occupational and Enviror Medicine, 2002, 2, 631-649.	ımental	0.5	0
55	Characterization of H5N1 Influenza Viruses That Continue To Circulate in Geese in South China. Journal of Virology, 2002, 76, 118-126.	eastern	1.5	177

#	Article	IF	CITATIONS
56	The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends in Microbiology, 2002, 10, 340-344.	3.5	59
5 7	Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine, 2002, 20, 3068-3087.	1.7	253
58	Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine, 2002, 20, 3165-3170.	1.7	374
59	Evaluation of the Directigen FluA+B Test for Rapid Diagnosis of Influenza Virus Type A and B Infections. Journal of Clinical Microbiology, 2002, 40, 1675-1680.	1.8	107
60	Lack of Evidence for Human-to-Human Transmission of Avian Influenza A (H9N2) Viruses in Hong Kong, China 1999. Emerging Infectious Diseases, 2002, 8, 154-159.	2.0	85
61	Recent Developments in Avian Influenza Research: Epidemiology and Immunoprophylaxis. Veterinary Journal, 2002, 164, 202-215.	0.6	31
62	Current research on respiratory viral infections: Fourth International Symposium. Antiviral Research, 2002, 55, 227-278.	1.9	43
63	Seroepidemiological evidence of avian H4, H5, and H9 influenza A virus transmission to pigs in southeastern China. Veterinary Microbiology, 2002, 88, 107-114.	0.8	107
64	Molecular changes associated with the transmission of avian influenza a H5N1 and H9N2 viruses to humans. Journal of Medical Virology, 2002, 66, 107-114.	2.5	131
65	Role of influenza A virus hemagglutinin in neurovirulence for mammalians. Medical Microbiology and Immunology, 2002, 191, 1-4.	2.6	10
66	Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nature Medicine, 2002, 8, 950-954.	15.2	638
67	H5N1 Influenza Viruses Isolated from Geese in Southeastern China: Evidence for Genetic Reassortment and Interspecies Transmission to Ducks. Virology, 2002, 292, 16-23.	1.1	104
68	Reassortment and Interspecies Transmission of North American H6N2 Influenza Viruses. Virology, 2002, 295, 44-53.	1.1	61
69	Phylogenetic analysis of neuraminidase gene of H9N2 influenza viruses prevalent in chickens in China during 1995-2002. Virus Genes, 2003, 27, 197-202.	0.7	30
70	Phylogenetic analysis of hemagglutinin and neuraminidase genes of H9N2 viruses isolated from migratory ducks. Virus Genes, 2003, 27, 291-296.	0.7	22
71	Evaluation of a Genetically Modified Reassortant H5N1 Influenza A Virus Vaccine Candidate Generated by Plasmid-Based Reverse Genetics. Virology, 2003, 305, 192-200.	1.1	243
72	Replication and transmission of influenza viruses in Japanese quail. Virology, 2003, 310, 8-15.	1.1	102
73	Preparation of a standardized, efficacious agricultural H5N3 vaccine by reverse genetics. Virology, 2003, 314, 580-590.	1.1	94

#	Article	IF	CITATIONS
74	Pathogenicity and antigenicity of a new influenza a (H5N1) virus isolated from duck meat. Journal of Medical Virology, 2003, 69, 553-559.	2.5	21
75	Influenza type A in humans, mammals and birds: Determinants of virus virulence, host-range and interspecies transmission. BioEssays, 2003, 25, 657-671.	1.2	190
76	The next influenza pandemic: lessons from Hong Kong. Journal of Applied Microbiology, 2003, 94, 70-79.	1.4	78
77	Evaluation of Pathogenic Potential of Avian Influenza Virus Serotype H9N2 in Chickens. Avian Diseases, 2003, 47, 817-822.	0.4	141
78	Characterization of H9 Subtype Influenza Viruses from the Ducks of Southern China: a Candidate for the Next Influenza Pandemic in Humans?. Journal of Virology, 2003, 77, 6988-6994.	1.5	237
79	Generation and evaluation of a high-growth reassortant H9N2 influenza A virus as a pandemic vaccine candidate. Vaccine, 2003, 21, 1974-1979.	1.7	57
80	Generation and characterization of a cold-adapted influenza A H9N2 reassortant as a live pandemic influenza virus vaccine candidate. Vaccine, 2003, 21, 4430-4436.	1.7	64
81	Influenza. Lancet, The, 2003, 362, 1733-1745.	6.3	724
82	Safety and antigenicity of whole virus and subunit influenza A/Hong Kong/1073/99 (H9N2) vaccine in healthy adults: phase I randomised trial. Lancet, The, 2003, 362, 1959-1966.	6.3	147
83	Sequence of HA Gene of Avian Influenza A/Chicken/Guangdong/SS/1994 (H9N2) Virus. Avian Diseases, 2003, 47, 1118-1121.	0.4	7
84	Land-Based Birds as Potential Disseminators of Avian/Mammalian Reassortant Influenza A Viruses. Avian Diseases, 2003, 47, 1114-1117.	0.4	64
85	The Impact of Avian Influenza Viruses on Public Health. Avian Diseases, 2003, 47, 914-920.	0.4	25
86	Seroprevalence of avian influenza virus and its relationship with increased mortality and decreasedegg production. Avian Pathology, 2003, 32, 285-289.	0.8	33
87	Role of Quail in the Interspecies Transmission of H9 Influenza A Viruses: Molecular Changes on HA That Correspond to Adaptation from Ducks to Chickens. Journal of Virology, 2003, 77, 3148-3156.	1.5	199
88	Generation and Characterization of an H9N2 Cold-Adapted Reassortant as a Vaccine Candidate. Avian Diseases, 2003, 47, 1127-1130.	0.4	10
89	The Quest of Influenza A Viruses for New Hosts. Avian Diseases, 2003, 47, 849-856.	0.4	37
90	Neurovirulence in Mice of H5N1 Influenza Virus Genotypes Isolated from Hong Kong Poultry in 2001. Journal of Virology, 2003, 77, 3816-3823.	1.5	69
91	Safety Evaluation in Chickens of Candidate Human Vaccines Against Potential Pandemic Strains of Influenza. Avian Diseases, 2003, 47, 926-930.	0.4	18

#	Article	IF	CITATIONS
92	Influenza Evolution. , 2004, , 175-197.		1
93	Influenza as a model system for studying the cross–species transfer and evolution of the SARS coronavirus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1067-1073.	1.8	27
94	Continuing Evolution of H9N2 Influenza Viruses in Southeastern China. Journal of Virology, 2004, 78, 8609-8614.	1.5	230
95	Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 Are Highly Pathogenic to Ducks. Journal of Virology, 2004, 78, 4892-4901.	1.5	357
96	Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 2004, 430, 209-213.	13.7	1,147
97	Genetic Conservation of Hemagglutinin Gene of H9 Influenza Virus in Chicken Population in Mainland China. Virus Genes, 2004, 29, 329-334.	0.7	28
98	Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus. Microbes and Infection, 2004, 6, 919-925.	1.0	139
99	The evolution of H5N1 influenza viruses in ducks in southern China. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10452-10457.	3.3	477
101	Preparation of a panel of avian influenza viruses of different subtypes for vaccine strains against future pandemics. International Congress Series, 2004, 1263, 674-677.	0.2	1
102	Antigenic and genetic analysis of the H9N2 avian influenza viruses isolated in China. International Congress Series, 2004, 1263, 762-765.	0.2	2
103	H5N1 influenza A viruses from 2002 are highly pathogenic in waterfowl. International Congress Series, 2004, 1263, 200-204.	0.2	2
104	Confronting the avian influenza threat: vaccine development for a potential pandemic. Lancet Infectious Diseases, The, 2004, 4, 499-509.	4.6	164
105	Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet, The, 2004, 363, 587-593.	6.3	731
106	Avian influenza viruses in Korean live poultry markets and their pathogenic potential. Virology, 2005, 332, 529-537.	1.1	117
107	Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology, 2005, 340, 70-83.	1.1	294
108	Phylogenetic Analysis of Eight Genes of H9N2 Subtype Influenza Virus: A Mainland China Strain Possessing Early Isolates' Genes that have been Circulating. Virus Genes, 2005, 31, 163-169.	0.7	49
109	Genetic Analysis of the Nonstructural (NS) Genes of H9N2 Chicken Influenza Viruses Isolated in China During 1998–2002. Virus Genes, 2005, 31, 329-335.	0.7	15
110	Lethality to Ferrets of H5N1 Influenza Viruses Isolated from Humans and Poultry in 2004. Journal of Virology, 2005, 79, 2191-2198.	1.5	315

#	Article	IF	CITATIONS
111	New Genotype of Avian Influenza H5N1 Viruses Isolated from Tree Sparrows in China. Journal of Virology, 2005, 79, 15460-15466.	1.5	93
112	The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proceedings of the United States of America, 2005, 102, 18590-18595.	3.3	605
113	Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001. Journal of Virology, 2005, 79, 4201-4212.	1.5	206
114	Human Infection with an Avian H9N2 Influenza A Virus in Hong Kong in 2003. Journal of Clinical Microbiology, 2005, 43, 5760-5767.	1.8	561
115	Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10682-10687.	3.3	427
116	Are Ducks Contributing to the Endemicity of Highly Pathogenic H5N1 Influenza Virus in Asia?. Journal of Virology, 2005, 79, 11269-11279.	1.5	407
117	Characterization of Highly Pathogenic H5N1 Avian Influenza A Viruses Isolated from South Korea. Journal of Virology, 2005, 79, 3692-3702.	1.5	205
118	New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks. Virus Research, 2005, 109, 181-190.	1.1	44
119	Protection against avian influenza H9N2 virus challenge by immunization with hemagglutinin- or neuraminidase-expressing DNA in BALB/c mice. Biochemical and Biophysical Research Communications, 2006, 343, 1124-1131.	1.0	63
120	Avian influenza A (H5N1). Journal of Clinical Virology, 2006, 35, 2-13.	1.6	184
121	Progressive truncation of the Non-Structural 1 gene of H7N1 avian influenza viruses following extensive circulation in poultry. Virus Research, 2006, 119, 171-176.	1.1	50
122	An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes. Vaccine, 2006, 24, 6736-6741.	1.7	2
123	Vaccines for Pandemic Influenza. Emerging Infectious Diseases, 2006, 12, 66-72.	2.0	116
124	Highlight the significance of genetic evolution of H5N1 avian flu. Chinese Medical Journal, 2006, 119, 1458-1464.	0.9	6
125	History and Evolution of HPAI Viruses in Southeast Asia. Annals of the New York Academy of Sciences, 2006, 1081, 153-162.	1.8	16
126	Detection of Hong Kong 97-like H5N1 influenza viruses from eggs of Vietnamese waterfowl. Archives of Virology, 2006, 151, 1615-1624.	0.9	40
127	H9N2 influenza viruses isolated from poultry in Korean live bird markets continuously evolve and cause the severe clinical signs in layers. Veterinary Microbiology, 2006, 118, 169-176.	0.8	78
128	Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology, 2006, 346, 278-286.	1.1	162

