Positive selection on the H3 hemagglutinin gene of hum

Molecular Biology and Evolution 16, 1457-1465 DOI: 10.1093/oxfordjournals.molbev.a026057

Citation Report

#	Article	IF	CITATIONS
1	Predicting the Evolution of Human Influenza A. Science, 1999, 286, 1921-1925.	6.0	444
2	Factors Influencing Phylogenetic Inference: A Case Study Using the Mammalian Carnivores. Molecular Phylogenetics and Evolution, 2000, 16, 113-126.	1.2	23
3	Maximum Likelihood Estimation on Large Phylogenies and Analysis of Adaptive Evolution in Human Influenza Virus A. Journal of Molecular Evolution, 2000, 51, 423-432.	0.8	202
4	Effects of passage history and sampling bias on phylogenetic reconstruction of human influenza A evolution. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6974-6980.	3.3	88
5	Reevaluation of Amino Acid Variability of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein and Prediction of New Discontinuous Epitopes. Journal of Virology, 2000, 74, 4335-4350.	1.5	98
6	Statistical methods for detecting molecular adaptation. Trends in Ecology and Evolution, 2000, 15, 496-503.	4.2	1,532
7	Acceptable protective efficacy of influenza vaccination in young military conscripts under circumstances of incomplete antigenic and genetic match. Vaccine, 2001, 19, 3253-3260.	1.7	24
8	Predicting influenza evolution: the impact of terminal and egg-adapted mutations. International Congress Series, 2001, 1219, 147-153.	0.2	6
9	Molecular evolution of influenza A/H3N2 viruses in the province of Québec (Canada) during the 1997–2000 period. Virus Research, 2001, 77, 89-96.	1.1	10
10	Vaccination-induced HI antibody response to intraepidemic influenza A(H3N2) virus variants of the 1996-1997 epidemic season. Journal of Medical Virology, 2001, 65, 584-589.	2.5	2
11	Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology. Science, 2001, 294, 2310-2314.	6.0	2,416
12	Infectious diseases and the golden age of phylogenetics:. Infection, Genetics and Evolution, 2001, 1, 69-74.	1.0	3
13	Predicting adaptive evolution. Nature Reviews Genetics, 2001, 2, 387-392.	7.7	138
14	An algorithm for mapping positively selected members of quasispecies-type viruses. BMC Bioinformatics, 2001, 2, 1.	1.2	22
15	Molecular evolution of the Chlamydiaceae International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 203-220.	0.8	100
16	Influenza virus antigens and â€~antigenic drift'. Perspectives in Medical Virology, 2002, 7, 49-85.	0.1	18
17	Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6263-6268.	3.3	205
18	Dynamics and selection of many-strain pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17209-17214.	3.3	255

TATION REDO

#	Article		CITATIONS
19	The (Super)Tree of Life: Procedures, Problems, and Prospects. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 265-289.		222
20	Assessment of Hemagglutinin Sequence Heterogeneity during Influenza Virus Transmission in Families. Journal of Infectious Diseases, 2002, 186, 1575-1581.	1.9	37
21	Phylogenetic and antigenic analysis of influenza A(H3N2) viruses isolated from conscripts receiving influenza vaccine prior to the epidemic season of 1998/9. Epidemiology and Infection, 2002, 129, 347-353.	1.0	2
22	Accuracy and Power of Bayes Prediction of Amino Acid Sites Under Positive Selection. Molecular Biology and Evolution, 2002, 19, 950-958.	3.5	388
23	Mapping Mutations on Phylogenies. Systematic Biology, 2002, 51, 729-739.	2.7	373
24	Imbroglios of Viral Taxonomy: Genetic Exchange and Failings of Phenetic Approaches. Journal of Bacteriology, 2002, 184, 4891-4905.	1.0	240
25	Origins of Human Virus Diversity. Cell, 2002, 108, 305-312.	13.5	86
26	Ecology and evolution of the flu. Trends in Ecology and Evolution, 2002, 17, 334-340.	4.2	233
27	DNA vaccination of ferrets with chimeric influenza A virus hemagglutinin (H3) genes. Vaccine, 2002, 20, 2045-2052.	1.7	18
28	Evolution of surface and nonstructural-1 genes of influenza B viruses isolated in the Province of Québec, Canada, during the 1998-2001 period. Virus Genes, 2003, 27, 125-135.	0.7	6
29	Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Reviews in Medical Virology, 2003, 13, 85-97.	3.9	138
30	Ecological and immunological determinants of influenza evolution. Nature, 2003, 422, 428-433.	13.7	580
31	Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 2003, 422, 433-438.	13.7	1,470
32	Traveling waves in a model of influenza A drift. Journal of Theoretical Biology, 2003, 222, 437-445.	0.8	74
33	The Impact of Antigenic Variation on Pathogen Population Structure, Fitness and Dynamics. , 2003, , 403-432.		6
34	Applications of bioinformatics and computational biology to influenza surveillance and vaccine strain selection. Vaccine, 2003, 21, 1758-1761.	1.7	26
35	Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7152-7157.	3.3	154
36	Extensive gene gain associated with adaptive evolution of poxviruses. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15655-15660.	3.3	161

