Multiple left-right asymmetry defects in <i>Shh</i> <su convergence of the Shh and retinoic acid pathways in th

Proceedings of the National Academy of Sciences of the Unite 96, 11376-11381

DOI: 10.1073/pnas.96.20.11376

Citation Report

#	Article	IF	CITATIONS
1	The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry. Nature, 1999, 401, 243-251.	27.8	213
2	Of mice and men: Dissecting the genetic pathway that controls left-right asymmetry in mice and humans. American Journal of Medical Genetics Part A, 2000, 97, 258-270.	2.4	47
3	Knowing left from right: the molecular basis of laterality defects. Trends in Molecular Medicine, 2000, 6, 112-118.	2.6	19
4	Left-Right Determination. Trends in Cardiovascular Medicine, 2000, 10, 258-262.	4.9	3
5	Establishing a Left-Right Axis in the Embryo. IUBMB Life, 2000, 50, 1-11.	3.4	33
6	Chocolate: Modern Science Investigates an Ancient Medicine. Journal of Medicinal Food, 2000, 3, 121-125.	1.5	23
7	Regulation of Gut and Heart Left–Right Asymmetry by Context-Dependent Interactions between Xenopus Lefty and BMP4 Signaling. Developmental Biology, 2000, 223, 291-306.	2.0	72
8	Retinoid Signaling Is Required to Complete the Vertebrate Cardiac Left/Right Asymmetry Pathway. Developmental Biology, 2000, 223, 323-338.	2.0	63
9	Heart and Gut Chiralities Are Controlled Independently from Initial Heart Position in the Developing Zebrafish. Developmental Biology, 2000, 227, 403-421.	2.0	50
10	Phenogenetic Drift and the Evolution of Genotype–Phenotype Relationships. Theoretical Population Biology, 2000, 57, 187-195.	1.1	160
11	Left–right axis malformations in man and mouse. Current Opinion in Genetics and Development, 2000, 10, 257-261.	3.3	64
12	Retinoid signalling and hindbrain patterning. Current Opinion in Genetics and Development, 2000, 10, 380-386.	3.3	180
13	On the range of Hedgehog signaling. Current Opinion in Genetics and Development, 2000, 10, 515-522.	3.3	55
14	Mechanisms of Left–Right Determination in Vertebrates. Cell, 2000, 101, 9-21.	28.9	299
15	From fruitflies to mammals: mechanisms of signalling via the Sonic hedgehog pathway in lung development. Respiratory Research, 2000, 1, 30-35.	3.6	55
16	I <scp>NBORN</scp> E <scp>RRORS OF</scp> S <scp>TEROL</scp> B <scp>IOSYNTHESIS</scp> . Annual Review of Genomics and Human Genetics, 2001, 2, 299-341.	6.2	167
17	Establishment of left-right asymmetry. International Review of Cytology, 2001, 203, 357-381.	6.2	59
18	Left-Right Asymmetry Determination in Vertebrates. Annual Review of Cell and Developmental Biology, 2001, 17, 779-805.	9.4	192

#	Article	IF	Citations
19	Hedgehog signaling in animal development: paradigms and principles. Genes and Development, 2001, 15, 3059-3087.	5.9	2,630
20	Chick CFC Controls Lefty1 Expression in the Embryonic Midline and Nodal Expression in the Lateral Plate. Developmental Biology, 2001, 234, 376-389.	2.0	43
21	Anorectal Malformations Caused by Defects in Sonic Hedgehog Signaling. American Journal of Pathology, 2001, 159, 765-774.	3.8	211
22	Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mechanisms of Development, 2001, 106, 107-117.	1.7	180
23	Activation of epiblast gene expression by the hypoblast layer in the prestreak chick embryo. Genesis, 2001, 30, 264-273.	1.6	13
24	Smoothened Mutants Reveal Redundant Roles for Shh and Ihh Signaling Including Regulation of L/R Asymmetry by the Mouse Node. Cell, 2001, 105, 781-792.	28.9	543
26	The VACTERL association: lessons from the Sonic hedgehog pathway. Clinical Genetics, 2001, 59, 306-315.	2.0	161
27	Genetic Steps to Organ Laterality in Zebrafish. Comparative and Functional Genomics, 2001, 2, 60-68.	2.0	35
28	Midline and laterality defects: Left and right meet in the middleâ€. BioEssays, 2001, 23, 888-900.	2.5	70
29	Cardiopulmonary malformations in theinv/inv mouse. The Anatomical Record, 2001, 263, 62-71.	1.8	24
30	Classification of left-right patterning defects in zebrafish, mice, and humans. American Journal of Medical Genetics Part A, 2001, 101, 315-323.	2.4	45
31	Asymmetry: Molecular, biologic, embryopathic, and clinical perspectives. American Journal of Medical Genetics Part A, 2001, 101, 292-314.	2.4	52
32	Immunolocalization of Sonic Hedgehog (Shh) in Developing Mouse Lung. Journal of Histochemistry and Cytochemistry, 2001, 49, 1593-1603.	2.5	64
33	TGF-Â Superfamily Signaling and Left-Right Asymmetry. Science Signaling, 2001, 2001, re1-re1.	3.6	43
34	The genomic structure, chromosomal localization, and analysis of SIL as a candidate gene for holoprosencephaly. Cytogenetic and Genome Research, 2002, 97, 62-67.	1.1	21
35	Identification of Indian Hedgehog as a Progesterone-Responsive Gene in the Murine Uterus. Molecular Endocrinology, 2002, 16, 2338-2348.	3.7	156
36	Left-Right Asymmetry. , 2002, , 55-73.		4
37	A protein disulfide isomerase expressed in the embryonic midline is required for left/right asymmetries. Genes and Development, 2002, 16, 2518-2529.	5.9	37

