$\mathbf{\hat{I}} \pm \mathbf{-Synuclein}$ Shares Physical and Functional Homology

Journal of Neuroscience 19, 5782-5791 DOI: 10.1523/jneurosci.19-14-05782.1999

Citation Report

#	Article	IF	CITATIONS
1	Maladie de Parkinson Vers un mécanisme de mort neuronale. Journal of Engineering and Technology Management - JET-M, 1997, 14, 25-45.	1.4	65
2	Tau and Synuclein and Their Role in Neuropathology. Brain Pathology, 1999, 9, 657-661.	2.1	75
3	Synuclein expression is decreased in rat substantia nigra following induction of apoptosis by intrastriatal 6-hydroxydopamine. Neuroscience Letters, 1999, 275, 105-108.	1.0	64
4	α-Synuclein overexpression promotes aggregation of mutant huntingtin. Biochemical Journal, 2000, 346, 577.	1.7	16
5	α-Synuclein overexpression promotes aggregation of mutant huntingtin. Biochemical Journal, 2000, 346, 577-581.	1.7	78
6	The A53T α-Synuclein Mutation Increases Iron-Dependent Aggregation and Toxicity. Journal of Neuroscience, 2000, 20, 6048-6054.	1.7	504
8	Genetic studies in Drosophila. NeuroReport, 2000, 11, R45-R53.	0.6	14
9	?-synuclein is developmentally expressed in cultured rat brain oligodendrocytes. Journal of Neuroscience Research, 2000, 62, 9-14.	1.3	125
10	The pathogenesis of multiple system atrophy: Past, present, and future. Movement Disorders, 2000, 15, 784-788.	2.2	23
11	Induction of neuronal death by α-synuclein. European Journal of Neuroscience, 2000, 12, 3073-3077.	1.2	151
12	Neurodegeneration: diseases of the cytoskeleton?. Cell Death and Differentiation, 2000, 7, 861-865.	5.0	88
13	A Drosophila model of Parkinson's disease. Nature, 2000, 404, 394-398.	13.7	1,927
14	Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature, 2000, 404, 398-402.	13.7	2,197
15	Overexpression of human α-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Research, 2000, 866, 33-43.	1.1	202
16	Alpha-synuclein and Parkinson's disease. Cellular and Molecular Life Sciences, 2000, 57, 1894-1908.	2.4	225
17	Subcellular Localization of Wild-Type and Parkinson's Disease-Associated Mutant α-Synuclein in Human		611
	and Transgenic Mouse Brain. Journal of Neuroscience, 2000, 20, 6365-6373.	1.7	011
18		1.7	198

		CITATION RE	PORT	
#	Article		IF	CITATIONS
20	Mechanisms of Neurodegenerative Disorders. Archives of Neurology, 2000, 57, 793.		4.9	76
21	Synucleins Are a Novel Class of Substrates for G Protein-coupled Receptor Kinases. Jou Biological Chemistry, 2000, 275, 26515-26522.	rnal of	1.6	353
22	14-3-3ζ Is an Effector of Tau Protein Phosphorylation. Journal of Biological Chemistry, 25247-25254.	2000, 275,	1.6	197
23	Review: Formation and Properties of Amyloid-like Fibrils Derived from α-Synuclein and Journal of Structural Biology, 2000, 130, 300-309.	Related Proteins.	1.3	93
24	Accumulation of Insoluble $\hat{l}\pm$ -Synuclein in Dementia with Lewy Bodies. Neurobiology of 192-200.	f Disease, 2000, 7,	2.1	75
25	Oxidative Stress and Genetics in the Pathogenesis of Parkinson's Disease. Neurobiolog 2000, 7, 240-250.	y of Disease,	2.1	397
26	α-Synuclein Promotes Mitochondrial Deficit and Oxidative Stress. American Journal of 157, 401-410.	Pathology, 2000,	1.9	641
27	Enhanced vulnerability to oxidative stress by α-synuclein mutations and C-terminal tru Neuroscience, 2000, 97, 279-284.	incation.	1.1	189
28	Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of developmentally-mediated cellular rheostat. Trends in Neurosciences, 2000, 23, 599-6	a 05.	4.2	55
29	Mice Lacking $\hat{I}\pm$ -Synuclein Display Functional Deficits in the Nigrostriatal Dopamine Sy 2000, 25, 239-252.	stem. Neuron,	3.8	1,573
30	The genetics of Parkinson's disease. Current Opinion in Genetics and Development, 20)00, 10, 292-298.	1.5	73
31	Chaperone-like activity of synucleins. FEBS Letters, 2000, 474, 116-119.		1.3	196
32	Inhibition of Fibrillization and Accumulation of Prefibrillar Oligomers in Mixtures of Hu Mouse α-Synuclein. Biochemistry, 2000, 39, 10619-10626.	nan and	1.2	226
33	Maladie de Parkinson. Annales De L'Institut Pasteur / Actualités, 2000, 11, 25-45.		0.1	0
34	Prominent Perikaryal Expression of α- and β-Synuclein in Neurons of Dorsal Root Gang Medullary Neurons. Experimental Neurology, 2001, 172, 354-362.	glion and in	2.0	49
35	Conformational properties of α-synuclein in its free and lipid-associated states 1 1Edit Journal of Molecular Biology, 2001, 307, 1061-1073.	ed by P. E. Wright.	2.0	980
36	Reduced Neuritic Outgrowth and Cell Adhesion in Neuronal Cells Transfected with Hu Molecular and Cellular Neurosciences, 2001, 17, 141-150.	nan α-Synuclein.	1.0	73
37	Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Progr Neurobiology, 2001, 63, 337-363.	ess in	2.8	37

ARTICLE IF CITATIONS # Lack of binding observed between human α-synuclein and Bcl-2 protein family. Neuroscience Letters, 38 1.0 7 2001, 316, 103-107. Protein–protein interactions of alpha-synuclein in brain homogenates and transfected cells. Molecular Brain Research, 2001, 95, 138-145. 2.5 Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Molecular Brain Research, 2001, 40 2.5 57 97, 94-102. Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate 0.2 dopamine-induced apoptosis. FASEB Journal, 2001, 15, 916-926. Î²-Synuclein Inhibits α-Synuclein Aggregation. Neuron, 2001, 32, 213-223. 42 3.8 400 Alpha-synuclein expression is up-regulated in NTera2 cells during neuronal differentiation but unaffected by exposure to cytokines and neurotrophic factors. Parkinsonism and Related Disorders, 1.1 2001, 8, 7-17 Aggregation and properties of αâ€'synuclein and related proteins. Spectroscopy, 2001, 15, 141-150. 44 0.8 2 Co-association of parkin and α-synuclein. NeuroReport, 2001, 12, 2839-2843. Expression of ??-synuclein in a human glioma cell line and its up-regulation by interleukin-1??. 46 0.6 63 NeuroReport, 2001, 12, 1909-1912. Expression of A53T Mutant But Not Wild-Type α-Synuclein in PC12 Cells Induces Alterations of the Ubiquitin-Dependent Degradation System, Loss of Dopamine Release, and Autophagic Cell Death. 1.7 540 Journal of Neuroscience, 2001, 21, 9549-9560. Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. 48 2.1 80 Journal of Neurochemistry, 2001, 76, 1165-1176. Ubiquitin C-terminal hydrolase-L1 (PGP9.5) expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines, neurotrophic factors or heat stress. Neuropathology and Applied Neurobiology, 2001, 27, 95-104. 49 1.8 Self-oligomerization and protein aggregation of α-synuclein in the presence of Coomassie Brilliant 50 0.2 25 Blue. FEBS Journal, 2001, 268, 295-301. Synucleins in ocular tissues. Journal of Neuroscience Research, 2001, 65, 68-77. 1.3 Glial cell death induced by overexpression of ?-synuclein. Journal of Neuroscience Research, 2001, 65, 52 1.3 87 432-438. Gamma synuclein: Subcellular localization in neuronal and non-neuronal cells and effect on signal transduction. Cytoskeleton, 2001, 49, 218-228. Expression of alpha-synuclein in non-apoptotic, slowly degenerating facial motoneurones. Journal of 54 1.6 18 Neurocytology, 2001, 30, 515-521. Lewy Body Pathology in Alzheimer's Disease. Journal of Molecular Neuroscience, 2001, 17, 225-232. 1.1 138