#	Article		CITATIONS
37	Nucleotide and Predicted Amino Acid Sequence-Based Analysis of the Avian Metapneumovirus Type C Cell Attachment Glycoprotein Gene: Phylogenetic Analysis and Molecular Epidemiology of U.S. Pneumoviruses. Journal of Clinical Microbiology, 2003, 41, 1730-1735.		31
38	Restriction of Amino Acid Change in Influenza A Virus H3HA: Comparison of Amino Acid Changes Observed in Nature and In Vitro. Journal of Virology, 2003, 77, 10088-10098.	1.5	32
39	Evidence of the Coevolution of Antigenicity and Host Cell Tropism of Foot-and-Mouth Disease Virus In Vivo. Journal of Virology, 2003, 77, 1219-1226.	1.5	47
40	Estimating the Distribution of Selection Coefficients from Phylogenetic Data with Applications to Mitochondrial and Viral DNA. Molecular Biology and Evolution, 2003, 20, 1231-1239.	3.5	143
41	1. Challenges for Discrete Mathematics and Theoretical Computer Science in the Defense against Bioterrorism. , 2003, , 1-34.		7
42	Influenza Evolution. , 2004, , 175-197.		1
43	Influenza as a model system for studying the cross–species transfer and evolution of the SARS coronavirus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1067-1073.	1.8	27
44	Three-Dimensional Window Analysis for Detecting Positive Selection at Structural Regions of Proteins. Molecular Biology and Evolution, 2004, 21, 2352-2359.	3.5	36
45	A Large Variation in the Rates of Synonymous Substitution for RNA Viruses and Its Relationship to a Diversity of Viral Infection and Transmission Modes. Molecular Biology and Evolution, 2004, 21, 1074-1080.		192
46	Bioconsensus.—M. F. Janowitz, FJ. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts, editors. (DIMACS series in discrete mathematics and theoretical computer science, v. 61). 2003. American Mathematical Society. 242 pp. ISBN 0–8218–3197–6. \$75.00 Systematic Biology, 2004, 53, 515-517.	2.7	0
47	Influence of antigenic drift on the intensity of influenza outbreaks: Upper respiratory tract infections of military conscripts in Finland. Journal of Medical Virology, 2004, 72, 275-280.	2.5	9
48	Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science, 2004, 305, 371-376.	6.0	1,527
49	Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology, 2004, 14, 1229-1246.	1.3	409
50	Accuracy and Power of Statistical Methods for Detecting Adaptive Evolution in Protein Coding Sequences and for Identifying Positively Selected Sites. Genetics, 2004, 168, 1041-1051.	1.2	543
51	Influenza drift and epidemic size: the race between generating and escaping immunity. Theoretical Population Biology, 2004, 65, 179-191.	0.5	68
52	Algorithms in Bioinformatics. Lecture Notes in Computer Science, 2004, , .	1.0	0
53	Influenza evolution and immune selection. International Congress Series, 2004, 1263, 12-16.	0.2	3
54	Restriction of amino acid changes on the H3 hemagglutinin protein of influenza A virus: comparison of amino acid changes observed in nature and in vitro. International Congress Series, 2004, 1263, 174-177	0.2	3

#	Article		CITATIONS
55	Evolution and persistence of influenza A and other diseases. Mathematical Biosciences, 2004, 188, 17-28.		47
56	Mapping mutations on phylogenies. , 2005, , .		Ο
57	Problems in using statistical analysis of replacement and silent mutations in antibody genes for determining antigen-driven affinity selection. Immunology, 2005, 116, 172-183.	2.0	35
58	Two residues in the hemagglutinin of A/Fujian/411/02-like influenza viruses are responsible for antigenic drift from A/Panama/2007/99. Virology, 2005, 336, 113-119.	1.1	97
59	Molecular characterization of the HA gene of influenza type B viruses. Journal of Medical Virology, 2005, 77, 541-549.	2.5	34
60	Evidence of Positive Darwinian Selection in Putative Meningococcal Vaccine Antigens. Journal of Molecular Evolution, 2005, 61, 90-98.	0.8	9
61	A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees. PLoS Biology, 2005, 3, e170.	2.6	870
62	Accumulation of Amino Acid Substitutions Promotes Irreversible Structural Changes in the Hemagglutinin of Human Influenza AH3 Virus during Evolution. Journal of Virology, 2005, 79, 6472-6477.	1.5	42
63	Comments on Recent Progress Toward Reconstructing the Diatom Phylogeny. Journal of Nanoscience and Nanotechnology, 2005, 5, 57-62.	0.9	45
64	THE ORIGINS OF NEW PANDEMIC VIRUSES: The Acquisition of New Host Ranges by Canine Parvovirus and Influenza A Viruses. Annual Review of Microbiology, 2005, 59, 553-586.	2.9	246
65	Analytical Methods for Studying the Evolution of Paralogs Using Duplicate Gene Datasets. Methods in Enzymology, 2005, 395, 724-745.	0.4	5
66	Epitope analysis for influenza vaccine design. Vaccine, 2005, 23, 1144-1148.	1.7	81
67	Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biology Direct, 2006, 1, 34.	1.9	176
68	Quantifying influenza vaccine efficacy and antigenic distance. Vaccine, 2006, 24, 3881-3888.	1.7	128
69	Molecular clock and estimation of species divergence times. , 2006, , 223-258.		0
70	Detailed analysis of the genetic evolution of influenza virus during the course of an epidemic. Epidemiology and Infection, 2006, 134, 514-520.	1.0	25
71	Epochal Evolution Shapes the Phylodynamics of Interpandemic Influenza A (H3N2) in Humans. Science, 2006, 314, 1898-1903.	6.0	423
72	Natural Selection on the Influenza Virus Genome. Molecular Biology and Evolution, 2006, 23, 1902-1911.	3.5	110