#	Article	IF	CITATIONS
38	Chimeric Analysis of Retinoic Acid Receptor Function during Cardiac Looping. Developmental Biology, 2002, 247, 62-75.	2.0	28
39	T <scp>HE</scp> R <scp>OLE OF</scp> V <scp>ITAMIN</scp> A <scp>IN</scp> M <scp>AMMALIAN</scp> R <scp>EPRODUCTION AND</scp> E <scp>MBRYONIC</scp> D <scp>EVELOPMENT</scp> . Annual Review of Nutrition, 2002, 22, 347-381.	10.1	406
40	RAR., 2002, , 113-140.		0
41	Transposition of the great arteries in asplenia and polysplenia phenotypes. American Journal of Medical Genetics Part A, 2002, 110, 292-294.	2.4	33
42	Gene-dosage-sensitive genetic interactions between inversus viscerum (iv),nodal, and activin type IIB receptor (ActRIIB) genes in asymmetrical patterning of the visceral organs along the left-right axis. Developmental Dynamics, 2002, 224, 279-290.	1.8	24
43	Versatile roles for sonic hedgehog in gut development. Journal of Gastroenterology, 2002, 37, 239-246.	5.1	39
44	Establishment of vertebrate left–right asymmetry. Nature Reviews Genetics, 2002, 3, 103-113.	16.3	496
45	Retinoids and Cardiovascular Developmental Defects. Cardiovascular Toxicology, 2002, 2, 25-40.	2.7	29
46	Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Developmental Dynamics, 2003, 227, 114-127.	1.8	127
47	Specific congenital heart defects in RSH/Smith-Lemli-Opitz syndrome: Postulated involvement of the Sonic Hedgehog pathway in syndromes with postaxial polydactyly or heterotaxia. Birth Defects Research Part A: Clinical and Molecular Teratology, 2003, 67, 149-153.	1.6	36
48	1 Developmental roles and clinical significance of Hedgehog signaling. Current Topics in Developmental Biology, 2003, 53, 1-114.	2.2	799
49	A Requirement for Retinoic Acid-Mediated Transcriptional Activation in Ventral Neural Patterning and Motor Neuron Specification. Neuron, 2003, 40, 81-95.	8.1	290
50	Expression of rigf, a member of avian VEGF family, correlates with vascular patterning in the developing chick limb bud. Mechanisms of Development, 2003, 120, 199-209.	1.7	10
51	Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopus laevis. Developmental Biology, 2003, 262, 268-281.	2.0	35
52	How a Hedgehog might see holoprosencephaly. Human Molecular Genetics, 2003, 12, 15R-25.	2.9	64
53	The retinoic-like juvenile hormone controls the looping of left-right asymmetric organs in Drosophila. Development (Cambridge), 2003, 130, 2397-2406.	2.5	81
54	Node and midline defects are associated with left-right development in <i>Delta1</i> mutant embryos. Development (Cambridge), 2003, 130, 3-13.	2.5	93
55	GENETICS OFHUMANLATERALITYDISORDERS: Insights from Vertebrate Model Systems. Annual Review of Genomics and Human Genetics, 2003, 4, 1-32.	6.2	97

