Activity differentially regulates the surface expression of glutamate receptors

Proceedings of the National Academy of Sciences of the Unite 95, 7097-7102

DOI: 10.1073/pnas.95.12.7097

Citation Report

#	Article	IF	CITATIONS
1	Activity and Synaptic Receptor Targeting. Neuron, 1998, 21, 459-462.	3.8	89
2	Thinking Globally, Acting Locally. Neuron, 1998, 21, 933-935.	3.8	62
3	Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation. Neuron, 1998, 21, 1067-1078.	3.8	606
4	Postsynaptically Silent Synapses in Single Neuron Cultures. Neuron, 1998, 21, 1443-1451.	3.8	126
5	Subcellular Localization of Full-Length and Truncated Trk Receptor Isoforms in Polarized Neurons and Epithelial Cells. Journal of Neuroscience, 1999, 19, 5823-5833.	1.7	55
6	Alternative Splicing of the C-Terminal Domain Regulates Cell Surface Expression of the NMDA Receptor NR1 Subunit. Journal of Neuroscience, 1999, 19, 7781-7792.	1.7	183
7	Rapid, Activation-Induced Redistribution of Ionotropic Glutamate Receptors in Cultured Hippocampal Neurons. Journal of Neuroscience, 1999, 19, 1263-1272.	1.7	195
8	Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14112-14117.	3.3	388
9	Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel gamma subunit. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12132-12137.	3.3	100
10	Subtype-specific Assembly of α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor Subunits Is Mediated by Their N-terminal Domains. Journal of Biological Chemistry, 1999, 274, 16907-16916.	1.6	103
11	An Immunocytochemical Assay for Activity-Dependent Redistribution of Glutamate Receptors from the Postsynaptic Plasma Membrane. Annals of the New York Academy of Sciences, 1999, 868, 550-553.	1.8	6
12	Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nature Neuroscience, 1999, 2, 37-43.	7.1	365
13	Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neuroscience, 1999, 2, 352-357.	7.1	519
14	Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neuroscience, 1999, 2, 454-460.	7.1	411
15	Organization and regulation of proteins at synapses. Current Opinion in Cell Biology, 1999, 11, 248-254.	2.6	123
16	The origin of spontaneous activity in developing networks of the vertebrate nervous system. Current Opinion in Neurobiology, 1999, 9, 94-104.	2.0	428
17	DEVELOPMENTAL NEUROSCIENCE:Spontaneous Activity: Signal or Noise?. Science, 1999, 285, 541-543.	6.0	55
18	Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3228-3233.	3.3	1,065

TION RE

		CITATION RE	EPORT	
#	Article		IF	Citations
19	Functional Dissociation of \hat{l} ¼ Opioid Receptor Signaling and Endocytosis. Neuron, 199	9, 23, 737-746.	3.8	409
20	Homeostatic plasticity in neuronal networks: the more things change, the more they st Trends in Neurosciences, 1999, 22, 221-227.	ay the same.	4.2	714
21	Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors?. Neurosciences, 1999, 22, 290-295.	Frends in	4.2	122
22	Functional integrity of green fluorescent protein conjugated glycine receptor channels. Neuropharmacology, 1999, 38, 785-792.		2.0	24
23	Chapter VIII Sodium- and potassium-dependent excitatory amino acid transporters in b membranes. Handbook of Chemical Neuroanatomy, 2000, 18, 231-254.	ain plasma	0.3	2
24	Spine changes associated with long-term potentiation. Hippocampus, 2000, 10, 596-60	D4.	0.9	126
25	lonotropic glutamate receptor modulation preferentially affects NMDA receptor expres hippocampus. Synapse, 2000, 38, 294-304.	sion in rat	0.6	12
26	Postsynaptic actin filaments at the giant mossy fiber-unipolar brush cell synapse. Synap 499-510.	ose, 2000, 38,	0.6	13
27	Development of NMDA and non-NMDA receptor-mediated excitatory synaptic transmis geniculocortical and corticocortical connections in organotypic coculture preparations. Journal of Neuroscience, 2000, 12, 3854-3862.		1.2	8
28	Postnatal synaptic potentiation: Delivery of GluR4-containing AMPA receptors by spont activity. Nature Neuroscience, 2000, 3, 1098-1106.	aneous	7.1	371
29	Synaptic plasticity: taming the beast. Nature Neuroscience, 2000, 3, 1178-1183.		7.1	1,822
30	Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neuroscience, 2000, 3, 1282-1290.		7.1	523
31	Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. N Neuroscience, 2000, 3, 1291-1300.	lature	7.1	660
32	Opposite changes in synaptic activity of organotypic rat spinal cord cultures after chro AMPA/kainate or glycine and GABA A receptors. Journal of Physiology, 2000, 523, 639-6	nic block of 551.	1.3	58
33	Hebb and homeostasis in neuronal plasticity. Current Opinion in Neurobiology, 2000, 1	0, 358-364.	2.0	594
34	Development of neuron–neuron synapses. Current Opinion in Neurobiology, 2000, 1	0, 125-131.	2.0	101
35	In and out of the postsynaptic region: signalling proteins on the move. Trends in Cell Bi 238-244.	ology, 2000, 10,	3.6	27
36	Brain-derived neurotrophic factor requirement for activity-dependent maturation of glu synapse in developing mouse somatosensory cortex. Brain Research, 2000, 857, 141-1		1.1	44