#	Article		CITATIONS
73	Stochastic Processes Are Key Determinants of Short-Term Evolution in Influenza A Virus. PLoS Pathogens, 2006, 2, e125.	2.1	173
74	Epidemic dynamics and antigenic evolution in a single season of influenza A. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1307-1316.	1.2	85
75	Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6283-6288.	3.3	210
76	Influenza Seasonality: Underlying Causes and Modeling Theories. Journal of Virology, 2007, 81, 5429-5436.	1.5	451
77	Phylogenetic Evidence for Deleterious Mutation Load in RNA Viruses and Its Contribution to Viral Evolution. Molecular Biology and Evolution, 2007, 24, 845-852.	3.5	133
78	A Likelihood-based Index of Protein Protein Binding Affinities with Application to Influenza HA Escape from Antibodies. Molecular Biology and Evolution, 2007, 24, 1627-1638.	3.5	6
79	Identification of Cross-Neutralization Determinants by GAP Analysis: A Mutational Behavior Approach. Current HIV Research, 2007, 5, 87-96.	0.2	0
80	Evolution and Variation of the H3 Gene of Influenza A Virus and Interaction among Hosts. Intervirology, 2007, 50, 287-295.	1.2	12
81	The Genesis and Spread of Reassortment Human Influenza A/H3N2 Viruses Conferring Adamantane Resistance. Molecular Biology and Evolution, 2007, 24, 1811-1820.	3.5	174
82	Genetic Variability in RNA Viruses: Consequences in Epidemiology and in the Development of New Stratgies for the Extinction of Infectivity. Biological and Medical Physics Series, 2007, , 341-362.	0.3	1
83	Point, Counterpoint: The Evolution of Pathogenic Viruses and their Human Hosts. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 515-540.	3.8	22
84	Influenza Evolution. , 0, , 199-214.		5
85	The evolution of epidemic influenza. Nature Reviews Genetics, 2007, 8, 196-205.	7.7	462
86	The quest for natural selection in the age of comparative genomics. Heredity, 2007, 99, 567-579.	1.2	78
87	An outbreak of equine influenza virus in vaccinated horses in Italy is due to an H3N8 strain closely related to recent North American representatives of the Florida sub-lineage. Veterinary Microbiology, 2007, 121, 56-63.	0.8	48
88	Exploring Variation in the d N /d S Ratio Among Sites and Lineages Using Mutational Mappings: Applications to the Influenza Virus. Journal of Molecular Evolution, 2007, 65, 340-348.	0.8	15
89	The variable codons of H3 influenza A virus haemagglutinin genes. Archives of Virology, 2007, 152, 11-24.	0.9	13
90	Rapid Evolution by Positive Darwinian Selection in T-Cell Antigen CD4 in Primates. Journal of Molecular Evolution, 2008, 66, 446-456.	0.8	33

#	Article		CITATIONS
91	Heterogeneous Selective Pressure Acting on Influenza B Victoria- and Yamagata-Like Hemagglutinins. Journal of Molecular Evolution, 2008, 67, 427-435.	0.8	7
93	The variable codons of H5N1 avian influenza A virus haemagglutinin genes. Science in China Series C: Life Sciences, 2008, 51, 987-993.	1.3	6
94	Characterization of influenza A/Fujian/411/2002(H3N2)â€like viruses isolated in Portugal between 2003 and 2005. Journal of Medical Virology, 2008, 80, 1624-1630.	2.5	4
95	The genomic and epidemiological dynamics of human influenza A virus. Nature, 2008, 453, 615-619.	13.7	824
96	Effects of single-point amino acid substitutions on the structure and function neuraminidase proteins in influenza A virus. Microbiology and Immunology, 2008, 52, 216-223.	0.7	13
97	Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions. Virology Journal, 2008, 5, 91.	1.4	4
98	The evolution of human influenza A viruses from 1999 to 2006: A complete genome study. Virology Journal, 2008, 5, 40.	1.4	84
99	Vaccination and antigenic drift in influenza. Vaccine, 2008, 26, C8-C14.	1.7	146
100	Antigenic Profile of Avian H5N1 Viruses in Asia from 2002 to 2007. Journal of Virology, 2008, 82, 1798-1807.	1.5	100
101	Chapter 1 The History and Evolution of Human Dengue Emergence. Advances in Virus Research, 2008, 72, 1-76.	0.9	163
102	Natural Selection for Nucleotide Usage at Synonymous and Nonsynonymous Sites in Influenza A Virus Genes. Journal of Virology, 2008, 82, 4938-4945.	1.5	25
103	Physiochemical Constraints in Influenza A Hemagglutinin. , 2008, , .		Ο
104	Homologous Recombination Is Very Rare or Absent in Human Influenza A Virus. Journal of Virology, 2008, 82, 4807-4811.	1.5	111
105	Multiple Reassortment Events in the Evolutionary History of H1N1 Influenza A Virus Since 1918. PLoS Pathogens, 2008, 4, e1000012.	2.1	243
106	Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus. Bioinformatics, 2008, 24, 505-512.	1.8	86
107	Changing Selective Pressure during Antigenic Changes in Human Influenza H3. PLoS Pathogens, 2008, 4, e1000058.	2.1	102
108	Molecular Epidemiology of A/H3N2 and A/H1N1 Influenza Virus during a Single Epidemic Season in the United States. PLoS Pathogens, 2008, 4, e1000133.	2.1	97
109	Genetic and Epidemiological Analysis of Influenza Virus Epidemics in Taiwan during 2003 to 2006. Journal of Clinical Microbiology, 2008, 46, 1426-1434.	1.8	25