#	Article	IF	CITATIONS
57	Correction: The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer. Nature, 2001, 412, 99-99.	13.7	183
58	Alpha synuclein aggregation: is it the toxic gain of function responsible for neurodegeneration in Parkinson's disease?. Mechanisms of Ageing and Development, 2001, 122, 1499-1510.	2.2	57
59	Altered expression of the synuclein family mRNA in Lewy body and Alzheimer's disease. Brain Research, 2001, 914, 48-56.	1.1	150
60	Synucleinopathies: a pathological and molecular review. Clinical Neuroscience Research, 2001, 1, 445-455.	0.8	20
61	Gene therapeutic approaches to the treatment of Parkinson's disease. Clinical Neuroscience Research, 2001, 1, 483-495.	0.8	7
62	The Chaperone Protein 14-3-3ĥ Interacts with the Nicotinic Acetylcholine Receptor α4 Subunit. Journal of Biological Chemistry, 2001, 276, 28281-28290.	1.6	146
63	Ca2+ Binding to α-Synuclein Regulates Ligand Binding and Oligomerization. Journal of Biological Chemistry, 2001, 276, 22680-22684.	1.6	134
64	Residual Structure and Dynamics in Parkinson's Disease-associated Mutants of α-Synuclein. Journal of Biological Chemistry, 2001, 276, 45996-46003.	1.6	233
65	Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Human Molecular Genetics, 2001, 10, 919-926.	1.4	442
66	Accumulation of Mutant Huntingtin Fragments in Aggresome-like Inclusion Bodies as a Result of Insufficient Protein Degradation. Molecular Biology of the Cell, 2001, 12, 1393-1407.	0.9	583
67	α-Synuclein Affects the MAPK Pathway and Accelerates Cell Death. Journal of Biological Chemistry, 2001, 276, 45320-45329.	1.6	131
68	Lipid Droplet Binding and Oligomerization Properties of the Parkinson's Disease Protein α-Synuclein. Journal of Biological Chemistry, 2002, 277, 6344-6352.	1.6	396
69	γ-Synuclein Promotes Cancer Cell Survival and Inhibits Stress- and Chemotherapy Drug-induced Apoptosis by Modulating MAPK Pathways. Journal of Biological Chemistry, 2002, 277, 35050-35060.	1.6	108
70	αâ€Synuclein regulates neuronal survival via Bclâ€2 family expression and PI3/Akt kinase pathway. FASEB Journal, 2002, 16, 1-20.	0.2	198
72	14-3-3 Proteins in Lewy Bodies in Parkinson Disease and Diffuse Lewy Body Disease Brains. Journal of Neuropathology and Experimental Neurology, 2002, 61, 245-253.	0.9	145
73	Distinct Roles of the N-terminal-binding Domain and the C-terminal-solubilizing Domain of α-Synuclein, a Molecular Chaperone. Journal of Biological Chemistry, 2002, 277, 28512-28520.	1.6	101
74	Golgi Fragmentation Occurs in the Cells with Prefibrillar α-Synuclein Aggregates and Precedes the Formation of Fibrillar Inclusion. Journal of Biological Chemistry, 2002, 277, 48984-48992.	1.6	249
75	α-Synuclein Interacts with Phospholipase D Isozymes and Inhibits Pervanadate-induced Phospholipase D Activation in Human Embryonic Kidney-293 Cells. Journal of Biological Chemistry, 2002, 277, 12334-12342.	1.6	118

#	Article	IF	CITATIONS
76	Evidence that α-synuclein functions as a negative regulator of Ca++-dependent α-granule release from human platelets. Blood, 2002, 100, 2506-2514.	0.6	51
77	Parkinson-Like Neurodegeneration Induced by Targeted Overexpression of α-Synuclein in the Nigrostriatal System. Journal of Neuroscience, 2002, 22, 2780-2791.	1.7	633
78	A Role for α-Synuclein in the Regulation of Dopamine Biosynthesis. Journal of Neuroscience, 2002, 22, 3090-3099.	1.7	588
79	Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Human Molecular Genetics, 2002, 11, 2395-2407.	1.4	226
80	Cytoplasmic Aggregates of Phosphorylated Extracellular Signal-Regulated Protein Kinases in Lewy Body Diseases. American Journal of Pathology, 2002, 161, 2087-2098.	1.9	139
81	Pharmacogenomics of Neurodegenerative Diseases: Examples and Perspectives. , 0, , 347-367.		0
82	Activation of Pyk2/RAFTK induces tyrosine phosphorylation of α-synuclein via Src-family kinases. FEBS Letters, 2002, 521, 190-194.	1.3	35
83	Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity?. Parkinsonism and Related Disorders, 2002, 8, 389-393.	1.1	97
84	14-3-3 protein is a component of Lewy bodies in Parkinson's disease—Mutation analysis and association studies of 14-3-3 eta. Molecular Brain Research, 2002, 108, 33-39.	2.5	53
85	Parkinson's Genetics: Molecular Insights for the New Millennium. NeuroToxicology, 2002, 23, 503-514.	1.4	19
86	Human α-Synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neuroscience Letters, 2002, 320, 146-150.	1.0	229
87	Amyloid Precursor Protein, Presenilins, and alpha -Synuclein: Molecular Pathogenesis and Pharmacological Applications in Alzheimer's Disease. Pharmacological Reviews, 2002, 54, 469-525.	7.1	421
89	Overexpression of human α-synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Research, 2002, 926, 42-50.	1.1	132
90	MPP+ increases α-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Research, 2002, 935, 32-39.	1.1	132
91	Immunohistochemical comparison of α- and β-synuclein in adult rat central nervous system. Brain Research, 2002, 941, 118-126.	1.1	75
92	Upregulation of alpha-synuclein by lipopolysaccharide and interleukin-1 in human macrophages. Pathology International, 2002, 52, 572-577.	0.6	52
93	Accumulation of 14-3-3 proteins in glial cytoplasmic inclusions in multiple system atrophy. Annals of Neurology, 2002, 52, 722-731.	2.8	53
94	Synucleins in glaucoma: Implication of ?-synuclein in glaucomatous alterations in the optic nerve. Journal of Neuroscience Research, 2002, 68, 97-106.	1.3	75

#	Article	IF	CITATIONS
95	Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. Journal of Neurobiology, 2002, 51, 9-23.	3.7	234
96	Age-dependent differential regulation of genes encoding APP and α-synuclein in hippocampal synaptic plasticity. Hippocampus, 2002, 12, 55-62.	0.9	21
97	Increased Expression of Rat Synuclein in the Substantia Nigra Pars Compacta Identified by mRNA Differential Display in a Model of Developmental Target Injury. Journal of Neurochemistry, 2002, 73, 2586-2599.	2.1	119
98	Immature and Mature Cortical Neurons Engage Different Apoptotic Mechanisms Involving Caspase-3 and the Mitogen-Activated Protein Kinase Pathway. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 935-950.	2.4	80
99	Releasing the nerve cell killers. Nature Medicine, 2002, 8, 564-565.	15.2	7
100	Dopamine-dependent neurotoxicity of α-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. Nature Medicine, 2002, 8, 600-606.	15.2	682
101	Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Molecular Biology, 2002, 50, 993-1010.	2.0	148
102	Mutant and Wild-Type α-Synuclein Interact with Mitochondrial Cytochrome C Oxidase. Journal of Molecular Neuroscience, 2002, 18, 229-238.	1.1	99
103	The Cell Biology of α Synuclein. NeuroMolecular Medicine, 2002, 1, 95-110.	1.8	28
104	α-Synuclein: Its Biological Function and Role in Neurodegenerative Diseases. Journal of Molecular Neuroscience, 2003, 20, 83-92.	1.1	50
105	Role of Protein Aggregation in Mitochondrial Dysfunction and Neurodegeneration in Alzheimer's and Parkinson's Diseases. NeuroMolecular Medicine, 2003, 4, 21-36.	1.8	410
106	Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies. Neurochemical Research, 2003, 28, 1743-1756.	1.6	73
107	Immunoexpression of 14-3-3 proteins in glial cytoplasmic inclusions of multiple system atrophy. Acta Neuropathologica, 2003, 106, 66-70.	3.9	21
108	Tau and 14-3-3 in glial cytoplasmic inclusions of multiple system atrophy. Acta Neuropathologica, 2003, 106, 243-250.	3.9	36
110	α-Synuclein expression localizes to the Golgi apparatus in bovine adrenal medullary chromaffin cells. Brain Research, 2003, 984, 233-236.	1.1	16
111	Tumor necrosis factor-?-induced cell death in U373 cells overexpressing ?-synuclein. Journal of Neuroscience Research, 2003, 73, 334-340.	1.3	37
112	Regulation of α-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons. Journal of Neurochemistry, 2003, 84, 803-813.	2.1	39
113	Molecular changes in fetal Down syndrome brain. Journal of Neurochemistry, 2003, 84, 895-904.	2.1	87

#	Article	IF	CITATIONS
114	α-Synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson's disease. Journal of Neurochemistry, 2003, 85, 1468-1479.	2.1	85
115	14-3-3 proteins in the nervous system. Nature Reviews Neuroscience, 2003, 4, 752-762.	4.9	405
116	Challenges and complexities of α-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson's disease. Archives of Biochemistry and Biophysics, 2003, 418, 169-178.	1.4	33
117	A Structural and Functional Role for 11-mer Repeats in α-Synuclein and Other Exchangeable Lipid Binding Proteins. Journal of Molecular Biology, 2003, 329, 763-778.	2.0	404
118	Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1. Cell, 2003, 113, 457-468.	13.5	402
119	Part II: α-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology, 2003, 45, 14-44.	2.0	254
120	Cell cycle aberrations by α-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiology of Aging, 2003, 24, 687-696.	1.5	72
121	Heat shock proteins reduce aggregation and facilitate degradation of tau protein. International Congress Series, 2003, 1252, 383-393.	0.2	6
122	Molecular mechanisms of selective dopaminergic neuronal death in Parkinson's disease. Trends in Molecular Medicine, 2003, 9, 126-132.	3.5	131
123	α-Synuclein Aggregation: A Link Between Mitochondrial Defects and Parkinson's Disease?. Antioxidants and Redox Signaling, 2003, 5, 337-348.	2.5	43
124	Nigrostriatal Â-synucleinopathy induced by viral vector-mediated overexpression of human Â-synuclein: A new primate model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2884-2889.	3.3	382
125	Neurons Expressing the Highest Levels of γ-Synuclein Are Unaffected by Targeted Inactivation of the Gene. Molecular and Cellular Biology, 2003, 23, 8233-8245.	1.1	65
126	Aggregated and Monomeric α-Synuclein Bind to the S6′ Proteasomal Protein and Inhibit Proteasomal Function. Journal of Biological Chemistry, 2003, 278, 11753-11759.	1.6	364
127	Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Human Molecular Genetics, 2003, 12, 2625-2635.	1.4	133
128	Chaperones increase association of tau protein with microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 721-726.	3.3	421
129	Parkinson's Disease-associated α-Synuclein Is a Calmodulin Substrate. Journal of Biological Chemistry, 2003, 278, 17379-17387.	1.6	82
130	Recent Advances on α-Synuclein Cell Biology: Functions and Dysfunctions. Current Molecular Medicine, 2003, 3, 17-24.	0.6	20
131	α-Synuclein aggregation and neurodegenerative diseases. Journal of Alzheimer's Disease, 2003, 5, 139-148.	1.2	66

