Contrast-Invariant Orientation Tuning in Cat Visual Co and Correlation-Based Intracortical Connectivity

Journal of Neuroscience 18, 5908-5927 DOI: 10.1523/jneurosci.18-15-05908.1998

Citation Report

#	Article	IF	CITATIONS
1	Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression. Neuron, 1998, 20, 1177-1189.	3.8	236
2	Synaptic Integration in Striate Cortical Simple Cells. Journal of Neuroscience, 1998, 18, 9517-9528.	1.7	296
3	Functional Independence of Layer IV Barrels in Rodent Somatosensory Cortex. Journal of Neurophysiology, 1999, 82, 1311-1316.	0.9	76
4	Is the development of orientation selectivity instructed by activity?. , 1999, 41, 44-57.		57
5	Differential Depression at Excitatory and Inhibitory Synapses in Visual Cortex. Journal of Neuroscience, 1999, 19, 4293-4304.	1.7	174
6	A model for the intracortical origin of orientation preference and tuning in macaque striate cortex. Visual Neuroscience, 1999, 16, 303-318.	0.5	64
7	Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex. Visual Neuroscience, 1999, 16, 1115-1121.	0.5	106
8	A simple cell model with dominating opponent inhibition for robust contrast detection. Kognitionswissenschaft, 2000, 9, 93-100.	0.4	12
9	Orientation Tuning of Input Conductance, Excitation, and Inhibition in Cat Primary Visual Cortex. Journal of Neurophysiology, 2000, 84, 909-926.	0.9	446
10	Modeling LGN Responses during Free-Viewing: A Possible Role of Microscopic Eye Movements in the Refinement of Cortical Orientation Selectivity. Journal of Neuroscience, 2000, 20, 4708-4720.	1.7	29
11	A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Calpha. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8087-8092.	3.3	228
12	Feature extraction from colour and stereo images using ICA. , 2000, , .		3
13	Independent component analysis applied to feature extraction from colour and stereo images. Network: Computation in Neural Systems, 2000, 11, 191-210.	2.2	146
14	The implementation of visual routines. Vision Research, 2000, 40, 1385-1411.	0.7	205
15	The Contribution of Noise to Contrast Invariance of Orientation Tuning in Cat Visual Cortex. Science, 2000, 290, 1968-1972.	6.0	381
16	Neural Mechanisms of Orientation Selectivity in the Visual Cortex. Annual Review of Neuroscience, 2000, 23, 441-471.	5.0	573
17	Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex. Neuron, 2001, 30, 263-274.	3.8	72
18	The relatively small decline in orientation acuity as stimulus size decreases. Vision Research, 2001, 41, 1723-1733.	0.7	15

#	Article	IF	CITATIONS
19	Contrast-Dependent Nonlinearities Arise Locally in a Model of Contrast-Invariant Orientation Tuning. Journal of Neurophysiology, 2001, 85, 2130-2149.	0.9	56
20	Local Correlation-Based Circuitry Can Account for Responses to Multi-Grating Stimuli in a Model of Cat V1. Journal of Neurophysiology, 2001, 86, 1803-1815.	0.9	30
21	Chapter 22 Emergence of feature selectivity from lateral interactions in the visual cortex. Handbook of Biological Physics, 2001, , 969-1000.	0.8	0
22	How Simple Cells Are Made in a Nonlinear Network Model of the Visual Cortex. Journal of Neuroscience, 2001, 21, 5203-5211.	1.7	101
23	Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. , 2001, 11, 63-85.		586
24	Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 2001, 11, 111-119.	0.6	84
25	Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning. Nature Neuroscience, 2001, 4, 424-430.	7.1	56
26	A model of cross-orientation inhibition in cat primary visual cortex. Neurocomputing, 2001, 38-40, 757-762.	3.5	1
27	A model of visual cortical temporal frequency tuning. Neurocomputing, 2001, 38-40, 1379-1383.	3.5	4
28	Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Current Opinion in Neurobiology, 2001, 11, 488-497.	2.0	147
29	Chapter 21 Mechanisms of synchrony of neural activity in large networks. Handbook of Biological Physics, 2001, 4, 887-968.	0.8	39
30	Orientation Tuning Properties of Simple Cells in Area V1 Derived from an Approximate Analysis of Nonlinear Neural Field Models. Neural Computation, 2001, 13, 1721-1747.	1.3	24
31	Spatial frequency and orientation tuning dynamics in area V1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1645-1650.	3.3	241
32	Dynamic Approximation of Spatiotemporal Receptive Fields in Nonlinear Neural Field Models. Neural Computation, 2002, 14, 1801-1825.	1.3	17
33	An abstract model of a cortical hypercolumn. , 0, , .		3
34	Dynamics and Constancy in Cortical Spatiotemporal Patterns of Orientation Processing. Science, 2002, 295, 512-515.	6.0	83
36	Thalamocortical control of feed–forward inhibition in awake somatosensory â€`barrel' cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1717-1727.	1.8	101
37	Opponent Inhibition. Neuron, 2002, 33, 131-142.	3.8	49