#	Article	IF	CITATIONS
37	Localization and stabilization of ionotropic glutamate receptors at synapses. Cellular and Molecular Life Sciences, 2000, 57, 1517-1525.	2.4	20
38	Intracellular trafficking of AMPA receptors in synaptic plasticity. Cellular and Molecular Life Sciences, 2000, 57, 1526-1534.	2.4	65
39	Regulation of AMPA Receptor GluR1 Subunit Surface Expression by a 4.1N-Linked Actin Cytoskeletal Association. Journal of Neuroscience, 2000, 20, 7932-7940.	1.7	277
40	NMDA Receptor-Mediated Subthreshold Ca ²⁺ Signals in Spines of Hippocampal Neurons. Journal of Neuroscience, 2000, 20, 1791-1799.	1.7	262
41	AMPA Receptor Binding in Adult Guinea Pig Brain Stem Auditory Nuclei after Unilateral Cochlear Ablation. Experimental Neurology, 2000, 165, 355-369.	2.0	52
42	The decline in synapses and cholinergic activity is asynchronous in Alzheimer's disease. Neurology, 2000, 55, 1278-1283.	1.5	113
43	Differential synaptic distribution of AMPA receptor subunits in the ventral posterior and reticular thalamic nuclei of the rat. Neuroscience, 2000, 101, 969-982.	1.1	62
44	Regulation of agrin expression in hippocampal neurons by cell contact and electrical activity. Molecular Brain Research, 2000, 81, 92-100.	2.5	25
45	Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting. Neuron, 2000, 28, 511-525.	3.8	1,002
46	Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses. Neuron, 2000, 26, 659-670.	3.8	300
47	Pharmacology of AMPA/Kainate Receptor Ligands and Their Therapeutic Potential in Neurological and Psychiatric Disorders. Drugs, 2000, 59, 33-78.	4.9	119
48	The neuron as a dynamic electrogenic machine: modulation of sodium–channel expression as a basis for functional plasticity in neurons. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 199-213.	1.8	62
49	Relationship of Altered Glutamate Receptor Subunit mRNA Expression to Acute Cell Loss after Spinal Cord Contusion. Experimental Neurology, 2001, 168, 283-289.	2.0	34
50	Glutamate uptake. Progress in Neurobiology, 2001, 65, 1-105.	2.8	4,083
51	Long-term depression: a cascade of induction and expression mechanisms. Progress in Neurobiology, 2001, 65, 339-365.	2.8	224
52	Biochemical evidence for localization of AMPA-type glutamate receptor subunits in the dendritic raft. Molecular Brain Research, 2001, 89, 20-28.	2.5	96
53	The modification of NMDA receptors by visual experience in the rat retina is age dependent. Molecular Brain Research, 2001, 91, 196-203.	2.5	20
54	Inactivity Produces Increases in Neurotransmitter Release and Synapse Size. Neuron, 2001, 32, 673-682.	3.8	537

# 55	ARTICLE Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors. Neuropharmacology, 2001, 41, 680-692.	IF 2.0	Citations
56	Dopamine D1 Receptor-Dependent Trafficking of Striatal NMDA Glutamate Receptors to the Postsynaptic Membrane. Journal of Neuroscience, 2001, 21, 5546-5558.	1.7	349
57	Activation of Silent Synapses by Rapid Activity-Dependent Synaptic Recruitment of AMPA Receptors. Journal of Neuroscience, 2001, 21, 6008-6017.	1.7	250
58	Postsynaptic Depolarization Scales Quantal Amplitude in Cortical Pyramidal Neurons. Journal of Neuroscience, 2001, 21, RC170-RC170.	1.7	114
59	GABAC 🖥 Subunits Form Functional Receptors But Not Functional Synapses in Hippocampal Neurons. Journal of Neurophysiology, 2001, 86, 2605-2615.	0.9	4
60	Suppression of Neuronal Hyperexcitability and Associated Delayed Neuronal Death by Adenoviral Expression of GABA _C Receptors. Journal of Neuroscience, 2001, 21, 3419-3428.	1.7	17
62	Coupling of agonist-induced AMPA receptor internalization with receptor recycling. Journal of Neurochemistry, 2001, 77, 1626-1631.	2.1	31
63	Neurotransmitter Receptor Trafficking and the Regulation of Synaptic Strength. Traffic, 2001, 2, 437-448.	1.3	33
64	BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAAreceptor surface expression. European Journal of Neuroscience, 2001, 13, 1320-1328.	1.2	220
65	Inositol hexakisphosphate-mediated regulation of glutamate receptors in rat brain sections. Hippocampus, 2001, 11, 673-682.	0.9	8
66	Molecular heterogeneity of central synapses: afferent and target regulation. Nature Neuroscience, 2001, 4, 569-578.	7.1	133
67	Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nature Neuroscience, 2001, 4, 917-926.	7.1	595
68	Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neuroscience, 2001, 4, 1086-1092.	7.1	1,413
69	Role of ampa receptor endocytosis in synaptic plasticity. Nature Reviews Neuroscience, 2001, 2, 315-324.	4.9	396
70	Interferon-Î ³ -induced changes in synaptic activity and AMPA receptor clustering in hippocampal cultures. Brain Research, 2001, 896, 18-29.	1.1	66
71	A Novel Anterograde Trafficking Signal Present in the N-terminal Extracellular Domain of Ionotropic Glutamate Receptors. Journal of Biological Chemistry, 2002, 277, 47765-47769.	1.6	32
72	Differential roles for NSF and GRIP/ABP in AMPA receptor cycling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7096-7101.	3.3	123
73	Glutamate Receptor Trafficking in Synaptic Plasticity. Science Signaling, 2002, 2002, re14-re14.	1.6	35