#	Article	IF	CITATIONS
133	PARK1 and α-Synuclein. , 2003, , 287-304.		0
134	Molecular Mechanisms of Neurodegenerative Disorders. , 0, , 377-409.		1
135	Stem Cells in the Adult Brain. , 2004, , 219-224.		2
137	Unlocking the code of 14-3-3. Journal of Cell Science, 2004, 117, 1875-1884.	1.2	437
138	α-Synuclein Is Required for the Fibrillar Nature of Ubiquitinated Inclusions Induced by Proteasomal Inhibition in Primary Neurons. Journal of Biological Chemistry, 2004, 279, 46915-46920.	1.6	45
139	β-Synuclein Regulates Akt Activity in Neuronal Cells. Journal of Biological Chemistry, 2004, 279, 23622-23629.	1.6	93
140	Degradative organelles containing mislocalized α- and β-synuclein proliferate in presenilin-1 null neurons. Journal of Cell Biology, 2004, 165, 335-346.	2.3	108
141	αâ€5ynuclein induces apoptosis by altered expression in human peripheral lymphocytes in Parkinson's disease. FASEB Journal, 2004, 18, 1615-1617.	0.2	81
142	Protective effect of TATâ€delivered αâ€synuclein: relevance of the Câ€terminal domain and involvement of HSP70. FASEB Journal, 2004, 18, 1713-1715.	0.2	77
143	Analysis of α-Synuclein-associated Proteins by Quantitative Proteomics. Journal of Biological Chemistry, 2004, 279, 39155-39164.	1.6	149
144	MAP2 prevents protein aggregation and facilitates reactivation of unfolded enzymes. Implications for the chaperone-like activity of MAP2. FEBS Journal, 2004, 271, 1488-1496.	0.2	16
145	Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars compacta of gamma-synuclein, alpha-synuclein and double alpha/gamma-synuclein null mutant mice. Journal of Neurochemistry, 2004, 89, 1126-1136.	2.1	135
146	Could a loss of αâ€ s ynuclein function put dopaminergic neurons at risk?. Journal of Neurochemistry, 2004, 89, 1318-1324.	2.1	130
147	Lack of alpha-synuclein does not alter apoptosis of neonatal catecholaminergic neurons. European Journal of Neuroscience, 2004, 20, 1969-1972.	1.2	29
148	Annular alpha-synuclein species from purified multiple system atrophy inclusions. Journal of Neurochemistry, 2004, 90, 502-512.	2.1	70
149	Pathological Proteins in Parkinson's Disease: Focus on the Proteasome. Journal of Molecular Neuroscience, 2004, 24, 425-442.	1.1	50
150	Neurobiology of α-Synuclein. Molecular Neurobiology, 2004, 30, 001-022.	1.9	95
151	The Role of Â-Synuclein in Both Neuroprotection and Neurodegeneration. Annals of the New York Academy of Sciences, 2004, 1035, 250-270.	1.8	89

	CHANON		
#	Article	IF	CITATIONS
152	Synucleins and their relationship to Parkinson's disease. Cell and Tissue Research, 2004, 318, 163-174.	1.5	33
153	14-3-3 proteins in Lewy body-like hyaline inclusions in patients with sporadic amyotrophic lateral sclerosis. Acta Neuropathologica, 2004, 108, 531-537.	3.9	21
154	α-Synuclein exhibits competitive interaction between calmodulin and synthetic membranes. Journal of Neurochemistry, 2004, 82, 1007-1017.	2.1	57
155	Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. Journal of Neurochemistry, 2004, 86, 165-172.	2.1	328
156	α-Synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity. Journal of Neurochemistry, 2004, 86, 196-209.	2.1	39
157	1-Benzyl-1,2,3,4-tetrahydroisoquinoline, a Parkinsonism-inducing endogenous toxin, increases ?-synuclein expression and causes nuclear damage in human dopaminergic cells. Journal of Neuroscience Research, 2004, 76, 563-571.	1.3	35
158	Alteration in α-synuclein mRNA expression in Parkinson's disease. Movement Disorders, 2004, 19, 162-170.	2.2	111
159	Inhibition of Hsp90: a new strategy for inhibiting protein kinases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1697, 233-242.	1.1	130
160	Does αâ€ s ynuclein modulate dopaminergic synaptic content and tone at the synapse?. FASEB Journal, 2004, 18, 637-647.	0.2	157
161	Trypsin Disrupts the Trafficking of the Human Dopamine Transporter by α-Synuclein and Its A30P Mutantâ€. Biochemistry, 2004, 43, 1242-1253.	1.2	39
162	Double-knockout mice for Â- and Â-synucleins: Effect on synaptic functions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14966-14971.	3.3	392
163	Neurodegenerative diseases caused by protein aggregation: a phenomenon at the borderline between molecular evolution and ageing. Pharmacological Research, 2004, 50, 419-431.	3.1	18
164	Genetic contributions to Parkinson's disease. Brain Research Reviews, 2004, 46, 44-70.	9.1	83
165	Following the leader: fibrillization of ?-synuclein and tau. Experimental Neurology, 2004, 187, 235-239.	2.0	13
166	α-Synuclein has structural and functional similarities to small heat shock proteins. Biochemical and Biophysical Research Communications, 2004, 324, 1352-1359.	1.0	41
167	α-Synuclein, Parkinson's disease, and Alzheimer's disease. Parkinsonism and Related Disorders, 2004, 10, S9-S13.	1.1	58
168	Genes, proteins, and neurotoxins involved in Parkinson's disease. Progress in Neurobiology, 2004, 73, 151-177.	2.8	162
169	The 14-3-3 Protein ε Isoform Expressed in Reactive Astrocytes in Demyelinating Lesions of Multiple Sclerosis Binds to Vimentin and Glial Fibrillary Acidic Protein in Cultured Human Astrocytes. American Journal of Pathology, 2004, 165, 577-592.	1.9	66

		CITATION R	EPORT	
#	Article		IF	Citations
170	Alpha-synuclein and transgenic mouse models. Neurobiology of Disease, 2004, 17, 123	-130.	2.1	187
171	Zeta 14-3-3 protein favours the formation of human tau fibrillar polymers. Neuroscience 357, 143-146.	e Letters, 2004,	1.0	64
172	Interaction of the Molecular Chaperone αB-Crystallin with α-Synuclein: Effects on Amy Formation and Chaperone Activity. Journal of Molecular Biology, 2004, 340, 1167-1183		2.0	198
173	αâ€&ynuclein and Parkinson's disease. FASEB Journal, 2004, 18, 617-626.		0.2	262
174	α-Synuclein: Normal Function and Role in Neurodegenerative Diseases. Current Topics Biology, 2004, 60, 17-54.	in Developmental	1.0	177
175	Functional Interactions of Tau and their Relevance for Alzheimers Disease. Current Alzh Research, 2004, 1, 255-269.	eimer	0.7	44
177	The 14-3-3 Protein Forms a Molecular Complex with Heat Shock Protein Hsp60 and Cel Protein. Journal of Neuropathology and Experimental Neurology, 2005, 64, 858-868.	lular Prion	0.9	57
178	α-Synuclein aggregation in neurodegenerative diseases and its inhibition as a potential strategy. Biochemical Society Transactions, 2005, 33, 1106-1110.	therapeutic	1.6	36
179	α-Synuclein aggregation in neurodegenerative diseases and its inhibition as a potential strategy. Biochemical Society Transactions, 2005, 33, 1106.	therapeutic	1.6	47
180	Peripheral Sensory Neurons Survive in the Absence of α- and γ-Synucleins. Journal of N Neuroscience, 2005, 25, 157-164.	Iolecular	1.1	17
181	α-Synuclein and Dopamine Metabolism. Molecular Neurobiology, 2005, 31, 243-254.		1.9	66
182	Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metab Biochimica Et Biophysica Sinica, 2005, 37, 501-505.	olism. Acta	0.9	43
183	The role of \hat{I}_{\pm} -synuclein in neurodegenerative diseases. , 2005, 105, 311-331.			172
184	Lysosomal pathology associated with ?-synuclein accumulation in transgenic models us fusion protein. Journal of Neuroscience Research, 2005, 80, 247-259.	sing an eGFP	1.3	77
185	Alpha-synuclein dysfunction in Lewy body diseases. Movement Disorders, 2005, 20, S3	7-S44.	2.2	76
186	Pathophysiology: biochemistry of Parkinson's disease. , 2005, , 598-611.			0
188	Clinical Spectrum and Pathological Features of Multiple System Atrophy. , 2005, , 541-	570.		2
189	Multiple system atrophy. , 2005, , 623-662.			2