#	Article		CITATIONS
110	Directionality in the evolution of influenza A haemagglutinin. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2455-2464.	1.2	21
111	Influenza A Virus (H3N8) in Dogs with Respiratory Disease, Florida. Emerging Infectious Diseases, 2008, 14, 902-908.	2.0	151
112	Evolutionary Trends of A(H1N1) Influenza Virus Hemagglutinin Since 1918. PLoS ONE, 2009, 4, e7789.	1.1	71
113	The epitope regions of H1-subtype influenza A, with application to vaccine efficacy. Protein Engineering, Design and Selection, 2009, 22, 543-546.	1.0	85
114	Reversion of Influenza A (H3N2) Virus from Amantadine Resistant to Amantadine Sensitive by Further Reassortment in Japan during the 2006-to-2007 Influenza Season. Journal of Clinical Microbiology, 2009, 47, 841-844.	1.8	30
115	Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8701-8706.	3.3	100
116	The Role of Genomics in Tracking the Evolution of Influenza A Virus. PLoS Pathogens, 2009, 5, e1000566.	2.1	81
117	Using a mutual information-based site transition network to map the genetic evolution of influenza A/H3N2 virus. Bioinformatics, 2009, 25, 2309-2317.	1.8	31
118	Co-evolution positions and rules for antigenic variants of human influenza A/H3N2 viruses. BMC Bioinformatics, 2009, 10, S41.	1.2	38
119	Diversifying selective pressure on influenza B virus hemagglutinin. Journal of Medical Virology, 2009, 81, 114-124.	2.5	42
120	Molecular evolution of human influenza A viruses in a local area during eight influenza epidemics from 2000 to 2007. Archives of Virology, 2009, 154, 285-295.	0.9	24
121	Positive selection analysis of VP1 Genes of worldwide human enterovirus 71 viruses. Virologica Sinica, 2009, 24, 59-64.	1.2	6
122	Selection pressure on Haemagglutinin genes of H9N2 influenza viruses from different hosts. Virologica Sinica, 2009, 24, 65-70.	1.2	4
123	Genomic events underlying the changes in adamantane resistance among influenza A(H3N2) viruses during 2006–2008. Influenza and Other Respiratory Viruses, 2009, 3, 297-314.	1.5	21
124	Prediction of the membrane-spanning β-strands of the major outer membrane protein of Chlamydia. Protein Science, 2009, 11, 1854-1861.	3.1	38
125	A multi-valent vaccine approach that elicits broad immunity within an influenza subtype. Vaccine, 2009, 27, 1192-1200.	1.7	46
126	From where did the 2009 'swine-origin' influenza A virus (H1N1) emerge?. Virology Journal, 2009, 6, 207.	1.4	73
127	Evolution of the M gene of the influenza A virus in different host species: large-scale sequence analysis. Virology Journal, 2009, 6, 67.	1.4	119

#	Article		CITATIONS
128	Predicting protein evolution in vitro by phage escape technology. Molecular BioSystems, 2009, 5, 128-133.		0
129	The Evolutionary Genetics of Emerging Viruses. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 353-372.	3.8	157
130	Protein homology modeling and structure-function relationship of 2009 swine influenza virus hemagglutinin (HA1): more human than swine. Biologia (Poland), 2010, 65, 183-190.	0.8	0
131	Coexistence conditions for strains of influenza with immune cross-reaction. Journal of Theoretical Biology, 2010, 262, 48-57.	0.8	22
132	Evolution of canine and equine influenza (H3N8) viruses co-circulating between 2005 and 2008. Virology, 2010, 408, 71-79.	1.1	46
133	Models of RNA virus evolution and their roles in vaccine design. Immunome Research, 2010, 6, S5.	0.1	19
134	Guidelines for Identifying Homologous Recombination Events in Influenza A Virus. PLoS ONE, 2010, 5, e10434.	1.1	72
135	Bacterial Genetic Signatures of Human Social Phenomena among M. tuberculosis from an Aboriginal Canadian Population. Molecular Biology and Evolution, 2010, 27, 427-440.	3.5	37
136	Analysis of the Hemagglutinin and Neuraminidase Genes of Human Influenza A/H3N2 Viruses Circulating in Iran between 2005 and 2007: Antigenic and Phylogenetic Relationships to Vaccine Strains. Intervirology, 2010, 53, 133-140.	1.2	5
137	Time - the emerging dimension of plant virus studies. Journal of General Virology, 2010, 91, 13-22.	1.3	103
138	How Can Vaccines Against Influenza and Other Viral Diseases Be Made More Effective?. PLoS Biology, 2010, 8, e1000571.	2.6	23
139	A computational analysis of the antigenic properties of haemagglutinin in influenza A H3N2. Bioinformatics, 2010, 26, 1403-1408.	1.8	43
140	Mutations at positions 186 and 194 in the HA gene of the 2009 H1N1 pandemic influenza virus improve replication in cell culture and eggs. Virology Journal, 2010, 7, 157.	1.4	21
141	What happened after the initial global spread of pandemic human influenza virus A (H1N1)? A population genetics approach. Virology Journal, 2010, 7, 196.	1.4	10
142	Use of phylogenetics in the molecular epidemiology and evolutionary studies of viral infections. Critical Reviews in Clinical Laboratory Sciences, 2010, 47, 5-49.	2.7	56
143	The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response. Vaccine, 2010, 28, 4079-4085.	1.7	62
144	Contrasting substitution patterns between HA proteins of avian and human influenza viruses: Implication for monitoring human influenza epidemics. Vaccine, 2010, 28, 7890-7896.	1.7	2
145	A new antigenic variant of human influenza A (H3N2) virus isolated from airport and community surveillance in Taiwan in early 2009. Virus Research, 2010, 151, 33-38.	1.1	14