#	ARTICLE	IF	CITATIONS
74	The Suprachiasmatic Nucleus Exhibits Diurnal Variations in Spontaneous Excitatory Postsynaptic Activity. Journal of Biological Rhythms, 2002, 17, 40-51.	1.4	28
75	The Developing Synapse: Construction and Modulation of Synaptic Structures and Circuits. Science, 2002, 298, 770-776.	6.0	424
76	Targeting Cell Surface Receptors with Ligand-Conjugated Nanocrystals. Journal of the American Chemical Society, 2002, 124, 4586-4594.	6.6	349
77	Strychnine-Blocked Glycine Receptor Is Removed from Synapses by a Shift in Insertion/Degradation Equilibrium. Molecular and Cellular Neurosciences, 2002, 19, 201-215.	1.0	33
78	AMPA Receptor Trafficking and Synaptic Plasticity. Annual Review of Neuroscience, 2002, 25, 103-126.	5.0	2,275
79	State-Dependent Heterogeneity in Synaptic Depression between Pyramidal Cell Pairs. Neuron, 2002, 33, 765-777.	3.8	130
80	Meaningless minis? Mechanisms of neurotransmitter-receptor clustering. Trends in Neurosciences, 2002, 25, 383-385.	4.2	15
81	Regulation of AMPA receptors during synaptic plasticity. Trends in Neurosciences, 2002, 25, 578-588.	4.2	693
82	Stability and Plasticity of Developing Synapses in Hippocampal Neuronal Cultures. Journal of Neuroscience, 2002, 22, 775-781.	1.7	44
83	Differing Mechanisms for Glutamate Receptor Aggregation on Dendritic Spines and Shafts in Cultured Hippocampal Neurons. Journal of Neuroscience, 2002, 22, 7606-7616.	1.7	51
84	P2X Receptor Trafficking in Neurons Is Subunit Specific. Journal of Neuroscience, 2002, 22, 4814-4824.	1.7	148
85	Activity Deprivation Reduces Miniature IPSC Amplitude by Decreasing the Number of Postsynaptic GABA _A Receptors Clustered at Neocortical Synapses. Journal of Neuroscience, 2002, 22, 1328-1337.	1.7	358
86	A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory. BioEssays, 2002, 24, 223-233.	1.2	43
87	Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks—an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neuroscience and Biobehavioral Reviews, 2002, 26, 127-185.	2.9	123
88	Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience, 2002, 5, 783-789.	7.1	541
89	Synaptic Plasticity and AMPA Receptor Trafficking. Annals of the New York Academy of Sciences, 2003, 1003, 1-11.	1.8	296
90	A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity. Journal of Computational Neuroscience, 2003, 14, 211-227.	0.6	24
91	The dynamic organization of postsynaptic proteins: translocating molecules regulate synaptic function. Current Opinion in Neurobiology, 2003, 13, 332-340.	2.0	55

#	Article	IF	CITATIONS
92	Homeostatic plasticity in the CNS: synaptic and intrinsic forms. Journal of Physiology (Paris), 2003, 97, 391-402.	2.1	130
93	Active decay of composite excitatory postsynaptic potentials in hippocampal slices from young rats. Brain Research, 2003, 973, 44-55.	1.1	8
94	Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. , 2003, 98, 171-195.		127
95	Ethanol and brain plasticity: receptors and molecular networks of the postsynaptic density as targets of ethanol. , 2003, 99, 311-326.		81
96	Adenoviral-mediated expression of functional na+ channel ?1 subunits tagged with a yellow fluorescent protein. Journal of Neuroscience Research, 2003, 74, 794-800.	1.3	4
97	Glycine binding primes NMDA receptor internalization. Nature, 2003, 422, 302-307.	13.7	382
98	Chronic treatment with ionotropic glutamate receptor antagonist kynurenate affects GABAergic synaptic transmission in rat hippocampal cell cultures. Neuroscience Letters, 2003, 341, 61-64.	1.0	8
99	Activity blockade increases the number of functional synapses in the hippocampus of newborn rats. Molecular and Cellular Neurosciences, 2003, 22, 107-117.	1.0	52
100	AMPA Receptor Trafficking at Excitatory Synapses. Neuron, 2003, 40, 361-379.	3.8	1,014
101	AMPA receptor trafficking and long-term potentiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 707-714.	1.8	210
102	Receptive Fields and Orientation Selectivity of SimpleCells in Visual Cortex. IETE Journal of Research, 2003, 49, 87-96.	1.8	0
103	Synapse Number and Synaptic Efficacy Are Regulated by Presynaptic cAMP and Protein Kinase A. Journal of Neuroscience, 2003, 23, 4146-4155.	1.7	25
104	Synchronized Formation and Remodeling of Postsynaptic Densities: Long-Term Visualization of Hippocampal Neurons Expressing Postsynaptic Density Proteins Tagged with Green Fluorescent Protein. Journal of Neuroscience, 2003, 23, 2170-2181.	1.7	80
105	Spike-Timing-Dependent Plasticity: The Relationship to Rate-Based Learning for Models with Weight Dynamics Determined by a Stable Fixed Point. Neural Computation, 2004, 16, 885-940.	1.3	73
106	Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient Endocytosis of Extrasynaptic AMPARs. Journal of Neuroscience, 2004, 24, 5172-5176.	1.7	219
107	Chronic Ethanol Induces Synaptic But Not Extrasynaptic Targeting of NMDA Receptors. Journal of Neuroscience, 2004, 24, 7859-7868.	1.7	149
108	Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14943-14948.	3.3	89
109	Clathrin-mediated endocytosis is required for compensatory regulation of GLR-1 glutamate receptors after activity blockade. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3190-3195.	3.3	35