ARTICLE IF CITATIONS Glycogen Synthase Kinase 3¹² Modulates Synphilin-1 Ubiquitylation and Cellular Inclusion Formation by 190 1.6 41 SIÁH. Journal of Biological Chemistry, 2005, 280, 42877-42886. Proteomics of the Injured Rat Sciatic Nerve Reveals Protein Expression Dynamics During Regeneration. 191 2.5 Molecular and Cellular Proteomics, 2005, 4, 120-132. Molecular Anhydrobiology: Identifying Molecules Implicated in Invertebrate Anhydrobiosis. 192 0.9 88 Integrative and Comparative Biology, 2005, 45, 702-709. α-Synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. Journal of Cell Science, 2005, 118, 3523-3530. 1.2 219 The Co-chaperone Carboxyl Terminus of Hsp70-interacting Protein (CHIP) Mediates α-Synuclein Degradation Decisions between Proteasomal and Lysosomal Pathways. Journal of Biological 194 298 1.6 Chemistry, 2005, 280, 23727-23734. Similar Patterns of Mitochondrial Vulnerability and Rescue Induced by Genetic Modification of α-Synuclein, Parkin, and DJ-1 in Caenorhabditis elegans*. Journal of Biological Chemistry, 2005, 280, 1.6 42655-42668. 196 14-3-3 Proteins: A Number of Functions for a Numbered Protein. Science Signaling, 2005, 2005, re10-re10. 1.6 228 Regulation of î±-Synuclein Expression by Poly (ADP Ribose) Polymerase-1 (PARP-1) Binding to the NACP-Rep1 Polymorphic Site Upstream of the SNCA Gene. Américan Journal of Human Genetics, 2005, 76, 2.6 90 478-492 Fluorescence Studies Suggest a Role for $\hat{l}\pm$ -Synuclein in the Phosphatidylinositol Lipid Signaling Pathway. Biochemistry, 2005, 44, 462-470. 198 1.2 55 Wild-type α-synuclein interacts with pro-apoptotic proteins PKCδ and BAD to protect dopaminergic 199 2.5 neuronal cells against MPP+-induced apoptotic cell death. Molecular Brain Research, 2005, 139, 137-152. Gene dosage and pathogenesis of Parkinson's disease. Trends in Molecular Medicine, 2005, 11, 91-96. 200 3.5 95 Influence of maternal alcohol administration on c-Fos expression in the hippocampus of infant rats. 1.0 Neuroscience Letters, 2005, 378, 44-48. Tau phosphorylation increases in symptomatic mice overexpressing A30P α-synuclein. Experimental 202 2.0 96 Neurology, 2005, 192, 274-287. Temporal evolution of mouse striatal gene expression following MPTP injury. Neurobiology of Aging, 1.5 2005, 26, 765-775. 16 Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant 204 321 1.4 alpha-synuclein-induced toxicity. Human Molecular Genetics, 2005, 14, 3801-3811. Identification of human α-synuclein specific single chain antibodies. Biochemical and Biophysical 1.0 Research Communications, 2006, 349, 1198-1205. α-Synuclein protects SH-SY5Y cells from dopamine toxicity. Biochemical and Biophysical Research 206 1.0 33 Communications, 2006, 349, 1294-1300. Involvement of RHO GTPases and ERK in synuclein-Î³ enhanced cancer cell motility. International 1.4 Journal of Oncology, 2006, 29, 1201.

~		<u> </u>	
(15	ΓΔΤΙ	Rep	OPT
		IVLF.	

#	Article	IF	CITATIONS
210	Attenuation of the norepinephrine transporter activity and trafficking via interactions with α-synuclein. European Journal of Neuroscience, 2006, 24, 3141-3152.	1.2	53
211	Chaperone and anti-chaperone: Two-faced synuclein as stimulator of synaptic evolution. Neuropathology, 2006, 26, 383-392.	0.7	20
212	Oxidative Modifications of α‧ynuclein. Annals of the New York Academy of Sciences, 2003, 991, 93-100.	1.8	75
213	Localization of Phosphorylated ERK/MAP Kinases to Mitochondria and Autophagosomes in Lewy Body Diseases. Brain Pathology, 2003, 13, 473-481.	2.1	218
214	Substrate-mediated enhancement of phosphorylated tyrosine hydroxylase in nigrostriatal dopamine neurons: evidence for a role of alpha-synuclein. Journal of Neurochemistry, 2006, 96, 950-959.	2.1	12
215	Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. Journal of Neurochemistry, 2006, 99, 1188-1196.	2.1	93
216	α-Synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. Journal of Neurochemistry, 2006, 101, 201-211.	2.1	72
217	Physiology and Pathophysiology of αâ€Synuclein: Cell Culture and Transgenic Animal Models Based on a Parkinson's Diseaseâ€associated Protein. Annals of the New York Academy of Sciences, 2000, 920, 33-41.	1.8	98
218	14-3-3η is a novel regulator of parkin ubiquitin ligase. EMBO Journal, 2006, 25, 211-221.	3.5	107
219	α-Synuclein Budding Yeast Model: Toxicity Enhanced by Impaired Proteasome and Oxidative Stress. Journal of Molecular Neuroscience, 2006, 28, 161-178.	1.1	63
220	Levels of mRNA Coding for α-, β-, and γ-Synuclein in the Brains of Newborn, Juvenile, and Adult Rats. Journal of Molecular Neuroscience, 2006, 29, 269-278.	1.1	12
221	α-Synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathologica, 2006, 112, 237-251.	3.9	179
222	α-Synuclein is colocalized with 14-3-3 and synphilin-1 in A53T transgenic mice. Acta Neuropathologica, 2006, 112, 681-689.	3.9	30
223	Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson's disease and related disorders. Experimental Brain Research, 2006, 173, 223-233.	0.7	59
224	The neurotoxin, MPP+, induces hyperphosphorylation ofTau, in the presence of α-Synuclein, in SH-SY5Y neuroblastoma cells. Neurotoxicity Research, 2006, 10, 1-10.	1.3	46
225	14-3-3 proteins: A historic overview. Seminars in Cancer Biology, 2006, 16, 162-172.	4.3	716
226	Ventral tegmental area dopamine neurons are resistant to human mutant alpha-synuclein overexpression. Neurobiology of Disease, 2006, 23, 522-532.	2.1	89
227	Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients. Movement Disorders, 2006, 21, 1703-1708.	2.2	139

#	Article	IF	CITATIONS
228	Functional Repression of cAMP Response Element in 6-Hydroxydopamine-treated Neuronal Cells. Journal of Biological Chemistry, 2006, 281, 17870-17881.	1.6	96
229	Endogenous Â-Synuclein Is Induced by Valproic Acid through Histone Deacetylase Inhibition and Participates in Neuroprotection against Glutamate-Induced Excitotoxicity. Journal of Neuroscience, 2006, 26, 7502-7512.	1.7	176
230	Cytosolic Catechols Inhibit Â-Synuclein Aggregation and Facilitate the Formation of Intracellular Soluble Oligomeric Intermediates. Journal of Neuroscience, 2006, 26, 10068-10078.	1.7	135
233	Is Alpha-Synuclein Pathology a Target for Treatment of Neurodegenerative Disorders?. Current Alzheimer Research, 2007, 4, 556-561.	0.7	6
234	Protein Kinase CÂ Negatively Regulates Tyrosine Hydroxylase Activity and Dopamine Synthesis by Enhancing Protein Phosphatase-2A Activity in Dopaminergic Neurons. Journal of Neuroscience, 2007, 27, 5349-5362.	1.7	92
235	Is alpha-Synuclein Pathology a Target for Treatment of Neurodegenerative Disorders?. Current Alzheimer Research, 2007, 4, 446-457.	0.7	6
236	Parkinsons Disease: Genetics and Beyond. Current Neuropharmacology, 2007, 5, 99-113.	1.4	28
237	α-Synuclein Stimulates Differentiation of Osteosarcoma Cells. Journal of Biological Chemistry, 2007, 282, 5736-5748.	1.6	32
238	Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage. Human Molecular Genetics, 2007, 16, 2377-2393.	1.4	162
239	Protection against \hat{l}^2 -Amyloid-induced Apoptosis by Peptides Interacting with \hat{l}^2 -Amyloid. Journal of Biological Chemistry, 2007, 282, 31238-31249.	1.6	40
240	Parkinson's disease genetic mutations increase cell susceptibility to stress: Mutant α-synuclein enhances H2O2- and Sin-1-induced cell death. Neurobiology of Aging, 2007, 28, 1709-1717.	1.5	53
241	RNAi of 14-3-3η protein increases intracellular stability of tyrosine hydroxylase. Biochemical and Biophysical Research Communications, 2007, 363, 817-821.	1.0	11
242	Anti-fibrillogenic and fibril-destabilizing activity of nicotine in vitro: Implications for the prevention and therapeutics of Lewy body diseases. Experimental Neurology, 2007, 205, 414-424.	2.0	29
243	Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: Relevance to oxidative damage in Parkinson's disease. Neurochemistry International, 2007, 50, 834-847.	1.9	61
244	α-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiology of Disease, 2007, 26, 521-531.	2.1	109
246	Aggregated Â-Synuclein Mediates Dopaminergic Neurotoxicity In Vivo. Journal of Neuroscience, 2007, 27, 3338-3346.	1.7	271
247	γâ€ 5 ynuclein and the progression of cancer. FASEB Journal, 2007, 21, 3419-3430.	0.2	94
248	GM1 Specifically Interacts with α-Synuclein and Inhibits Fibrillation. Biochemistry, 2007, 46, 1868-1877.	1.2	239

