Cell Membrane Thermostability and Wholeâ€Plant Hea

Crop Science 38, 1214-1218 DOI: 10.2135/cropsci1998.0011183x003800050017x

Citation Report

#	Article	IF	CITATIONS
1	Reproductiveâ€ S tage Heat Tolerance, Leaf Membrane Thermostability and Plant Morphology in Cowpea. Crop Science, 1999, 39, 1762-1768.	1.8	161
2	Heat Stress Injury in Relation to Membrane Lipid Peroxidation in Creeping Bentgrass. Crop Science, 2000, 40, 503-510.	1.8	376
3	Trinexapac-ethyl influence on cell membrane thermostability of Kentucky bluegrass leaf tissue. Scientia Horticulturae, 2002, 92, 183-186.	3.6	19
4	Protein Alterations in Tall Fescue in Response to Drought Stress and Abscisic Acid. Crop Science, 2002, 42, 202-207.	1.8	109
5	Cytokinin Effects on Creeping Bentgrass Response to Heat Stress: II. Leaf Senescence and Antioxidant Metabolism. Crop Science, 2002, 42, 466-472.	1.8	71
6	Effects of UVB preconditioning on heat tolerance of cucumber (Cucumis sativus L.). Environmental and Experimental Botany, 2003, 50, 169-182.	4.2	39
7	The Changes of Membrane Permeability of Mosses under High Temperature Stress. Bryologist, 2003, 106, 53-60.	0.6	22
8	THERMAL PROPERTIES OF SAND-BASED ROOTZONE MEDIA MODIFIED WITH INORGANIC SOIL AMENDMENTS. Acta Horticulturae, 2004, , 77-85.	0.2	1
9	Evaluation of Drought Resistance for Texas Bluegrass, Kentucky Bluegrass, and Their Hybrids. Crop Science, 2004, 44, 1746-1753.	1.8	66
10	Relationships between Water Use Efficiency, Carbon Isotope Discrimination, and Turf Performance in Genotypes of Kentucky Bluegrass during Drought. Crop Science, 2004, 44, 1754-1762.	1.8	45
11	Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany, 2004, 51, 57-67.	4.2	157
12	Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Research, 2004, 85, 149-158.	5.1	101
13	Induction of Heat Stress Tolerance in Barley Seedlings by Pre-Sowing Seed Treatment with Glycinebetaine. Plant Growth Regulation, 2005, 46, 133-141.	3.4	144
14	Environmental interaction, additive and non-additive genetic variability is involved in the expression of tissue and whole-plant heat tolerance in upland cotton (Gossypium hirsutum. L). Genetics and Molecular Biology, 2006, 29, 525-532.	1.3	7
15	Physiological and Biochemical Indicators for Stress Tolerance. , 2006, , 321-355.		9
16	Perennial grasses for turf, sport and amenity uses: evolution of form, function and fitness for human benefit. Journal of Agricultural Science, 2006, 144, 189-203.	1.3	25
17	Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant, Cell and Environment, 2006, 29, 1437-1448.	5.7	115
18	Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 2006, 56, 274-285	4.2	414