# 38	ARTICLE Suppression without Inhibition in Visual Cortex. Neuron, 2002, 35, 759-771.	IF 3.8	CITATIONS
39	Dynamic Modification of Cortical Orientation Tuning Mediated by Recurrent Connections. Neuron, 2002, 36, 945-954.	3.8	118
40	Integration of Thalamic Inputs to Cat Primary Visual Cortex. , 2002, , 319-342.		4
41	Orientation Selectivity and Its Modulation by Local and Long-Range Connections in Visual Cortex. , 2002, , 471-ix.		6
42	How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex. Journal of Neuroscience, 2002, 22, 5118-5128.	1.7	134
43	A Synaptic Explanation of Suppression in Visual Cortex. Journal of Neuroscience, 2002, 22, 10053-10065.	1.7	192
44	Spatial Organization of Receptive Fields of V1 Neurons of Alert Monkeys: Comparison With Responses to Gratings. Journal of Neurophysiology, 2002, 88, 2557-2574.	0.9	75
45	Visual Cortex Neurons of Monkeys and Cats: Temporal Dynamics of the Contrast Response Function. Journal of Neurophysiology, 2002, 88, 888-913.	0.9	167
46	Adaptation and Inhibition Underlie Responses to Time-Varying Interaural Phase Cues in a Model of Inferior Colliculus Neurons. Journal of Neurophysiology, 2002, 88, 2134-2146.	0.9	32
47	Constraints on the Source of Short-Term Motion Adaptation in Macaque Area MT. II. Tuning of Neural Circuit Mechanisms. Journal of Neurophysiology, 2002, 88, 370-382.	0.9	66
48	Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence. Journal of Neuroscience, 2002, 22, 5639-5651.	1.7	563
49	LGN Input to Simple Cells and Contrast-Invariant Orientation Tuning: An Analysis. Journal of Neurophysiology, 2002, 87, 2741-2752.	0.9	45
50	Neural Noise Can Explain Expansive, Power-Law Nonlinearities in Neural Response Functions. Journal of Neurophysiology, 2002, 87, 653-659.	0.9	179
51	Suppression of Neural Responses to Nonoptimal Stimuli Correlates With Tuning Selectivity in Macaque V1. Journal of Neurophysiology, 2002, 87, 1018-1027.	0.9	84
52	Dynamics of Spatial Frequency Tuning in Macaque V1. Journal of Neuroscience, 2002, 22, 1976-1984.	1.7	165
53	The Timing of Response Onset and Offset in Macaque Visual Neurons. Journal of Neuroscience, 2002, 22, 3189-3205.	1.7	164
54	Local correlation-based ("push-pullâ€) circuitry can account for non-linear summation of stimuli in a model of cat V1. Neurocomputing, 2002, 44-46, 509-513.	3.5	0
55	Laminar processing of stimulus orientation in cat visual cortex. Journal of Physiology, 2002, 540, 321-333.	1.3	96

#	Article	IF	CITATIONS
56	A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nature Neuroscience, 2002, 5, 175-180.	7.1	370
57	Receptive-field construction in cortical inhibitory interneurons. Nature Neuroscience, 2002, 5, 403-404.	7.1	136
58	Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nature Neuroscience, 2002, 5, 883-891.	7.1	185
59	Coarse-grained reduction and analysis of a network model of cortical response: I. Drifting grating stimuli. Journal of Computational Neuroscience, 2002, 12, 97-122.	0.6	34
60	The mystery of structure and function of sensory processing areas of the neocortex: a resolution. Journal of Computational Neuroscience, 2002, 13, 187-205.	0.6	12
61	One axon-multiple functions: specificity of lateral inhibitory connections by large basket cells. Journal of Neurocytology, 2002, 31, 255-264.	1.6	36
62	Early Cortical Orientation Selectivity: How Fast Inhibition Decodes the Order of Spike Latencies. Journal of Computational Neuroscience, 2003, 15, 357-365.	0.6	23
63	Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response. Journal of Physiology (Paris), 2003, 97, 237-252.	2.1	24
64	Shunting inhibition, a silent step in visual cortical computation. Journal of Physiology (Paris), 2003, 97, 441-451.	2.1	30
65	Î ³ -Frequency fluctuations of the membrane potential and response selectivity in visual cortical neurons. European Journal of Neuroscience, 2003, 17, 1768-1776.	1.2	40
66	Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nature Neuroscience, 2003, 6, 1300-1308.	7.1	161
67	Complex Receptive Fields in Primary Visual Cortex. Neuroscientist, 2003, 9, 317-331.	2.6	68
68	Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons. Neuron, 2003, 37, 663-680.	3.8	330
69	Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition. Neuron, 2003, 38, 689-699.	3.8	222
70	Understanding Layer 4 of the Cortical Circuit: A Model Based on Cat V1. Cerebral Cortex, 2003, 13, 73-82.	1.6	57
71	Columnar Transformations in Auditory Cortex? A Comparison to Visual and Somatosensory Cortices. Cerebral Cortex, 2003, 13, 83-89.	1.6	130
72	Fast-spike Interneurons and Feedforward Inhibition in Awake Sensory Neocortex. Cerebral Cortex, 2003, 13, 25-32.	1.6	314
73	Oblique Effect: A Neural Basis in the Visual Cortex. Journal of Neurophysiology, 2003, 90, 204-217.	0.9	269