#	Article	IF	CITATIONS
249	14-3-3 Expression in Denervated Hippocampus after Entorhinal Cortex Lesion Assessed by Culture-Derived Isotope Tags in Quantitative Proteomics. Journal of Proteome Research, 2007, 6, 3491-3500.	1.8	9
250	The commonality of protein interaction networks determined in neurodegenerative disorders (NDDs). Bioinformatics, 2007, 23, 2129-2138.	1.8	52
251	Protein Aggregation Disorders. , 2007, , 111-123.		2
252	The proteomic approach in Parkinson's disease. Proteomics - Clinical Applications, 2007, 1, 1428-1435.	0.8	9
253	Alphaâ€synuclein protects cerebellar granule neurons against 6â€hydroxydopamineâ€induced death. Journal of Neurochemistry, 2007, 103, 518-530.	2.1	49
254	Functional protein kinase arrays reveal inhibition of pâ€21â€activated kinase 4 by αâ€synuclein oligomers. Journal of Neurochemistry, 2007, 103, 2401-2407.	2.1	18
255	Physiological and pathological properties of α-synuclein. Cellular and Molecular Life Sciences, 2007, 64, 2194-2201.	2.4	112
256	Whole genome expression analyses of single- and double-knock-out mice implicate partially overlapping functions of alpha- and gamma-synuclein. Neurogenetics, 2007, 8, 71-81.	0.7	30
257	Overexpressed Alpha-Synuclein Regulated the Nuclear Factor-kappaB Signal Pathway. Cellular and Molecular Neurobiology, 2008, 28, 21-33.	1.7	43
258	Inhibition of Vesicular Monoamine Transporter-2 Activity in α-Synuclein Stably Transfected SH-SY5Y Cells. Cellular and Molecular Neurobiology, 2008, 28, 35-47.	1.7	73
259	Silencing α-Synuclein Gene Expression Enhances Tyrosine Hydroxylase Activity in MN9D Cells. Neurochemical Research, 2008, 33, 1401-1409.	1.6	48
260	Mitochondrial association of alpha-synuclein causes oxidative stress. Cellular and Molecular Life Sciences, 2008, 65, 1272-1284.	2.4	289
261	RNA interference mediated silencing of α-synuclein in MN9D cells and its effects on cell viability. Neuroscience Bulletin, 2008, 24, 96-104.	1.5	9
262	Sensitization of Neuronal Cells to Oxidative Stress with Mutated Human α-Synuclein. Journal of Neurochemistry, 2008, 75, 2546-2554.	2.1	83
263	The solubility of α-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson's disease. Journal of Neurochemistry, 2008, 76, 87-96.	2.1	196
264	Microglial phagocytosis is enhanced by monomeric αâ€synuclein, not aggregated αâ€synuclein: Implications for Parkinson's disease. Glia, 2008, 56, 1215-1223.	2.5	123
265	Chaperone proteins identified from synthetic proteasome inhibitor-induced inclusions in PC12 cells by proteomic analysis. Acta Biochimica Et Biophysica Sinica, 2008, 40, 406-418.	0.9	6
266	The DISC locus in psychiatric illness. Molecular Psychiatry, 2008, 13, 36-64.	4.1	554

#	ARTICLE	IF	CITATIONS
267	New insights into the pathology of Parkinson's disease: does the peripheral autonomic system become central?. European Journal of Neurology, 2008, 15, 1-4.	1.7	48
268	The effect of αâ€synuclein knockdown on MPP+ toxicity in models of human neurons. European Journal of Neuroscience, 2008, 28, 2459-2473.	1.2	67
269	Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer, 2008, 8, 313.	1.1	21
270	Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmunity Reviews, 2008, 7, 501-507.	2.5	56
271	Genetic factors involved in the pathogenesis of Parkinson's disease. Brain Research Reviews, 2008, 58, 354-364.	9.1	35
272	Neuropathology of Parkinson's Disease. , 2008, , 35-48.		6
273	Chapter 6 Molecular and Cellular Biology of Synucleins. International Review of Cell and Molecular Biology, 2008, 270, 225-317.	1.6	90
274	α-Synuclein aggregation alters tyrosine hydroxylase phosphorylation and immunoreactivity: Lessons from viral transduction of knockout mice. Neuroscience Letters, 2008, 435, 24-29.	1.0	91
275	Melatonin inhibits amphetamine-induced increase in α-synuclein and decrease in phosphorylated tyrosine hydroxylase in SK–N–SH cells. Neuroscience Letters, 2008, 436, 309-313.	1.0	40
276	α-synuclein and Parkinson's disease: a proteomic view. Expert Review of Proteomics, 2008, 5, 239-248.	1.3	31
277	Differences between normal and alpha-synuclein overexpressing SH-SY5Y neuroblastoma cells after Aβ(1-42) and NAC treatment. Brain Research Bulletin, 2008, 75, 648-654.	1.4	12
278	Phosphorylation of cysteine string protein on Serine 10 triggers 14-3-3 protein binding. Biochemical and Biophysical Research Communications, 2008, 377, 809-814.	1.0	13
279	Proteomics Analysis Identifies Phosphorylation-dependent α-Synuclein Protein Interactions. Molecular and Cellular Proteomics, 2008, 7, 2123-2137.	2.5	157
280	Phosphorylation at Ser-129 but Not the Phosphomimics S129E/D Inhibits the Fibrillation of α-Synuclein. Journal of Biological Chemistry, 2008, 283, 16895-16905.	1.6	302
281	α-Synuclein Misfolding and Neurodegenerative Diseases. Current Protein and Peptide Science, 2008, 9, 507-540.	0.7	177
282	Drug Targeting of α-Synuclein Oligomerization in Synucleinopathies. Perspectives in Medicinal Chemistry, 2008, 2, 1177391X0800200.	4.6	3
283	Neuroprotective and Neurotoxic Properties of α-Synuclein in Cell Culture Models of Dopaminergic Degeneration. , 2008, , 475-490.		0
284	14-3-3ζ Contributes to Tyrosine Hydroxylase Activity in MN9D Cells. Journal of Biological Chemistry, 2009, 284, 14011-14019.	1.6	72

#	Article	IF	CITATIONS
285	α‣ynuclein contributes to GSKâ€3βâ€catalyzed Tau phosphorylation in Parkinson's disease models. FASEB Journal, 2009, 23, 2820-2830.	0.2	231
286	The Therapeutic Potential of LRRK2 and α-Synuclein in Parkinson's Disease. Antioxidants and Redox Signaling, 2009, 11, 2167-2187.	2.5	9
287	Physiological and Pathological Role of Alpha-synuclein in Parkinson's Disease Through Iron Mediated Oxidative Stress; The Role of a Putative Iron-responsive Element. International Journal of Molecular Sciences, 2009, 10, 1226-1260.	1.8	75
288	Desipramine Modulation of α-, γ-Synuclein, and the Norepinephrine Transporter in an Animal Model of Depression. Neuropsychopharmacology, 2009, 34, 987-998.	2.8	41
289	The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Molecular and Cellular Biochemistry, 2009, 326, 55-66.	1.4	69
290	2â€D DICE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics, 2009, 9, 3368-3382.	1.3	134
291	Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function. Proteomics, 2009, 9, 4284-4297.	1.3	70
292	Ectopic localization of FOXO3a protein in Lewy bodies in Lewy body dementia and Parkinson's disease. Molecular Neurodegeneration, 2009, 4, 32.	4.4	34
293	Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models. EMBO Journal, 2009, 28, 3256-3268.	3.5	411
294	Gating deficits in isolationâ€reared rats are correlated with alterations in protein expression in nucleus accumbens. Journal of Neurochemistry, 2009, 108, 611-620.	2.1	20
295	Molecular Mechanisms Underlying the Flavonoid-Induced Inhibition of α-Synuclein Fibrillation. Biochemistry, 2009, 48, 8206-8224.	1.2	126
296	Structural insights on physiological functions and pathological effects of ±â€synuclein. FASEB Journal, 2009, 23, 329-340.	0.2	129
297	Molecular mechanisms of α-synuclein neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 616-624.	1.8	174
298	Desipramine induced changes in the norepinephrine transporter, α- and γ-synuclein in the hippocampus, amygdala and striatum. Neuroscience Letters, 2009, 467, 86-89.	1.0	15
299	Current and Future Therapeutic Strategies for Parkinsons Disease. Current Pharmaceutical Design, 2009, 15, 3968-3976.	0.9	11
300	Membrane Interactions of Oligomeric Alpha-Synuclein: Potential Role in Parkinsons Disease. Current Protein and Peptide Science, 2010, 11, 334-342.	0.7	42
301	14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. Biochemical Journal, 2010, 430, 393-404.	1.7	355
302	Periphilin is a novel interactor of synphilin-1, a protein implicated in Parkinson's disease. Neurogenetics, 2010, 11, 203-215.	0.7	2

