Comparison of Interleukin-1Î² Expression by In Situ Hy Gammopathy of Undetermined Significance and Multip

Blood 93, 300-305 DOI: 10.1182/blood.v93.1.300

Citation Report

#	Article	IF	CITATIONS
1	TREATMENT OF MYELOMA-RELATED COMPLICATIONS. , 2008, , 76-85.		0
2	THE ROLE OF ADHESION RECEPTORS IN THE PATHOGENESIS OFMULTIPLE MYELOMA. Hematology/Oncology Clinics of North America, 1999, 13, 1127-1143.	2.2	14
3	THE ROLE OF INTERLEUKIN-1 $\hat{1}^2$ IN THE PATHOGENESIS OF MULTIPLE MYELOMA. Hematology/Oncology Clinics of North America, 1999, 13, 1117-1125.	2.2	78
4	MONOCLONAL GAMMOPATHIES OF UNDETERMINED SIGNIFICANCE. Hematology/Oncology Clinics of North America, 1999, 13, 1181-1202.	2.2	83
6	Recent advances in multiple myeloma. Current Opinion in Hematology, 2000, 7, 241-246.	2.5	9
7	Interleukin 6, tumour necrosis factor α, interleukin 1β and interleukin 1 receptor antagonist promoter or coding gene polymorphisms in multiple myeloma. British Journal of Haematology, 2000, 109, 39-45.	2.5	81
8	The role of human and viral cytokines in the pathogenesis of multiple myeloma. Seminars in Cancer Biology, 2000, 10, 383-391.	9.6	15
9	Solitary plasmacytoma of bone and asymptomatic multiple myeloma. Blood, 2000, 96, 2037-2044.	1.4	334
11	Myeloma bone disease. Seminars in Hematology, 2001, 38, 276-285.	3.4	139
12	Biology of Osteoclast Activation in Cancer. Journal of Clinical Oncology, 2001, 19, 3562-3571.	1.6	278
13	Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer, 2001, 91, 1219-1230.	4.1	106
14	IL-1β expression in IgM monoclonal gammopathy and its relationship to multiple myeloma. Leukemia, 2002, 16, 382-385.	7.2	28
15	MONOCLONAL GAMMOPATHIES OF UNDETERMINED SIGNIFICANCE. Reviews in Clinical and Experimental Hematology, 2002, 6, 225-252.	0.1	26
16	Myeloma interacts with the bone marrow microenvironment †to induce osteoclastogenesis and is dependent on osteoclast activity. British Journal of Haematology, 2002, 116, 278-290.	2.5	271
17	RANK (receptor activator of nuclear factorâ€₽̂B) and RANKL expression in multiple myeloma. British Journal of Haematology, 2002, 117, 86-92.	2.5	111
18	Multiple myeloma: evolving genetic events and host interactions. Nature Reviews Cancer, 2002, 2, 175-187.	28.4	729
19	Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nature Reviews Cancer, 2002, 2, 927-937.	28.4	390
20	Monoclonal gammopathies of undetermined significance: a review. Immunological Reviews, 2003, 194, 112-139.	6.0	110