#	Article	IF	CITATIONS
74	Synaptic Physiology and Receptive Field Structure in the Early Visual Pathway of the Cat. Cerebral Cortex, 2003, 13, 63-69.	1.6	57
75	Receptive Fields and Orientation Selectivity of SimpleCells in Visual Cortex. IETE Journal of Research, 2003, 49, 87-96.	1.8	0
76	A model of direction selectivity in cortical simple cells based on lagged thalamic input and intracortical feedback. , 0, , .		1
77	Learning and Adaptation in a Recurrent Model of V1 Orientation Selectivity. Journal of Neurophysiology, 2003, 89, 2086-2100.	0.9	140
78	Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone. Journal of Neuroscience, 2003, 23, 10040-10051.	1.7	124
79	Different Roles for Simple-Cell and Complex-Cell Inhibition in V1. Journal of Neuroscience, 2003, 23, 10201-10213.	1.7	80
80	Dynamics of Orientation Tuning in Macaque V1: The Role of Global and Tuned Suppression. Journal of Neurophysiology, 2003, 90, 342-352.	0.9	130
81	Selective Elimination of Corticogeniculate Feedback Abolishes the Electroencephalogram Dependence of Primary Visual Cortical Receptive Fields and Reduces Their Spatial Specificity. Journal of Neuroscience, 2003, 23, 7021-7033.	1.7	31
82	Influence of Contrast on Orientation and Temporal Frequency Tuning in Ferret Primary Visual Cortex. Journal of Neurophysiology, 2004, 91, 2797-2808.	0.9	113
83	Orientation tuning and synchronization in the hypercolumn model. Physical Review E, 2004, 69, 011914.	0.8	2
84	Visual Cortex Neurons of Monkeys and Cats: Temporal Dynamics of the Spatial Frequency Response Function. Journal of Neurophysiology, 2004, 91, 2607-2627.	0.9	75
85	Chromatic adaptation, perceived location, and color tuning properties. Visual Neuroscience, 2004, 21, 275-282.	0.5	7
86	On the Fight Between Excitation and Inhibition: Location Is Everything. Science Signaling, 2004, 2004, pe44-pe44.	1.6	34
87	Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations. Nature Neuroscience, 2004, 7, 1129-1135.	7.1	209
88	Correlation of local and global orientation and spatial frequency tuning in macaque V1. Journal of Physiology, 2004, 557, 923-933.	1.3	39
89	The contributions of inhibition and noise to responses in V1. Neurocomputing, 2004, 58-60, 901-907.	3.5	0
90	Fitting of spatio-temporal receptive fields by sums of Gaussian components. Neurocomputing, 2004, 58-60, 929-934.	3.5	3
91	Response selectivity and Î ³ -frequency fluctuations of the membrane potential in visual cortical neurons. Neurocomputing, 2004, 58-60, 957-963.	3.5	3

#	Article	IF	CITATIONS
92	Local networks in visual cortex and their influence on neuronal responses and dynamics. Journal of Physiology (Paris), 2004, 98, 429-441.	2.1	21
93	Separation of Spatio-Temporal Receptive Fields into Sums of Gaussian Components. Journal of Computational Neuroscience, 2004, 16, 27-38.	0.6	1
94	A model of contextual interactions and contour detection in primary visual cortex. Neural Networks, 2004, 17, 719-735.	3.3	113
95	A simple cell model with dominating opponent inhibition for robust image processing. Neural Networks, 2004, 17, 647-662.	3.3	19
96	Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Networks, 2004, 17, 625-632.	3.3	137
97	A new view of the primary visual cortex. Neural Networks, 2004, 17, 615-623.	3.3	27
98	Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons. Journal of Neuroscience, 2004, 24, 6991-7006.	1.7	317
99	Adaptive Temporal Integration of Motion in Direction-Selective Neurons in Macaque Visual Cortex. Journal of Neuroscience, 2004, 24, 7305-7323.	1.7	115
100	ATTENTIONAL MODULATION OF VISUAL PROCESSING. Annual Review of Neuroscience, 2004, 27, 611-647.	5.0	969
101	Comparison of different models of orientation selectivity based on distinct intracortical inhibition rules. Vision Research, 2004, 44, 1641-1658.	0.7	11
102	The organization of orientation and spatial frequency in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16941-16946.	3.3	44
104	Course 11 Pattern formation in visual cortex. Les Houches Summer School Proceedings, 2005, 80, 477-574.	0.2	3
105	Course 5 Some useful numerical techniques for simulating integrate-and-fire networks. Les Houches Summer School Proceedings, 2005, 80, 179-196.	0.2	0
106	Invariant computations in local cortical networks with balanced excitation and inhibition. Nature Neuroscience, 2005, 8, 194-201.	7.1	282
107	Receptive field structure varies with layer in the primary visual cortex. Nature Neuroscience, 2005, 8, 372-379.	7.1	173
108	Visual receptive field organization. Current Opinion in Neurobiology, 2005, 15, 459-464.	2.0	47
109	Study of spatial frequency selectivity and its spatial organization in the visual cortex through a feedforward model. Neurocomputing, 2005, 65-66, 85-91.	3.5	7
110	Dependence of Visual Cell Properties on Intracortical Synapses Among Hypercolumns: Analysis by a Computer Model. Journal of Computational Neuroscience, 2005, 19, 291-310.	0.6	1

