Inventory of salt-affected soils and waterlogged areas: A

International Journal of Remote Sensing 20, 1589-1599 DOI: 10.1080/014311699212623

Citation Report

#	Article	IF	CITATIONS
1	Mapping of waterlogged areas and salt affected soils in the IGNP command area. Journal of the Indian Society of Remote Sensing, 2001, 29, 229-235.	2.4	23
2	Quantitative remote sensing of soil properties. Advances in Agronomy, 2002, 75, 173-243.	5.2	303
3	Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods. Water Resources Research, 2003, 39, .	4.2	87
4	Water logging and drainage Assessment in Ravi-Tawi irrigation command (J&K) using remote sensing approach. Journal of the Indian Society of Remote Sensing, 2005, 33, 7-15.	2.4	13
5	Using remote sensing to evaluate land salinization in typical areas of Inner-Mongolia, China. , 0, , .		0
6	Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 2006, 130, 191-206.	5.1	240
7	Assessment ofTsunami impact in South Andaman using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 2006, 34, 193-202.	2.4	7
8	Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degradation and Development, 2006, 17, 677-689.	3.9	83
9	Mapping of saltâ€affected soils using TM images. International Journal of Remote Sensing, 2007, 28, 2713-2722.	2.9	10
10	Digitally Mapping Gypsic and Natric Soil Areas Using Landsat ETM Data. Soil Science Society of America Journal, 2007, 71, 245-252.	2.2	92
11	Temporal behaviour of surface waterlogged areas using spaceborne multispectral multitemporal measurements. Journal of the Indian Society of Remote Sensing, 2007, 35, 173-184.	2.4	5
12	Landform analysis of warm humid kumaon himalayas using irs-id data for development of mountainous lands. Journal of the Indian Society of Remote Sensing, 2007, 35, 101-106.	2.4	1
13	Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degradation and Development, 2008, 19, 214-227.	3.9	106
14	Mapping of land degradation from space: a comparative study of Landsat ETM+ and ASTER data. International Journal of Remote Sensing, 2008, 29, 4029-4043.	2.9	48
15	Mapping of Land Degradation from ASTER Data: A Comparison of Object-Based and Pixel-Based Methods. GIScience and Remote Sensing, 2008, 45, 149-166.	5.9	11
16	Delineation and characterization of waterlogging and salt affected areas in a canal irrigated semiarid region of north west India. Geocarto International, 2008, 23, 181-195.	3.5	3
17	Remote Sensing and Geographic Information System for Appraisal of Saltâ€Affected Soils in India. Journal of Environmental Quality, 2010, 39, 5-15.	2.0	53
18	Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain. Natural Hazards, 2010, 55, 273-289.	3.4	93

#	Article	IF	CITATIONS
19	COMPARATIVE ASSESSMENT OF MXL CLASSIFIER AND KNOWLEDGE BASED CLASSIFIER FOR DELINEATION OF WITHIN WETLAND FEATURES USING RESOURCESAT-1 LISS-III DATA. ISH Journal of Hydraulic Engineering, 2010, 16, 28-37.	2.1	0
20	A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data. Pedosphere, 2010, 20, 378-388.	4.0	96
21	Delineation and Characterization of Waterlogged Salt Affected Soils in IGNP Using Remote Sensing and GIS. Journal of the Indian Society of Remote Sensing, 2011, 39, 39-50.	2.4	19
22	Assessment of surface and subsurface waterlogging, water level fluctuations, and lithological variations for evaluating groundwater resources in Ganga Plains. International Journal of Digital Earth, 2013, 6, 276-296.	3.9	12
23	Remote Sensing of CO2Absorption by Saline-Alkali Soils: Potentials and Constraints. Journal of Spectroscopy, 2014, 2014, 1-8.	1.3	4
24	Geomorphology and the controls of geohydrology on waterlogging in Gangetic Plains, North Bihar, India. Environmental Earth Sciences, 2014, 71, 1561-1579.	2.7	23
25	Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. International Journal of Applied Earth Observation and Geoinformation, 2014, 26, 156-175.	2.8	105
26	Application in Analysis of Soils. Agronomy, 0, , 729-784.	0.2	51
27	Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression. Remote Sensing, 2015, 7, 488-511.	4.0	86
28	Monitoring and assessing waterlogged and salt-affected areas in the Eastern Nile Delta region, Egypt, using remotely sensed multi-temporal data and GIS. Journal of Coastal Conservation, 2015, 19, 369-391.	1.6	39
29	Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions. Sustainability, 2016, 8, 619.	3.2	9
30	Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview. Agricultural Water Management, 2016, 174, 2-10.	5.6	38
31	Evaluation of a WorldView-2 image for soil salinity monitoring in a moderately affected irrigated area. Journal of Applied Remote Sensing, 2016, 10, 026025.	1.3	20
32	Diagnosis and Prognosis of Salt-Affected Soils and Poor-Quality Waters Using Remote Sensing and Proximal Techniques. , 2016, , 55-82.		3
33	Towards decadal soil salinity mapping using Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 32-41.	2.8	25
34	Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates. Geoderma, 2017, 299, 1-12.	5.1	91
35	GIS spatial model based for determining actual land degradation status in Kafr El-Sheikh Governorate, North Nile Delta. Modeling Earth Systems and Environment, 2018, 4, 359-372.	3.4	27
36	Krishna River Basin. Springer Hydrogeology, 2018, , 339-351.	0.3	2