ATION REDO

ARTICLE IF CITATIONS # Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease. 2.5 65 21 British Journal of Haematology, 2003, 122, 39-52. The tumor microenvironment: focus on myeloma. Cancer Treatment Reviews, 2003, 29, 11-19. Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the 23 1.4 124 pathogenesis of the disease. Blood, 2003, 101, 4998-5006. CARD Proteins as Therapeutic Targets in Cancer. Current Drug Targets, 2004, 5, 367-374. 24 Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and 25 2.5 90 malignant plasma cells. British Journal of Haematology, 2004, 126, 475-486. Expression of receptor activator of NF-?B ligand (RANKL) mRNA in human multiple myeloma cells. Journal of Cancer Research and Clinical Oncology, 2004, 130, 469-74. 2.5 An update of novel therapeutic approaches for multiple myeloma. Current Treatment Options in 27 3.0 10 Oncology, 2004, 5, 227-238. Long-term Follow-up of 241 Patients With Monoclonal Gammopathy of Undetermined Significance: The 28 165 Original Mayo Clinic Series 25 Years Later. Mayo Clinic Proceedings, 2004, 79, 859-866. Targeting signalling pathways for the treatment of multiple myeloma. Expert Opinion on Therapeutic Targets, 2005, 9, 359-381. 29 3.4 33 Mayo Clinic Consensus Statement for the Use of Bisphosphonates in Multiple Myeloma. Mayo Clinic 221 Proceedings, 2006, 81, 1047-1053. Myeloma bone disease and treatment options. European Journal of Cancer, 2006, 42, 1554-1563. 31 2.8 35 New Treatment Strategies for Multiple Myeloma by Targeting BCL-2 and the Mevalonate Pathway. Current Pharmaceutical Design, 2006, 12, 327-340. Treatment for Myeloma Bone Disease: Table 1.. Clinical Cancer Research, 2006, 12, 6279s-6284s. 35 7.0 41 Identification of Two Groups of Smoldering Multiple Myeloma Patients Who Are Either High or Low Producers of Interleukin-1. Journal of Interferon and Cytokine Research, 2006, 26, 83-95. 1.2 Complications of Multiple Myeloma. Hematology/Oncology Clinics of North America, 2007, 21, 37 2.2 71 1231-1246. Biological and clinical significance of monoclonal gammopathy., 2007, , 138-154. Cytokine and chemokine profiles in multiple myeloma; significance of stromal interaction and 39 0.8 57 correlation of IL-8 production with disease progression. Leukemia Research, 2007, 31, 591-598. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia, 2007, 21, 1079-1088.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
41	Pathogenesis and progression of monoclonal gammopathy of undetermined significance. Leukemia, 2008, 22, 1651-1657.	7.2	86
42	CC-Chemokine Ligand 20/Macrophage Inflammatory Protein-3α and CC-Chemokine Receptor 6 Are Overexpressed in Myeloma Microenvironment Related to Osteolytic Bone Lesions. Cancer Research, 2008, 68, 6840-6850.	0.9	68
43	The polymorphism IL-1Î ² T-31C is associated with a longer overall survival in patients with multiple myeloma undergoing auto-SCT. Bone Marrow Transplantation, 2009, 43, 539-545.	2.4	26
44	Thrombopoietic Cytokine and P-Selectin Levels in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation: Decrease in Posttransplantation P-Selectin Levels Might Predict the Degree of Maximum Response. Clinical Lymphoma and Myeloma, 2009, 9, 229-233.	1.4	5
45	Induction of a Chronic Disease State in Patients With Smoldering or Indolent Multiple Myeloma by Targeting Interleukin 1β-Induced Interleukin 6 Production and the Myeloma Proliferative Component. Mayo Clinic Proceedings, 2009, 84, 114-122.	3.0	236
46	Disease-specific risk for an osteonecrosis of the jaw under bisphosphonate therapy. Journal of Cancer Research and Clinical Oncology, 2010, 136, 363-370.	2.5	21
47	The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients. Experimental Hematology, 2010, 38, 860-867.	0.4	72
48	Smoldering (Asymptomatic) Multiple Myeloma: Revisiting the Clinical Dilemma and Looking Into the Future. Clinical Lymphoma, Myeloma and Leukemia, 2010, 10, 248-257.	0.4	18
49	Assessment of proliferating cell nuclear antigen and its relationship with proinflammatory cytokines and parameters of disease activity in multiple myeloma patients. European Journal of Histochemistry, 2011, 55, e21.	1.5	18
50	Single nucleotide polymorphisms in the promoter region of the IL1B gene influence outcome in multiple myeloma patients treated with high-dose chemotherapy independently of relapse treatment with thalidomide and bortezomib. Annals of Hematology, 2011, 90, 1173-1181.	1.8	23
51	Genetic variations in multiple myeloma II: association with effect of treatment. European Journal of Haematology, 2012, 88, 93-117.	2.2	28
52	A functional polymorphism in the promoter region of the <i><scp>lL</scp>1<scp>B</scp></i> gene is associated with risk of multiple myeloma. British Journal of Haematology, 2012, 158, 515-518.	2.5	22
53	Complications and Special Presentations of Plasma Cell Myeloma. , 2013, , 665-680.		1
54	Monoclonal Gammopathy of Undetermined Significance. , 2013, , 751-785.		2
56	Bioinformatics analyses of differentially expressed genes associated with bisphosphonate-related osteonecrosis of the jaw in patients with multiple myeloma. OncoTargets and Therapy, 2015, 8, 2681.	2.0	12
57	Reduction in Câ€reactive protein indicates successful targeting of the ILâ€1/ILâ€6 axis resulting in improved survival in early stage multiple myeloma. American Journal of Hematology, 2016, 91, 571-574.	4.1	75
58	Targeting the interleukin-1 pathway in patients with hematological disorders. Blood, 2017, 129, 3155-3164.	1.4	60
59	pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo. Stem Cell Research and Therapy, 2017, 8, 206.	5.5	25

CITATION REPORT

#	Article	IF	CITATIONS
60	Platelets Enhance Multiple Myeloma Progression via IL-1β Upregulation. Clinical Cancer Research, 2018, 24, 2430-2439.	7.0	44
61	The emerging roles of inflammasomeâ€dependent cytokines in cancer development. EMBO Reports, 2019, 20, .	4.5	77
62	Polymorphism of Interleukins and Tumor Necrosis Factor a Genes in Multiple Myeloma Patients with Autologous Hematopoietic Stem Cell Transplantation. Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2021, 14, 340-346.	0.4	0
63	The Pathophysiology of Myeloma Bone Disease: Bone Remodelling and the Role of Osteoclasts. , 2021, , 7-36.		1
64	MIP-1 Alpha and Myeloma Bone Disease. Cancer Treatment and Research, 2004, 118, 83-100.	0.5	36
66	Solitary Plasmacytoma of Bone and Extramedullary Plasmacytoma. , 2004, , 111-118.		2
68	Monoclonal Gammopathy of Undetermined Significance. , 2004, , 93-126.		0
69	Monoclonal Gammopathies of Undetermined Significance and Smoldering Multiple Myeloma. , 2004, , 1-33.		1
70	New Therapeutic Approaches to Myeloma. , 2004, , 319-353.		0
72	Monoclonal Gammopathies of Undetermined Significance and Smoldering Multiple Myeloma. , 2014, , 65-80.		0
73	Chemoprevention. , 2005, , 519-528.		0
74	Cytokines in Multiple Myeloma. , 2007, , 181-197.		0
75	Establishing Monoclonal Gammopathy of Undetermined Significance as an Independent Pre-Disease State of Multiple Myeloma Using Raman Spectroscopy, Dynamical Network Biomarker Theory, and Energy Landscape Analysis. International Journal of Molecular Sciences, 2024, 25, 1570.	4.1	0