#	Article	IF	CITATIONS
110	Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neuroscience, 2004, 7, 244-253.	7.1	477
111	A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nature Neuroscience, 2004, 7, 518-524.	7.1	139
112	Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 2004, 5, 97-107.	4.9	2,027
113	Homeostatic plasticity of GABA-ergic synaptic transmission in rat hippocampal cell cultures. Neurophysiology, 2004, 36, 385-390.	0.2	0
114	The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines. Journal of Neuroscience, 2004, 24, 2054-2064.	1.7	202
115	Experience-dependent development of feedforward and feedback circuits between lower and higher areas of mouse visual cortex. Vision Research, 2004, 44, 3389-3400.	0.7	43
116	Subunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons. Neuron, 2004, 43, 221-236.	3.8	241
117	AMPA Receptor-Dependent Clustering of Synaptic NMDA Receptors Is Mediated by Stargazin and NR2A/B in Spinal Neurons and Hippocampal Interneurons. Neuron, 2004, 44, 335-349.	3.8	43
118	Age-dependence in the homeostatic upregulation of hippocampal dendritic spine number during blocked synaptic transmission. Neuropharmacology, 2004, 47, 640-648.	2.0	76
119	PKC Signaling Mediates Global Enhancement of Excitatory Synaptogenesis in Neurons Triggered by Local Contact with Astrocytes. Neuron, 2004, 41, 405-415.	3.8	286
120	Single Channel Recordings From Synaptosomal AMPA Receptors. Cell Biochemistry and Biophysics, 2005, 42, 075-086.	0.9	23
121	α-Amino-3-hydroxy-5-methylisoxazole-4-propionate receptor autoradiography in mouse brain after single and repeated withdrawal from diazepam. European Journal of Neuroscience, 2005, 21, 1045-1056.	1.2	9
122	Impaired synaptic scaling in mouse hippocampal neurones expressing NMDA receptors with reduced calcium permeability. Journal of Physiology, 2005, 562, 771-783.	1.3	13
123	Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state. BMC Neuroscience, 2005, 6, 48.	0.8	50
124	Regulation of NMDA Receptors by Neuregulin Signaling in Prefrontal Cortex. Journal of Neuroscience, 2005, 25, 4974-4984.	1.7	191
125	Postsynaptic Expression of Homeostatic Plasticity at Neocortical Synapses. Journal of Neuroscience, 2005, 25, 2895-2905.	1.7	262
126	Homeostatic Synaptic Plasticity Can Explain Post-traumatic Epileptogenesis in Chronically Isolated Neocortex. Cerebral Cortex, 2005, 15, 834-845.	1.6	155
127	Regulation of N-Methyl-D-aspartate Receptors by Calpain in Cortical Neurons. Journal of Biological Chemistry, 2005, 280, 21588-21593.	1.6	96

#	Article	IF	CITATIONS
128	The endosomal protein NEEP21 regulates AMPA receptor-mediated synaptic transmission and plasticity in the hippocampus. Molecular and Cellular Neurosciences, 2005, 29, 313-319.	1.0	57
129	A role for circuit homeostasis in adult neurogenesis. Trends in Neurosciences, 2005, 28, 653-660.	4.2	103
130	Alterations in glutamatergic and gabaergic ion channel activity in hippocampal neurons following exposure to the abused inhalant toluene. Neuroscience, 2005, 130, 197-206.	1.1	105
131	Spontaneous Network Activity in the Embryonic Spinal Cord Regulates AMPAergic and GABAergic Synaptic Strength. Neuron, 2006, 49, 563-575.	3.8	168
132	More than a sidekick: glia and homeostatic synaptic plasticity. Trends in Molecular Medicine, 2006, 12, 458-460.	3.5	30
133	Redistribution of synaptic AMPA receptors at glutamatergic synapses in the dorsal cochlear nucleus as an early response to cochlear ablation in rats. Hearing Research, 2006, 216-217, 154-167.	0.9	43
134	AMPA signalling in nascent glutamatergic synapses: there and not there!. Trends in Neurosciences, 2006, 29, 132-139.	4.2	100
135	Increased Propensity to Seizures After Chronic Cortical Deafferentation In Vivo. Journal of Neurophysiology, 2006, 95, 902-913.	0.9	62
136	Temporal Regulation of the Expression Locus of Homeostatic Plasticity. Journal of Neurophysiology, 2006, 96, 2127-2133.	0.9	166
137	Cross-modal regulation of synaptic AMPA receptors in primary sensory cortices by visual experience. Nature Neuroscience, 2006, 9, 1001-1003.	7.1	208
138	A theoretical network model to analyse neurogenesis and synaptogenesis in the dentate gyrus. Neural Networks, 2006, 19, 1490-1505.	3.3	52
139	Synaptic plasticity and phosphorylation. , 2006, 112, 810-832.		192
140	Activity-Dependent Movements of Postsynaptic Scaffolds at Inhibitory Synapses. Journal of Neuroscience, 2006, 26, 4586-4595.	1.7	90
141	The Endurance and Selectivity of Spatial Patterns of Long-Term Potentiation/Depression in Dendrites under Homeostatic Synaptic Plasticity. Journal of Neuroscience, 2006, 26, 13474-13484.	1.7	28
142	Dopamine D3 Receptors Regulate GABAA Receptor Function through a Phospho-Dependent Endocytosis Mechanism in Nucleus Accumbens. Journal of Neuroscience, 2006, 26, 2513-2521.	1.7	94
143	A New Unsupervised Neural Network for Pattern Recognition with Spiking Neurons. , 2006, , .		1
144	NF-κB/Rel Regulates Inhibitory and Excitatory Neuronal Function and Synaptic Plasticity. Molecular and Cellular Biology, 2006, 26, 7283-7298.	1.1	97
145	Persistence of Experience-Induced Homeostatic Synaptic Plasticity through Adulthood in Superficial Layers of Mouse Visual Cortex. Journal of Neuroscience, 2007, 27, 6692-6700.	1.7	216