#	Article	IF	CITATIONS
56	Down-regulation of Retinoic Acid Receptor α Signaling Is Required for Sacculation and Type I Cell Formation in the Developing Lung. Journal of Biological Chemistry, 2003, 278, 46911-46918.	3.4	58
57	Genetic Regulation of Branching Morphogenesis: Lessons Learned from Loss-of-Function Phenotypes. Pediatric Research, 2003, 54, 433-438.	2.3	29
58	Chick <i>Pcl2</i> regulates the left-right asymmetry by repressing <i>Shh</i> expression in Hensen's node. Development (Cambridge), 2004, 131, 4381-4391.	2.5	32
59	Breaking symmetry: a clinical overview of left-right patterning. Clinical Genetics, 2004, 65, 441-457.	2.0	28
60	Developmental mechanism and evolutionary origin of vertebrate left/right asymmetries. Biological Reviews, 2004, 79, 377-407.	10.4	43
61	Dietary Retinoic Acid Induces Hindlimb and Eye Deformities inXenopus laevis. Environmental Science & Technology, 2004, 38, 6290-6299.	10.0	29
62	Unveiling the establishment of left–right asymmetry in the chick embryo. Mechanisms of Development, 2004, 121, 1043-1054.	1.7	35
63	BMP signaling through ACVRI is required for left–right patterning in the early mouse embryo. Developmental Biology, 2004, 276, 185-193.	2.0	50
64	Epithelial Stem Cells and Their Niche: There's No Place Like Home. Stem Cells, 2005, 23, 150-165.	3.2	75
65	FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature, 2005, 435, 172-177.	27.8	483
66	Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature, 2005, 435, 165-171.	27.8	256
67	Congenital heart disease: Genetic causes and developmental insights. Progress in Pediatric Cardiology, 2005, 20, 101-111.	0.4	17
68	Breaking the left-right axis: do nodal parcels pass a signal to the left?. BioEssays, 2005, 27, 991-994.	2.5	5
69	A genomewide scan of male sexual orientation. Human Genetics, 2005, 116, 272-278.	3.8	185
70	Visceral heterotaxy, isomerism, and splenic structure. Cardiology in the Young, 2005, 15, 474-476.	0.8	2
71	Splenic state in surviving patients with visceral heterotaxy. Cardiology in the Young, 2005, 15, 469-473.	0.8	48
72	From The Cover: Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4789-4794.	7.1	170
73	Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development (Cambridge), 2005, 132, 61-73.	2.5	96

#	Article	IF	CITATIONS
74	Hedgehog Signaling Induces Cardiomyogenesis in P19 Cells. Journal of Biological Chemistry, 2005, 280, 21022-21028.	3.4	57
75	Left–right asymmetry in embryonic development: a comprehensive review. Mechanisms of Development, 2005, 122, 3-25.	1.7	426
76	BMP signaling and early embryonic patterning. Cytokine and Growth Factor Reviews, 2005, 16, 265-278.	7.2	240
77	Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Developmental Biology, 2005, 283, 357-372.	2.0	191
78	Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left–right axis. Developmental Biology, 2005, 287, 274-288.	2.0	147
79	TRANSCRIPTION FACTORS AND CONGENITAL HEART DEFECTS. Annual Review of Physiology, 2006, 68, 97-121.	13.1	140
80	Nodal Flow and the Generation of Left-Right Asymmetry. Cell, 2006, 125, 33-45.	28.9	497
81	A multiple retinoic acid antagonist induces conotruncal anomalies, including transposition of the great arteries, in mice. Cardiovascular Pathology, 2006, 15, 194-202.	1.6	25
82	Retinoic acid signaling is essential for formation of the heart tube in Xenopus. Developmental Biology, 2006, 291, 96-109.	2.0	39
83	Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Developmental Biology, 2006, 300, 523-533.	2.0	86
84	Is retinoic acid genetic machinery a chordate innovation?. Evolution & Development, 2006, 8, 394-406.	2.0	75
85	Left–right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nature Reviews Genetics, 2006, 7, 283-293.	16.3	200
86	Genetics of human heterotaxias. European Journal of Human Genetics, 2006, 14, 17-25.	2.8	113
87	Role for retinoid signaling in left–right asymmetric digestive organ morphogenesis. Developmental Dynamics, 2006, 235, 2266-2275.	1.8	23
88	Hedgehog Morphogen in Cardiovascular Disease. Circulation, 2006, 114, 1985-1991.	1.6	44
89	Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling. Development (Cambridge), 2006, 133, 351-361.	2.5	114
90	Arteries define the position of the thyroid gland during its developmental relocalisation. Development (Cambridge), 2006, 133, 3797-3804.	2.5	98
91	New functions for a vertebrate Rho guanine nucleotide exchange factor in ciliated epithelia. Development (Cambridge), 2007, 134, 921-931.	2.5	40