#	Article	IF	CITATIONS
19	Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. Journal of Experimental Botany, 2007, 58, 3789-3796.	4.8	66
20	Effects of a Biostimulant on the Heat Tolerance Associated with Photosynthetic Capacity, Membrane Thermostability, and Polyphenol Production of Perennial Ryegrass. Crop Science, 2007, 47, 261-267.	1.8	208
21	Effects of High Temperature and Drought on a Hybrid Bluegrass Compared with Kentucky Bluegrass and Tall Fescue. Crop Science, 2007, 47, 2152-2161.	1.8	45
22	Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development. Environmental and Experimental Botany, 2007, 60, 1-10.	4.2	85
23	Heat tolerance in plants: An overview. Environmental and Experimental Botany, 2007, 61, 199-223.	4.2	2,804
24	Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum, 2007, 51, 104-109.	1.9	345
25	Effects of foliar application of nitrogen on the photosynthetic performance and growth of two fescue cultivars under heat stress. Biologia Plantarum, 2008, 52, 113-116.	1.9	25
26	Physiological and Biochemical Responses of Rice (<i>Oryza Sativa</i> L.) to Phenanthrene and Pyrene. International Journal of Phytoremediation, 2008, 10, 106-118.	3.1	46
27	Induction of Thermotolerance and Activation of Antioxidant Enzymes in H2O2 Pre-applied Leaves of Cucumber and Tomato Seedlings. Japanese Society for Horticultural Science, 2009, 78, 320-329.	0.8	11
28	The response of broccoli plants to high temperature and possible role of root aquaporins. Environmental and Experimental Botany, 2010, 68, 83-90.	4.2	23
29	Differential Response of Southern US Rice (<i>Oryza sativa</i> L.) Cultivars to Ultravioletâ€B Radiation. Journal of Agronomy and Crop Science, 2010, 196, 286-295.	3.5	15
30	Role of Phosphatidic Acid in High Temperature Tolerance in Maize. Crop Science, 2010, 50, 2506-2515.	1.8	47
31	Multiâ€Level Determination of Heat Tolerance in Cotton (<i>Gossypium hirsutum</i> L.) under Field Conditions. Crop Science, 2010, 50, 2553-2564.	1.8	67
32	Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L.) Cultivars under Normal and Late Sowing Mediated Heat Stress Condition. Notulae Scientia Biologicae, 2010, 2, 51-56.	0.4	52
33	Responses of Bioaugmented Ryegrass to Pah Soil Contamination. International Journal of Phytoremediation, 2011, 13, 441-455.	3.1	10
34	High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy, 2011, 111, 87-206.	5.2	292
35	Effect of polyamines on thermotolerance and membrane stability of soybean seedling. African Journal of Biotechnology, 2011, 10, 9673-9676.	0.6	24
36	Heat Shock Proteins in Association with Heat Tolerance in Grasses. International Journal of Proteomics, 2011, 2011, 1-11.	2.0	76

CITATION REPORT

#	Article	IF	CITATIONS
37	Differential metabolic responses of perennial grass <i>Cynodon transvaalensis</i> × <i>Cynodon dactylon</i> (C ₄) and <i>Poa Pratensis</i> (C ₃) to heat stress. Physiologia Plantarum, 2011, 141, 251-264.	5.2	98
39	Freezing Tolerance and Carbohydrate Changes of Two <i>Agrostis</i> Species during Cold Acclimation. Crop Science, 2011, 51, 1188-1197.	1.8	27
40	Physiological Changes in Roughstalk Bluegrass Exposed to High Temperature. Crop Science, 2012, 52, 869-878.	1.8	3
41	Phenological Development-Yield Relationships in Durum Wheat Cultivars under Late-Season High-Temperature Stress in a Semiarid Environment. , 2012, 2012, 1-7.		31
42	Homobrassinolide-Induced Thermotolerance inBrassicaSpecies. Journal of Crop Improvement, 2012, 26, 455-467.	1.7	0
43	The Physiology of Abiotic Stresses. , 2012, , 21-51.		7
44	Research Progress on Water Use Efficiency and Drought Resistance of Turfgrass. The Journal of Northeast Agricultural University, 2013, 20, 85-90.	0.1	5
45	Induced Response of Sugarcane Variety Co 86032 for Thermotolerance. Sugar Tech, 2013, 15, 17-26.	1.8	9
46	Contrasting physiological responses to excess heat and irradiance in two tropical savanna sedges. AoB PLANTS, 2013, 5, plt051.	2.3	10
47	Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivumL.). BMC Genetics, 2014, 15, 97.	2.7	133
48	Transcriptomics of Heat Stress in Plants. , 2014, , 49-89.		4
49	Experimental Strategies Presenting a Holistic View Regarding Heat Stress in Plants. International Journal of Bio-resource and Stress Management, 2014, 5, 444.	0.2	1
50	Differential growth and physiological responses to heat stress between two annual and two perennial cool-season turfgrasses. Scientia Horticulturae, 2014, 170, 75-81.	3.6	20
51	Research Advances in Mechanisms of Turfgrass Tolerance to Abiotic Stresses: From Physiology to Molecular Biology. Critical Reviews in Plant Sciences, 2014, 33, 141-189.	5.7	162
52	Improvement of Crops in the Era of Climatic Changes. , 2014, , .		7
53	Evaluation of genotypic variation in heat tolerance of tall fescue by functional traits. Euphytica, 2014, 199, 247-260.	1.2	13
54	Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnology for Biofuels, 2015, 8, 152.	6.2	85
55	Heat tolerance of Dwarf Cavendish banana (Musa AAA cv. Malindi) plants. African Journal of Agricultural Research Vol Pp, 2015, 10, 1780-1784.	0.5	2