\mathbf{C}	TAT	ON	DEDC	NDT.
	IAI	UN	KEPU	жт

#	Article	IF	CITATIONS
129	Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology, 2006, 350, 258-268.	1.1	212
130	Genetic characterization of the H9N2 influenza viruses circulated in the poultry population in Israel. Comparative Immunology, Microbiology and Infectious Diseases, 2006, 29, 207-223.	0.7	22
131	The Pandemic Threat of Avian Influenza Viruses. Perspectives in Medical Virology, 2006, 16, 97-132.	0.1	2
132	The Epidemiology of H5N1 Avian Influenza in Wild Birds: Why We Need Better Ecological Data. BioScience, 2006, 56, 923.	2.2	45
133	Molecular epizootiology of recurrent low pathogenic avian influenza by H9N2 subtype virus in Korea. Avian Pathology, 2006, 35, 309-315.	0.8	31
134	Genotype turnover by reassortment of replication complex genes from avian Influenza A virus. Journal of General Virology, 2006, 87, 2803-2815.	1.3	69
135	Influenza A Virus PB1-F2 Protein Contributes to Viral Pathogenesis in Mice. Journal of Virology, 2006, 80, 7976-7983.	1.5	276
136	Emerging Respiratory Viruses: Challenges and Vaccine Strategies. Clinical Microbiology Reviews, 2006, 19, 614-636.	5.7	134
137	Characterization of Low-Pathogenic H5 Subtype Influenza Viruses from Eurasia: Implications for the Origin of Highly Pathogenic H5N1 Viruses. Journal of Virology, 2007, 81, 7529-7539.	1.5	114
138	Molecular Changes in the Polymerase Genes (PA and PB1) Associated with High Pathogenicity of H5N1 Influenza Virus in Mallard Ducks. Journal of Virology, 2007, 81, 8515-8524.	1.5	178
139	A quantitative genotype algorithm reflecting H5N1 Avian influenza niches. Bioinformatics, 2007, 23, 2368-2375.	1.8	23
140	Pandemic (Avian) Influenza. Seminars in Respiratory and Critical Care Medicine, 2007, 28, 159-170.	0.8	39
142	Differential onset of apoptosis in influenza A virus H5N1- and H1N1-infected human blood macrophages. Journal of General Virology, 2007, 88, 1275-1280.	1.3	68
143	Establishment of Influenza A Virus (H6N1) in Minor Poultry Species in Southern China. Journal of Virology, 2007, 81, 10402-10412.	1.5	106
144	Origin of highly pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and recipient viruses. Journal of General Virology, 2007, 88, 3094-3099.	1.3	40
145	Evolution and Molecular Epidemiology of H9N2 Influenza A Viruses from Quail in Southern China, 2000 to 2005. Journal of Virology, 2007, 81, 2635-2645.	1.5	163
146	Characterization of H9N2 influenza A viruses isolated from chicken products imported into Japan from China. Epidemiology and Infection, 2007, 135, 386-391.	1.0	19
147	A conventional, inactivated oil emulsion vaccine suppresses shedding and prevents viral meat colonisation in commercial (Pekin) ducks challenged with HPAI H5N1. Vaccine, 2007, 25, 4064-4072.	1.7	41

#	Article	IF	CITATIONS
148	Avian Influenza Virus (H5N1): a Threat to Human Health. Clinical Microbiology Reviews, 2007, 20, 243-267.	5.7	802
149	The Genesis and Evolution of H9N2 Influenza Viruses in Poultry from Southern China, 2000 to 2005. Journal of Virology, 2007, 81, 10389-10401.	1.5	214
150	Genetic Comparison of H9N2 AI Viruses Isolated in Jordan in 2003. Avian Diseases, 2007, 51, 451-454.	0.4	24
151	Adaptation of Influenza A/Mallard/Potsdam/178-4/83 H2N2 Virus in Japanese Quail Leads to Infection and Transmission in Chickens. Avian Diseases, 2007, 51, 264-268.	0.4	47
152	Surveillance for Avian Influenza in Nepal 2004–2005. Avian Diseases, 2007, 51, 352-354.	0.4	9
153	Amino Acid 226 in the Hemagglutinin of H9N2 Influenza Viruses Determines Cell Tropism and Replication in Human Airway Epithelial Cells. Journal of Virology, 2007, 81, 5181-5191.	1.5	251
154	Pre-spillover Prevention of Emerging Zoonotic Diseases: What Are the Targets and What Are the Tools?. Current Topics in Microbiology and Immunology, 2007, 315, 389-443.	0.7	14
155	Influenza Evolution. , 0, , 199-214.		5
156	ll lungo viaggio dell'Orthomixovirus A/goose/Guangdong/2/96(H5N1). Microbiologia Medica, 2007, 22, .	0.3	0
157	Influenza virus. Medicina (Lithuania), 2007, 43, 919.	0.8	2
158	Scientific barriers to developing vaccines against avian influenza viruses. Nature Reviews Immunology, 2007, 7, 267-278.	10.6	225
159	Continuing evolution of H9 influenza viruses in Korean poultry. Virology, 2007, 359, 313-323.	1.1	106
160	Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. Virology, 2007, 361, 45-55.	1.1	138
161	Development of a multiplex real-time PCR assay using SYBR Green 1 chemistry for simultaneous detection and subtyping of H9N2 influenza virus type A. Journal of Virological Methods, 2007, 144, 57-64.	1.0	47
162	Biology of Influenza A Virus. Annals of the New York Academy of Sciences, 2007, 1102, 1-25.	1.8	111
163	Genetic analysis of nonstructural genes (NS1 and NS2) of H9N2 and H5N1 viruses recently isolated in Israel. Virus Genes, 2007, 34, 157-168.	0.7	11
164	Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination. Archives of Virology, 2007, 152, 585-593.	0.9	6
165	Evolutionary characterization of influenza virus A/duck/Hubei/W1/2004 (H9N2) isolated from central China. Virus Genes, 2008, 36, 79-83.	0.7	14

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
166	Swine infection with H9N2 influenza viruses in China in 2004. Virus Genes, 2008, 36, 4	61-469.	0.7	58
167	Phylogenic analysis of the M genes of influenza viruses isolated from free-flying water their Northern Territory to Hokkaido, Japan. Virus Genes, 2008, 37, 144-152.	birds from	0.7	29
168	Recognition for avian influenza virus proteins based on support vector machine and lin discriminant analysis. Science in China Series B: Chemistry, 2008, 51, 166-170.	ear	0.8	2
169	Genetic analysis of four porcine avian influenza viruses isolated from Shandong, China Virology, 2008, 153, 211-217.	Archives of	0.9	50
170	Genetic analysis of H9N2 avian influenza viruses isolated from India. Archives of Virolog 1433-1439.	gy, 2008, 153,	0.9	43
171	Characterization of a pathogenic H9N2 influenza A virus isolated from central China in of Virology, 2008, 153, 1549-1555.	2007. Archives	0.9	31
172	Antigenic structure of the hemagglutinin of H9N2 influenza viruses. Archives of Virolog 2189-95.	зу, 2008, 153,	0.9	44
173	The development and genetic diversity of H5N1 influenza virus in China, 1996–2006 243-254.	. Virology, 2008, 380,	1.1	140
174	Development of reverse transcription loop-mediated isothermal amplification for rapid H9 avian influenza virus. Journal of Virological Methods, 2008, 151, 200-203.	detection of	1.0	78
175	Host Restriction of Avian Influenza Viruses at the Level of the Ribonucleoproteins. Ann Microbiology, 2008, 62, 403-424.	ual Review of	2.9	190
176	Genetic characterization and protective immunity of cold-adapted attenuated avian HS vaccine. Vaccine, 2008, 26, 6569-6576.)N2 influenza	1.7	12
177	Modulation of the immune responses in chickens by low-pathogenicity avian influenza Journal of General Virology, 2008, 89, 1288-1299.	virus H9N2.	1.3	91
178	Identification of the Progenitors of Indonesian and Vietnamese Avian Influenza A (H5N Southern China. Journal of Virology, 2008, 82, 3405-3414.	1) Viruses from	1.5	81
180	Influenza A Virus Polymerase: A Determinant of Host Range and Pathogenicity. Monog Virology, 2008, , 187-194.	raphs in	0.6	0
181	Evidence of Expanded Host Range and Mammalian-Associated Genetic Changes in a Du Virus Following Adaptation in Quail and Chickens. PLoS ONE, 2008, 3, e3170.	uck H9N2 Influenza	1.1	116
182	Genetic Evolution of H9 Subtype Influenza Viruses from Live Poultry Markets in Shangl Journal of Clinical Microbiology, 2009, 47, 3294-3300.	nai, China.	1.8	44
183	A Novel Genotype H9N2 Influenza Virus Possessing Human H5N1 Internal Genomes Ha in Poultry in Eastern China since 1998. Journal of Virology, 2009, 83, 8428-8438.	as Been Circulating	1.5	101
184	Pandemic Influenza as a Current Threat. Current Topics in Microbiology and Immunolo 3-24.	gy, 2009, 333,	0.7	106

#	Article	IF	Citations
185	A(H5N1) Virus Evolution in South East Asia. Viruses, 2009, 1, 335-361.	1.5	39
186	Predictors of Hyperkalemia Risk following Hypertension Control with Aldosterone Blockade. American Journal of Nephrology, 2009, 30, 418-424.	1.4	146
187	Avian influenza virus, <i>Streptococcus suis</i> serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2725-2737.	1.8	31
188	Rapid subtyping of H9N2 influenza virus by a triple reverse transcription polymerase chain reaction. Journal of Virological Methods, 2009, 158, 58-62.	1.0	6
189	Molecular and phylogenetic analysis of the H5N1 avian influenza virus caused the first highly pathogenic avian influenza outbreak in poultry in the Czech Republic in 2007. Veterinary Microbiology, 2009, 133, 257-263.	0.8	21
190	Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Veterinary Microbiology, 2009, 138, 85-91.	0.8	57
191	Modulation of the severity of highly pathogenic H5N1 influenza in chickens previously inoculated with Israeli H9N2 influenza viruses. Virology, 2009, 383, 32-38.	1.1	31
192	Highly pathogenic H5N1 avian influenza virus: Cause of the next pandemic?. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32, 287-300.	0.7	39
193	Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza. Archives of Virology, 2009, 154, 1203-1210.	0.9	10
194	Characterization of H5N1 influenza A viruses isolated from domestic green-winged teal. Virus Genes, 2009, 38, 66-73.	0.7	12
195	Evolution analysis of the matrix (M) protein genes of 17 H9N2 chicken influenza viruses isolated in northern China during 1998–2008. Virus Genes, 2009, 38, 398-403.	0.7	9
196	A review on human influenza A H5N1 infections in Hong Kong. Science in China Series C: Life Sciences, 2009, 52, 412-418.	1.3	16
197	Selection pressure on Haemagglutinin genes of H9N2 influenza viruses from different hosts. Virologica Sinica, 2009, 24, 65-70.	1.2	4
198	A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice. BMC Infectious Diseases, 2009, 9, 17.	1.3	35
199	Breeding Influenza: The Political Virology of Offshore Farming. Antipode, 2009, 41, 916-951.	2.5	53
200	National Institute of Allergy and Infectious Diseases, NIH. , 2009, , .		9
201	Character of apathogenic influenza a viruses found in Moscow, Russia. Molecular Genetics, Microbiology and Virology, 2009, 24, 37-45.	0.0	4
202	Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus. Vaccine, 2009, 27, 4983-4989.	1.7	90