#	Article	IF	CITATIONS
92	Hedgehog Signaling in Development and Homeostasis of the Gastrointestinal Tract. Physiological Reviews, 2007, 87, 1343-1375.	28.8	252
93	Ftm is a novel basal body protein of cilia involved in Shh signalling. Development (Cambridge), 2007, 134, 2569-2577.	2.5	175
94	Controversies, genetics, diagnostic assessment, and outcomes relating to the heterotaxy syndrome. Cardiology in the Young, 2007, 17, 29-43.	0.8	100
95	Divergent Roles of Hedgehog and Fibroblast Growth Factor Signaling in Left–Right Development. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, , 179-201.	0.4	0
96	Genetics of congenital heart diseases in syndromic and non-syndromic patients: new advances and clinical implications. Journal of Cardiovascular Medicine, 2007, 8, 7-11.	1.5	10
97	Strategies to establish left/right asymmetry in vertebrates and invertebrates. Current Opinion in Genetics and Development, 2007, 17, 351-358.	3.3	91
98	Left-right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos. Cytogenetic and Genome Research, 2007, 117, 256-267.	1.1	33
99	Congenital and Acquired Heart Disease. , 2007, , 165-208.		0
100	Polycomblike-2-deficient mice exhibit normal left–right asymmetry. Developmental Dynamics, 2007, 236, 853-861.	1.8	33
101	Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Development, 2007, 2, 10.	2.4	115
102	Hedgehog Signaling: A Biophysical or Biomechanical Modulator in Embryonic Development?. Annals of the New York Academy of Sciences, 2007, 1101, 412-438.	3.8	35
103	Gap junctions relay FGF8â€mediated rightâ€sided repression of <i>Nodal</i> in rabbit. Developmental Dynamics, 2008, 237, 3516-3527.	1.8	18
104	What's left in asymmetry?. Developmental Dynamics, 2008, 237, 3453-3463.	1.8	32
105	Morphogenesis of the node and notochord: The cellular basis for the establishment and maintenance of left–right asymmetry in the mouse. Developmental Dynamics, 2008, 237, 3464-3476.	1.8	110
106	Man1, an inner nuclear membrane protein, regulates left–right axis formation by controlling nodal signaling in a nodeâ€independent manner. Developmental Dynamics, 2008, 237, 3565-3576.	1.8	17
107	The development and evolution of leftâ€right asymmetry in invertebrates: Lessons from <i>Drosophila</i> and snails. Developmental Dynamics, 2008, 237, 3497-3515.	1.8	71
108	Retinoic acid signaling in development: Tissueâ€specific functions and evolutionary origins. Genesis, 2008, 46, 640-656.	1.6	112
109	Insights into the establishment of left–right asymmetries in vertebrates. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 81-94.	3.6	16

#	Article	IF	CITATIONS
110	Absence of sonic hedgehog (Shh) germline mutations in patients with thyroid dysgenesis. Clinical Endocrinology, 2008, 69, 828-829.	2.4	4
111	Left–right asymmetry in Drosophila. Seminars in Cell and Developmental Biology, 2008, 19, 252-262.	5.0	45
112	SCL/TAL1 Interrupting Locus Derepresses GLI1 from the Negative Control of Suppressor-of-Fused in Pancreatic Cancer Cell. Cancer Research, 2008, 68, 7723-7729.	0.9	60
113	Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development (Cambridge), 2008, 135, 3789-3799.	2.5	91
114	Tbx2b is required for the development of the parapineal organ. Development (Cambridge), 2008, 135, 1693-1702.	2.5	58
115	A ryanodine receptor-dependent Cai2+ asymmetry at Hensen's node mediates avian lateral identity. Development (Cambridge), 2008, 135, 3271-3280.	2.5	21
116	BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes and Development, 2008, 22, 3037-3049.	5.9	63
117	Mouse Model of Heterotaxy with Single Ventricle Spectrum of Cardiac Anomalies. Pediatric Research, 2008, 63, 9-14.	2.3	28
118	Expression of Hedgehog Family Genes in the Rat Uterus During Early Pregnancy. Journal of Reproduction and Development, 2008, 54, 340-345.	1.4	7
119	Molecular mechanisms establishing consistent left–right asymmetry during vertebrate embryogenesis. , 0, , 3-18.		0
120	Fish-Specific Duplicated dmrt2b Contributes to a Divergent Function through Hedgehog Pathway and Maintains Left-Right Asymmetry Establishment Function. PLoS ONE, 2009, 4, e7261.	2.5	53
121	The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. Journal of Cell Science, 2009, 122, 3070-3082.	2.0	91
122	Left-Right Determination: Involvement of Molecular Motor KIF3, Cilia, and Nodal Flow. Cold Spring Harbor Perspectives in Biology, 2009, 1, a000802-a000802.	5.5	81
123	An Hh-Dependent Pathway in Lateral Plate Mesoderm Enables the Generation of Left/Right Asymmetry. Current Biology, 2009, 19, 1912-1917.	3.9	45
124	Mouse mutagenesis identifies novel roles for left–right patterning genes in pulmonary, craniofacial, ocular, and limb development. Developmental Dynamics, 2009, 238, 581-594.	1.8	35
125	Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis, 2009, 47, 628-637.	1.6	85
126	Cross talk between hedgehog and bone morphogenetic proteins occurs during cardiomyogenesis in P19 cells. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 566-572.	1.5	8
127	2008 Riley Heart Center Symposium on Cardiac Development: Growth and Morphogenesis of the Ventricular Wall. Pediatric Cardiology, 2009, 30, 577-579.	1.3	4