#	Article	IF	CITATIONS
146	Coincident Activation of Metabotropic Glutamate Receptors and NMDA Receptors (NMDARs) Downregulates Perisynaptic/Extrasynaptic NMDARs and Enhances High-Fidelity Neurotransmission at the Developing Calyx of Held Synapse. Journal of Neuroscience, 2007, 27, 9989-9999.	1.7	22
147	Differential Trafficking of AMPA and NMDA Receptors during Long-Term Potentiation in Awake Adult Animals. Journal of Neuroscience, 2007, 27, 14171-14178.	1.7	55
148	Opposing Modifications in Intrinsic Currents and Synaptic Inputs in Post-Traumatic Mossy Cells: Evidence for Single-Cell Homeostasis in a Hyperexcitable Network. Journal of Neurophysiology, 2007, 97, 2394-2409.	0.9	57
149	Sensing and expressing homeostatic synaptic plasticity. Trends in Neurosciences, 2007, 30, 119-125.	4.2	104
150	LTP and adaptation to inactivity: Overlapping mechanisms and implications for metaplasticity. Neuropharmacology, 2007, 52, 156-175.	2.0	87
151	The Cell Biology of Synaptic Plasticity: AMPA Receptor Trafficking. Annual Review of Cell and Developmental Biology, 2007, 23, 613-643.	4.0	849
152	Activity dependent localization of synaptic NMDA receptors in spinal neurons. Molecular and Cellular Neurosciences, 2007, 34, 578-591.	1.0	7
153	The role of spontaneous activity in development of the endbulb of Held synapse. Hearing Research, 2007, 230, 53-63.	0.9	28
154	Synaptic Trafficking of AMPA Receptors. , 2007, , 175-201.		2
155	GLUTAMATE RECEPTOR PLASTICITY AT EXCITATORY SYNAPSES IN THE BRAIN. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 1058-1063.	0.9	33
156	The impact of chronic network hyperexcitability on developing glutamatergic synapses. European Journal of Neuroscience, 2007, 26, 975-991.	1.2	25
157	Homeostatic signaling: the positive side of negative feedback. Current Opinion in Neurobiology, 2007, 17, 318-324.	2.0	268
158	Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology, 2008, 33, 18-41.	2.8	1,434
159	Structural And Functional Organization Of The Synapse. , 2008, , .		8
160	Rapid Synaptic Scaling Induced by Changes in Postsynaptic Firing. Neuron, 2008, 57, 819-826.	3.8	389
161	Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development. Neuroscience, 2008, 153, 44-53.	1.1	60
162	The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses. Cell, 2008, 135, 422-435.	13.5	1,257
163	Cell Death after Spinal Cord Injury Is Exacerbated by Rapid TNFα-Induced Trafficking of GluR2-Lacking AMPARs to the Plasma Membrane. Journal of Neuroscience, 2008, 28, 11391-11400.	1.7	205

#	Article	IF	CITATIONS
164	GABA _A transmission is a critical step in the process of triggering homeostatic increases in quantal amplitude. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11412-11417.	3.3	41
165	Differential Activity-Dependent, Homeostatic Plasticity of Two Neocortical Inhibitory Circuits. Journal of Neurophysiology, 2008, 100, 1983-1994.	0.9	67
167	Synaptic Mechanisms of Activity-Dependent Remodeling in Visual Cortex during Monocular Deprivation. Journal of Experimental Neuroscience, 2009, 2, JEN.S2559.	2.3	8
168	Spike-Timing–Dependent Synaptic Plasticity and Synaptic Democracy in Dendrites. Journal of Neurophysiology, 2009, 101, 3226-3234.	0.9	13
169	Neuroligin-2 Deletion Selectively Decreases Inhibitory Synaptic Transmission Originating from Fast-Spiking but Not from Somatostatin-Positive Interneurons. Journal of Neuroscience, 2009, 29, 13883-13897.	1.7	144
170	Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity. PLoS Biology, 2009, 7, e1000136.	2.6	153
171	Loss of surface N-methyl-d-aspartate receptor proteins in mouse cortical neurones during anaesthesia induced by chloral hydrate in vivo. British Journal of Anaesthesia, 2009, 102, 515-522.	1.5	17
172	Lowâ€frequencyâ€induced synaptic potentiation: A paradigm shift in the field of memoryâ€related plasticity mechanisms?. Hippocampus, 2010, 20, 29-35.	0.9	26
173	d-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats. Archives of Toxicology, 2009, 83, 747-762.	1.9	22
174	Stability of surface NMDA receptors controls synaptic and behavioral adaptations to amphetamine. Nature Neuroscience, 2009, 12, 602-610.	7.1	106
175	Nucleus accumbens neurons exhibit synaptic scaling that is occluded by repeated dopamine preâ€exposure. European Journal of Neuroscience, 2009, 30, 539-550.	1.2	44
176	Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia, 2009, 50, 44-55.	2.6	129
177	AMPAR-mediated synaptic transmission in the CA1 hippocampal region of neonatal rats: unexpected resistance to repeated ethanol exposure. Alcohol, 2009, 43, 619-625.	0.8	10
178	Increased expression, but not postsynaptic localisation, of ionotropic glutamate receptors during the late-phase of long-term potentiation in the dentate gyrus in vivo. Neuropharmacology, 2009, 56, 66-72.	2.0	12
179	Regulation of AMPA receptors and synaptic plasticity. Neuroscience, 2009, 158, 105-125.	1.1	121
180	Mechanisms of Synapse Formation: Activity-Dependent Selection of Neurotransmitters and Receptors. , 2009, , 1-12.		Ο
181	Synaptic plasticity after chemical deafening and electrical stimulation of the auditory nerve in cats. Journal of Comparative Neurology, 2010, 518, 1046-1063.	0.9	38
182	Homeostatic plasticity and STDP: keeping a neuron's cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2010, 2, 5.	1.3	157