#	Article	IF	CITATIONS
203	Characterization of highly pathogenic H5N1 avian influenza viruses isolated from poultry markets in central China. Virus Research, 2009, 146, 19-28.	1.1	32
204	Serological reports of human infections of H7 and H9 avian influenza viruses in northern China. Journal of Clinical Virology, 2009, 44, 225-229.	1.6	38
205	Protein intrinsic disorder and influenza virulence: the 1918 H1N1 and H5N1 viruses. Virology Journal, 2009, 6, 69.	1.4	71
206	Farming Human Pathogens. , 2009, , .		17
207	Acute respiratory distress syndrome induced by H9N2 virus in mice. Archives of Virology, 2010, 155, 187-195.	0.9	38
208	Active reassortment of H9 influenza viruses between wild birds and live-poultry markets in Korea. Archives of Virology, 2010, 155, 229-241.	0.9	37
209	Molecular characterization of avian influenza virus (H7N8) isolated from poultry in Central China in the mid-1980s. Science Bulletin, 2010, 55, 1625-1630.	1.7	0
210	Sequence and phylogenetic analysis of the haemagglutinin genes of H9N2 avian influenza viruses isolated from commercial chickens in Iran. Tropical Animal Health and Production, 2010, 42, 1291-1297.	0.5	22
211	Transmission of avian H9N2 influenza viruses in a murine model. Veterinary Microbiology, 2010, 142, 211-216.	0.8	16
212	Molecular adaptation of an H7N3 wild duck influenza virus following experimental multiple passages in quail and turkey. Virology, 2010, 408, 167-173.	1.1	28
213	Cellular response to influenza virus infection: a potential role for autophagy in CXCL10 and interferon-alpha induction. Cellular and Molecular Immunology, 2010, 7, 263-270.	4.8	64
214	Epidemiological Baseline of Influenza Virus in Wild Aquatic Birds in Hong Kong during the Pre-H5N1 Endemic Era. Nature Precedings, 2010, , .	0.1	0
215	Complete-Proteome Mapping of Human Influenza A Adaptive Mutations: Implications for Human Transmissibility of Zoonotic Strains. PLoS ONE, 2010, 5, e9025.	1.1	85
216	Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic. Journal of General Virology, 2010, 91, 949-959.	1.3	102
217	Evolution of highly pathogenic avian H5N1 influenza viruses and the emergence of dominant variants. Journal of General Virology, 2010, 91, 1984-1995.	1.3	26
218	The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks. Journal of Virology, 2010, 84, 1527-1535.	1.5	124
219	Influenza Vaccines. Advances in Virus Research, 2010, 77, 63-84.	0.9	42
220	Avian influenza: our current understanding. Animal Health Research Reviews, 2010, 11, 19-33.	1.4	47

#	Article	IF	CITATIONS
221	Cloning and phylogenetic analysis of hemagglutinin gene of H9N2 subtype avian influenza virus from different isolates in China during 2002 to 2009. Poultry Science, 2010, 89, 1136-1143.	1.5	21
222	A 27-Amino-Acid Deletion in the Neuraminidase Stalk Supports Replication of an Avian H2N2 Influenza A Virus in the Respiratory Tract of Chickens. Journal of Virology, 2010, 84, 11831-11840.	1.5	69
223	Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan 1995-2004. Virology Journal, 2010, 7, 137.	1.4	41
224	Avian influenza A (H9N2): computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population. Virology Journal, 2010, 7, 319.	1.4	53
225	Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells. Virology Journal, 2010, 7, 71.	1.4	17
226	Phylogenetic Analysis of the Hemagglutinin Genes of 12 H9N2 Influenza Viruses Isolated from Chickens in Iran from 2003 to 2005. Avian Diseases, 2010, 54, 870-874.	0.4	12
227	Evaluation the Quality of Oil-Emulsion Avian Influenza Subgroup H9N2 Vaccines in In-Vitro. Procedia in Vaccinology, 2010, 2, 22-25.	0.4	0
228	Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China. Virus Research, 2010, 151, 26-32.	1.1	30
229	Single Vaccination Provides Limited Protection to Ducks and Geese Against H5N1 High Pathogenicity Avian Influenza Virus. Avian Diseases, 2010, 54, 1224-1229.	0.4	29
231	Evolution of H5N1 influenza virus through proteotyping of hemagglutinin with high resolution mass spectrometry. Analyst, The, 2011, 136, 3259.	1.7	12
232	An overview of Influenza A virus receptors. Critical Reviews in Microbiology, 2011, 37, 157-165.	2.7	42
233	Host Immune and Apoptotic Responses to Avian Influenza Virus H9N2 in Human Tracheobronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 24-33.	1.4	74
236	Interspecific exchange of avian influenza virus genes in Alaska: the influence of transâ€hemispheric migratory tendency and breeding ground sympatry. Molecular Ecology, 2011, 20, 1015-1025.	2.0	47
237	Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infection, Genetics and Evolution, 2011, 11, 1790-1797.	1.0	32
238	Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations. Virology Journal, 2011, 8, 467.	1.4	34
239	H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens. Virology Journal, 2011, 8, 64.	1.4	38
240	Specific subtyping of influenza A virus using a recombinant hemagglutinin protein expressed in baculovirus. Molecular Biology Reports, 2011, 38, 3293-3298.	1.0	9
241	Characterization of H9N2 influenza viruses isolated from Dongting Lake wetland in 2007. Archives of Virology, 2011, 156, 95-105.	0.9	19

#	Article	IF	CITATIONS
242	Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence. Virology Journal, 2011, 8, 13.	1.4	68
243	A baculovirus dual expression system-based vaccine confers complete protection against lethal chall challenge with H9N2 avian influenza virus in mice. Virology Journal, 2011, 8, 273.	1.4	10
244	Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin. Virology Journal, 2011, 8, 328.	1.4	40
245	Genetic variation of the hemagglutinin of avian influenza virus H9N2. Journal of Medical Virology, 2011, 83, 838-846.	2.5	17
246	Amino Acid Residues 253 and 591 of the PB2 Protein of Avian Influenza Virus A H9N2 Contribute to Mammalian Pathogenesis. Journal of Virology, 2011, 85, 9641-9645.	1.5	65
247	Influenza A Virus Monitoring in Urban and Free-Ranging Pigeon Populations in Germany, 2006–2008. Avian Diseases, 2011, 55, 447-450.	0.4	12
248	Isolation and Characterization of a Novel H9N2 Influenza Virus in Korean Native Chicken Farm. Avian Diseases, 2011, 55, 724-727.	0.4	20
249	Type 1 Responses of Human Vγ9VÎ′2 T Cells to Influenza A Viruses. Journal of Virology, 2011, 85, 10109-10116.	1.5	73
250	Phylogenetic Diversity and Genotypical Complexity of H9N2 Influenza A Viruses Revealed by Genomic Sequence Analysis. PLoS ONE, 2011, 6, e17212.	1.1	73
251	Evidence for Subclinical Avian Influenza Virus Infections Among Rural Thai Villagers. Clinical Infectious Diseases, 2011, 53, e107-e116.	2.9	67
252	H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken. Journal of General Virology, 2011, 92, 1843-1853.	1.3	44
253	Changing Patterns of H6 Influenza Viruses in Hong Kong Poultry Markets. Influenza Research and Treatment, 2011, 2011, 1-9.	1.5	8
254	Rapid evolution of low-pathogenic H9N2 avian influenza viruses following poultry vaccination programmes. Journal of General Virology, 2011, 92, 36-50.	1.3	85
255	lsolation, identification, and phylogenetic analysis of reassortant low-pathogenic avian influenza virus H3N1 from Pakistan. Poultry Science, 2012, 91, 129-138.	1.5	3
256	One Health: The Hong Kong Experience with Avian Influenza. Current Topics in Microbiology and Immunology, 2012, 365, 281-298.	0.7	24
257	Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerging Microbes and Infections, 2012, 1, 1-10.	3.0	114
258	Identification of Host Genes Linked with the Survivability of Chickens Infected with Recombinant Viruses Possessing H5N1 Surface Antigens from a Highly Pathogenic Avian Influenza Virus. Journal of Virology, 2012, 86, 2686-2695.	1.5	25
259	Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2579-2584.	3.3	385