#	Article	IF	CITATIONS
128	The outflow tract of the heart in fishes: anatomy, genes and evolution. Journal of Fish Biology, 2009, 74, 983-1036.	1.6	64
129	Left cardiac isomerism in the Sonic hedgehog null mouse. Journal of Anatomy, 2009, 214, 894-904.	1.5	41
130	Balancing segmentation and laterality during vertebrate development. Seminars in Cell and Developmental Biology, 2009, 20, 472-478.	5.0	18
131	Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Developmental Biology, 2009, 330, 305-317.	2.0	126
132	Transcriptional Control of Left–Right Patterning in Cardiac Development. Pediatric Cardiology, 2010, 31, 371-377.	1.3	20
133	The Nodal Inhibitor Coco Is a Critical Target of Leftward Flow in Xenopus. Current Biology, 2010, 20, 738-743.	3.9	134
134	Analysis of the asymmetrically expressed Ablim1 locus reveals existence of a lateral plate Nodal-independent left sided signal and an early, left-right independent role for nodal flow. BMC Developmental Biology, 2010, 10, 54.	2.1	11
135	Prenatal exposure to carbon monoxide delays postnatal cardiac maturation. Laboratory Investigation, 2010, 90, 1582-1593.	3.7	14
136	Retinoids and Heart Development. , 2010, , 237-253.		1
137	Environmentally Induced Heart Malformations. , 2010, , 429-446.		1
138	Sonic hedgehog in temporal control of somite formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12907-12912.	7.1	62
139	The actin nucleator Cordon-bleu is required for development of motile cilia in zebrafish. Developmental Biology, 2011, 350, 101-111.	2.0	38
140	Essential roles of fibronectin in the development of the left–right embryonic body plan. Developmental Biology, 2011, 354, 208-220.	2.0	42
141	Atrioventricular Canal Defect and Associated Genetic Disorders: New Insights into Polydactyly Syndromes. Neurology International, 2011, 1, e7.	0.5	6
142	Embryogenic staging of fugu, Takifugu rubripes, and expression profiles of aldh1a2, aldh1a3 and cyp26a1. Development Growth and Differentiation, 2011, 53, 715-725.	1.5	14
143	The multiple roles of Notch signaling during left-right patterning. Cellular and Molecular Life Sciences, 2011, 68, 2555-2567.	5.4	23
144	Notochordal and foregut abnormalities correlate with elevated neural crest apoptosis in <i>Patch</i> embryos. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 551-564.	1.6	5
145	Retinoic Acid Signaling Sequentially Controls Visceral and Heart Laterality in Zebrafish. Journal of Biological Chemistry, 2011, 286, 28533-28543.	3.4	28