#	Article	IF	CITATIONS
183	Acute In Vivo Genetic Rescue Demonstrates That Phosphorylation of RIM1Â Serine 413 Is Not Required for Mossy Fiber Long-Term Potentiation. Journal of Neuroscience, 2010, 30, 2542-2546.	1.7	16
184	Dopamine-Dependent Tuning of Striatal Inhibitory Synaptogenesis. Journal of Neuroscience, 2010, 30, 2935-2950.	1.7	35
185	SynDIG1: An Activity-Regulated, AMPA- Receptor-Interacting Transmembrane Protein that Regulates Excitatory Synapse Development. Neuron, 2010, 65, 80-93.	3.8	128
186	Developmental Plasticity of Inhibitory Circuitry. , 2010, , .		1
187	The Balance Between Excitation And Inhibition And Functional Sensory Processing In The Somatosensory Cortex. International Review of Neurobiology, 2011, 97, 305-333.	0.9	40
188	Neuronal plasticity and thalamocortical sleep and waking oscillations. Progress in Brain Research, 2011, 193, 121-144.	0.9	40
189	Cocaine-induced homeostatic regulation and dysregulation of nucleus accumbens neurons. Behavioural Brain Research, 2011, 216, 9-18.	1.2	43
190	PIKE-mediated PI3-kinase activity is required for AMPA receptor surface expression. EMBO Journal, 2011, 30, 4274-4286.	3.5	21
191	APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nature Neuroscience, 2011, 14, 181-189.	7.1	164
192	Gender-Specific Effect of Mthfr Genotype and Neonatal Vigabatrin Interaction on Synaptic Proteins in Mouse Cortex. Neuropsychopharmacology, 2011, 36, 1714-1728.	2.8	15
193	Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy. Acta Neuropathologica, 2011, 122, 551-564.	3.9	59
194	Homeostatic Strengthening of Inhibitory Synapses Is Mediated by the Accumulation of GABA _A Receptors. Journal of Neuroscience, 2011, 31, 17701-17712.	1.7	77
195	GABAA Receptor Endocytosis in the Basolateral Amygdala Is Critical to the Reinstatement of Fear Memory Measured by Fear-Potentiated Startle. Journal of Neuroscience, 2011, 31, 8851-8861.	1.7	35
196	Mechanisms of GABAergic Homeostatic Plasticity. Neural Plasticity, 2011, 2011, 1-6.	1.0	42
197	Impaired Activity-Dependent Plasticity of Quantal Amplitude at the Neuromuscular Junction of Rab3A Deletion and Rab3A Earlybird Mutant Mice. Journal of Neuroscience, 2011, 31, 3580-3588.	1.7	7
198	Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15402-15407.	3.3	32
199	Interregional synaptic competition in neurons with multiple STDP-inducing signals. Journal of Neurophysiology, 2011, 105, 989-998.	0.9	23
200	Hypoxia regulates glutamate receptor trafficking through an HIF-independent mechanism. EMBO Journal, 2012, 31, 1379-1393.	3.5	51

#	Article	IF	CITATIONS
201	A Critical and Cell-Autonomous Role for MeCP2 in Synaptic Scaling Up. Journal of Neuroscience, 2012, 32, 13529-13536.	1.7	122
202	Modifications of the input currents on VTA dopamine neurons following acute versus chronic cocaine exposure. Neuropharmacology, 2012, 62, 1834-1840.	2.0	5
203	Epilepsy as a dynamic disease of neuronal networks. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 107, 35-62.	1.0	12
204	Ca2+-permeable AMPA receptors in homeostatic synaptic plasticity. Frontiers in Molecular Neuroscience, 2012, 5, 17.	1.4	58
205	Cortical development of AMPA receptor trafficking proteins. Frontiers in Molecular Neuroscience, 2012, 5, 65.	1.4	13
206	Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia, 2012, 60, 175-188.	2.5	101
207	Dynamic loss of surfaceâ€expressed AMPA receptors in mouse cortical and striatal neurons during anesthesia. Journal of Neuroscience Research, 2012, 90, 315-323.	1.3	13
208	Hearing loss, hyperacusis, or tinnitus: What is modeled in animal research?. Hearing Research, 2013, 295, 140-149.	0.9	116
209	GluA1 and its PDZ-interaction: A role in experience-dependent behavioral plasticity in the forced swim test. Neurobiology of Disease, 2013, 52, 160-167.	2.1	19
210	AMPARs and Synaptic Plasticity: The Last 25 Years. Neuron, 2013, 80, 704-717.	3.8	797
210 211	AMPARs and Synaptic Plasticity: The Last 25 Years. Neuron, 2013, 80, 704-717. Pre- and Postsynaptic Assembly and Maturation. , 2013, , 823-841.	3.8	797 O
		3.8 0.7	
211	Pre- and Postsynaptic Assembly and Maturation. , 2013, , 823-841. The Stability of NR2B in the Nucleus Accumbens Controls Behavioral and Synaptic Adaptations to		0
211 212	Pre- and Postsynaptic Assembly and Maturation. , 2013, , 823-841. The Stability of NR2B in the Nucleus Accumbens Controls Behavioral and Synaptic Adaptations to Chronic Stress. Biological Psychiatry, 2013, 74, 145-155. A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical	0.7	0 40
211 212 213	 Pre- and Postsynaptic Assembly and Maturation. , 2013, , 823-841. The Stability of NR2B in the Nucleus Accumbens Controls Behavioral and Synaptic Adaptations to Chronic Stress. Biological Psychiatry, 2013, 74, 145-155. A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization after Focal Retinal Lesions. PLoS Computational Biology, 2013, 9, e1003259. Age dependency of trauma-induced neocortical epileptogenesis. Frontiers in Cellular Neuroscience, 	0.7	0 40 65
211 212 213 214	Pre- and Postsynaptic Assembly and Maturation. , 2013, , 823-841. The Stability of NR2B in the Nucleus Accumbens Controls Behavioral and Synaptic Adaptations to Chronic Stress. Biological Psychiatry, 2013, 74, 145-155. A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization after Focal Retinal Lesions. PLoS Computational Biology, 2013, 9, e1003259. Age dependency of trauma-induced neocortical epileptogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 154. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal	0.7 1.5 1.8	0 40 65 17
 211 212 213 214 215 	 Pre- and Postsynaptic Assembly and Maturation. , 2013, , 823-841. The Stability of NR2B in the Nucleus Accumbens Controls Behavioral and Synaptic Adaptations to Chronic Stress. Biological Psychiatry, 2013, 74, 145-155. A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization after Focal Retinal Lesions. PLoS Computational Biology, 2013, 9, e1003259. Age dependency of trauma-induced neocortical epileptogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 154. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. Journal of Comparative Neurology, 2013, 521, 1954-2007. Synaptic Activity and Bioenergy Homeostasis: Implications in Brain Trauma and Neurodegenerative 	0.7 1.5 1.8 0.9	0 40 65 17 17