#	Article	IF	CITATIONS
111	Effect of Stimulus Size on the Dynamics of Orientation Selectivity in Macaque V1. Journal of Neurophysiology, 2005, 94, 799-812.	0.9	77
112	Course 9 Irregular activity in large networks of neurons. Les Houches Summer School Proceedings, 2005, 80, 341-406.	0.2	20
113	Chromatic Gain Controls in Visual Cortical Neurons. Journal of Neuroscience, 2005, 25, 4779-4792.	1.7	98
114	Short-Term Synaptic Depression Causes a Non-Monotonic Response to Correlated Stimuli. Journal of Neuroscience, 2005, 25, 8416-8431.	1.7	65
115	Neuromorphic implementation of orientation hypercolumns. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2005, 52, 1049-1060.	0.1	104
116	Coding of color and form in the geniculostriate visual pathway (invited review). Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 2013.	0.8	132
117	Quantitative analysis of functional clustering of neurons in the macaque inferior temporal cortex. Neuroscience Research, 2005, 52, 311-322.	1.0	22
118	Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex. Neuron, 2005, 45, 133-145.	3.8	231
119	Bottom-up and top-down dynamics in visual cortex. Progress in Brain Research, 2005, 149, 65-81.	0.9	23
120	Early and Late Mechanisms of Surround Suppression in Striate Cortex of Macaque. Journal of Neuroscience, 2005, 25, 11666-11675.	1.7	245
121	The generation of receptive-field structure in cat primary visual cortex. Progress in Brain Research, 2006, 154, 73-92.	0.9	4
122	Circuits that build visual cortical receptive fields. Trends in Neurosciences, 2006, 29, 30-39.	4.2	78
123	Direction Selectivity of Neurons in the Striate Cortex Increases as Stimulus Contrast Is Decreased. Journal of Neurophysiology, 2006, 95, 2705-2712.	0.9	15
124	Origins of Cross-Orientation Suppression in the Visual Cortex. Journal of Neurophysiology, 2006, 96, 1755-1764.	0.9	70
125	Comparison Among Some Models of Orientation Selectivity. Journal of Neurophysiology, 2006, 96, 404-419.	0.9	37
126	Mechanisms underlying cross-orientation suppression in cat visual cortex. Nature Neuroscience, 2006, 9, 552-561.	7.1	158
127	Attentional modulation of firing rate and synchrony in a model cortical network. Journal of Computational Neuroscience, 2006, 20, 247-264.	0.6	103
128	A Cortical Based Model of Perceptual Completion in the Roto-Translation Space. Journal of Mathematical Imaging and Vision, 2006, 24, 307-326.	0.8	238