#	Article	IF	CITATIONS
146	Early-occurring proliferation defects in peripheral tissues of the Ts65Dn mouse model of Down syndrome are associated with patched1 over expression. Laboratory Investigation, 2012, 92, 1648-1660.	3.7	21
147	The voyage of stem cell toward terminal differentiation: a brief overview. Acta Biochimica Et Biophysica Sinica, 2012, 44, 463-475.	2.0	16
148	Sonic Hedgehog Signaling and VACTERL Association. Molecular Syndromology, 2012, 4, 32-45.	0.8	28
149	Foxa2 mediates critical functions of prechordal plate in patterning and morphogenesis and is cell autonomously required for early ventral endoderm morphogenesis. Biology Open, 2012, 1, 173-181.	1.2	11
150	Neural Control of Postphylotypic Development. , 2012, , 147-228.		0
151	Association Analysis Between the Tag SNP for Sonic Hedgehog rs9333613 Polymorphism and Male Sexual Orientation. Journal of Andrology, 2012, 33, 951-954.	2.0	17
152	CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nature Genetics, 2012, 44, 714-719.	21.4	228
153	Embryology and Physiology of the Cardiovascular System. , 2012, , 699-713.		4
154	IFT25 Links the Signal-Dependent Movement of Hedgehog Components to Intraflagellar Transport. Developmental Cell, 2012, 22, 940-951.	7.0	196
155	Laterality defects are influenced by timing of treatments and animal model. Differentiation, 2012, 83, 26-37.	1.9	9
156	<i>Foxa2</i> mediates critical functions of prechordal plate in patterning and morphogenesis and is cell autonomously required for early ventral endoderm morphogenesis. Biology Open, 0, , .	1.2	6
157	Hedgehog signaling is required for differentiation of endocardial progenitors in zebrafish. Developmental Biology, 2012, 361, 377-391.	2.0	52
158	A patient with a mild holoprosencephaly spectrum phenotype and heterotaxy and a 1.3 Mb deletion encompassing <i>GLl2</i> . American Journal of Medical Genetics, Part A, 2012, 158A, 166-173.	1.2	26
159	Developmental origins of a novel gut morphology in frogs. Evolution & Development, 2013, 15, 213-223.	2.0	29
160	The <i>Xenopus</i> homeobox gene <i>pitx3</i> impinges upon somitogenesis and laterality. Biochemistry and Cell Biology, 2013, 91, 79-87.	2.0	1
161	Failure in closure of the anterior neural tube causes left isomerization of the zebrafish epithalamus. Developmental Biology, 2013, 374, 333-344.	2.0	5
162	Heterotaxy-spectrum heart defects in Zic3 hypomorphic mice. Pediatric Research, 2013, 74, 494-502.	2.3	13
163	Lung Progenitor Cell Specification and Morphogenesis. , 2014, , 3-9.		1

	CITATION	Report	
#	Article	IF	CITATIONS
164	The chicken left right organizer has nonmotile cilia which are lost in a stageâ€dependent manner in the <i>talpid³</i> ciliopathy. Genesis, 2014, 52, 600-613.	1.6	10
165	Are there conserved roles for the extracellular matrix, cilia, and junctional complexes in leftâ€right patterning?. Genesis, 2014, 52, 488-502.	1.6	3
166	Hair curvature: a natural dialectic and review. Biological Reviews, 2014, 89, 723-766.	10.4	27
167	The Role of Smoothened and Hh Signaling in Neovascularization. Topics in Medicinal Chemistry, 2014, , 173-205.	0.8	1
168	Molecular Basis of Cardiac Development. , 2014, , 1-22.		1
169	Rab23 regulates Nodal signaling in vertebrate left–right patterning independently of the Hedgehog pathway. Developmental Biology, 2014, 391, 182-195.	2.0	31
170	Retinoids and Cardiac Development. Journal of Developmental Biology, 2014, 2, 50-71.	1.7	20
173	Development of the Respiratory System (Including the Preterm Infant). , 2015, , 3-25.		0
175	The pattern of congenital heart defects arising from reduced Tbx5 expression is altered in a Down syndrome mouse model. BMC Developmental Biology, 2015, 15, 30.	2.1	12
176	Epithelial inactivation of <i>Yy1</i> abrogates lung branching morphogenesis. Development (Cambridge), 2015, 142, 2981-2995.	2.5	35
177	Genetic and Developmental Basis of Congenital Cardiovascular Malformations. , 2015, , 607-633.		0
178	Use of a Conditional Ubr5 Mutant Allele to Investigate the Role of an N-End Rule Ubiquitin-Protein Ligase in Hedgehog Signalling and Embryonic Limb Development. PLoS ONE, 2016, 11, e0157079.	2.5	20
179	miR-30c regulates proliferation, apoptosis and differentiation via the Shh signaling pathway in P19 cells. Experimental and Molecular Medicine, 2016, 48, e248-e248.	7.7	44
180	BRG1 interacts with GLI2 and binds Mef2c gene in a hedgehog signalling dependent manner during in vitro cardiomyogenesis. BMC Developmental Biology, 2016, 16, 27.	2.1	1
181	Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development. Scientific Reports, 2016, 6, 20727.	3.3	33
182	Conserved signaling mechanisms in <i>Drosophila</i> heart development. Developmental Dynamics, 2017, 246, 641-656.	1.8	28
183	Retinoic acid regulates avian lung branching through a molecular network. Cellular and Molecular Life Sciences, 2017, 74, 4599-4619.	5.4	16
184	<i>Hh</i> gene participates in the left-right asymmetry development of amphioxus by controlling <i>Cer</i> expression. Development (Cambridge), 2017, 144, 4694-4703.	2.5	17