#	Article	IF	CITATIONS
219	Illuminating the Multifaceted Roles of Neurotransmission in Shaping Neuronal Circuitry. Neuron, 2014, 83, 1303-1318.	3.8	37
220	Glycine Induces Bidirectional Modifications in N-Methyl-d-aspartate Receptor-mediated Synaptic Responses in Hippocampal CA1 Neurons. Journal of Biological Chemistry, 2014, 289, 31200-31211.	1.6	18
221	Neocortical Focus. International Review of Neurobiology, 2014, 114, 9-33.	0.9	5
222	Long-lasting glutamatergic modulation induced by neonatal GABA enhancement in mice. Neuropharmacology, 2014, 79, 616-625.	2.0	5
223	NMDA receptors and L-type voltage-gated Ca2+ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons. Neuroscience, 2014, 277, 610-623.	1.1	28
224	Iron overload accelerates neuronal amyloid-Î ² production and cognitive impairment in transgenic mice model of Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2288-2301.	1.5	106
225	Influences of dopamine and glutamate in the medial preoptic area on male sexual behavior. Pharmacology Biochemistry and Behavior, 2014, 121, 115-123.	1.3	44
226	The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations. Frontiers in Cellular Neuroscience, 2015, 9, 10.	1.8	12
227	Modulation of AMPA receptor function by auxiliary subunits. E-Neuroforum, 2015, 21, .	0.2	0
228	Trophic Factor-Induced Activity â€~Signature' Regulates the Functional Expression of Postsynaptic Excitatory Acetylcholine Receptors Required for Synaptogenesis. Scientific Reports, 2015, 5, 9523.	1.6	10
229	Modulation of AMPA receptor function by auxiliary subunits. E-Neuroforum, 2015, 6, 39-48.	0.2	1
230	Signaling Pathways Relevant to Cognition-Enhancing Drug Targets. Handbook of Experimental Pharmacology, 2015, 228, 59-98.	0.9	17
231	Chronic Ciguatoxin Treatment Induces Synaptic Scaling through Voltage Gated Sodium Channels in Cortical Neurons. Chemical Research in Toxicology, 2015, 28, 1109-1119.	1.7	16
232	Cognitive Enhancement. Handbook of Experimental Pharmacology, 2015, , .	0.9	0
233	Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plasticity, 2016, 2016, 1-19.	1.0	67
234	The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription. PLoS Genetics, 2016, 12, e1006180.	1.5	15
235	Mechanisms of homeostatic plasticity in the excitatory synapse. Journal of Neurochemistry, 2016, 139, 973-996.	2.1	122
236	Astrocytes: Orchestrating synaptic plasticity?. Neuroscience, 2016, 323, 43-61.	1.1	196

~			_	
C1		ON	REPC	DT
	IAL		NEPU	ואו

#	Article	IF	CITATIONS
237	Nâ€ŧerminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors. Hippocampus, 2017, 27, 668-682.	0.9	16
238	EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice. Journal of Physiology, 2017, 595, 5699-5712.	1.3	23
239	Rewiring of neuronal networks during synaptic silencing. Scientific Reports, 2017, 7, 11724.	1.6	8
240	Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?. Experimental Neurology, 2017, 287, 225-234.	2.0	18
241	Homeostatic Plasticity and External Input Shape Neural Network Dynamics. Physical Review X, 2018, 8, .	2.8	38
242	Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. ELife, 2018, 7, .	2.8	60
243	Tumor Necrosis Factor and Interleukin-1 <i>β</i> Modulate Synaptic Plasticity during Neuroinflammation. Neural Plasticity, 2018, 2018, 1-12.	1.0	149
244	SAP97â€mediated rescue of NMDA receptor surface distribution in a neuronal model of Huntington's disease. Hippocampus, 2018, 28, 707-723.	0.9	5
245	Plasma Membrane Affiliated AMPA GluA1 in Estrogen Receptor β-containing Paraventricular Hypothalamic Neurons Increases Following Hypertension in a Mouse Model of Post-menopause. Neuroscience, 2019, 423, 192-205.	1.1	8
246	A Bioluminescence Reporter Assay for Retinoic Acid Control of Translation of the GluR1 Subunit of the AMPA Glutamate Receptor. Molecular Neurobiology, 2019, 56, 7074-7084.	1.9	3
247	Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. International Journal of Molecular Sciences, 2019, 20, 6193.	1.8	78
248	Complete but not partial inhibition of glutamate transporters exacerbates cortical excitability in the R6/2 mouse model of Huntington's disease. CNS Neuroscience and Therapeutics, 2019, 25, 509-518.	1.9	7
249	Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity. International Journal of Molecular Sciences, 2020, 21, 143.	1.8	9
250	Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 6982.	1.8	9
251	Firing rate homeostasis counteracts changes in stability of recurrent neural networks caused by synapse loss in Alzheimer's disease. PLoS Computational Biology, 2020, 16, e1007790.	1.5	10
252	Simulation model of CA1 pyramidal neurons reveal opposing roles for the Na+/Ca2+ exchange current and Ca2+-activated K+ current during spike-timing dependent synaptic plasticity. PLoS ONE, 2020, 15, e0230327.	1.1	1
253	Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-Inhibitory Balance. Neuron, 2020, 106, 842-854.e4.	3.8	53
254	Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics, 2020, 10, 5514-5526.	4.6	49

