Epidermal growth factor modifies the expression and fu adhesion receptors expressed by peritoneal mesothelia

Nephrology Dialysis Transplantation 14, 1208-1216 DOI: 10.1093/ndt/14.5.1208

Citation Report

#	Article	IF	CITATIONS
1	Peritoneal Defenses Against Infection: Winning the Battle but Losing the War?. Seminars in Dialysis, 2000, 13, 47-53.	0.7	15
2	Induction of hyaluronan metabolism after mechanical injury of human peritoneal mesothelial cells in vitro. Kidney International, 2000, 58, 1953-1962.	2.6	77
3	Icodextrin Effluent Leads to a Greater Proliferation than Glucose Effluent of Human Mesothelial Cells Studied Ex Vivo. Peritoneal Dialysis International, 2000, 20, 742-747.	1.1	38
4	Expression of Defensin Antimicrobial Peptides in the Peritoneal Cavity of Patients on Peritoneal Dialysis. Peritoneal Dialysis International, 2001, 21, 501-508.	1.1	13
5	HB-ECF is produced in the peritoneal cavity and enhances mesothelial cell adhesion and migration. Kidney International, 2001, 59, 614-624.	2.6	39
6	Peritoneal mesothelial cells and the extracellular matrix. Nephrology, 2001, 6, 250-258.	0.7	4
7	Effect of inflammatory cytokines and growth factors on tumour cell adhesion to the peritoneum. Journal of Pathology, 2001, 193, 530-537.	2.1	56
8	The unâ€physiology of peritoneal dialysis solution and the peritoneal membrane: from basic research to clinical nephrology. Nephrology Dialysis Transplantation, 2001, 16, 905-912.	0.4	2
9	Differential expression of TGF-beta1 and TGF-beta3 in serosal tissues of human intraperitoneal organs and peritoneal adhesions. Human Reproduction, 2001, 16, 1291-1300.	0.4	54
10	Mesothelial cells: Their structure, function and role in serosal repair. Respirology, 2002, 7, 171-191.	1.3	333
11	Correction of anemia in uremic mice by genetically modified peritoneal mesothelial cells. Kidney International, 2003, 63, 2103-2112.	2.6	21
12	Connective tissue growth factor and its regulation in the peritoneal cavity of peritoneal dialysis patients. Kidney International, 2003, 64, 331-338.	2.6	55
13	Glucose degradation products (GDP) retard remesothelialization independently of d-glucose concentration. Kidney International, 2003, 64, 1854-1866.	2.6	101
14	High glucose levels inhibit focal adhesion kinase-mediated wound healing of rat peritoneal mesothelial cells. Kidney International, 2003, 63, 722-731.	2.6	44
15	Peritoneal Dialysis and Epithelial-to-Mesenchymal Transition of Mesothelial Cells. New England Journal of Medicine, 2003, 348, 403-413.	13.9	694
16	Insulin-Like Growth Factor-II Bound to Vitronectin Enhances MCF-7 Breast Cancer Cell Migration. Endocrinology, 2003, 144, 2417-2424.	1.4	31
17	Patterns of CD4/CD8 T-cell ratio in dialysis effluents predict the long-term outcome of peritonitis in patients undergoing peritoneal dialysis. Nephrology Dialysis Transplantation, 2003, 18, 1181-1189.	0.4	21
18	Mesothelial progenitor cells and their potential in tissue engineering. International Journal of Biochemistry and Cell Biology, 2004, 36, 621-642.	1.2	128