#	Article	IF	CITATIONS
261	An H9N2 Influenza Virus Vaccine Prepared from a Non-Pathogenic Isolate from a Migratory Duck Confers Protective Immunity in Mice against Challenge with an H9N2 Virus Isolated from a Girl in Hong Kong. Journal of Veterinary Medical Science, 2012, 74, 441-447.	0.3	6
262	Lessons from Emergence of A/Goose/Guangdong/1996â€Like H5N1 Highly Pathogenic Avian Influenza Viruses and Recent Influenza Surveillance Efforts in Southern China. Zoonoses and Public Health, 2012, 59, 32-42.	0.9	38
263	Complete genome characterization of avian influenza virus subtype H9N2 from a commercial quail flock in Egypt. Virus Genes, 2012, 45, 283-294.	0.7	31
264	Quail as a potential mixing vessel for the generation of new reassortant influenza A viruses. Veterinary Microbiology, 2012, 160, 305-313.	0.8	28
265	Evolutionary characterization of hemagglutinin gene of H9N2 influenza viruses isolated from Asia. Research in Veterinary Science, 2012, 93, 234-239.	0.9	17
266	Isolation and characterization of H6N1 and H9N2 avian influenza viruses from Ducks in Hanoi, Vietnam. Virus Research, 2012, 163, 448-453.	1.1	13
267	Isolation and mutation trend analysis of influenza A virus subtype H9N2 in Egypt. Virology Journal, 2012, 9, 173.	1.4	38
268	Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. Journal of General Virology, 2012, 93, 2337-2345.	1.3	36
269	Effect of Cocirculation of Highly Pathogenic Avian Influenza H5N1 Subtype with Low Pathogenic H9N2 Subtype on the Spread of Infections. Avian Diseases, 2012, 56, 849-857.	0.4	45
270	Phylogenetic and Pathogenic Analyses of Avian Influenza A H5N1 Viruses Isolated from Poultry in Vietnam. PLoS ONE, 2012, 7, e50959.	1.1	22
271	Pandemic Influenza A H1N1 (2009) Virus: Lessons from the Past and Implications for the Future. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2012, 23, 12-17.	0.7	24
272	Genetic characterization of subtype H1 avian influenza viruses isolated from live poultry markets in Zhejiang Province, China, in 2011. Virus Genes, 2012, 44, 441-449.	0.7	45
273	Phylogenetic analysis of hemagglutinin genes of 40 H9N2 subtype avian influenza viruses isolated from poultry in China from 2010 to 2011. Virus Genes, 2012, 45, 69-75.	0.7	17
274	Isolation of H9N2 avian influenza virus from bobwhite quail (Colinus virginianus) in Egypt. Archives of Virology, 2012, 157, 1167-1172.	0.9	71
275	Detection of highly pathogenic influenza and pandemic influenza virus in formalin fixed tissues by immunohistochemical methods. Journal of Virological Methods, 2012, 179, 409-413.	1.0	20
276	Molecular and antigenic characterization of H9N2 avian influenza virus isolates from chicken flocks between 1998 and 2007 in China. Veterinary Microbiology, 2012, 156, 285-293.	0.8	40
277	Genetic and pathobiologic characterization of H3N2 canine influenza viruses isolated in the Jiangsu Province of China in 2009–2010. Veterinary Microbiology, 2012, 158, 247-258.	0.8	38
278	Identification of three H1N1 influenza virus groups with natural recombinant genes circulating from 1918 to 2009 Virology 2012 427 60-66	1.1	16

#	Article	IF	CITATIONS
279	Characterization of an H4N2 avian influenza virus isolated from domestic duck in Dongting Lake wetland in 2009. Virus Genes, 2012, 44, 24-31.	0.7	14
280	Characterization of avian influenza viruses isolated from domestic ducks in Vietnam in 2009 and 2010. Archives of Virology, 2012, 157, 247-257.	0.9	28
281	Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses, 2013, 7, 120-131.	1.5	10
282	The genetic and antigenic diversity of avian influenza viruses isolated from domestic ducks, muscovy ducks, and chickens in northern and southern Vietnam, 2010–2012. Virus Genes, 2013, 47, 317-329.	0.7	40
283	Characterization of recombinant H9N2 influenza viruses isolated from wild ducks in China. Veterinary Microbiology, 2013, 166, 327-336.	0.8	16
284	Genetic variation and phylogenetic analysis of hemagglutinin genes of H9 avian influenza viruses isolated in China during 2010–2012. Veterinary Microbiology, 2013, 165, 312-318.	0.8	17
285	Full-length characterization and phylogenetic analysis of hemagglutinin gene of H9N2 virus isolated from broilers in Iran during 1998–2007. Comparative Clinical Pathology, 2013, 22, 321-330.	0.3	7
286	Human H7N9 avian influenza virus infection: a review and pandemic risk assessment. Emerging Microbes and Infections, 2013, 2, 1-5.	3.0	23
287	Emerging multiple reassortant H5N5 avian influenza viruses in ducks, China, 2008. Veterinary Microbiology, 2013, 167, 296-306.	0.8	37
288	The avian and mammalian host range of highly pathogenic avian H5N1 influenza. Virus Research, 2013, 178, 3-11.	1.1	50
289	Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30. Virology Journal, 2013, 10, 243.	1.4	52
290	Minimizing the threat of pandemic emergence from avian influenza in poultry systems. BMC Infectious Diseases, 2013, 13, 592.	1.3	16
292	The characterization of low pathogenic avian influenza viruses isolated from wild birds in northern Vietnam from 2006 to 2009. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 581-590.	0.7	17
293	Investigation of Influenza Virus Polymerase Activity in Pig Cells. Journal of Virology, 2013, 87, 384-394.	1.5	46
294	Genome-scale evolution and phylodynamics of H5N1 influenza virus in China during 1996–2012. Veterinary Microbiology, 2013, 167, 383-393.	0.8	16
295	Characterisation and haemagglutinin gene epitope mapping of a variant strain of H5N1 subtype avian influenza virus. Veterinary Microbiology, 2013, 162, 614-622.	0.8	9
296	Evidence of avian-like H9N2 influenza A virus among dogs in Guangxi, China. Infection, Genetics and Evolution, 2013, 20, 471-475.	1.0	64
297	Antibody survey on avian influenza viruses using egg yolks of ducks in Hanoi between 2010 and 2012. Veterinary Microbiology, 2013, 166, 179-183.	0.8	7

		REPORT	
#	Article	IF	CITATIONS
298	Domestic cats and dogs are susceptible to H9N2 avian influenza virus. Virus Research, 2013, 175, 52-57.	1.1	57
299	Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia. Journal of Infection and Public Health, 2013, 6, 69-79.	1.9	46
300	An overview of the highly pathogenic H5N1 influenza virus. Virologica Sinica, 2013, 28, 3-15.	1.2	15
301	Connecting the study of wild influenza with the potential for pandemic disease. Infection, Genetics and Evolution, 2013, 17, 162-187.	1.0	70
302	The emergence and diversification of panzootic H5N1 influenza viruses. Virus Research, 2013, 178, 35-43.	1.1	107
303	Natural history of highly pathogenic avian influenza H5N1. Virus Research, 2013, 178, 63-77.	1.1	122
304	Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers. Journal of Infection and Public Health, 2013, 6, 438-447.	1.9	36
305	Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh. Emerging Infectious Diseases, 2013, 19, .	2.0	70
306	Full Genome Sequence of a Natural Reassortant H9N2 Avian Influenza Virus Isolated from Domestic Ducks in Jiangsu Province, China. Genome Announcements, 2013, 1, .	0.8	8
307	A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection. International Journal of Molecular Sciences, 2013, 14, 7327-7340.	1.8	14
308	Complex Reassortment of Multiple Subtypes of Avian Influenza Viruses in Domestic Ducks at the Dongting Lake Region of China. Journal of Virology, 2013, 87, 9452-9462.	1.5	80
309	<scp>H</scp> 9 <scp>N</scp> 2 influenza viruses from birds used in falconry. Influenza and Other Respiratory Viruses, 2013, 7, 1241-1245.	1.5	13
310	Avian influenza virus NS1. Virulence, 2013, 4, 583-588.	1.8	10
311	Assessing the fitness of distinct clades of influenza A (H9N2) viruses. Emerging Microbes and Infections, 2013, 2, 1-11.	3.0	49
312	The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1. Virulence, 2013, 4, 612-623.	1.8	12
313	Matriptase, HAT, and TMPRSS2 Activate the Hemagglutinin of H9N2 Influenza A Viruses. Journal of Virology, 2013, 87, 1811-1820.	1.5	116
315	H9N2 avian influenza virus in Korea: evolution and vaccination. Clinical and Experimental Vaccine Research, 2013, 2, 26.	1.1	80
316	A Cross-Sectional Study of Avian Influenza in One District of Guangzhou, 2013. PLoS ONE, 2014, 9, e111218.	1.1	5

#	Article	IF	CITATIONS
317	Improving pandemic influenza risk assessment. ELife, 2014, 3, e03883.	2.8	53
318	Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match". Clinical and Experimental Vaccine Research, 2014, 3, 140.	1.1	22
319	Complete Genome Sequence of an H9N2 Influenza Virus Lethal to Chickens. Genome Announcements, 2014, 2, .	0.8	6
320	Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunology, 2014, , ,	0.7	11
321	Genesis of avian influenza H9N2 in Bangladesh. Emerging Microbes and Infections, 2014, 3, 1-17.	3.0	46
322	Phylogeography of Avian influenza A H9N2 in China. BMC Genomics, 2014, 15, 1110.	1.2	44
323	Effect of the PB2 and M Genes on the Replication of H6 Influenza Virus in Chickens. Influenza Research and Treatment, 2014, 2014, 1-6.	1.5	4
324	Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO Journal, 2014, 33, 823-841.	3.5	340
325	Role of Poultry in the Spread of Novel H7N9 Influenza Virus in China. Journal of Virology, 2014, 88, 5381-5390.	1.5	127
326	Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet, The, 2014, 383, 714-721.	6.3	533
327	Avian influenza A H10N8—a virus on the verge?. Lancet, The, 2014, 383, 676-677.	6.3	64
328	Full-genome analysis of avian influenza virus H9N2 from Bangladesh reveals internal gene reassortments with two distinct highly pathogenic avian influenza viruses. Archives of Virology, 2014, 159, 1651-1661.	0.9	41
329	Antigenic Mapping of the Hemagglutinin of an H9N2 Avian Influenza Virus Reveals Novel Critical Amino Acid Positions in Antigenic Sites. Journal of Virology, 2014, 88, 3898-3901.	1.5	45
330	Analysis of the phylogeny of Chinese H9N2 avian influenza viruses and their pathogenicity in mice. Archives of Virology, 2014, 159, 2575-2586.	0.9	12
331	Alternative Reassortment Events Leading to Transmissible H9N1 Influenza Viruses in the Ferret Model. Journal of Virology, 2014, 88, 66-71.	1.5	36
332	Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China. Veterinary Microbiology, 2014, 174, 309-315.	0.8	83
333	Efficient replication and strong induction of innate immune responses by H9N2 avian influenza virus in human dendritic cells. Virology, 2014, 471-473, 38-48.	1.1	9
334	Avian Influenza Virus Transmission to Mammals. Current Topics in Microbiology and Immunology, 2014, 385, 137-155.	0.7	57