#	Article	IF	CITATIONS
146	Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1. Vaccine, 2011, 29, 3517-3524.	1.7	36
147	Influenza Forensics. , 2011, , 109-725.		1
149	Variation in the Analysis of Positively Selected Sites Using Nonsynonymous/Synonymous Rate Ratios: An Example Using Influenza Virus. PLoS ONE, 2011, 6, e19996.	1.1	21
150	Gnarled-Trunk Evolutionary Model of Influenza A Virus Hemagglutinin. PLoS ONE, 2011, 6, e25953.	1.1	30
151	M-specific reverse transcription loop-mediated isothermal amplification for detection of pandemic (H1N1) 2009 virus. European Journal of Clinical Investigation, 2011, 41, 434-441.	1.7	7
152	FimH, a TLR4 ligand, induces innate antiviral responses in the lung leading to protection against lethal influenza infection in mice. Antiviral Research, 2011, 92, 346-355.	1.9	45
153	Phylogenetic analysis of pandemic 2009 influenza A virus circulating in the South American region: genetic relationships and vaccine strain match. Archives of Virology, 2011, 156, 87-94.	0.9	8
154	Identification of novel conserved functional motifs across most Influenza A viral strains. Virology Journal, 2011, 8, 44.	1.4	36
155	Detection of lineage-specific evolutionary changes among primate species. BMC Bioinformatics, 2011, 12, 274.	1.2	19
156	Strength and tempo of selection revealed in viral gene genealogies. BMC Evolutionary Biology, 2011, 11, 220.	3.2	69
157	Genes in the terminal regions of orthopoxvirus genomes experience adaptive molecular evolution. BMC Genomics, 2011, 12, 261.	1.2	22
158	Evolution of the influenza A virus untranslated regions. Infection, Genetics and Evolution, 2011, 11, 1150-1154.	1.0	23
159	Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza. Journal of the Royal Society Interface, 2011, 8, 1644-1653.	1.5	40
160	Analysis of Antigenically Important Residues in Human Influenza A Virus in Terms of B-Cell Epitopes. Journal of Virology, 2011, 85, 8548-8555.	1.5	9
161	Allele dynamics plots for the study of evolutionary dynamics in viral populations. Nucleic Acids Research, 2011, 39, e4-e4.	6.5	32
162	Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins. PLoS Genetics, 2011, 7, e1001301.	1.5	182
163	Inference of Genotype–Phenotype Relationships in the Antigenic Evolution of Human Influenza A (H3N2) Viruses. PLoS Computational Biology, 2012, 8, e1002492.	1.5	26
164	Components of Selection in the Evolution of the Influenza Virus: Linkage Effects Beat Inherent Selection. PLoS Pathogens, 2012, 8, e1003091.	2.1	36

#	Article	IF	CITATIONS
165	Evolutionary Patterning of Hemagglutinin Gene Sequence of 2009 H1N1 Pandemic. Journal of Biomolecular Structure and Dynamics, 2012, 29, 733-742.	2.0	17
166	Detecting Patches of Protein Sites of Influenza A Viruses under Positive Selection. Molecular Biology and Evolution, 2012, 29, 2063-2071.	3.5	27
167	Computational analysis of adaptive antigenic mutations of the human influenza hemagglutinin for vaccine strain selection. International Journal of Bioinformatics Research and Applications, 2012, 8, 81.	0.1	2
168	Antigenic sites of H1N1 influenza virus hemagglutinin revealed by natural isolates and inhibition assays. Vaccine, 2012, 30, 6327-6337.	1.7	20
169	Highly conserved influenza A virus epitope sequences as candidates of H3N2 flu vaccine targets. Genomics, 2012, 100, 102-109.	1.3	15
170	Identifying Antigenicity-Associated Sites in Highly Pathogenic H5N1 Influenza Virus Hemagglutinin by Using Sparse Learning. Journal of Molecular Biology, 2012, 422, 145-155.	2.0	43
171	Canalization of the evolutionary trajectory of the human influenza virus. BMC Biology, 2012, 10, 38.	1.7	84
172	A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918. Theoretical Biology and Medical Modelling, 2012, 9, 42.	2.1	23
173	Genetics, Evolution, and the Zoonotic Capacity of European Swine Influenza Viruses. Current Topics in Microbiology and Immunology, 2012, 370, 29-55.	0.7	53
174	Immunodominance of Antigenic Site B over Site A of Hemagglutinin of Recent H3N2 Influenza Viruses. PLoS ONE, 2012, 7, e41895.	1.1	92
175	Phylogenetic Properties of RNA Viruses. PLoS ONE, 2012, 7, e44849.	1.1	30
176	Genetic Mapping of a Highly Variable Norovirus GII.4 Blockade Epitope: Potential Role in Escape from Human Herd Immunity. Journal of Virology, 2012, 86, 1214-1226.	1.5	139
177	Increased substitution rate in H5N1 avian influenza viruses during mass vaccination of poultry. Science Bulletin, 2012, 57, 2419-2424.	1.7	13
178	Age profile of immunity to influenza: Effect of original antigenic sin. Theoretical Population Biology, 2012, 81, 102-112.	0.5	27
179	Monitoring the antigenic evolution of human influenza A viruses to understand how and when viruses escape from existing immunity. BMC Research Notes, 2013, 6, 227.	0.6	4
180	The antigenic evolution of influenza: drift or thrift?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120200.	1.8	36
181	Evolutionary interactions between haemagglutinin and neuraminidase in avian influenza. BMC Evolutionary Biology, 2013, 13, 222.	3.2	24
182	Detection of site-specific positive Darwinian selection on pandemic influenza A/H1N1 virus genome: integrative approaches. Genetica, 2013, 141, 143-155.	0.5	8