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
185	Molecular Mechanisms of Lung Development and Lung Branching Morphogenesis. , 202	l7,,658-666.e4.		2
186	A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse he dynamics. ELife, 2017, 6, .	art looping	6.0	70
187	Mechanism for generation of left isomerism in Ccdc40 mutant embryos. PLoS ONE, 202	l7, 12, e0171180.	2.5	4
188	ZIC3 in Heterotaxy. Advances in Experimental Medicine and Biology, 2018, 1046, 301-3	27.	1.6	24
189	OBSOLETE: Heart Development. , 2018, , .			0
190	Left-right asymmetry in heart development and disease: forming the right loop. Develop (Cambridge), 2018, 145, .	oment	2.5	83
191	2017 Riley Heart Center Symposium on Cardiac Development: Development and Repair Wall. Pediatric Cardiology, 2018, 39, 1067-1068.	of the Ventricular	1.3	2
192	Extracephalic manifestations of nonchromosomal, nonsyndromic holoprosencephaly. A Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2018, 178, 246-257.		1.6	3
193	Heart Development. , 2018, , 380-398.			0
194	Knockdown of <i>Mns1</i> Increases Susceptibility to Craniofacial Defects Following Gastrulation‣tage Alcohol Exposure in Mice. Alcoholism: Clinical and Experimental Re 2136-2143.	esearch, 2018, 42,	2.4	15
195	Developmental Biology of the Heart. , 2018, , 724-740.e3.			2
196	Common and distinct transcriptional signatures of mammalian embryonic lethality. Nat Communications, 2019, 10, 2792.	ure	12.8	16
197	Spontaneous Left Cardiac Isomerism in Chick Embryos: Case Report, Review of the Liter Possible Significance for the Understanding of Ventricular Non-Compaction Cardiomyo Setting of Human Heterotaxy Syndromes. Journal of Cardiovascular Development and D 40.	pathy in the	1.6	0
198	A null allele of Dnaaf2 displays embryonic lethality and mimics human ciliary dyskinesia. Molecular Genetics, 2019, 28, 2775-2784.	Human	2.9	11
199	Sonic Hedgehog Signaling Is Required for Cyp26 Expression during Embryonic Develop International Journal of Molecular Sciences, 2019, 20, 2275.	nent.	4.1	10
200	Mesothelium and Malignant Mesothelioma. Journal of Developmental Biology, 2019, 7,	7.	1.7	36
201	Cilia-driven asymmetric Hedgehog signalling determines the amphioxus left-right axis by <i>Cerberus/Dand5</i> expression. Development (Cambridge), 2020, 147, .	/ controlling	2.5	19
202	Atrioventricular canal defect and genetic syndromes: The unifying role of sonic hedgeho Genetics, 2019, 95, 268-276.	og. Clinical	2.0	20