#	Article	IF	CITATIONS
303	The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson's disease. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1312-1321.	2.2	44
304	Overexpression of $\hat{l}\pm$ -Synuclein Down-Regulates BDNF Expression. Cellular and Molecular Neurobiology, 2010, 30, 939-946.	1.7	54
305	Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI. BMC Neuroscience, 2010, 11, 95.	0.8	7
306	Mesencephalic and striatal protein profiles in mice over-expressing glucose-6-phosphate dehydrogenase in dopaminergic neurons. Journal of Proteomics, 2010, 73, 1747-1757.	1.2	5
307	14-3-3 Proteins and regulation of cytoskeleton. Biochemistry (Moscow), 2010, 75, 1528-1546.	0.7	67
308	DNA induced folding/fibrillation of alpha-synuclein: new insights in Parkinson's disease. Frontiers in Bioscience - Landmark, 2010, 15, 418.	3.0	41
309	Serine 129 Phosphorylation Reduces the Ability of α-Synuclein to Regulate Tyrosine Hydroxylase and Protein Phosphatase 2A in Vitro and in Vivo. Journal of Biological Chemistry, 2010, 285, 17648-17661.	1.6	105
310	A Biochemical and Functional Protein Complex Involving Dopamine Synthesis and Transport into Synaptic Vesicles. Journal of Biological Chemistry, 2010, 285, 1957-1966.	1.6	106
311	Regulation of Weibel-Palade Body Exocytosis by α-Synuclein in Endothelial Cells. Journal of Biological Chemistry, 2010, 285, 21416-21425.	1.6	34
312	LRRK2 and the Stress Response: Interaction with MKKs and JNK-Interacting Proteins. Neurodegenerative Diseases, 2010, 7, 68-75.	0.8	57
313	Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease. Cell Death and Disease, 2010, 1, e2-e2.	2.7	120
314	The Role of Phosphorylation in Synucleinopathies: Focus on Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 471-481.	0.8	43
315	Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein. Progress in Brain Research, 2010, 183, 115-145.	0.9	283
316	αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19573-19578.	3.3	261
317	A Querying Method with Feedback Mechanism for Protein Interaction Network. , 2011, , .		5
320	Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102.	1.6	25
321	Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacological Research, 2011, 63, 439-444.	3.1	125
322	Dopamine-depletion and increased α-synuclein load induce degeneration of cortical cholinergic fibers in mice. Journal of the Neurological Sciences, 2011, 310, 90-95.	0.3	25

ARTICLE IF CITATIONS # Flexible Nets of Malleable Guardians: Intrinsically Disordered Chaperones in Neurodegenerative 323 23.0 65 Diseases. Chemical Reviews, 2011, 111, 1134-1166. Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics, 324 1.4 2011, 508, 1-12. Proteomic characterization of Jurkat T leukemic cells after dopamine stimulation: A model of 325 1.3 5 circulating dopamine-sensitive cells. Biochimie, 2011, 93, 892-898. Heat Shock Protein 70 Prevents both Tau Aggregation and the Inhibitory Effects of Preexisting Tau 1.2 106 Aggregates on Fast Axonal Transport. Biochemistry, 2011, 50, 10300-10310. Melatonin attenuates the amphetamine-induced decrease in vesicular monoamine transporter-2 327 1.0 10 expression in postnatal rat striatum. Neuroscience Letters, 2011, 488, 154-157. Macroautophagy and the proteasome are differently involved in the degradation of alpha-synuclein wild type and mutated A30P in an in vitro inducible model (PC12/TetOn). Neuroscience, 2011, 195, 128-137. 1.1 330 14-3-3 proteins in neurodegeneration. Seminars in Cell and Developmental Biology, 2011, 22, 696-704. 2.3 85 Synuclein modulation of monoamine transporters. FEBS Letters, 2011, 585, 1001-1006. 1.3 64 Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD. Parkinson's Disease, 333 0.6 62 2011, 2011, 1-20. LRRK2 mutations, regulation and 14–3–3 protein interaction: implications for Parkinson's disease. 334 Future Neurology, 2011, 6, 5-8. Protection of dichlorvos induced oxidative stress and nigrostriatal neuronal death by chronic 335 1.3 20 Coenzyme Q10 pretreatment. Toxicology and Applied Pharmacology, 2011, 256, 73-82. Alpha-synuclein aggregation is involved in the toxicity induced by ferric iron to SK-N-SH 1.4 neuroblastoma cells. Journal of Neural Transmission, 2011, 118, 397-406. Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cellular and Molecular Life 337 2.4 31 Ściences, 2011, 68, 2643-2654. Interference of alpha-synuclein with cAMP/PKA-dependent CREB signaling for tyrosine hydroxylase 338 2.7 gene expression in SK-N-BE(2)C cells. Archives of Pharmacal Research, 2011, 34, 837-845. Structures of segments of αâ€synuclein fused to maltoseâ€binding protein suggest intermediate states 339 3.1 32 during amyloid formation. Protein Science, 2011, 20, 996-1004. Intrinsically disordered proteins may escape unwanted interactions via functional misfolding. 340 Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 693-712. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neuroscience and Biobehavioral Reviews, 2011, 35, 848-870. 341 2.9 147 Familial Parkinson's Disease Mutant E46K $\langle i \rangle$ α $\langle i \rangle$ -Synuclein Localizes to Membranous Structures, 342 1.5 Forms Aggregates, and Induces Toxicity in Yeast Models. ISRN Neurology, 2011, 2011, 1-14.

#	Article	IF	CITATIONS
343	α-Synuclein Negatively Regulates Protein Kinase CδExpression to Suppress Apoptosis in Dopaminergic Neurons by Reducing p300 Histone Acetyltransferase Activity. Journal of Neuroscience, 2011, 31, 2035-2051.	1.7	136
344	Parkinsonian Neurotoxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and α-Synuclein Mutations Promote Tau Protein Phosphorylation at Ser262 and Destabilize Microtubule Cytoskeleton in Vitro. Journal of Biological Chemistry, 2011, 286, 5055-5068.	1.6	72
345	α-Synuclein binds the K _{ATP} channel at insulin-secretory granules and inhibits insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E276-E286.	1.8	71
346	NMNAT suppresses Tau-induced neurodegeneration by promoting clearance of hyperphosphorylated Tau oligomers in a Drosophila model of tauopathy. Human Molecular Genetics, 2012, 21, 237-250.	1.4	97
347	α-synuclein, LRRK2 and their interplay in Parkinson's disease. Future Neurology, 2012, 7, 145-153.	0.9	39
348	α-Synuclein misfolding and Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 261-285.	1.8	526
349	Â-Synuclein in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009399-a009399.	2.9	958
350	Loss of Functional Alpha-Synuclein: A Toxic Event in Parkinson's Disease?. Journal of Parkinson's Disease, 2012, 2, 249-267.	1.5	72
351	The chaperone activity of αâ€synuclein: Utilizing deletion mutants to map its interaction with target proteins. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1316-1325.	1.5	26
352	Alpha-synuclein synaptic pathology and its implications in the development of novel therapeutic approaches to cure Parkinson's disease. Brain Research, 2012, 1432, 95-113.	1.1	39
353	Structureâ€oriented review of 14â€3â€3 protein isoforms in geriatric neuroscience. Geriatrics and Gerontology International, 2012, 12, 586-599.	0.7	9
354	A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3 epsilon and late increase of GFAP. Journal of Neural Transmission, 2012, 119, 297-312.	1.4	30
355	α-Synuclein Overexpression Represses 14-3-3Î, Transcription. Journal of Molecular Neuroscience, 2013, 51, 1000-1009.	1.1	19
356	α-Synuclein Protects Neurons from Apoptosis Downstream of Free-Radical Production Through Modulation of the MAPK Signalling Pathway. Neurotoxicity Research, 2013, 23, 358-369.	1.3	28
357	Basal Ganglia Disorders. , 2013, , 1-39.		0
358	14-3-3 Proteins in the Regulation of Rotenone-Induced Neurotoxicity Might be via Its Isoform 14-3-3Epsilon's Involvement in Autophagy. Cellular and Molecular Neurobiology, 2013, 33, 1109-1121.	1.7	9
359	Evolutionary aspects of the synuclein super-family and sub-families based on large-scale phylogenetic and group-discrimination analysis. Biochemical and Biophysical Research Communications, 2013, 441, 308-317.	1.0	18
360	14-3-3 targets chaperone-associated misfolded proteins to aggresomes. Journal of Cell Science, 2013, 126, 4173-86.	1.2	87