		CITATION REF	PORT	
#	Article		IF	CITATIONS
183	Detection of positive selection eliminating effects of structural constraints in hemagglutinin o H3N2 human influenza A virus. Infection, Genetics and Evolution, 2013, 16, 93-98.	F	1.0	4
184	The Roles of Competition and Mutation in Shaping Antigenic and Genetic Diversity in Influenza Pathogens, 2013, 9, e1003104.	a. PLoS	2.1	63
185	Viral Phylodynamics. PLoS Computational Biology, 2013, 9, e1002947.		1.5	340
187	Exploring phylogenetic informativeness and nuclear copies of mitochondrial DNA (numts) in the commonly used mitochondrial genes: mitochondrial phylogeny of peppermint, cleaner, and semi-terrestrial shrimps (Caridea: <i>Lysmata</i> , <i>Exhippolysmata</i> , and <i>Merguia</i>). Zoological Journal of the Linnean Society. 2013. 168. 699-722.	iree	1.0	30
188	Swine Influenza. Current Topics in Microbiology and Immunology, 2013, , .		0.7	7
189	FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Molecular Biolc Evolution, 2013, 30, 1196-1205.	gy and	3.5	1,056
190	Influenza A H1N1 Pandemic Strain Evolution – Divergence and the Potential for Antigenic D Variants. PLoS ONE, 2014, 9, e93632.	ift	1.1	45
191	Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunolog	y, 2014,	0.7	11
192	Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Gen Genetics, 2014, 10, e1004037.	es. PLoS	1.5	43
193	Adaptive evolution of a novel avian-origin influenza A/H7N9 virus. Genomics, 2014, 104, 545-5	53.	1.3	14
194	Newly Emerging Mutations in the Matrix Genes of the Human Influenza A(H1N1)pdm09 and A Viruses Reduce the Detection Sensitivity of Real-Time Reverse Transcription-PCR. Journal of Cli Microbiology, 2014, 52, 76-82.	(H3N2) nical	1.8	52
195	Evolution in the influenza A H3 stalk – a challenge for broad-spectrum vaccines?. Journal of 0 Virology, 2014, 95, 317-324.	General	1.3	9
196	A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 2013276		1.2	20
197	Emergence of G186D Mutation in the Presence of R292K Mutation in an Immunocompromise Infected with Influenza A/H3N2 Virus, Treated with Oseltamivir. Journal of Clinical Microbiolog 52, 1749-1750.		1.8	4
198	Antigenic Analyses of Highly Pathogenic Avian Influenza A Viruses. Current Topics in Microbiol and Immunology, 2014, 385, 403-440.	ogy	0.7	5
199	Marine Viruses: the Beneficial Side of a Threat. Applied Biochemistry and Biotechnology, 2014, 2368-2379.	174,	1.4	5
200	Inferring the antigenic epitopes for highly pathogenic avian influenza H5N1 viruses. Vaccine, 2 671-676.	014, 32,	1.7	15
201	Computational Prediction of Vaccine Strains for Human Influenza A (H3N2) Viruses. Journal of Virology, 2014, 88, 12123-12132.		1.5	42

#	Article	IF	CITATIONS
202	H3N2 Mismatch of 2014–15 Northern Hemisphere Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived Antigenic Maps. Scientific Reports, 2015, 5, 15279.	1.6	118
203	Identification of Influenza A/PR/8/34 Donor Viruses Imparting High Hemagglutinin Yields to Candidate Vaccine Viruses in Eggs. PLoS ONE, 2015, 10, e0128982.	1.1	18
204	Time dependence of evolutionary metrics during the 2009 pandemic influenza virus outbreak. Virus Evolution, 2015, 1, vev006.	2.2	30
205	Intrahost Dynamics of Antiviral Resistance in Influenza A Virus Reflect Complex Patterns of Segment Linkage, Reassortment, and Natural Selection. MBio, 2015, 6, .	1.8	58
206	Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins. Virology, 2015, 477, 18-31.	1.1	92
207	Geometric Constraints Dominate the Antigenic Evolution of Influenza H3N2 Hemagglutinin. PLoS Pathogens, 2015, 11, e1004940.	2.1	41
208	Applications in the search for genomic selection signatures in fish. Frontiers in Genetics, 2014, 5, 458.	1.1	53
209	Evolution of the hemagglutinin expressed by human influenza A(H1N1)pdm09 and A(H3N2) viruses circulating between 2008–2009 and 2013–2014 in Germany. International Journal of Medical Microbiology, 2015, 305, 762-775.	1.5	19
210	Positive Selection in CD8 ⁺ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages. Journal of Virology, 2015, 89, 11275-11283.	1.5	40
211	N-Linked glycans on influenza A H3N2 hemagglutinin constrain binding of host antibodies, but shielding is limited. Glycobiology, 2015, 25, 124-132.	1.3	13
212	Analyses of Evolutionary Characteristics of the Hemagglutinin-Esterase Gene of Influenza C Virus during a Period of 68 Years Reveals Evolutionary Patterns Different from Influenza A and B Viruses. Viruses, 2016, 8, 321.	1.5	17
213	Determination of antigenicity-altering patches on the major surface protein of human influenza A/H3N2 viruses. Virus Evolution, 2016, 2, vev025.	2.2	21
214	Dynamic Convergent Evolution Drives the Passage Adaptation across 48 Years' History of H3N2 Influenza Evolution. Molecular Biology and Evolution, 2016, 33, 3133-3143.	3.5	16
215	Evolutionary and Functional Analysis of Membrane-Bound NAC Transcription Factor Genes in Soybean. Plant Physiology, 2016, 172, 1804-1820.	2.3	50
216	Sequence amplification via cell passaging creates spurious signals of positive adaptation in influenza virus H3N2 hemagglutinin. Virus Evolution, 2016, 2, vew026.	2.2	35
217	Smoothed Bootstrap Aggregation for Assessing Selection Pressure at Amino Acid Sites. Molecular Biology and Evolution, 2016, 33, 2976-2989.	3.5	6
218	Causes of evolutionary rate variation among protein sites. Nature Reviews Genetics, 2016, 17, 109-121.	7.7	247
219	Quantifying influenza virus diversity and transmission in humans. Nature Genetics, 2016, 48, 195-200.	9.4	182

