Mountain-wave-induced record low stratospheric temp Scandinavia

Tellus, Series A: Dynamic Meteorology and Oceanography 51, 951 DOI: 10.3402/tellusa.v51i5.14504

Citation Report

#	Article	IF	CITATIONS
1	Nitric Acid Trihydrate (NAT) in Polar Stratospheric Clouds. , 2000, 290, 1756-1758.		183
2	Dehydration in the Arctic stratosphere during the SOLVE/THESEO-2000 campaigns. Journal of Geophysical Research, 2002, 107, SOL 36-1.	3.3	37
3	Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. Journal of Geophysical Research, 2002, 107, CRI 6-1-CRI 6-23.	3.3	227
4	Determination of airflow across the Alpine ridge by a combination of airborne Doppler lidar, routine radiosounding and numerical simulation. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 715-727.	1.0	31
5	Nonorographic generation of Arctic polar stratospheric clouds during December 1999. Journal of Geophysical Research, 2003, 108, SOL 68-1.	3.3	26
6	Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 2003, 41, .	9.0	1,958
7	Large nitric acid particles at the top of an Arctic stratospheric cloud. Journal of Geophysical Research, 2003, 108, .	3.3	41
8	Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling. Atmospheric Chemistry and Physics, 2004, 4, 1149-1165.	1.9	29
9	Formation of ice supersaturation by mesoscale gravity waves. Atmospheric Chemistry and Physics, 2005, 5, 1243-1255.	1.9	53
10	Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs). Atmospheric Chemistry and Physics, 2005, 5, 1371-1380.	1.9	160
11	Polar stratospheric ice cloud above Spitsbergen. Journal of Geophysical Research, 2006, 111, .	3.3	18
12	Planetary wave and gravity wave influence on the occurrence of polar stratospheric clouds over Davis Station, Antarctica, seen in lidar and radiosonde observations. Journal of Geophysical Research, 2006, 111, .	3.3	14
13	Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study. Atmospheric Chemistry and Physics, 2006, 6, 3343-3362.	1.9	50
14	Liquid particle composition and heterogeneous reactions in a mountain wave Polar Stratospheric Cloud. Atmospheric Chemistry and Physics, 2006, 6, 3611-3623.	1.9	16
15	Stratéole/Vorcore—Long-duration, Superpressure Balloons to Study the Antarctic Lower Stratosphere during the 2005 Winter. Journal of Atmospheric and Oceanic Technology, 2007, 24, 2048-2061.	0.5	50
16	Seasonal variation of shortâ€period (<2 h) gravity wave activity over Gadanki, India (13.5°N, 79.2°E). Journal of Geophysical Research, 2008, 113, .	3.3	7
17	CALIPSO observations of waveâ€induced PSCs with nearâ€unity optical depth over Antarctica in 2006–2007. Journal of Geophysical Research, 2009, 114, .	3.3	17
18	Detection of temperatures conducive to Arctic polar stratospheric clouds using CHAMP and SACâ \in C radio occultation data. Journal of Geophysical Research, 2009, 114, .	3.3	7

ATION RE

CITATION REPORT

#	ARTICLE	IF	CITATIONS
19	Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model. Journals of the Atmospheric Sciences, 2010, 67, 136-156.	0.6	374
20	Intercomparison of stratospheric gravity wave observations with AIRS and IASI. Atmospheric Measurement Techniques, 2014, 7, 4517-4537.	1.2	60
21	Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations. Atmospheric Chemistry and Physics, 2016, 16, 9381-9397.	1.9	63
22	Observational indications of downward-propagating gravity waves in middle atmosphere lidar data. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162, 16-27.	0.6	28
23	A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation. Atmospheric Chemistry and Physics, 2017, 17, 2901-2920.	1.9	48
24	Mountain-Wave Propagation under Transient Tropospheric Forcing: A DEEPWAVE Case Study. Monthly Weather Review, 2018, 146, 1861-1888.	0.5	14
25	100 Years of Progress on Mountain Meteorology Research. Meteorological Monographs, 2019, 59, 20.1-20.73.	5.0	41
26	Intercomparison of Gravity Waves in Global Convection-Permitting Models. Journals of the Atmospheric Sciences, 2019, 76, 2739-2759.	0.6	26
27	Observations of Stratospheric Gravity Waves Over Europe on 12 January 2016: The Role of the Polar Night Jet. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032893.	1.2	14
28	Unusual appearance of motherâ€ofâ€pearl clouds above El Calafate, Argentina (50°21′S, 72°16′W). Wea 2020, 75, 378-388.	ather, 0.6	15
29	The Propagation of Mountain Waves into the Stratosphere: Quantitative Evaluation of Three-Dimensional Simulations. Journals of the Atmospheric Sciences, 2000, 57, 3090-3108.	0.6	43
30	Gravity Wave Activity in the Stratosphere before the 2011 Tohoku Earthquake as the Mechanism of Lithosphere-atmosphere-ionosphere Coupling. Entropy, 2020, 22, 110.	1.1	23
34	OROGRAPHIC EFFECTS Mountain Waves and Stratospheric Chemistry. , 2003, , 1614-1620.		0

OROGRAPHIC EFFECTS | Mountain Waves and Stratospheric Chemistry. , 2003, , 1614-1620. 34