#	Article	IF	Citations
361	Kinase–Kinase Interaction and Modulation of Tau Phosphorylation. International Review of Cell and Molecular Biology, 2013, 300, 121-160.	1.6	33
362	Valproic acid ameliorates C. elegans dopaminergic neurodegeneration with implications for ERK-MAPK signaling. Neuroscience Letters, 2013, 541, 116-119.	1.0	19
363	The role of α-synuclein in the pathophysiology of alcoholism. Neurochemistry International, 2013, 63, 154-162.	1.9	16
364	Molecular Chaperones, Alpha-Synuclein, and Neurodegeneration. Molecular Neurobiology, 2013, 47, 552-560.	1.9	47
365	Stem Cells in the Adult Brain. , 2013, , 699-705.		1
366	α-Synuclein and β-synuclein enhance secretion protein production in baculovirus expression vector system. Applied Microbiology and Biotechnology, 2013, 97, 3875-3884.	1.7	2
367	Limelight on Alpha-Synuclein: Pathological and Mechanistic Implications in Neurodegeneration. Journal of Parkinson's Disease, 2013, 3, 415-459.	1.5	68
368	Neuroprotective Function of 14-3-3 Proteins in Neurodegeneration. BioMed Research International, 2013, 2013, 1-11.	0.9	75
369	TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1817-26.	3.3	600
370	Alpha-Synuclein Function and Dysfunction on Cellular Membranes. Experimental Neurobiology, 2014, 23, 292-313.	0.7	179
371	The triple power of D³: Protein intrinsic disorder in degenerative diseases. Frontiers in Bioscience - Landmark, 2014, 19, 181.	3.0	78
372	Alpha-synuclein and tau: teammates in neurodegeneration?. Molecular Neurodegeneration, 2014, 9, 43.	4.4	216
373	A calcineurin- and NFAT-dependent pathway is involved in Â-synuclein-induced degeneration of midbrain dopaminergic neurons. Human Molecular Genetics, 2014, 23, 6567-6574.	1.4	57
374	Potential of caveolae in the therapy of cardiovascular and neurological diseases. Frontiers in Physiology, 2014, 5, 370.	1.3	17
375	Intraâ€axonal protein aggregation in the peripheral nervous system. Journal of the Peripheral Nervous System, 2014, 19, 44-49.	1.4	15
376	The Crystal Structure of Giardia duodenalis 14-3-3 in the Apo Form: When Protein Post-Translational Modifications Make the Difference. PLoS ONE, 2014, 9, e92902.	1.1	12
377	Association of heat-shock proteins in various neurodegenerative disorders: is it a master key to open the therapeutic door?. Molecular and Cellular Biochemistry, 2014, 386, 45-61.	1.4	86
378	Targeting heat shock proteins to modulate α-synuclein toxicity. Therapeutic Advances in Neurological Disorders, 2014, 7, 33-51.	1.5	53

#	Article	IF	CITATIONS
379	Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation. Journal of Bioenergetics and Biomembranes, 2014, 46, 93-98.	1.0	15
380	The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Human Molecular Genetics, 2014, 23, 5615-5629.	1.4	56
381	The Neurobiology of LRRK2 and its Role in the Pathogenesis of Parkinson's Disease. Neurochemical Research, 2014, 39, 576-592.	1.6	61
382	Use of CSF α-synuclein in the differential diagnosis between Alzheimer's disease and other neurodegenerative disorders. International Psychogeriatrics, 2015, 27, 1429-1438.	0.6	30
383	Age-Related Changes of 14-3-3 IsoformsÂinÂMidbrain of A53T-SNCA Overexpressing Mice. Journal of Parkinson's Disease, 2015, 5, 595-604.	1.5	5
384	The Synaptic Function of α-Synuclein. Journal of Parkinson's Disease, 2015, 5, 699-713.	1.5	421
385	Neuronal response in Alzheimer's and Parkinson's disease: the effect of toxic proteins on intracellular pathways. BMC Neuroscience, 2015, 16, 69.	0.8	61
386	A new role for αâ€synuclein in Parkinson's disease: Alteration of ER–mitochondrial communication. Movement Disorders, 2015, 30, 1026-1033.	2.2	59
387	Olfactory Dysfunction and Neurotransmitter Disturbance in Olfactory Bulb of Transgenic Mice Expressing Human A53T Mutant α-Synuclein. PLoS ONE, 2015, 10, e0119928.	1.1	57
388	Complexin-1 and Foxp1 Expression Changes Are Novel Brain Effects of Alpha-Synuclein Pathology. Molecular Neurobiology, 2015, 52, 57-63.	1.9	20
389	Proteomics Approach to Identify Biomarkers in Neurodegenerative Diseases. International Review of Neurobiology, 2015, 121, 59-86.	0.9	9
390	Biomarkers of Parkinson's Disease. Biomarkers in Disease, 2015, , 1009-1030.	0.0	Ο
391	Increased 14-3-3 phosphorylation observed in Parkinson's disease reduces neuroprotective potential of 14-3-3 proteins. Neurobiology of Disease, 2015, 79, 1-13.	2.1	34
392	Intracellular Dynamics of Synucleins. International Review of Cell and Molecular Biology, 2015, 320, 103-169.	1.6	66
393	14-3-3 inhibition promotes dopaminergic neuron loss and 14-3-3Î, overexpression promotes recovery in the MPTP mouse model of Parkinson's disease. Neuroscience, 2015, 307, 73-82.	1.1	20
394	Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity. BioMed Research International, 2016, 2016, 1-18.	0.9	40
395	Parkinson's Disease and Cognitive Impairment. Parkinson's Disease, 2016, 2016, 1-8.	0.6	50
396	Brain Disorders Due to Lysosomal Dysfunction. Annual Review of Neuroscience, 2016, 39, 277-295.	5.0	129

#	Article	IF	CITATIONS
397	The contribution of alpha synuclein to neuronal survival and function – Implications for Parkinson's disease. Journal of Neurochemistry, 2016, 137, 331-359.	2.1	186
398	Mitochondrial Dysfunction in Neurodegenerative Disorders. , 2016, , .		3
399	The Deleterious Duo of Neurodegeneration: Lysosomes and Mitochondria. , 2016, , 279-300.		2
400	TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress. Annual Review of Cell and Developmental Biology, 2016, 32, 255-278.	4.0	308
401	Dynamic structural flexibility of $\hat{l}\pm$ -synuclein. Neurobiology of Disease, 2016, 88, 66-74.	2.1	65
402	What lysosomes actually tell us about Parkinson's disease?. Ageing Research Reviews, 2016, 32, 140-149.	5.0	19
403	Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Progress in Neurobiology, 2017, 155, 171-193.	2.8	137
404	FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70. Molecular Neurobiology, 2017, 54, 349-361.	1.9	20
405	Alpha-synuclein modulates dopamine neurotransmission. Journal of Chemical Neuroanatomy, 2017, 83-84, 41-49.	1.0	46
406	Dysregulation of 14â€3â€3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology. Annals of Clinical and Translational Neurology, 2017, 4, 466-477.	1.7	28
407	DJ-1, a Parkinson's disease related protein, aggregates under denaturing conditions and co-aggregates with α-synuclein through hydrophobic interaction. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1759-1769.	1.1	15
408	Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management. Ageing Research Reviews, 2017, 40, 149-167.	5.0	47
409	Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Molecular Neurodegeneration, 2017, 12, 45.	4.4	61
410	Nuclear Accumulation of Histone Deacetylase 4 (HDAC4) Exerts Neurotoxicity in Models of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 6970-6983.	1.9	48
411	Molecular Biology of Dementia with Lewy Bodies. , 2017, , 41-55.		1
413	The Role of Interleukin-18, Oxidative Stress and Metabolic Syndrome in Alzheimer's Disease. Journal of Clinical Medicine, 2017, 6, 55.	1.0	40
414	Genomic DNA levels of mutant alpha-synuclein correlate with non-motor symptoms in an A53T Parkinson's disease mouse model. Neurochemistry International, 2018, 114, 71-79.	1.9	27
415	LRRK2 Phosphorylation: Behind the Scenes. Neuroscientist, 2018, 24, 486-500.	2.6	17

#	Article	IF	CITATIONS
416	Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment. Archives of Biochemistry and Biophysics, 2018, 651, 1-12.	1.4	45
417	14-3-3 protein sigma isoform co-localizes with phosphorylated α-synuclein in Lewy bodies and Lewy neurites in patients with Lewy body disease. Neuroscience Letters, 2018, 674, 171-175.	1.0	11
418	Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024091.	2.9	353
419	Alpha-Synuclein Suppresses Retinoic Acid-Induced Neuronal Differentiation by Targeting the Glycogen Synthase Kinase-3l²/l²-Catenin Signaling Pathway. Molecular Neurobiology, 2018, 55, 1607-1619.	1.9	14
420	Downregulation of 14-3-3 Proteins in a Kainic Acid-Induced Neurotoxicity Model. Molecular Neurobiology, 2018, 55, 122-129.	1.9	20
421	East Indian sandalwood (<i>Santalum album</i> ÂL.) oil confers neuroprotection and geroprotection in <i>Caenorhabditis elegans via</i> activating SKN-1/Nrf2 signaling pathway. RSC Advances, 2018, 8, 33753-33774.	1.7	36
422	Network-based Analysis Approach to Prioritize GWAS of CSF in the ADNI Cohort. , 2018, , .		1
423	Could α-Synuclein Modulation of Insulin and Dopamine Identify a Novel Link Between Parkinson's Disease and Diabetes as Well as Potential Therapies?. Frontiers in Molecular Neuroscience, 2018, 11, 465.	1.4	11
424	Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3. Brain Plasticity, 2018, 4, 151-167.	1.9	19
425	Comparative Analysis of the Conformation, Aggregation, Interaction, and Fibril Morphologies of Human α-, β-, and γ-Synuclein Proteins. Biochemistry, 2018, 57, 3830-3848.	1.2	27
426	Structure, Function, Involvement in Diseases and Targeting of 14-3-3 Proteins: An Update. Current Medicinal Chemistry, 2018, 25, 5-21.	1.2	56
427	Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain. Free Radical Biology and Medicine, 2018, 129, 600-607.	1.3	10
428	14-3-3 Proteins Reduce Cell-to-Cell Transfer and Propagation of Pathogenic α-Synuclein. Journal of Neuroscience, 2018, 38, 8211-8232.	1.7	48
429	TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease: Molecular mechanisms, cellular processes, and emerging therapeutic opportunities. Neurobiology of Disease, 2019, 122, 83-93.	2.1	135
430	14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. International Journal of Molecular Sciences, 2019, 20, 3518.	1.8	80
431	Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration. Molecular and Cellular Neurosciences, 2019, 98, 140-154.	1.0	21
432	Axonal pathology in hPSC-based models of Parkinson's disease results from loss of Nrf2 transcriptional activity at the Map1b gene locus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14280-14289.	3.3	30
433	The role of lipids in α-synuclein misfolding and neurotoxicity. Journal of Biological Chemistry, 2019, 294, 9016-9028.	1.6	55