#	Article	IF	CITATIONS
220	Antigenic Maps of Influenza A(H3N2) Produced With Human Antisera Obtained After Primary Infection. Journal of Infectious Diseases, 2016, 213, 31-38.	1.9	35
221	Prediction (early recognition) of emerging flu strain clusters. Physica A: Statistical Mechanics and Its Applications, 2017, 479, 371-378.	1.2	1
222	A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures. Scientific Reports, 2017, 7, 42051.	1.6	22
223	Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. Journal of Virology, 2017, 91, .	1.5	23
224	Population Diversity and Collective Interactions during Influenza Virus Infection. Journal of Virology, 2017, 91, .	1.5	82
225	Low influenza vaccine effectiveness and the effect of previous vaccination in preventing admission with A(H1N1)pdm09 or B/Victoria-Lineage in patients 60 years old or older during the 2015/2016 influenza season. Vaccine, 2017, 35, 7331-7338.	1.7	18
226	Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology, 2017, 500, 1-10.	1.1	28
227	Neutral Theory and Rapidly Evolving Viral Pathogens. Molecular Biology and Evolution, 2018, 35, 1348-1354.	3.5	58
228	Introduction of Viral Hemorrhagic Septicemia Virus into Freshwater Cultured Rainbow Trout Is Followed by Bursts of Adaptive Evolution. Journal of Virology, 2018, 92, .	1.5	22
229	In Silico Vaccine Strain Prediction for Human Influenza Viruses. Trends in Microbiology, 2018, 26, 119-131.	3.5	42
230	Influenza Virus. Methods in Molecular Biology, 2018, , .	0.4	10
231	Software for Characterizing the Antigenic and Genetic Evolution of Human Influenza Viruses. Methods in Molecular Biology, 2018, 1836, 551-565.	0.4	1
232	Host contact structure is important for the recurrence of Influenza A. Journal of Mathematical Biology, 2018, 77, 1563-1588.	0.8	4
233	Evolutionary dynamics of the H7N9 avian influenza virus based on large-scale sequence analysis. PLoS ONE, 2019, 14, e0220249.	1.1	0
234	Allele-specific nonstationarity in evolution of influenza A virus surface proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21104-21112.	3.3	10
235	Abundance of HPV L1 Intra-Genotype Variants With Capsid Epitopic Modifications Found Within Low- and High-Grade Pap Smears With Potential Implications for Vaccinology. Frontiers in Genetics, 2019, 10, 489.	1.1	6
236	Structures and functions linked to genome-wide adaptation of human influenza A viruses. Scientific Reports, 2019, 9, 6267.	1.6	4
237	Anticipating time-dependent antigenic variants of influenza A (H3N2) viruses. Infection, Genetics and Evolution, 2019, 67, 67-72.	1.0	3

#	Article	IF	CITATIONS
238	Amino acid substitutions in antigenic region B of hemagglutinin play a critical role in the antigenic drift of subclade 2.3.4.4 highly pathogenic H5NX influenza viruses. Transboundary and Emerging Diseases, 2020, 67, 263-275.	1.3	9
239	Heterologous Antibody Responses Conferred by A(H3N2) Variant and Seasonal Influenza Vaccination Against Newly Emerged 2016–2018 A(H3N2) Variant Viruses in Healthy Persons. Clinical Infectious Diseases, 2020, 71, 3061-3070.	2.9	3
240	The Ecology and Evolution of Influenza Viruses. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038489.	2.9	97
241	Pre-existing immunity to influenza virus hemagglutinin stalk might drive selection for antibody-escape mutant viruses in a human challenge model. Nature Medicine, 2020, 26, 1240-1246.	15.2	42
242	Early prediction of antigenic transitions for influenza A/H3N2. PLoS Computational Biology, 2020, 16, e1007683.	1.5	16
243	Identification and Characterization of Novel Antibody Epitopes on the N2 Neuraminidase. MSphere, 2021, 6, .	1.3	15
244	Genetic Evolution Characteristics of Genotype G57 Virus, A Dominant Genotype of H9N2 Avian Influenza Virus. Frontiers in Microbiology, 2021, 12, 633835.	1.5	6
245	SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infection, Genetics and Evolution, 2021, 90, 104760.	1.0	34
246	Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases. Nature Communications, 2021, 12, 4313.	5.8	17
247	Ongoing global and regional adaptive evolution of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	196
248	Discriminating Clonotypes of Influenza A Virus Genes by Nanopore Sequencing. International Journal of Molecular Sciences, 2021, 22, 10069.	1.8	2
249	Modeling the selective advantage of new amino acids on the hemagglutinin of H1N1 influenza viruses using their patient age distributions. Virus Evolution, 2021, 7, veab049.	2.2	2
252	Phylogeny reconstruction: overview. , 2006, , 73-99.		1
253	Maximum likelihood methods. , 2006, , 100-144.		3
254	Bayesian methods. , 2006, , 145-184.		1
255	Neutral and adaptive protein evolution. , 2006, , 259-292.		6
257	Introducing Evolutionary Thinking For Medicine. , 2007, , 3-16.		6
258	Global spatial patterns of infectious diseases and human evolution. , 2007, , 19-30.		7