#	Article	IF	CITATIONS
203	Loss of ciliary transition zone protein TMEM107 leads to heterotaxy in mice. Developmental Biology, 2020, 460, 187-199.	2.0	5
204	Genetics of atrioventricular canal defects. Italian Journal of Pediatrics, 2020, 46, 61.	2.6	9
205	Hedgehog–FGF signaling axis patterns anterior mesoderm during gastrulation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15712-15723.	7.1	21
206	Diverged morphology changes of astrocytic and neuronal primary cilia under reactive insults. Molecular Brain, 2020, 13, 28.	2.6	19
207	Comorbidity of congenital heart defects and holoprosencephaly is likely genetically driven and geneâ€specific. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 154-158.	1.6	6
208	Spatial and temporal deletion reveals a latent effect of Megf8 on the left-right patterning and heart development. Differentiation, 2020, 113, 19-25.	1.9	5
209	Right, left and cilia: How asymmetry is established. Seminars in Cell and Developmental Biology, 2021, 110, 11-18.	5.0	38
210	Hedgehog Signaling in Intestinal Development and Homeostasis. Annual Review of Physiology, 2021, 83, 359-380.	13.1	19
211	From Endoderm to Progenitors: An Update on the Early Steps of Thyroid Morphogenesis in the Zebrafish. Frontiers in Endocrinology, 2021, 12, 664557.	3.5	5
212	Loss of <i>Zic3</i> impairs planar cell polarity leading to abnormal left–right signaling, heart defects and neural tube defects. Human Molecular Genetics, 2021, 30, 2402-2415.	2.9	8
213	Molecular Mechanisms of Lung Development and Lung Branching Morphogenesis. , 2004, , 812-821.		2
214	Lung Morphogenesis, Role of Growth Factors and Transcription Factors. , 2004, , 3-11.		7
215	Hemisphere Dominance of Brain Function—Which Functions Are Lateralized and Why?. , 2006, , 44-62.		7
218	Conserved and divergent mechanisms in left–right axis formation. Genes and Development, 2000, 14, 763-776.	5.9	159
220	Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development (Cambridge), 2000, 127, 3567-3579.	2.5	179
221	Asymmetric Nodal signaling in the zebrafish diencephalon positions the pineal organ. Development (Cambridge), 2000, 127, 5101-5112.	2.5	138
222	Analysis of the zebrafish <i>smoothened</i> mutant reveals conserved and divergent functions of hedgehog activity. Development (Cambridge), 2001, 128, 2385-2396.	2.5	219
223	Differential expression and functional analysis of <i>Pitx2</i> isoforms in regulation of heart looping in the chick. Development (Cambridge), 2001, 128, 1005-1013.	2.5	71

#	Article	IF	CITATIONS
224	Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development (Cambridge), 2001, 128, 1019-1031.	2.5	344
225	BMP2 is a positive regulator of Nodal signaling during left-right axis formation in the chicken embryo. Development (Cambridge), 2002, 129, 3421-3429.	2.5	52
226	A complex syndrome of left-right axis, central nervous system and axial skeleton defects in <i>Zic3</i> mutant mice. Development (Cambridge), 2002, 129, 2293-2302.	2.5	152
227	Agnathia Holoprosencephaly and Situs Inversus in A Neonate Born to an Alcoholic Mother. Journal of Clinical and Diagnostic Research JCDR, 2015, 9, AD01-2.	0.8	4
228	Mice lacking DYRK2 exhibit congenital malformations with lung hypoplasia and altered Foxf1 expression gradient. Communications Biology, 2021, 4, 1204.	4.4	7
229	Control of Left-Right (L/R) Determination in Vertebrates by the Hedgehog Signaling Pathway. , 2003, , 799-803.		0
230	Hensen's Node: The Embryonic Organizer of the Chick. , 2004, , 395-408.		0
231	Cardiac Development: Molecular and Genetic Analysis. , 2007, , 117-163.		0
232	Isomerism of the Atrial Appendages. , 2010, , 463-483.		5
233	Signaling Pathways in Cardiovascular Development. , 2011, , 155-196.		0
234	Molecular Mechanisms of Lung Development and Lung Branching Morphogenesis. , 2011, , 896-906.		1
236	- Retinoic Acid Signaling in Hematopoiesis and Immune Functions, and Options for Chemoprevention. , 2016, , 208-227.		0
237	Specification of Cardiac Progenitors During Development. , 2018, , 265-265.		0
241	Sequential action of JNK genes establishes the embryonic left-right axis. Development (Cambridge), 2022, 149, .	2.5	4
243	Hedgehog Morphogens Act as Growth Factors Critical to Pre- and Postnatal Cardiac Development and Maturation: How Primary Cilia Mediate Their Signal Transduction. Cells, 2022, 11, 1879.	4.1	4
244	Nodal asymmetry and hedgehog signaling during vertebrate left–right symmetry breaking. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2
245	Transpositions of the great arteries versus aortic dextropositions. A review of some embryogenetic and morphological aspects. Anatomical Record, 0, , .	1.4	0
246	The Hedgehog Pathway as a Therapeutic Target in Chronic Myeloid Leukemia. Pharmaceutics, 2023, 15, 958.	4.5	1

#	Article	IF	CITATIONS
247	Developmental Biology of the Heart. , 2024, , 659-674.e4.		0
248	Asymmetries of Left and Right Adrenal Glands in Neural Innervation and Glucocorticoids Production. International Journal of Molecular Sciences, 2023, 24, 17456.	4.1	0