#	Article	IF	CITATIONS
129	Loose-patch–juxtacellular recording in vivo—A method for functional characterization and labeling of neurons in macaque V1. Journal of Neuroscience Methods, 2006, 156, 37-49.	1.3	49
130	Travelling waves and EEG patterns during epileptic seizure: Analysis with an integrate-and-fire neural network. Journal of Theoretical Biology, 2006, 242, 171-187.	0.8	50
131	Laminar processing in the visual cortical column. Current Opinion in Neurobiology, 2006, 16, 377-384.	2.0	91
132	Estimation of synaptic conductances. Journal of Physiology (Paris), 2006, 100, 31-42.	2.1	20
133	A neural model of surface perception: Lightness, anchoring, and filling-in. Spatial Vision, 2006, 19, 263-321.	1.4	81
134	Receptive Field Properties of Neurons in the Early Visual Cortex Revealed by Local Spectral Reverse Correlation. Journal of Neuroscience, 2006, 26, 3269-3280.	1.7	49
135	Angularly Nonspecific Response Suppression in Rat Barrel Cortex. Cerebral Cortex, 2006, 17, 599-609.	1.6	23
136	Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12911-12916.	3.3	35
137	Dynamic Spatial Processing Originates in Early Visual Pathways. Journal of Neuroscience, 2006, 26, 11763-11774.	1.7	51
138	A Multichip Pulse-Based Neuromorphic Infrastructure and Its Application to a Model of Orientation Selectivity. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 981-993.	0.1	108
139	Effects of Inhibitory Gain and Conductance Fluctuations in a Simple Model for Contrast-Invariant Orientation Tuning in Cat V1. Journal of Neurophysiology, 2007, 98, 63-78.	0.9	16
140	Similarity and Diversity in Visual Cortex: Is There a Unifying Theory of Cortical Computation?. Neuroscientist, 2007, 13, 639-656.	2.6	86
141	A Biologically Realistic Model of Contrast Invariant Orientation Tuning by Thalamocortical Synaptic Depression. Journal of Neuroscience, 2007, 27, 10230-10239.	1.7	44
142	Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex. Journal of Neuroscience, 2007, 27, 10333-10344.	1.7	165
143	The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex. Neuron, 2007, 54, 137-152.	3.8	217
144	Melting the Iceberg: Contrast Invariance in Visual Cortex. Neuron, 2007, 54, 11-13.	3.8	24
145	The dynamics of visual responses in the primary visual cortex. Progress in Brain Research, 2007, 165, 21-32.	0.9	35
146	Internal Spatial Organization of Receptive Fields of Complex Cells in the Early Visual Cortex. Journal of Neurophysiology, 2007, 98, 1194-1212.	0.9	24

#	Article	IF	CITATIONS
147	Direction selectivity of simple cells in the primary visual cortex: Comparison of two alternative mathematical models. I: Response to drifting gratings. Computers in Biology and Medicine, 2007, 37, 398-414.	3.9	4
148	Direction selectivity of simple cells in the primary visual cortex: Comparison of two alternative mathematical models. II: Velocity tuning and response to moving bars. Computers in Biology and Medicine, 2007, 37, 598-610.	3.9	4
149	Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 2007, 22, 81-100.	0.6	34
150	Retinal and cortical nonlinearities combine to produce masking in V1 responses to plaids. Journal of Computational Neuroscience, 2008, 25, 390-400.	0.6	7
151	Possible mechanisms underlying tilt aftereffect in the primary visual cortex: A critical analysis with the aid of simple computational models. Vision Research, 2008, 48, 1456-1470.	0.7	5
152	Possible Role of Dendritic Compartmentalization in the Spatial Working Memory Circuit. Journal of Neuroscience, 2008, 28, 7699-7724.	1.7	25
153	GABA-mediated inhibition correlates with orientation selectivity in primary visual cortex of cat. Neuroscience, 2008, 155, 914-922.	1.1	36
154	Comparative study on the offset responses of simple cells and complex cells in the primary visual cortex of the cat. Neuroscience, 2008, 156, 365-373.	1.1	25
155	Clobal evaluation of contributions of GABA A , AMPA and NMDA receptors to orientation maps in cat's visual cortex. NeuroImage, 2008, 40, 776-787.	2.1	25
156	Efficient coding in heterogeneous neuronal populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16344-16349.	3.3	132
157	Asymmetric Synaptic Depression in Cortical Networks. Cerebral Cortex, 2008, 18, 771-788.	1.6	31
158	Stimulus Dependency and Mechanisms of Surround Modulation in Cortical Area MT. Journal of Neuroscience, 2008, 28, 13889-13906.	1.7	45
159	The Orientation Selectivity of Color-Responsive Neurons in Macaque V1. Journal of Neuroscience, 2008, 28, 8096-8106.	1.7	160
160	Lack of Orientation and Direction Selectivity in a Subgroup of Fast-Spiking Inhibitory Interneurons: Cellular and Synaptic Mechanisms and Comparison with Other Electrophysiological Cell Types. Cerebral Cortex, 2008, 18, 1058-1078.	1.6	88
161	Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train. Physical Review E, 2008, 77, 041915.	0.8	35
162	Dynamics of Tuning in the Fourier Domain. Journal of Neurophysiology, 2008, 100, 239-248.	0.9	24
163	Visualizing neuronal neonnectivity with connectivity pattern tables twork c. Frontiers in Neuroinformatics, 2009, 3, 39.	1.3	17
164	The linearity and selectivity of neuronal responses in awake visual cortex. Journal of Vision, 2009, 9, 12-12.	0.1	32