#	Article	IF	CITATIONS
434	14-3-3 gene family in spotted sea bass (Lateolabrax maculatus): Genome-wide identification, phylogenetic analysis and expression profiles after salinity stress. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 235, 1-11.	0.8	10
435	<i>In vitro</i> models of synucleinopathies: informing on molecular mechanisms and protective strategies. Journal of Neurochemistry, 2019, 150, 535-565.	2.1	33
436	Prion Efficiently Replicates in Î \pm -Synuclein Knockout Mice. Molecular Neurobiology, 2019, 56, 7448-7457.	1.9	5
437	Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes. Gene, 2019, 697, 67-77.	1.0	17
439	Can 14-3-3 proteins serve as therapeutic targets for the treatment of metabolic diseases?. Pharmacological Research, 2019, 139, 199-206.	3.1	31
440	Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology. International Journal of Molecular Sciences, 2019, 20, 141.	1.8	52
441	Increased Cholinergic Response in α-Synuclein Transgenic Mice (h-α-synL62). ACS Chemical Neuroscience, 2019, 10, 1915-1922.	1.7	11
442	The interaction of α-synuclein and Tau: A molecular conspiracy in neurodegeneration?. Seminars in Cell and Developmental Biology, 2020, 99, 55-64.	2.3	35
443	Utility of totally implantable venous access ports in patients with breast cancer. Breast Journal, 2020, 26, 333-334.	0.4	3
444	Controlled synthesis of nanostructured glassy and crystalline high entropy alloy films. Nanotechnology, 2020, 31, 045601.	1.3	2
445	Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathologica, 2020, 139, 319-345.	3.9	17
446	LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson's Disease?. Frontiers in Neuroscience, 2020, 14, 577.	1.4	49
447	iPSC modeling of young-onset Parkinson's disease reveals a molecular signature of disease and novel therapeutic candidates. Nature Medicine, 2020, 26, 289-299.	15.2	102
448	Immunotherapies for Aging-Related Neurodegenerative Diseases—Emerging Perspectives and New Targets. Neurotherapeutics, 2020, 17, 935-954.	2.1	40
449	Advances in modelling alpha-synuclein-induced Parkinson's diseases in rodents: Virus-based models versus inoculation of exogenous preformed toxic species. Journal of Neuroscience Methods, 2020, 338, 108685.	1.3	16
450	Neurons and Clia Interplay in α-Synucleinopathies. International Journal of Molecular Sciences, 2021, 22, 4994.	1.8	28
451	Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biology, 2021, 41, 101896.	3.9	75
452	Harnessing the immune system for the treatment of Parkinson's disease. Brain Research, 2021, 1758, 147308.	1.1	10

#	ARTICLE	IF	CITATIONS
453	Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Frontiers in Aging Neuroscience, 2021, 13, 690293.	1.7	32
454	Roles for α-Synuclein in Gene Expression. Genes, 2021, 12, 1166.	1.0	16
455	Effects of Alpha-Synuclein Targeted Antisense Oligonucleotides on Lewy Body-Like Pathology and Behavioral Disturbances Induced by Injections of Pre-Formed Fibrils in the Mouse Motor Cortex. Journal of Parkinson's Disease, 2021, 11, 1091-1115.	1.5	10
456	Prediction and verification of the AD-FTLD common pathomechanism based on dynamic molecular network analysis. Communications Biology, 2021, 4, 961.	2.0	2
457	Synaptic tau: A pathological or physiological phenomenon?. Acta Neuropathologica Communications, 2021, 9, 149.	2.4	30
458	Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. Npj Parkinson's Disease, 2021, 7, 85.	2.5	20
459	14-3-3ζ and 14-3-3ε are involved in innate immune responses in Pacific abalone (Haliotis discus hannai). Developmental and Comparative Immunology, 2021, 124, 104176.	1.0	4
460	Similarity of the non-amyloid-β component and C-terminal tail of monomeric and tetrameric alpha-synuclein with 14-3-3 sigma. Computational and Structural Biotechnology Journal, 2021, 19, 5348-5359.	1.9	7
461	Mouse Models of α-Synucleinopathy and Lewy Pathology. Advances in Experimental Medicine and Biology, 2001, 487, 147-167.	0.8	8
462	α-Synuclein modulates tau spreading in mouse brains. Journal of Experimental Medicine, 2021, 218, .	4.2	49
463	Direct binding and functional coupling of αâ€synuclein to the dopamine transporters accelerate dopamineâ€induced apoptosis. FASEB Journal, 2001, 15, 916-926.	0.2	60
464	Regulation of Â-Synuclein Expression: Implications for Parkinson's Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 409-416.	2.0	11
465	DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases. PLoS ONE, 2010, 5, e13367.	1.1	113
466	A Synopsis on the Role of Tyrosine Hydroxylase in Parkinson's Disease. CNS and Neurological Disorders - Drug Targets, 2012, 11, 395-409.	0.8	111
467	Alpha-synuclein structure, functions, and interactions. Journal of Research in Medical Sciences, 2016, 21, 29.	0.4	180
468	Emerging roles of 14-3-3Î ³ in the brain disorder. BMB Reports, 2020, 53, 500-511.	1.1	20
469	The Amyloid Fibril-Forming β-Sheet Regions of Amyloid β and α-Synuclein Preferentially Interact with the Molecular Chaperone 14-3-3ζ. Molecules, 2021, 26, 6120.	1.7	9
470	Molecular Biology of α-Synuclein. Advances in Behavioral Biology, 2002, , 497-508.	0.2	0

#	Article	IF	CITATIONS
474	Dissecting the Biochemical Pathways Mediated by Genes Implicated in Parkinson's Disease: Induction of DJ-1 Expression in A30P α-Synuclein Mice. , 2008, , 97-112.		0
475	Small Heat Shock Proteins and the Cytoskeleton. , 2009, , 13-24.		3
477	Targeting α-Synuclein-Related Synaptic Pathology: Novel Clues for Parkinson's Disease Therapy. , 0, , .		0
479	Biomarkers of Parkinson's Disease. , 2014, , 1-18.		Ο
481	Cell Biology of α-Synuclein: Implications in Parkinson's Disease and Other Lewy Body Diseases. , 0, , 111-124.		0
483	Multiple system atrophy: cellular and molecular pathology. Journal of Clinical Pathology, 2001, 54, 419-26.	2.1	39
484	Alpha-synuclein overexpression promotes aggregation of mutant huntingtin. Biochemical Journal, 2000, 346 Pt 3, 577-81.	1.7	33
485	Drug Targeting of alpha-Synuclein Oligomerization in Synucleinopathies. Perspectives in Medicinal Chemistry, 2008, 2, 41-9.	4.6	4
487	14-3-3 proteins in neurological disorders. International Journal of Biochemistry and Molecular Biology, 2012, 3, 152-64.	0.1	88
489	Prospective of SNCA in nervous system diseases. , 2017, 3, 10-16.		Ο
490	Fishing for synucleinopathy models. Fisheries and Aquatic Sciences, 2022, 25, 117-139.	0.3	0
490 491	Fishing for synucleinopathy models. Fisheries and Aquatic Sciences, 2022, 25, 117-139. Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochemistry International, 2022, 155, 105308.	0.3 1.9	0
	Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochemistry		
491	Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochemistry International, 2022, 155, 105308. Alpha-synuclein: between synaptic function and dysfunction. Histology and Histopathology, 2003, 18,	1.9	11
491 493	 Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochemistry International, 2022, 155, 105308. Alpha-synuclein: between synaptic function and dysfunction. Histology and Histopathology, 2003, 18, 1257-66. 14-3-3Î, Does Not Protect against Behavioral or Pathological Deficits in Alzheimer's Disease Mouse 	1.9 0.5	11 22
491 493 494	Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochemistry International, 2022, 155, 105308. Alpha-synuclein: between synaptic function and dysfunction. Histology and Histopathology, 2003, 18, 1257-66. 14-3-3Î, Does Not Protect against Behavioral or Pathological Deficits in Alzheimer's Disease Mouse Models. ENeuro, 2022, 9, ENEURO.0368-21.2022. Autophagy and autophagyâ€related molecules in neurodegenerative diseases. Animal Models and	1.9 0.5 0.9	11 22 2
491 493 494 495	Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochemistry International, 2022, 155, 105308. Alpha-synuclein: between synaptic function and dysfunction. Histology and Histopathology, 2003, 18, 1257-66. 14-3-3Î, Does Not Protect against Behavioral or Pathological Deficits in Alzheimer's Disease Mouse Models. ENeuro, 2022, 9, ENEURO.0368-21.2022. Autophagy and autophagyâ€related molecules in neurodegenerative diseases. Animal Models and Experimental Medicine, 2023, 6, 10-17. Structural insights into the functional roles of 14-3-3 proteins. Frontiers in Molecular Biosciences, 0,	1.9 0.5 0.9 1.3	11 22 2 6

#	Article	IF	CITATIONS
499	Animal Models and the Pathogenesis of Parkinson's Disease. , 2011, , 113-161.		0