#	Article		IF	CITATIONS
259	Human genetic variation of medical significance. , 2007, , 51-62.			1
260	Intimate relations: Evolutionary conflicts of pregnancy and childhood. , 2007, , 65-76.			5
261	How hormones mediate trade-offs in human health and disease. , 2007, , 77-94.			12
262	Functional significance of MHC variation in mate choice, reproductive outcome, and disease 2007, , 95-108.	e risk. ,		3
263	The ecology and evolution of antibiotic-resistant bacteria. , 2007, , 125-138.			9
264	Pathogen evolution in a vaccinated world. , 2007, , 139-152.			11
265	The evolution and expression of virulence. , 2007, , 153-168.			30
266	Evolutionary origins of diversity in human viruses. , 2007, , 169-184.			2
267	The population structure of pathogenic bacteria. , 2007, , 185-198.			4
268	Emergence of new infectious diseases. , 2007, , 215-228.			7
269	Evolutionary biology as a foundation for studying aging and aging-related disease. , 2007, ,	241-252.		3
270	Evolution, developmental plasticity, and metabolic disease. , 2007, , 253-264.			8
271	Lifestyle, diet, and disease: comparative perspectives on the determinants of chronic health 2007, , 265-276.	ı risks. ,		8
272	Evidence for Positive Selection in Foot-and-Mouth Disease Virus Capsid Genes From Field Ise Genetics, 2001, 157, 7-15.	olates.	1.2	126
273	Mutations as Missing Data: Inferences on the Ages and Distributions of Nonsynonymous ar Synonymous Mutations. Genetics, 2001, 159, 401-411.	nd	1.2	23
274	Enzyme Kinetics, Substitutable Resources and Competition: From Biochemistry to Frequence Selection in <i>lac</i> . Genetics, 2002, 162, 485-499.	cy-Dependent	1.2	37
275	Phylogenetic evidence for adaptive evolution of dengue viruses in nature. Journal of Genera Virology, 2002, 83, 1679-1689.	1	1.3	115
282	Hemagglutinin head-specific responses dominate over stem-specific responses following pri with mismatched vaccines. JCI Insight, 2019, 4, .	ime boost	2.3	15

ARTICLE IF CITATIONS # Genetic Characterization of the Influenza A Pandemic (H1N1) 2009 Virus Isolates from India. PLoS ONE, 283 1.1 102 2010, 5, e9693. Do N-glycoproteins have preference for specific sequons?. Bioinformation, 2010, 5, 208-212. 0.2 23 Molecular basis of antigenic drift in Influenza A/H3N2 strains (1968-2007) in the light of 286 0.2 16 antigen-antibody interactions. Bioinformation, 2011, 6, 266-270. Antigenic variability in Neuraminidase protein of Influenza A/H3N2 vaccine strains (1968 – 2009). Bioinformation, 2011, 7, 76-81. Characterization of key amino acid substitutions and dynamics of the influenza virus H3N2 288 1.7 4 hemagglutinin. Journal of Infection, 2021, 83, 671-677. Models of amino acid and codon substitution., 2006, , 40-70. 291 Models of nucleotide substitution., 2006, , 3-39. 0 Simulating molecular evolution., 2006, , 293-307. 294 Comparison of methods and tests on trees., 2006, , 185-220. 0 The evolutionary context of human aging and degenerative disease., 2007, , 301-312. Health consequences of ecogenetic variation., 2007, , 43-50. 296 1 Cancer as a microevolutionary process., 2007, , 289-300. Evolution of parasites., 2007, , 229-238. 298 6 Perspectives on human health and disease from evolutionary and behavioral ecology., 2007, , 109-122. 299 300 Medically relevant variation in the human genome., 2007, , 31-42. 0 Cancer: evolutionary origins of vulnerability., 2007,, 277-288. Whole-genome analysis of pathogen evolution., 2007, , 199-214. 302 0 Large-Scale Phylogenetic Analysis of Emerging Infectious Diseases. Lecture Notes in Mathematics, 2008, 0.1 , 39-76.

#	Article	IF	CITATIONS
304	Virologische Grundlagen und Labordiagnostik. , 2009, , 55-79.		1
305	Evaluating the Evolutionary Dynamics of Viral Populations. , 2013, , 205-225.		0
306	Viral Dynamics and Mathematical Models. , 2014, , 81-96.		0
314	Influenza antigenic drift: what is the driving force?. Cellscience, 2010, 6, 1-8.	0.3	0
315	A statistical analysis of antigenic similarity among influenza A (H3N2) viruses. Heliyon, 2021, 7, e08384.	1.4	2
316	A Paradigm Shift in the Combination Changes of SARS-CoV-2 Variants and Increased Spread of Delta Variant (B.1.617.2) across the World. , 2022, 13, 927.		11
329	Vaccination decreases the risk of influenza A virus reassortment but not genetic variation in pigs. ELife, 0, 11, .	2.8	4
330	Univ-flu: A structure-based model of influenza A virus hemagglutinin for universal antigenic prediction. Computational and Structural Biotechnology Journal, 2022, 20, 4656-4666.	1.9	1
331	Predicting Egg Passage Adaptations to Design Better Vaccines for the H3N2 Influenza Virus. Viruses, 2022, 14, 2065.	1.5	0
333	A highly efficient and accurate method of detecting and subtyping Influenza A pdm H1N1 and H3N2 viruses with newly emerging mutations in the matrix gene in Eastern Taiwan. PLoS ONE, 2023, 18, e0283074.	1.1	0
337	Inactivated and Recombinant Influenza Vaccines. , 2023, , 514-551.e31.		0