#	Article	IF	CITATIONS
165	Network-induced chaos in integrate-and-fire neuronal ensembles. Physical Review E, 2009, 80, 031918.	0.8	15
166	Fokker-Planck description of conductance-based integrate-and-fire neuronal networks. Physical Review E, 2009, 80, 021904.	0.8	15
167	A Second Function of Gamma Frequency Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells Fire. Journal of Neuroscience, 2009, 29, 7497-7503.	1.7	135
168	The Embedded Neuron, the Enactive Field?. , 2009, , .		9
169	"l Look in Your Eyes, Honeyâ€: Internal Face Features Induce Spatial Frequency Preference for Human Face Processing. PLoS Computational Biology, 2009, 5, e1000329.	1.5	45
170	Towards Reproducible Descriptions of Neuronal Network Models. PLoS Computational Biology, 2009, 5, e1000456.	1.5	149
171	The Operating Regime of Local Computations in Primary Visual Cortex. Cerebral Cortex, 2009, 19, 2166-2180.	1.6	36
172	Integrating contrast invariance into a model for cortical orientation map formation. Neurocomputing, 2009, 72, 1887-1899.	3.5	2
173	Functional geometry of the horizontal connectivity in the primary visual cortex. Journal of Physiology (Paris), 2009, 103, 37-45.	2.1	20
174	Control of the temporal interplay between excitation and inhibition by the statistics of visual input. BMC Neuroscience, 2009, 10, .	0.8	2
175	Linear and nonlinear systems analysis of the visual system: Why does it seem so linear?. Vision Research, 2009, 49, 907-921.	0.7	43
176	Dissociation of Neural Mechanisms Underlying Orientation Processing in Humans. Current Biology, 2009, 19, 1458-1462.	1.8	19
177	Analysis of the interaction between the retinal ON and OFF channels using CNNâ€UM models. International Journal of Circuit Theory and Applications, 2009, 37, 87-108.	1.3	8
178	A neuronal network model of primary visual cortex explains spatial frequency selectivity. Journal of Computational Neuroscience, 2009, 26, 271-287.	0.6	23
179	Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation. Journal of Computational Neuroscience, 2009, 27, 369-390.	0.6	17
180	Spatial attention in area V4 is mediated by circuits in primary visual cortex. Neural Networks, 2009, 22, 1039-1054.	3.3	10
181	Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression. Neuron, 2009, 62, 578-592.	3.8	398
182	Cooling in cat visual cortex: stability of orientation selectivity despite changes in responsiveness and spike width. Neuroscience, 2009, 164, 777-787.	1.1	8

ARTICLE IF CITATIONS Coherent Behavior in Neuronal Networks., 2009,,. 183 5 Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording. Journal of Neuroscience, 2009, 29, 10520-10532. 184 1.7 143 LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback. Journal of 185 0.6 69 Computational Neuroscience, 2010, 29, 495-507. Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type. Journal 186 24 of Computational Neuroscience, 2010, 28, 229-245. Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics. Journal 187 0.6 16 of Computational Neuroscience, 2010, 28, 247-266. Functional consequences of correlated excitatory and inhibitory conductances in cortical networks. Journal of Computational Neuroscience, 2010, 28, 579-594. 188 The effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 189 1.3 16 of cats. Toxicology and Applied Pharmacology, 2010, 243, 348-358. NineML – a description language for spiking neuron network modeling: the user layer. BMC 0.8 Neuroscience, 2010, 11, . Distribution of vestibulospinal contacts on the dendrites of ipsilateral splenius motoneurons: An 191 anatomical substrate for push-pull interactions during vestibulocollic reflexes. Brain Research, 2010, 1.1 14 1333, 9-27. Correlation between spatial frequency and orientation selectivity in V1 cortex: Implications of a network model. Vision Research, 2010, 50, 2261-2273. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nature 193 7.1 113 Neuroscience, 2010, 13, 89-96. Visual Representations by Cortical Somatostatin Inhibitory Neurons—Selective But with Weak and 194 211 Delayed Responses. Journal of Neuroscience, 2010, 30, 14371-14379. V1 orientation plasticity is explained by broadly tuned feedforward inputs and intracortical 195 0.5 16 sharpening. Visual Neuroscience, 2010, 27, 57-73. A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging. PLoS Computational Biology, 2010, 6, e1000919. 1.5 Hebbian Plasticity and Homeostasis in a Model of Hypercolumn of the Visual Cortex. Neural 197 1.3 6 Computation, 2010, 22, 1837-1859. Predictive Coding as a Model of Response Properties in Cortical Area V1. Journal of Neuroscience, 2010, 30, 3531-3543. 226 Broad Inhibition Sharpens Orientation Selectivity by Expanding Input Dynamic Range in Mouse Simple 199 3.8 148 Cells. Neuron, 2011, 71, 542-554. Statistical Comparison of Spike Responses to Natural Stimuli in Monkey Area V1 With Simulated Responses of a Detailed Laminar Network Model for a Patch of V1. Journal of Neurophysiology, 2011, 105, 757-778.