#	Article	IF	CITATIONS
56	Membrane Proteins Associated with Heatâ€Induced Leaf Senescence in a Cool‧eason Grass Species. Crop Science, 2015, 55, 837-850.	1.8	9
57	PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana. PLoS ONE, 2015, 10, e0132928.	2.5	19
58	Bioremediation of Toxic Metals Using Algae. , 2015, , 439-462.		4
59	Algal Biorefinery: An Integrated Approach. , 2015, , .		32
61	Identification and Characterization of a Glyoxalase I Gene in a Rapeseed Cultivar with Seed Thermotolerance. Frontiers in Plant Science, 2016, 7, 150.	3.6	33
62	Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum). Frontiers in Plant Science, 2016, 7, 179.	3.6	66
63	Quantitative Trait Loci Associated with Physiological Traits for Heat Tolerance in Creeping Bentgrass. Crop Science, 2016, 56, 1314-1329.	1.8	7
64	Pedigreed Mutant Library—A Unique Resource for Sorghum Improvement and Genomics. Agronomy, 2016, , .	0.2	1
66	Differential accumulation of proteins in leaves and roots associated with heat tolerance in two Kentucky bluegrass genotypes differing in heat tolerance. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	5
67	Differential Effects of Glycine Betaine and Spermidine on Osmotic Adjustment and Antioxidant Defense Contributing to Improved Drought Tolerance in Creeping Bentgrass. Journal of the American Society for Horticultural Science, 2017, 142, 20-26.	1.0	18
68	Stearoyl-Acyl Carrier Protein Desaturase Mutations Uncover an Impact of Stearic Acid in Leaf and Nodule Structure. Plant Physiology, 2017, 174, 1531-1543.	4.8	35
69	Differential profiles of membrane proteins, fatty acids, and sterols associated with genetic variations in heat tolerance for a perennial grass species, hard fescue (Festuca Trachyphylla). Environmental and Experimental Botany, 2017, 140, 65-75.	4.2	36
70	Differential Physiological Responses and Genetic Variations in Fine Fescue Species for Heat and Drought Stress. Journal of the American Society for Horticultural Science, 2017, 142, 367-375.	1.0	12
71	The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue. Frontiers in Plant Science, 2017, 8, 1747.	3.6	32
72	Molecular breeding approaches involving physiological and reproductive traits for heat tolerance in food crops. Indian Journal of Plant Physiology, 2018, 23, 697-720.	0.8	16
73	Candidate Genes and Molecular Markers Correlated to Physiological Traits for Heat Tolerance in Fine Fescue Cultivars. International Journal of Molecular Sciences, 2018, 19, 116.	4.1	30
74	Effect of High Temperature on Protein Metabolism in Plants. , 2019, , 217-309.		2
75	Lipid Metabolism in Plants Under High Temperature. , 2019, , 311-389.		0

#	Article	IF	CITATIONS
76	Photosynthetic and metabolic responses of eelgrass Zostera marina L. to short-term high-temperature exposure. Journal of Oceanology and Limnology, 2019, 37, 199-209.	1.3	11
77	Identification and Characterization of Contrasting Genotypes/Cultivars for Developing Heat Tolerance in Agricultural Crops: Current Status and Prospects. Frontiers in Plant Science, 2020, 11, 587264.	3.6	54
78	Development and Characterization of Near-Isogenic Lines Revealing Candidate Genes for a Major 7AL QTL Responsible for Heat Tolerance in Wheat. Frontiers in Plant Science, 2020, 11, 1316.	3.6	7
79	Heat stress as an innovative approach to enhance the antioxidant production in Pseudooceanicola and Bacillus isolates. Scientific Reports, 2020, 10, 15076.	3.3	12
80	Response of Mycorrhizal 'Touriga Nacionalâ€~ Variety Grapevines to High Temperatures Measured by Calorespirometry and Near-Infrared Spectroscopy. Plants, 2020, 9, 1499.	3.5	8
81	Chlorophyll fluorescence, dark respiration and metabolomic analysis of Halodule pinifolia reveal potential heat responsive metabolites and biochemical pathways under ocean warming. Marine Environmental Research, 2021, 164, 105248.	2.5	6
82	Linking Plants Functioning to Adaptive Responses Under Heat Stress Conditions: A Mechanistic Review. Journal of Plant Growth Regulation, 2022, 41, 2596-2613.	5.1	34
84	Cellular Membranes in Stress Sensing and Regulation of Plant Adaptation to Abiotic Stresses. , 2006, , 1-25.		6
85	Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass. PLoS ONE, 2017, 12, e0171183.	2.5	18
86	Epichloe endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. European Journal of Horticultural Science, 2017, 82, 90-97.	0.7	20
87	Heat Tolerance of Kentucky Bluegrass as Affected by Trinexapac-ethyl. Hortscience: A Publication of the American Society for Hortcultural Science, 2001, 36, 365-367.	1.0	11
88	Physiological Responses to Heat Stress Alone or in Combination with Drought: A Comparison between Tall Fescue and Perennial Ryegrass. Hortscience: A Publication of the American Society for Hortcultural Science, 2001, 36, 682-686.	1.0	103
89	Rib Discoloration: A Physiological Disorder Induced by Heat Stress in Crisphead Lettuce. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 2031-2035.	1.0	25
90	Waterlogging Tolerance of Kentucky Bluegrass Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 386-390.	1.0	36
91	Evaluation of Salinity Tolerance of Prairie Junegrass, a Potential Low-maintenance Turfgrass Species. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1038-1045.	1.0	14
92	Changes in Fatty Acid Composition and Saturation in Leaves and Roots of Creeping Bentgrass Exposed to High Soil Temperature. Journal of the American Society for Horticultural Science, 2004, 129, 795-801.	1.0	19
93	Protein Changes in Response to Heat Stress in Acclimated and Nonacclimated Creeping Bentgrass. Journal of the American Society for Horticultural Science, 2005, 130, 521-526.	1.0	28
94	Differential Responses of Warm-season and Cool-season Turfgrass Species to Heat Stress Associated with Antioxidant Enzyme Activity. Journal of the American Society for Horticultural Science, 2009, 134, 417-422.	1.0	29