		CITATION REPORT		
#	Article		IF	Citations
335	Influenza A Virus Reassortment. Current Topics in Microbiology and Immunology, 2014	1, 385, 377-401.	0.7	110
336	Adaptation of a natural reassortant H5N2 avian influenza virus in mice. Veterinary Micr 172, 568-574.	obiology, 2014,	0.8	19
337	Interactions between the Influenza A Virus RNA Polymerase Components and Retinoic Gene I. Journal of Virology, 2014, 88, 10432-10447.	Acid-Inducible	1.5	38
338	Evolution and Ecology of Influenza A Viruses. Current Topics in Microbiology and Immu 385, 359-375.	ınology, 2014,	0.7	282
339	Sequence and phylogenetic analysis of surface protein genes of emerging H9N2 influent isolated from poultry in two geographical regions of China. Virus Genes, 2014, 48, 479	nza viruses 1-485.	0.7	5
340	Molecular characterization and phylogenetic analysis of H3 subtype avian influenza vir from domestic ducks in Zhejiang Province in China. Virus Genes, 2014, 49, 80-88.	uses isolated	0.7	14
341	Phylogenetics of varied subtypes of avian influenza viruses in China: potential threat to Protein and Cell, 2014, 5, 253-257.) humans.	4.8	31
342	Phylogenetic and antigenic characterization of reassortant H9N2 avian influenza virus€ from wild waterfowl in the East Dongting Lake wetland in 2011–2012. Virology Journ	es isolated nal, 2014, 11, 77.	1.4	17
343	Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt be 2013. Archives of Virology, 2014, 159, 2861-2876.	tween 2011 and	0.9	58
344	Characterization of the amantadine-resistant H5N1 highly pathogenic avian influenza v from quails in Southern China. Virus Genes, 2014, 49, 223-232.	variants isolated	0.7	3
345	Avian influenza virus ecology in Iceland shorebirds: Intercontinental reassortment and Infection, Genetics and Evolution, 2014, 28, 130-136.	movement.	1.0	18
346	Genetic Analysis of an H5N2 Highly Pathogenic Avian Influenza Virus Isolated from a Cl Bird Market in Northern Vietnam in 2012. Journal of Veterinary Medical Science, 2014,	nicken in a Live 76, 85-87.	0.3	8
348	Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact transmission by respiratory droplets. Scientific Reports, 2015, 5, 15928.	and inefficient	1.6	35
349	Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from liv markets in Zhejiang Province, eastern China. Scientific Reports, 2015, 5, 17508.	ve poultry	1.6	40
350	Protective efficacy of an inactivated vaccine against H9N2 avian influenza virus in duck Journal, 2015, 12, 143.	es. Virology	1.4	6
351	Human infection with an avian influenza A (H9N2) virus in the middle region of China. Medical Virology, 2015, 87, 1641-1648.	lournal of	2.5	71
352	Characterization of Low Pathogenic Avian Influenza Virus Subtype H9N2 Isolated from Mynah Birds (Acridotheres tristis) in the Sultanate of Oman. Avian Diseases, 2015, 59,	Free-Living 329-334.	0.4	9
353	microRNAs in avian influenza virus H9N2-infected and non-infected chicken embryo fib Genetics and Molecular Research, 2015, 14, 9081-9091.	roblasts.	0.3	23

#	Article	IF	CITATIONS
354	Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh. Emerging Infectious Diseases, 2015, 21, 2174-2177.	2.0	12
355	Emerging Influenza Strains in the Last Two Decades: A Threat of a New Pandemic?. Vaccines, 2015, 3, 172-185.	2.1	32
356	New reassortant H5N8 highly pathogenic avian influenza virus from waterfowl in Southern China. Frontiers in Microbiology, 2015, 6, 1170.	1.5	20
357	Phenotypic and Genetic Characterization of Avian Influenza H5N2 Viruses with Intra- and Inter-Duck Variations in Taiwan. PLoS ONE, 2015, 10, e0133910.	1.1	2
358	Detection and Genetic Characteristics of H9N2 Avian Influenza Viruses from Live Poultry Markets in Hunan Province, China. PLoS ONE, 2015, 10, e0142584.	1.1	11
359	Phylogenetic Analysis of Hemagglutinin Genes of H9N2 Avian Influenza Viruses Isolated from Chickens in Shandong, China, between 1998 and 2013. BioMed Research International, 2015, 2015, 1-6.	0.9	10
360	Challenges and Strategies of Laboratory Diagnosis for Newly Emerging Influenza Viruses in Taiwan: A Decade after SARS. BioMed Research International, 2015, 2015, 1-7.	0.9	7
361	Coexistence of Avian Influenza Virus H10 and H9 Subtypes among Chickens in Live Poultry Markets during an Outbreak of Infection with a Novel H10N8 Virus in Humans in Nanchang, China. Japanese Journal of Infectious Diseases, 2015, 68, 364-369.	0.5	8
362	Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail. Journal of General Virology, 2015, 96, 2511-2521.	1.3	14
363	Extended full-genome phylogenetic analysis of the first human A/H5N1 avian influenza case in North America. Infection, Genetics and Evolution, 2015, 32, 327-329.	1.0	1
364	H7N9: Preparing for the Unexpected in Influenza. Annual Review of Medicine, 2015, 66, 361-371.	5.0	39
365	Sialic Acid-Binding Protein <i>Sp</i> 2CBMTD Protects Mice against Lethal Challenge with Emerging Influenza A (H7N9) Virus. Antimicrobial Agents and Chemotherapy, 2015, 59, 1495-1504.	1.4	9
366	Characterization of an H9N2 avian influenza virus from a Fringilla montifringilla brambling in northern China. Virology, 2015, 476, 289-297.	1.1	11
367	Beagle dogs have low susceptibility to BJ94-like H9N2 avian influenza virus. Infection, Genetics and Evolution, 2015, 31, 216-220.	1.0	5
368	Structure and Receptor Binding Preferences of Recombinant Hemagglutinins from Avian and Human H6 and H10 Influenza A Virus Subtypes. Journal of Virology, 2015, 89, 4612-4623.	1.5	23
369	Genetic tuning of avian influenza A (H7N9) virus promotes viral fitness within different species. Microbes and Infection, 2015, 17, 118-122.	1.0	19
370	The Nucleoprotein of Newly Emerged H7N9 Influenza A Virus Harbors a Unique Motif Conferring Resistance to Antiviral Human MxA. Journal of Virology, 2015, 89, 2241-2252.	1.5	56
371	H9N2 influenza virus in China: a cause of concern. Protein and Cell, 2015, 6, 18-25.	4.8	182

#	Article	IF	CITATIONS
372	A Systematic Review and Meta-Analysis of the Seroprevalence of Influenza A(H9N2) Infection Among Humans. Journal of Infectious Diseases, 2015, 212, 562-569.	1.9	72
373	Influenza A Virus on Oceanic Islands: Host and Viral Diversity in Seabirds in the Western Indian Ocean. PLoS Pathogens, 2015, 11, e1004925.	2.1	20
374	Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea. Infection, Genetics and Evolution, 2015, 34, 267-277.	1.0	76
375	Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China. Journal of Virology, 2015, 89, 8671-8676.	1.5	212
376	Influenza A virus plasticity—A temporal analysis of species-associated genomic signatures. Journal of the Formosan Medical Association, 2015, 114, 456-463.	0.8	2
377	Differential replication properties among H9N2 avian influenza viruses of Eurasian origin. Veterinary Research, 2015, 46, 75.	1.1	12
378	Veterinary influenza vaccines against avian influenza in China. Future Virology, 2015, 10, 585-595.	0.9	6
379	Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses. Virologica Sinica, 2015, 30, 200-207.	1.2	20
380	Amino acid substitutions in the neuraminidase protein of an H9N2 avian influenza virus affect its airborne transmission in chickens. Veterinary Research, 2015, 46, 44.	1.1	25
381	Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy. Journal of Biomedical Optics, 2015, 20, 037006.	1.4	26
382	Transmission of influenza A viruses. Virology, 2015, 479-480, 234-246.	1.1	140
383	Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus. Cell Reports, 2015, 12, 1831-1841.	2.9	13
384	Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virology, 2015, 10, 1033-1047.	0.9	9
385	Sunspot Activity, Influenza and Ebola Outbreak Connection. Journal of Astrobiology & Outreach, 2016, 4, .	0.1	5
386	Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens. International Journal of Molecular Sciences, 2016, 17, 1990.	1.8	11
387	lsolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015. Eurosurveillance, 2016, 21, .	3.9	54
388	Influenza virus infections: clinical update, molecular biology, and therapeutic options. , 2016, , 1-32.		2
389	First outbreaks and phylogenetic analyses of avian influenza H9N2 viruses isolated from poultry flocks in Morocco. Virology Journal, 2016, 13, 140.	1.4	46

#	Article	IF	CITATIONS
390	Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail. PLoS ONE, 2016, 11, e0149608.	1.1	9
391	Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential. PLoS Pathogens, 2016, 12, e1005620.	2.1	48
392	Vaccination against H9N2 avian influenza virus reduces bronchusâ€associated lymphoid tissue formation in cynomolgus macaques after intranasal virus challenge infection. Pathology International, 2016, 66, 678-686.	0.6	4
393	Endemic Variation of H9N2 Avian Influenza Virus in China. Avian Diseases, 2016, 60, 817.	0.4	27
394	Impact of a potential glycosylation site at neuraminidase amino acid 264 of influenza A/H9N2 virus. Veterinary Microbiology, 2016, 196, 9-13.	0.8	3
395	H9N2 low pathogenic avian influenza in Pakistan (2012–2015). Veterinary Record Open, 2016, 3, e000171.	0.3	24
396	Sequence and phylogenetic analysis of hemagglutinin genes of H9N2 influenza viruses isolated from chicken in China from 2013 to 2015. Journal of Integrative Agriculture, 2016, 15, 2604-2612.	1.7	2
397	Recombinant Newcastle disease virus expressing H9 HA protects chickens against heterologous avian influenza H9N2 virus challenge. Vaccine, 2016, 34, 2537-2545.	1.7	28
399	The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals. Emerging Microbes and Infections, 2016, 5, 1-12.	3.0	28
400	Human–Animal Interface: The Case for Influenza Interspecies Transmission. Advances in Experimental Medicine and Biology, 2016, 972, 17-33.	0.8	26
401	Avian Influenza A Viruses: Evolution and Zoonotic Infection. Seminars in Respiratory and Critical Care Medicine, 2016, 37, 501-511.	0.8	23
402	A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice. Journal of Virology, 2016, 90, 9806-9825.	1.5	67
403	Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine. Scientific Reports, 2016, 6, 30382.	1.6	15
404	Intense circulation of A/H5N1 and other avian influenza viruses in Cambodian live-bird markets with serological evidence of sub-clinical human infections. Emerging Microbes and Infections, 2016, 5, 1-9.	3.0	42
405	Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Scientific Reports, 2016, 6, 18745.	1.6	51
406	Ecological dynamics of influenza A viruses: cross-species transmission and global migration. Scientific Reports, 2016, 6, 36839.	1.6	36
409	The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom. Avian Diseases, 2016, 60, 126.	0.4	15
410	The complexity of human infected AIV H5N6 isolated from China. BMC Infectious Diseases, 2016, 16, 600.	1.3	23