#	Article	IF	CITATIONS
201	The horizontal tuning of face perception relies on the processing of intermediate and high spatial frequencies. Journal of Vision, 2011, 11, 1-1.	0.1	40
202	A Computational Study of How Orientation Bias in the Lateral Geniculate Nucleus Can Give Rise to Orientation Selectivity in Primary Visual Cortex. Frontiers in Systems Neuroscience, 2011, 5, 81.	1.2	19
203	The Wagon Wheel Illusions and models of orientation selection. Journal of Computational Neuroscience, 2011, 31, 273-284.	0.6	1
204	Effects of electrical coupling among layer 4 inhibitory interneurons on contrast-invariant orientation tuning. Experimental Brain Research, 2011, 208, 127-138.	0.7	3
205	A numerical solver for a nonlinear Fokker–Planck equation representation of neuronal network dynamics. Journal of Computational Physics, 2011, 230, 1084-1099.	1.9	34
206	Adaptation of the simple or complex nature of V1 receptive fields to visual statistics. Nature Neuroscience, 2011, 14, 1053-1060.	7.1	53
207	Suppressive Mechanisms in Monkey V1 Help to Solve the Stereo Correspondence Problem. Journal of Neuroscience, 2011, 31, 8295-8305.	1.7	34
208	Untuned Suppression Makes a Major Contribution to the Enhancement of Orientation Selectivity in Macaque V1. Journal of Neuroscience, 2011, 31, 15972-15982.	1.7	38
209	Functional Elimination of Excitatory Feedforward Inputs Underlies Developmental Refinement of Visual Receptive Fields in Zebrafish. Journal of Neuroscience, 2011, 31, 5460-5469.	1.7	29
210	Neocortical layer 4 as a pluripotent function linearizer. Journal of Neurophysiology, 2011, 105, 1342-1360.	0.9	28
211	Power-Law Input-Output Transfer Functions Explain the Contrast-Response and Tuning Properties of Neurons in Visual Cortex. PLoS Computational Biology, 2011, 7, e1001078.	1.5	30
212	A Multi-Compartment Model for Interneurons in the Dorsal Lateral Geniculate Nucleus. PLoS Computational Biology, 2011, 7, e1002160.	1.5	36
213	Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception. PLoS Computational Biology, 2011, 7, e1002162.	1.5	10
214	Topological effects on dynamics in complex pulse-coupled networks of integrate-and-fire type. Physical Review E, 2012, 85, 036104.	0.8	3
215	Inter-Neuronal Correlation Distinguishes Mechanisms of Direction Selectivity in Cortical Circuit Models. Journal of Neuroscience, 2012, 32, 8800-8816.	1.7	12
216	Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity. Journal of Computational Neuroscience, 2012, 33, 559-572.	0.6	10
217	A group-decision making model of orientation detection. , 2012, , .		9
218	Feedforward Origins of Response Variability Underlying Contrast Invariant Orientation Tuning in Cat Visual Cortex. Neuron, 2012, 74, 911-923.	3.8	57

#	Articif	IF	CITATIONS
219	Broadening of Inhibitory Tuning Underlies Contrast-Dependent Sharpening of Orientation Selectivity in Mouse Visual Cortex. Journal of Neuroscience, 2012, 32, 16466-16477.	1.7	63
220	The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map. Journal of Neuroscience, 2012, 32, 4049-4064.	1.7	118
221	Mechanisms of Neuronal Computation in Mammalian Visual Cortex. Neuron, 2012, 75, 194-208.	3.8	160
222	Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cognitive Neurodynamics, 2012, 6, 307-324.	2.3	21
223	Broadening of Cortical Inhibition Mediates Developmental Sharpening of Orientation Selectivity. Journal of Neuroscience, 2012, 32, 3981-3991.	1.7	56
224	Fast Recruitment of Recurrent Inhibition in the Cat Visual Cortex. PLoS ONE, 2012, 7, e40601.	1.1	19
225	Transformation-invariant visual representations in self-organizing spiking neural networks. Frontiers in Computational Neuroscience, 2012, 6, 46.	1.2	17
226	A Retinal Source of Spatial Contrast Gain Control. Journal of Neuroscience, 2012, 32, 9824-9830.	1.7	18
227	Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature, 2012, 488, 379-383.	13.7	530
228	A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus. Cognitive Neurodynamics, 2012, 6, 259-281.	2.3	12
229	Coarse-grained event tree analysis for quantifying Hodgkin-Huxley neuronal network dynamics. Journal of Computational Neuroscience, 2012, 32, 55-72.	0.6	0
230	Computational Identification of Receptive Fields. Annual Review of Neuroscience, 2013, 36, 103-120.	5.0	79
231	Layer 4 in Primary Visual Cortex of the Awake Rabbit: Contrasting Properties of Simple Cells and Putative Feedforward Inhibitory Interneurons. Journal of Neuroscience, 2013, 33, 11372-11389.	1.7	33
232	Cortical Balance of Excitation and Inhibition Is Regulated by the Rate of Synaptic Activity. Journal of Neuroscience, 2013, 33, 14359-14368.	1.7	55
233	A collaborative decision-making model for orientation detection. Applied Soft Computing Journal, 2013, 13, 302-314.	4.1	5
234	Local circuit inhibition in the cerebral cortex as the source of gain control and untuned suppression. Neural Networks, 2013, 37, 172-181.	3.3	12
235	Effects of stimulus spatial frequency, size, and luminance contrast on orientation tuning of neurons in the dorsal lateral geniculate nucleus of cat. Neuroscience Research, 2013, 77, 143-154.	1.0	11
236	Corticocortical Feedback Contributes to Surround Suppression in V1 of the Alert Primate. Journal of Neuroscience, 2013, 33, 8504-8517.	1.7	161