#	Article	IF	CITATIONS
255	Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Translational Psychiatry, 2021, 11, 136.	2.4	19
256	The WD40-Repeat Protein WDR-20 and the Deubiquitinating Enzyme USP-46 Promote Cell Surface Levels of Glutamate Receptors. Journal of Neuroscience, 2021, 41, 3082-3093.	1.7	1
257	Self-Organization Toward Criticality by Synaptic Plasticity. Frontiers in Physics, 2021, 9, .	1.0	50
258	A computational grid-to-place-cell transformation model indicates a synaptic driver of place cell impairment in early-stage Alzheimer's Disease. PLoS Computational Biology, 2021, 17, e1009115.	1.5	4
259	Resilience of network activity in preconditioned neurons exposed to †stroke-in-a-dish' insults. Neurochemistry International, 2021, 146, 105035.	1.9	1
260	The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience, 2021, 479, 180-191.	1.1	11
261	Homeostatic Synaptic Plasticity. , 2008, , 535-552.		10
262	Homeostatic Regulation of Excitatory-Inhibitory Balance. , 2003, , 187-195.		1
263	A Globally Asymptotically Stable Plasticity Rule for Firing Rate Homeostasis. Lecture Notes in Computer Science, 2008, , 567-576.	1.0	2
264	Homeostatic Plasticity and post-Traumatic Epileptogenesis. , 2008, , 259-IX.		1
267	BDNF Regulates the Intrinsic Excitability of Cortical Neurons. Learning and Memory, 1999, 6, 284-291.	0.5	155
269	Rapid exchange of synaptic and extrasynaptic NMDA receptors in hippocampal CA1 neurons. Journal of Neurophysiology, 2020, 123, 1004-1014.	0.9	17
270	Role for the Subthreshold Currents ILeak and IH in the Homeostatic Control of Excitability in Neocortical Somatostatin-Positive Inhibitory Neurons. Journal of Neurophysiology, 2006, 96, 420-432.	0.9	26
272	Receptor Dynamics at the Cell Surface Studied Using Functional Tagging. , 2006, , 171-192.		0
273	Receptor Dynamics at the Cell Surface Studied Using Functional Tagging. Frontiers in Neuroscience, 2006, , 155-176.	0.0	1
274	The plasticity of alcohol addiction suggests novel approaches to pharmacological intervention. , 2007, , 103-122.		0
275	Developmental Axonal Pruning and Synaptic Plasticity. , 2009, , 107-140.		0
276	Role of Spontaneous Activity in the Maturation of GABAergic Synapses in Embryonic Spinal Circuits. , 2010, , 27-39.		1

#	Article	IF	CITATIONS
277	FORÇA MUSCULAR RESPIRATĂ"RIA E MOBILIDADE TORĂCICA EM PORTADORES DE DOENÇA DE PARKINSON. Revista Brasileira De Ciências Da Saúde - USCS, 2015, 12, .	0.0	2
278	Homeostatic Synaptic Scaling at Central Synapses. , 2015, , 108-123.		0
283	BDNF regulates the intrinsic excitability of cortical neurons. Learning and Memory, 1999, 6, 284-91.	0.5	129
284	Homeostatic scaling is driven by a translation-dependent degradation axis that recruits miRISC remodeling. PLoS Biology, 2021, 19, e3001432.	2.6	8
285	Multiple sclerosis: Inflammation, autoimmunity and plasticity. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 457-470.	1.0	9
286	Mutually Dependent Clustering of SynDIG4/PRRT1 and AMPA Receptor Subunits GluA1 and GluA2 in Heterologous Cells and Primary Neurons. Frontiers in Molecular Neuroscience, 2022, 15, 788620.	1.4	1
287	Transient neuroinflammation following surgery contributes to long-lasting cognitive decline in elderly rats via dysfunction of synaptic NMDA receptor. Journal of Neuroinflammation, 2022, 19, .	3.1	10
288	Homeostatic Regulation of Motoneuron Properties in Development. Advances in Neurobiology, 2022, , 87-107.	1.3	0
289	Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology, 2023, 48, 121-144.	2.8	8
291	Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neuroscience Research, 2023, 186, 3-9.	1.0	1
292	Human iPSC-Derived Cortical Neurons Display Homeostatic Plasticity. Life, 2022, 12, 1884.	1.1	5
293	Enhanced AMPAR-dependent synaptic transmission by S-nitrosylation in the vmPFC contributes to chronic inflammatory pain-induced persistent anxiety in mice. Acta Pharmacologica Sinica, 2023, 44, 954-968.	2.8	6
294	The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals, 2023, 16, 1.	1.7	4
295	Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane. Nature Communications, 2023, 14, .	5.8	3
296	Endocytosis is required for consolidation of pattern-separated memories in the perirhinal cortex. Frontiers in Systems Neuroscience, 0, 17, .	1.2	1