#	Article	IF	CITATIONS
411	Identification of amino acids in H9N2 influenza virus neuraminidase that are critical for the binding of two mouse monoclonal antibodies. Veterinary Microbiology, 2016, 187, 58-63.	0.8	8
412	Experimental Infection of Chickens with Intercontinental Reassortant H9N2 Influenza Viruses from Wild Birds. Avian Diseases, 2016, 60, 493-495.	0.4	3
413	A Systematic Review of the Comparative Epidemiology of Avian and Human Influenza A H5N1 and H7N9 - Lessons and Unanswered Questions. Transboundary and Emerging Diseases, 2016, 63, 602-620.	1.3	66
414	Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review. EcoHealth, 2016, 13, 171-198.	0.9	25
415	Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea. Virology, 2016, 488, 225-231.	1.1	45
416	Prevalence of avian respiratory viruses in broiler flocks in Egypt. Poultry Science, 2016, 95, 1271-1280.	1.5	90
417	Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549). Immunological Investigations, 2016, 45, 116-129.	1.0	12
418	Is a highly pathogenic avian influenza virus H5N1 fragment recombined in PB1 the key for the epidemic of the novel AIV H7N9 in China, 2013?. International Journal of Infectious Diseases, 2016, 43, 85-89.	1.5	6
419	Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiology Reviews, 2016, 40, 68-85.	3.9	86
420	M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. Journal of Virology, 2017, 91, .	1.5	41
421	Quantifying predictors for the spatial diffusion of avian influenza virus in China. BMC Evolutionary Biology, 2017, 17, 16.	3.2	31
422	Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. Journal of Virology, 2017, 91, .	1.5	19
423	The PB2 mutation with lysine at 627 enhances the pathogenicity of avian influenza (H7N9) virus which belongs to a non-zoonotic lineage. Scientific Reports, 2017, 7, 2352.	1.6	13
424	Effects of calcitriol (1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice. Virology Journal, 2017, 14, 10.	1.4	35
425	Increased virulence of a PB2/HA mutant of an avian H9N2 influenza strain after three passages in porcine differentiated airway epithelial cells. Veterinary Microbiology, 2017, 211, 129-134.	0.8	4
426	Theoretical investigation on the binding specificity of fluorinated sialyldisaccharides Neu5Acα(2–3)Gal and Neu5Acα(2–6)Gal with influenza hemagglutinin H1 – A Molecular Dynamics Study. Journal of Carbohydrate Chemistry, 2017, 36, 111-128.	0.4	5
427	The role of nuclear NS1 protein in highly pathogenic H5N1 influenza viruses. Microbes and Infection, 2017, 19, 587-596.	1.0	15
428	Influenza virusâ€like particles harboring H9N2 <scp>HA</scp> and <scp>NA</scp> proteins induce a protective immune response in chicken. Influenza and Other Respiratory Viruses, 2017, 11, 518-524.	1.5	10

#	Article	IF	CITATIONS
429	Molecular Epidemiology of a novel re-assorted epidemic strain of equine influenza virus in Pakistan in 2015–16. Virus Research, 2017, 240, 56-63.	1.1	7
430	Pathobiology of Clade 2.3.4.4 H5Nx High-Pathogenicity Avian Influenza Virus Infections in Minor Gallinaceous Poultry Supports Early Backyard Flock Introductions in the Western United States in 2014-2015. Journal of Virology, 2017, 91, .	1.5	29
431	Surveillance of Live Poultry Markets for Low Pathogenic Avian Influenza Viruses in Guangxi Province, Southern China, from 2012–2015. Scientific Reports, 2017, 7, 17577.	1.6	22
432	Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerging Microbes and Infections, 2017, 6, 1-11.	3.0	56
433	A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiology and Infection, 2017, 145, 3320-3333.	1.0	74
434	Susceptibility of chickens, quail, and pigeons to an H7N9 human influenza virus and subsequent egg-passaged strains. Archives of Virology, 2017, 162, 103-116.	0.9	7
435	Construction of a recombinant duck enteritis virus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks. Archives of Virology, 2017, 162, 171-179.	0.9	12
436	Recombinant influenza H9N2 virus with a substitution of H3 hemagglutinin transmembrane domain showed enhanced immunogenicity in mice and chicken. Scientific Reports, 2017, 7, 17923.	1.6	14
437	The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents. Clinical and Experimental Vaccine Research, 2017, 6, 83.	1.1	5
438	Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. International Journal of Molecular Sciences, 2017, 18, 2706.	1.8	29
439	Current situation of H9N2 subtype avian influenza in China. Veterinary Research, 2017, 48, 49.	1.1	142
440	Crosstalk between H9N2 avian influenza virus and crypt-derived intestinal organoids. Veterinary Research, 2017, 48, 71.	1.1	13
441	A Portrait of the Sialyl Glycan Receptor Specificity of the H10 Influenza Virus Hemagglutinin—A Picture of an Avian Virus on the Verge of Becoming a Pandemic?. Vaccines, 2017, 5, 51.	2.1	5
442	In silico thermodynamic stability of mammalian adaptation and virulence determinants in polymerase complex proteins of H9N2 virus. Journal of Genetic Engineering and Biotechnology, 2018, 16, 757-767.	1.5	5
443	A Gene Constellation in Avian Influenza A (H7N9) Viruses May Have Facilitated the Fifth Wave Outbreak in China. Cell Reports, 2018, 23, 909-917.	2.9	33
444	Characterization of avian influenza H9N2 viruses isolated from ostriches (Struthio camelus). Scientific Reports, 2018, 8, 2273.	1.6	12
445	Global genetic variation and transmission dynamics of H9N2 avian influenza virus. Transboundary and Emerging Diseases, 2018, 65, 504-517.	1.3	12
446	Preparing Live Influenza Vaccines against Potential Pandemic Influenza Using Nonpathogenic Avian Influenza Viruses and Cold-Adapted Master Donor Strain. , 0, , .		1

#	Article	IF	CITATIONS
447	A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice. Viruses, 2018, 10, 653.	1.5	30
448	The Multifaceted Zoonotic Risk of H9N2 Avian Influenza. Veterinary Sciences, 2018, 5, 82.	0.6	69
449	Tree shrew as a new animal model to study the pathogenesis of avian influenza (H9N2) virus infection. Emerging Microbes and Infections, 2018, 7, 1-11.	3.0	22
450	Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses, 2018, 10, 497.	1.5	177
451	Genetic characteristics of H9N2 avian influenza viruses isolated from free-range poultry in Eastern China, in 2014–2015. Poultry Science, 2018, 97, 3793-3800.	1.5	20
452	Characterization of H9N2 avian influenza viruses from the Middle East demonstrates heterogeneity at amino acid position 226 in the hemagglutinin and potential for transmission to mammals. Virology, 2018, 518, 195-201.	1.1	41
453	Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiology and Infection, 2018, 146, 1259-1266.	1.0	37
454	Critical Role of HAX-1 in Promoting Avian Influenza Virus Replication in Lung Epithelial Cells. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	14
455	Influenza A(H5N1) viruses with A(H9N2) single gene (matrix or PB1) reassortment isolated from Cambodian live bird markets. Virology, 2018, 523, 22-26.	1.1	13
456	Geographical and Historical Patterns in the Emergences of Novel Highly Pathogenic Avian Influenza (HPAI) H5 and H7 Viruses in Poultry. Frontiers in Veterinary Science, 2018, 5, 84.	0.9	72
457	Zoonotic Influenza and Human Health—Part 1: Virology and Epidemiology of Zoonotic Influenzas. Current Infectious Disease Reports, 2018, 20, 37.	1.3	12
458	Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt. Viruses, 2018, 10, 121.	1.5	47
459	H9N2 influenza viruses from Bangladesh: Transmission in chicken and New World quail. Influenza and Other Respiratory Viruses, 2018, 12, 814-817.	1.5	14
460	Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings. Veterinary Sciences, 2018, 5, 23.	0.6	51
461	Bayesian phylodynamics of avian influenza A virus H9N2 in Asia with time-dependent predictors of migration. PLoS Computational Biology, 2019, 15, e1007189.	1.5	22
462	The PB2 and M genes of genotype S H9N2 virus contribute to the enhanced fitness of H5Nx and H7N9 avian influenza viruses in chickens. Virology, 2019, 535, 218-226.	1.1	13
463	A Global Perspective on H9N2 Avian Influenza Virus. Viruses, 2019, 11, 620.	1.5	194
464	PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathogens, 2019, 15, e1007919.	2.1	34

#	Article	IF	CITATIONS
465	Genetic, Molecular, and Pathogenic Characterization of the H9N2 Avian Influenza Viruses Currently Circulating in South China. Viruses, 2019, 11, 1040.	1.5	12
466	Inferring host roles in bayesian phylodynamics of global avian influenza A virus H9N2. Virology, 2019, 538, 86-96.	1.1	13
467	Molecular characterization and receptor binding specificity of H9N2 avian influenza viruses based on poultry-related environmental surveillance in China between 2013 and 2016. Virology, 2019, 529, 135-143.	1.1	24
468	Avian influenza in the Greater Mekong Subregion, 2003–2018. Infection, Genetics and Evolution, 2019, 74, 103920.	1.0	14
469	Avian influenza A (H9N2) virus infections among poultry workers, swine workers, and the general population in Beijing, China, 2013â€2016: A serological cohort study. Influenza and Other Respiratory Viruses, 2019, 13, 415-425.	1.5	12
470	Adaptive amino acid substitutions enable transmission of an H9N2 avian influenza virus in guinea pigs. Scientific Reports, 2019, 9, 19734.	1.6	11
471	Avian influenza viruses in humans: lessons from past outbreaks. British Medical Bulletin, 2019, 132, 81-95.	2.7	85
472	The evolution and genetic diversity of avian influenza A(H9N2) viruses in Cambodia, 2015 – 2016. PLoS ONE, 2019, 14, e0225428.	1.1	10
473	Genetic Characteristics and Pathogenicity Analysis in Chickens and Mice of Three H9N2 Avian Influenza Viruses. Viruses, 2019, 11, 1127.	1.5	12
474	Flexibility <i>In Vitro</i> of Amino Acid 226 in the Receptor-Binding Site of an H9 Subtype Influenza A Virus and Its Effect <i>In Vivo</i> on Virus Replication, Tropism, and Transmission. Journal of Virology, 2019, 93, .	1.5	34
475	Genetic Compatibility of Reassortants between Avian H5N1 and H9N2 Influenza Viruses with Higher Pathogenicity in Mammals. Journal of Virology, 2019, 93, .	1.5	24
476	Molecular evolutionary and antigenic characteristics of newly isolated H9N2 avian influenza viruses in Guangdong province, China. Archives of Virology, 2019, 164, 607-612.	0.9	8
477	Development and evaluation of a new realâ€ŧime RTâ€PCR assay for detecting the latest H9N2 influenza viruses capable of causing human infection. Microbiology and Immunology, 2019, 63, 21-31.	0.7	11
478	Genetic characterization and pathogenesis of the first H9N2 low pathogenic avian influenza viruses isolated from chickens in Kenyan live bird markets. Infection, Genetics and Evolution, 2020, 78, 104074.	1.0	34
479	The PB2 and M genes are critical for the superiority of genotype S H9N2 virus to genotype H in optimizing viral fitness of H5Nx and H7N9 avian influenza viruses in mice. Transboundary and Emerging Diseases, 2020, 67, 758-768.	1.3	9
480	H9 Influenza Viruses: An Emerging Challenge. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038588.	2.9	58
481	Sporadic occurrence of H9N2 avian influenza infections in human in Anhui province, eastern China: A notable problem. Microbial Pathogenesis, 2020, 140, 103940.	1.3	10
482	Genetic incompatibilities and reduced transmission in chickens may limit the evolution of reassortants between H9N2 and panzootic H5N8 clade 2.3.4.4 avian influenza virus showing high virulence for mammals. Virus Evolution, 2020, 6, veae027	2.2	7