#	Article	IF	CITATIONS
95	Membrane Lipid Composition and Heat Tolerance in Cool-season Turfgrasses, including a Hybrid Bluegrass. Journal of the American Society for Horticultural Science, 2009, 134, 511-520.	1.0	55
96	Cytokinin Effects on Creeping Bentgrass Responses to Heat Stress. Crop Science, 2002, 42, 457.	1.8	41
97	Expression of small heat shock proteins and heat tolerance in potato (Solanum tuberosum L.). Archives of Biological Sciences, 2012, 64, 135-144.	0.5	16
98	Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience - Landmark, 2007, 12, 2494.	3.0	140
99	Evaluation of Some Drought Resistance Criteria at Seedling Stage in Wheat (Triticum aestivum L.) Cultivars. Pakistan Journal of Biological Sciences, 2007, 10, 1113-1117.	0.5	14
101	Variability of malondialdehyde content and yield elements in Triticum aestivum L. under heat stress conditions. Kragujevac Journal of Science, 2020, , 45-54.	0.4	3
102	Mutant Gossypium universal stress protein-2 (GUSP-2) gene confers resistance to various abiotic stresses in E. coli BL-21 and CIM-496-Gossypium hirsutum. Scientific Reports, 2021, 11, 20466.	3.3	6
103	Enhancing Turfgrass Nitrogen Use under Stresses. Books in Soils, Plants, and the Environment, 2007, , 557-601.	0.1	2
104	Physiological and Biochemical Indicators for Stress Tolerance. , 2016, , 347-382.		6
105	Pedigreed Mutant Library-A Unique Resource for Sorghum Improvement and Genomics. Agronomy, 0, , 73-96.	0.2	1
106	Sorghum genetic, genomic, and breeding resources. Planta, 2021, 254, 114.	3.2	28
107	Phenotyping methods to assess heat stress resilience in grapevine. Journal of Experimental Botany, 2022, 73, 5128-5148.	4.8	8
109	High Temperature Alters Leaf Lipid Membrane Composition Associated with Photochemistry of PSII and Membrane Thermostability in Rice Seedlings. Plants, 2022, 11, 1454.	3.5	9
110	Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective. Frontiers in Plant Science, 0, 13, .	3.6	16
111	Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Frontiers in Genetics, 0, 14, .	2.3	13
112	Primary plant nutrients modulate the reactive oxygen species metabolism and mitigate the impact of cold stress in overseeded perennial ryegrass. Frontiers in Plant Science, 0, 14, .	3.6	5
113	Increased activity of core photorespiratory enzymes and CO ₂ transfer conductances are associated with higher and more optimal photosynthetic rates under elevated temperatures in the extremophile <i>Rhazya stricta</i> . Plant, Cell and Environment, 2023, 46, 3704-3720.	5.7	3
114	Physiological and molecular responses of nanoparticle application to plants grown under abiotic and biotic stress. Studies in Natural Products Chemistry, 2024, , 113-145.	1.8	ο

CITATION REPORT

7