CITATION REPORT

#	Article	IF	CITATIONS
19	Possible Effects of Hepatocyte Growth Factor for the Prevention of Peritoneal Fibrosis. Nephron Experimental Nephrology, 2005, 99, e87-e94.	2.4	20
20	Responses of keratinocytes to substrate-bound vitronectin:growth factor complexes. Experimental Cell Research, 2005, 305, 221-232.	1.2	37
22	Technological Advances in Peritoneal Dialysis Research Peritoneal Cell Culture: Fibroblasts. Peritoneal Dialysis International, 2006, 26, 292-299.	1.1	24
23	Ex vivo reversal of in vivo transdifferentiation in mesothelial cells grown from peritoneal dialysate effluents. Nephrology Dialysis Transplantation, 2006, 21, 2943-2947.	0.4	54
24	Gene therapy with HGF cDNA in patients on peritoneal dialysis. Journal of Clinical Pathology, 2007, 61, 781-782.	1.0	1
25	Stem Cells for Mesothelial Repair: An Understudied Modality. International Journal of Artificial Organs, 2007, 30, 550-556.	0.7	24
26	Human peritoneal mesothelial cells isolated from spent dialysate fluid maintain contaminating macrophages via production of macrophage colony stimulating factor. Nephrology, 2007, 12, 160-165.	0.7	3
27	Reduction of peritoneal adhesions by sustained and local administration of epidermal growth factor. Pediatric Surgery International, 2008, 24, 191-197.	0.6	11
28	Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. American Journal of Physiology - Renal Physiology, 2010, 298, F721-F733.	1.3	66
29	Type IIB Procollagen NH2-propeptide Induces Death of Tumor Cells via Interaction with Integrins αVβ3 and αVβ5. Journal of Biological Chemistry, 2010, 285, 20806-20817.	1.6	44
30	An integrin-activating peptide, PHSRN, ameliorates inhibitory effects of conventional peritoneal dialysis fluids on peritoneal wound healing. Nephrology Dialysis Transplantation, 2010, 25, 1109-1119.	0.4	7
31	Epithelial–mesenchymal transition of rat peritoneal mesothelial cells via Rhoa/Rock pathway. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 165-172.	0.7	22
32	Protection of Tanshinone IIA to Human Peritoneal Mesothelial Cells (HPMC) through Delaying Cellular Senescence Induced by High Glucose. Renal Failure, 2012, 34, 88-94.	0.8	7
33	Role of epidermal growth factor receptor in acute and chronic kidney injury. Kidney International, 2013, 83, 804-810.	2.6	122
34	NADPH oxidase-dependent formation of reactive oxygen species contributes to transforming growth factor β1-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells, and the role of astragalus intervention. Chinese Journal of Integrative Medicine, 2014, 20, 667-674.	0.7	11
35	The Role of Tyrosine Kinase Receptors in Peritoneal Fibrosis. Peritoneal Dialysis International, 2015, 35, 497-505.	1.1	5
36	Identification of Gene Transcripts Implicated in Peritoneal Membrane Alterations. Peritoneal Dialysis International, 2016, 36, 606-613.	1.1	2
37	Coelomic epitheliumâ€derived cells in visceral morphogenesis. Developmental Dynamics, 2016, 245, 307-322.	0.8	40

CITATION REPORT

#	ARTICLE	IF	CITATIONS
38	Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo. Histochemistry and Cell Biology, 2016, 145, 531-544.	0.8	11
39	Inhibition of EGF Receptor Blocks the Development and Progression of Peritoneal Fibrosis. Journal of the American Society of Nephrology: JASN, 2016, 27, 2631-2644.	3.0	43
40	EMT induced by EGF and wounding activates hyaluronan synthesis machinery and EV shedding in rat primary mesothelial cells. Matrix Biology, 2017, 63, 38-54.	1.5	22
41	Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling. International Immunopharmacology, 2021, 93, 107374.	1.7	30
42	Peritoneal inflammation and long-term changes in peritoneal structure and function. , 2000, , 565-583.		11
43	Evidence for incorporation of free-floating mesothelial cells as a mechanism of serosal healing. Journal of Cell Science, 2002, 115, 1383-1389.	1.2	124
44	Prolonged Exposure to Glucose Degradation Products Impairs Viability and Function of Human Peritoneal Mesothelial Cells. Journal of the American Society of Nephrology: JASN, 2001, 12, 2434-2441.	3.0	160
45	Patient-derived and artificial ascites have minor effects on MeT-5A mesothelial cells and do not facilitate ovarian cancer cell adhesion. PLoS ONE, 2020, 15, e0241500.	1.1	5