#	Article	IF	CITATIONS
483	Internal Gene Cassette From a Human-Origin H7N9 Influenza Virus Promotes the Pathogenicity of H9N2 Avian Influenza Virus in Mice. Frontiers in Microbiology, 2020, 11, 1441.	1.5	7
484	Controlling Avian Influenza Virus in Bangladesh: Challenges and Recommendations. Viruses, 2020, 12, 751.	1.5	19
485	Evolution of H9N2 avian influenza viruses in Iran, 2017–2019. Transboundary and Emerging Diseases, 2021, 68, 3405-3414.	1.3	3
486	Spotlight on avian pathology: can we reduce the pandemic threat of H9N2 avian influenza to human and avian health?. Avian Pathology, 2020, 49, 529-531.	0.8	5
487	Serological evidence of avian influenza virus subtype H5 and H9 in live bird market, Myanmar. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 73, 101562.	0.7	4
488	Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A Review of Molecular Markers. Viruses, 2020, 12, 541.	1.5	32
489	H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity. Journal of Virology, 2020, 94, .	1.5	13
490	Collective interactions augment influenza A virus replication in a host-dependent manner. Nature Microbiology, 2020, 5, 1158-1169.	5.9	32
491	Novel Reassortant Avian Influenza A(H9N2) Virus Isolate in Migratory Waterfowl in Hubei Province, China. Frontiers in Microbiology, 2020, 11, 220.	1.5	16
492	Reassortment and adaptive mutations of an emerging avian influenza virus H7N4 subtype in China. PLoS ONE, 2020, 15, e0227597.	1.1	10
493	A Well-Defined H9N2 Avian Influenza Virus Genotype with High Adaption in Mammals was Prevalent in Chinese Poultry Between 2016 to 2019. Viruses, 2020, 12, 432.	1.5	5
494	Comparison of pathogenicity of subtype H9 avian influenza wild-type viruses from a wide geographic origin expressing mono-, di-, or tri-basic hemagglutinin cleavage sites. Veterinary Research, 2020, 51, 48.	1.1	17
495	Recombinant Lactococcus Lactis Expressing M1-HA2 Fusion Protein Provides Protective Mucosal Immunity Against H9N2 Avian Influenza Virus in Chickens. Frontiers in Veterinary Science, 2020, 7, 153.	0.9	14
496	Adaptation of influenza viruses to human airway receptors. Journal of Biological Chemistry, 2021, 296, 100017.	1.6	58
497	A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transboundary and Emerging Diseases, 2021, 68, 110-126.	1.3	22
498	Genetic and Molecular Characterization of H9N2 Avian Influenza Viruses Isolated from Live Poultry Markets in Hubei Province, Central China, 2013–2017. Virologica Sinica, 2021, 36, 291-299.	1.2	5
499	Genetic Evolution Characteristics of Genotype G57 Virus, A Dominant Genotype of H9N2 Avian Influenza Virus. Frontiers in Microbiology, 2021, 12, 633835.	1.5	6
500	H9N2 influenza virus spillover into wild birds from poultry in China bind to humanâ€type receptors and transmit in mammals via respiratory droplets. Transboundary and Emerging Diseases, 2022, 69, 669-684.	1.3	15

#	Article	IF	CITATIONS
501	Effect of Avian Influenza H9N2 Subtype Virus Infection on Backyard Poultry Production. Science Letters, 2021, 9, 19-23.	0.7	2
502	Epidemiological surveillance of H9N2 avian influenza virus infection among chickens in farms and backyards in Egypt 2015-2016. Veterinary World, 2021, 14, 949-955.	0.7	3
503	Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens, 2021, 10, 630.	1.2	55
504	Molecular evolution of the hemagglutinin gene and epidemiological insight into low-pathogenic avian influenza H9N2 viruses in Egypt. Research in Veterinary Science, 2021, 136, 540-549.	0.9	1
505	Vitamin D receptor and 1α-hydroxylase are highly expressed in lungs of mice infected with H9N2 avian influenza viruses. Journal of Steroid Biochemistry and Molecular Biology, 2021, 211, 105907.	1.2	2
506	First report of field cases of Y280-like LPAI H9N2 strains in South Korean poultry farms: pathological findings and genetic characterization. Avian Pathology, 2021, 50, 327-338.	0.8	6
507	Development of a Rapid Fluorescent Diagnostic System to Detect Subtype H9 Influenza A Virus in Chicken Feces. International Journal of Molecular Sciences, 2021, 22, 8823.	1.8	3
508	Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N8) Virus in Pakistani Live Bird Markets Reveals Rapid Diversification of Clade 2.3.4.4b Viruses. Viruses, 2021, 13, 1633.	1.5	7
509	Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses, 2021, 13, 1919.	1.5	19
510	Molecular characterization and antigenic analysis of reassortant H9N2 subtype avian influenza viruses in Eastern China in 2016. Virus Research, 2021, 306, 198577.	1.1	5
511	Critical Influenza-Like Illness in a Nine-Year-Old Associated With a Poultry-Origin H9N2 Avian Influenza Virus: Risk Assessment and Zoonotic Potential. Frontiers in Virology, 2021, 1, .	0.7	0
512	Pathogenicity of H9N2 low pathogenic avian influenza viruses of different lineages isolated from live bird markets tested in three animal models: SPF chickens, Korean native chickens, and ducks. Poultry Science, 2021, 100, 101318.	1.5	18
513	In-silico evidence for enhancement of avian influenza virus H9N2 virulence by modulation of its hemagglutinin (HA) antigen function and stability during co-infection with infectious bronchitis virus in chickens. VirusDisease, 2021, 32, 548-558.	1.0	1
514	Development of a recombinant H9N2 influenza vaccine candidate against the Y280 lineage field virus and its protective efficacy. Vaccine, 2021, 39, 6201-6205.	1.7	6
515	Improved pathogenicity of H9N2 subtype of avian influenza virus induced by mutations occurred after serial adaptations in mice. Microbial Pathogenesis, 2021, 160, 105204.	1.3	5
516	Molecular characteristics of the <scp>H9N2</scp> avian influenza viruses in live poultry markets in Anhui Province, China, 2013 to 2018. Health Science Reports, 2021, 4, e230.	0.6	4
517	Live-bird markets in the Northeastern United States: a source of avian influenza in commercial poultry. , 0, , 19-24.		16
519	One Health: The Hong Kong Experience with Avian Influenza. Current Topics in Microbiology and Immunology, 2012, , 281-298.	0.7	6

#	Article	IF	CITATIONS
520	The role of animal models in influenza vaccine research. , 2008, , 161-202.		4
521	Heterologous protection against lethal A/HongKong/156/97 (H5N1) influenza virus infection in C57BL/6 mice. Journal of General Virology, 2000, 81, 2689-2696.	1.3	95
522	Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. Microbiology (United Kingdom), 2000, 81, 1283-1291.	0.7	134
523	Characterization of H5N2 influenza viruses from Italian poultry. Journal of General Virology, 2001, 82, 623-630.	1.3	53
524	H3N2 influenza viruses from domestic chickens in Italy: an increasing role for chickens in the ecology of influenza?. Journal of General Virology, 2002, 83, 413-420.	1.3	43
525	PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor. Journal of General Virology, 2016, 97, 39-48.	1.3	19
526	Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China. Journal of General Virology, 2016, 97, 844-854.	1.3	45
527	Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not. Journal of General Virology, 2017, 98, 1169-1173.	1.3	16
528	Implications of segment mismatch for influenza A virus evolution. Journal of General Virology, 2018, 99, 3-16.	1.3	78
529	IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. Journal of General Virology, 2018, 99, 464-474.	1.3	37
531	Influenza A H9N2: Aspects of Laboratory Diagnosis. Journal of Clinical Microbiology, 1999, 37, 3426-3427.	1.8	58
532	Detection of Influenza A Viruses from Different Species by PCR Amplification of Conserved Sequences in the Matrix Gene. Journal of Clinical Microbiology, 2000, 38, 4096-4101.	1.8	378
533	Genetic Characterization of an H1N2 Influenza Virus Isolated from a Pig In Indiana. Journal of Clinical Microbiology, 2000, 38, 2453-2456.	1.8	121
534	A Simple Restriction Fragment Length Polymorphism-Based Strategy That Can Distinguish the Internal Genes of Human H1N1, H3N2, and H5N1 Influenza A Viruses. Journal of Clinical Microbiology, 2000, 38, 2579-2583.	1.8	29
535	Isolation of the Newcastle Disease Virus and the H9N2 Influenza A Virus from Chicken Imported from China. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2003, 56, 333-339.	0.0	6
536	Phylogenetic and Molecular Characterization of H9N2 Influenza Isolates from Chickens in Northern China from 2007–2009. PLoS ONE, 2010, 5, e13063.	1.1	52
537	Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza. PLoS ONE, 2011, 6, e19311.	1.1	84
538	Reassortant H9N2 Influenza Viruses Containing H5N1-Like PB1 Genes Isolated from Black-Billed Magpies in Southern China. PLoS ONE, 2011, 6, e25808.	1.1	37