#	Article	IF	CITATIONS
37	Monitoring the spatiotemporal dynamics of waterlogged area in southwestern Bangladesh using time series Landsat imagery. Remote Sensing Applications: Society and Environment, 2018, 9, 52-59.	1.5	16
38	Assessment of land degradation and implications on agricultural land in Qalyubia Governorate, Egypt. Bulletin of the National Research Centre, 2019, 43, .	1.8	6
39	Current development of landscape geochemistry with support of geospatial technologies: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 745-790.	12.8	3
40	Towards global mapping of salt pans and salt playas using Landsat imagery: a case study of western United States. International Journal of Remote Sensing, 2020, 41, 8693-8716.	2.9	3
41	Effect of Planting Methods and Gypsum Application on Yield and Water Productivity of Wheat under Salinity Conditions in North Nile Delta. Agronomy, 2020, 10, 853.	3.0	12
42	Remote sensing-based assessment of waterlogging and soil salinity: A case study from Kerala, India. Results in Geophysical Sciences, 2021, 7, 100024.	0.9	4
43	Investigating remote sensing properties for soil salinty mapping: A case study in Korat province of Thailand. Environmental Challenges, 2021, 5, 100290.	4.2	2
44	Aplicaciones de la teledetección en degradación de suelos. Boletin De La Asociacion De Geografos Espanoles, 2013, , .	0.3	3
45	Soil salinity: A global threat to sustainable development. Soil Use and Management, 2022, 38, 39-67.	4.9	84
46	Potential of Geospatial Technologies for Mitigating Land and Water Related Disasters. , 2010, , 469-502.		0
47	CartografÃa mediante imÃ;genes Landsat de suelos salinos en la tierra de Medina (Valladolid). Estudios Geograficos, 2010, 71, 161-176.	0.3	2
48	Identification of salt-affected soils using remote sensing data through random forest technique: a case study from India. Arabian Journal of Geosciences, 2022, 15, 1.	1.3	3
49	Are Global Environmental Uncertainties Inevitable? Measuring Desertification for the SDGs. Sustainability, 2022, 14, 4063.	3.2	1
50	Study the Variations of Agricultural Land Degradation in Zawiyat Al-Dhban District (Abu Falis) within the Arid Environment of Anbar Governorate. IOP Conference Series: Earth and Environmental Science, 2022, 1060, 012130.	0.3	0
51	Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt. Agriculture (Switzerland), 2023, 13, 76.	3.1	2
52	Monitoring Waterlogging Damage of Winter Wheat Based on HYDRUS-1D and WOFOST Coupled Model and Assimilated Soil Moisture Data of Remote Sensing. Remote Sensing, 2023, 15, 4133.	4.0	0
53	Insight into land cover dynamics and water challenges under anthropogenic and climatic changes in the eastern Nile Delta: Inference from remote sensing and GIS data. Science of the Total Environment, 2024, 913, 169690.	8.0	2

CITATION REPORT