#	Article	IF	CITATIONS
539	Novel Reassortant Highly Pathogenic H5N2 Avian Influenza Viruses in Poultry in China. PLoS ONE, 2012, 7, e46183.	1.1	107
540	Birds and Viruses at a Crossroad - Surveillance of Influenza A Virus in Portuguese Waterfowl. PLoS ONE, 2012, 7, e49002.	1.1	12
541	Origin and Characteristics of Internal Genes Affect Infectivity of the Novel Avian-Origin Influenza A (H7N9) Virus. PLoS ONE, 2013, 8, e81136.	1.1	20
542	Genotype Diversity of H9N2 Viruses Isolated from Wild Birds and Chickens in Hunan Province, China. PLoS ONE, 2014, 9, e101287.	1.1	11
543	Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh. PLoS ONE, 2016, 11, e0152131.	1.1	41
544	A comprehensive retrospective study of the seroprevalence of H9N2 avian influenza viruses in occupationally exposed populations in China. PLoS ONE, 2017, 12, e0178328.	1.1	26
545	Endemicity of H9N2 and H5N1 avian influenza viruses in poultry in China poses a serious threat to poultry industry and public health. Frontiers of Agricultural Science and Engineering, 2016, 3, 11.	0.9	3
546	Evolution of influ- 245 enza A/H5N1 virus (1996-2016). Voprosy Virusologii, 2016, 61, 245-256.	0.1	5
547	Recent zoonoses caused by influenza A viruses. OIE Revue Scientifique Et Technique, 2000, 19, 197-225.	0.5	158
548	Microbial adaptation and change: avian influenza. OIE Revue Scientifique Et Technique, 2004, 23, 453-465.	0.5	79
549	Molecular epidemiology of H5N1 avian influenza. OIE Revue Scientifique Et Technique, 2009, 28, 39-47.	0.5	68
550	Prospective of Genomics in Revealing Transmission, Reassortment and Evolution of Wildlife-Borne Avian Influenza A (H5N1) Viruses. Current Genomics, 2011, 12, 466-474.	0.7	28
553	Weighing serological evidence of human exposure to animal influenza viruses â^ a literature review. Eurosurveillance, 2016, 21, .	3.9	32
554	Evaluation of RT-PCR for the Detection of Influenza Virus Serotype H9N2 among Broiler Chickens in Pakistan. International Journal of Poultry Science, 2008, 7, 1122-1127.	0.6	7
555	Molecular characterization and phylogenetic analysis of hemagglutinin and neuraminidase genes of H9N2 avian influenza viruses isolated in Iran in 1999 and 2009. African Journal of Microbiology Research, 2012, 6, .	0.4	4
556	Limited onward transmission potential of reassortment genotypes from chickens co-infected with H9N2 and H7N9 avian influenza viruses. Emerging Microbes and Infections, 2021, 10, 2030-2041.	3.0	6
557	Role of expression of host cytokines in the pathogenesis of H9N2-PB2 reassortant and non-reassortant H5N1 avian influenza viruses isolated from crows in BALB/c mice. Microbial Pathogenesis, 2021, 161, 105239.	1.3	1
559	Emerging and Reemerging Viral Pathogens. , 2003, , 1-38.		Ο

#	Article	IF	CITATIONS
560	Avian Influenza Viruses and Pandemic Influenza. , 2007, , 327-368.		1
561	Analysis of PB2 protein from H9N2 and H5N1 avian flu virus. Bioinformation, 2008, 3, 41-46.	0.2	3
562	The Development of Live-Attenuated Vaccines for Pandemic Influenza. , 2010, , 423-430.		0
563	Approaches on H5N1 Avian Influenza Spreading in Relation with Human Health Risk. , 2010, , 623-633.		0
564	The Role of Animal Models In Influenza Vaccine Research. , 2011, , 223-272.		1
565	Amino Acid Sequence Analysis of Hemagglutinin Protein of H9N2 Isolated from Broilers in Tehran in 2007. Iranian Journal of Virology, 2010, 4, 17-24.	0.0	0
566	Evolution of Influenza Viruses. , 2014, , 31-64.		1
567	Construction of a recombinant bacmid DNA containing influenza A virus hemagglutinin gene using a site-specific transposition mechanism. Vaccine Research, 2015, 2, 63-68.	0.3	0
568	Current information of H9N2 virus zoonotic infection and its emerging pandemic potential: A review. Community Acquired Infection, 2018, 5, 15.	0.1	0
570	Adequate Monitor of Avian Influenza Viral Infections and Foresight About Possibilities of Its Human Epidemic and Pandemic Infections. , 0, , .		0
571	Pathogen change of avian influenza virus in the live poultry market before and after vaccination of poultry in southern China. Virology Journal, 2021, 18, 213.	1.4	6
572	Molecular characterization, receptor binding property, and replication in chickens and mice of H9N2 avian influenza viruses isolated from chickens, peafowls, and wild birds in eastern China. Emerging Microbes and Infections, 2021, 10, 2098-2112.	3.0	28
573	Comparative safety and efficacy of two bivalent vaccines containing Newcastle disease LaSota and avian influenza H9N2 Sidrap isolate formulated with different oil adjuvants. Veterinary World, 2020, 13, 2493-2501.	0.7	2
574	Antibody Response of an H9 Subtype Avian Influenza Poultry Vaccine on Three Kinds of Wild Birds in Shanghai Zoo. Avian Diseases, 2020, 65, .	0.4	1
579	Phylogenetic analysis of neuraminidase gene of H9N2 avian influenza viruses isolated from chicken in Iran during 2010-2011. Iranian Journal of Microbiology, 2014, 6, 91-7.	0.8	3
580	The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2. Veterinary Research Forum, 2015, 6, 227-31.	0.3	6
582	Trend of Changes in the Titer of Antibody against Avian Influenza Virus H9n2 during Raising Period in Vaccinated and Unvaccinated Broiler Farms in Qazvin Province, Iran: A Cohort Study. Archives of Razi Institute, 2020, 75, 9-16.	0.4	0
583	A multiplex real-time RT-PCR method for detecting H5, H7 and H9 subtype avian influenza viruses in field and clinical samples. Virus Research, 2022, 309, 198669.	1.1	6

#	Article	IF	CITATIONS
584	Novel reassortment 2.3.4.4b H5N8 highly pathogenic avian influenza viruses circulating in Xinjiang, China. Preventive Veterinary Medicine, 2022, 199, 105564.	0.7	2
585	Ongoing genetic evolution of H9N2 avian influenza viruses in Iranian industrial poultry farms. Acta Veterinaria Hungarica, 2020, 68, 328-335.	0.2	2
586	The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus. Virology Journal, 2022, 19, 20.	1.4	2
587	Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety. Vaccines, 2022, 10, 162.	2.1	2
588	Intra- and inter-host evolution of H9N2 influenza A virus in Japanese quail. Virus Evolution, 2022, 8, veac001.	2.2	8
589	Characterization of H9N2 Avian Influenza Viruses Isolated from Poultry Products in a Mouse Model. Viruses, 2022, 14, 728.	1.5	3
590	Antigenic characterization of influenza and SARS-CoV-2 viruses. Analytical and Bioanalytical Chemistry, 2022, 414, 2841-2881.	1.9	11
591	Sequence characteristics and phylogenetic analysis of H9N2 subtype avian influenza A viruses detected from poultry and the environment in China, 2018. PeerJ, 2021, 9, e12512.	0.9	6
592	Characterizing the Core Internal Gene Pool of H9N2 Responsible for Continuous Reassortment With Other Influenza A Viruses. Frontiers in Microbiology, 2021, 12, 751142.	1.5	1
593	A Non-phylogeny-dependent Reassortment Detection Method for Influenza A Viruses. Frontiers in Virology, 2021, 1, .	0.7	0
612	Genetic Variations among Different Variants of G1-like Avian Influenza H9N2 Viruses and Their Pathogenicity in Chickens. Viruses, 2022, 14, 1030.	1.5	3
613	Emerging threat and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Research, 0, 11, 548.	0.8	0
614	Evolutionary and Mutational Characterization of the First H5N8 Subtype Influenza A Virus in Humans. Pathogens, 2022, 11, 666.	1.2	2
615	Emerging threats and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Research, 0, 11, 548.	0.8	2
616	Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes. Frontiers in Veterinary Science, 0, 9, .	0.9	6
617	Insights into Genetic Characteristics and Virological Features of Endemic Avian Influenza A (H9N2) Viruses in Egypt from 2017–2021. Viruses, 2022, 14, 1484.	1.5	4
618	PAâ€X protein assists H9N2 subtype avian influenza virus in escaping immune response of mucosal dendritic cells. Transboundary and Emerging Diseases, 2022, 69, .	1.3	1
620	Enhanced pathogenicity and transmissibility of H9N2 avian influenza virus in mammals by hemagglutinin mutations combined with PB2-627K. Virologica Sinica, 2023, 38, 47-55.	1.2	11

#	Article	IF	CITATIONS
621	Novel Zoonotic Avian Influenza Virus A(H3N8) Virus in Chicken, Hong Kong, China. Emerging Infectious Diseases, 2022, 28, 2009-2015.	2.0	15
622	Status and Challenges for Vaccination against Avian H9N2 Influenza Virus in China. Life, 2022, 12, 1326.	1.1	11
623	Emergence of chicken infection with novel reassortant H3N8 avian influenza viruses genetically close to human H3N8 isolate, China. Emerging Microbes and Infections, 2022, 11, 2553-2555.	3.0	7
624	A replication-deficient H9N2 influenza virus carrying H5 hemagglutinin conferred protection against H9N2 and H5N1 influenza viruses in mice. Frontiers in Microbiology, 0, 13, .	1.5	2
625	The Origin of Internal Genes Contributes to the Replication and Transmission Fitness of H7N9 Avian Influenza Virus. Journal of Virology, 2022, 96, .	1.5	9
626	Characterization of Neutralizing Monoclonal Antibodies and Identification of a Novel Conserved C-Terminal Linear Epitope on the Hemagglutinin Protein of the H9N2 Avian Influenza Virus. Viruses, 2022, 14, 2530.	1.5	2
627	Current situation and control strategies of H9N2 avian influenza in South Korea. Journal of Veterinary Science, 2023, 24, .	0.5	1
628	Key amino acid position 272 in neuraminidase determines the replication and virulence of H5N6 avian influenza virus in mammals. IScience, 2022, 25, 105693.	1.9	2
629	Avian influenza virus: Prevalence infection and therapy. , 2023, , 141-149.		0
630	Amino Acid Variation at Hemagglutinin Position 193 Impacts the Properties of H9N2 Avian Influenza Virus. Journal of Virology, 2023, 97, .	1.5	6
632	Protection of SPF Chickens by H9N2 Y439 and G1 Lineage Vaccine against Homologous and Heterologous Viruses. Vaccines, 2023, 11, 538.	2.1	0
633	Development of an Inactivated Avian Influenza Virus Vaccine against Circulating H9N2 in Chickens and Ducks. Vaccines, 2023, 11, 596.	2.1	2