#	Article	IF	CITATIONS
237	Sublinear binocular integration preserves orientation selectivity in mouse visual cortex. Nature Communications, 2013, 4, 2088.	5.8	41
238	Fluoxetine and serotonin facilitate attractive-adaptation-induced orientation plasticity in adult cat visual cortex. European Journal of Neuroscience, 2013, 38, 2065-2077.	1.2	35
239	Learning Contrast-Invariant Cancellation of Redundant Signals in Neural Systems. PLoS Computational Biology, 2013, 9, e1003180.	1.5	20
240	Causal and Structural Connectivity of Pulse-Coupled Nonlinear Networks. Physical Review Letters, 2013, 111, 054102.	2.9	35
241	Digit recognition in a simplified visual cortex model. , 2013, , .		1
242	Mechanisms of Seizure Propagation in 2-Dimensional Centre-Surround Recurrent Networks. PLoS ONE, 2013, 8, e71369.	1.1	27
243	The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1. PLoS ONE, 2014, 9, e106046.	1.1	4
244	Analysis of sampling artifacts on the Granger causality analysis for topology extraction of neuronal dynamics. Frontiers in Computational Neuroscience, 2014, 8, 75.	1.2	12
245	Corticocortical feedback increases the spatial extent of normalization. Frontiers in Systems Neuroscience, 2014, 8, 105.	1.2	42
246	Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice. Journal of Neurophysiology, 2014, 111, 2276-2286.	0.9	18
248	Conductance-based refractory density model of primary visual cortex. Journal of Computational Neuroscience, 2014, 36, 297-319.	0.6	28
249	Dynamics of the exponential integrate-and-fire model with slow currents and adaptation. Journal of Computational Neuroscience, 2014, 37, 161-180.	0.6	23
250	Large-Scale Axonal Reorganization of Inhibitory Neurons following Retinal Lesions. Journal of Neuroscience, 2014, 34, 1625-1632.	1.7	42
251	A cortical integrate-and-fire neural network model for blind decoding of visual prosthetic stimulation. , 2014, 2014, 1715-8.		Ο
252	A Feedforward Inhibitory Circuit Mediates Lateral Refinement of Sensory Representation in Upper Layer 2/3 of Mouse Primary Auditory Cortex. Journal of Neuroscience, 2014, 34, 13670-13683.	1.7	98
253	Cell directional spread determines accuracy, precision, and length of the neuronal population vector. Experimental Brain Research, 2014, 232, 2391-2405.	0.7	9
254	Dependence of V2 illusory contour response on V1 cell properties and topographic organization. Biological Cybernetics, 2014, 108, 337-354.	0.6	12
255	Development of spatial coarse-to-fine processing in the visual pathway. Journal of Computational Neuroscience, 2014, 36, 401-414.	0.6	9

#	Article	IF	Citations
256	Emerging feed-forward inhibition allows the robust formation of direction selectivity in the developing ferret visual cortex. Journal of Neurophysiology, 2014, 111, 2355-2373.	0.9	19
257	Orientation selectivity based structure for texture classification. , 2014, , .		0
258	A cortical locus for anisotropic overlay suppression of stimuli presented at fixation. Visual Neuroscience, 2015, 32, E023.	0.5	8
259	Contrast invariance of orientation tuning in cat primary visual cortex neurons depends on stimulus size. Journal of Physiology, 2015, 593, 4485-4498.	1.3	9
260	Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex. PLoS ONE, 2015, 10, e0144403.	1.1	2
261	Visual pattern degradation based image quality assessment. , 2015, , .		0
262	Reduced-reference image quality assessment with orientation selectivity based visual pattern. , 2015, , .		3
263	Transition to Chaos in Random Neuronal Networks. Physical Review X, 2015, 5, .	2.8	88
264	STDP in lateral connections creates category-based perceptual cycles for invariance learning with multiple stimuli. Biological Cybernetics, 2015, 109, 215-239.	0.6	1
265	How Inhibitory Circuits in the Thalamus Serve Vision. Annual Review of Neuroscience, 2015, 38, 309-329.	5.0	77
266	Neurons in cat V1 show significant clustering by degree of tuning. Journal of Neurophysiology, 2015, 113, 2555-2581.	0.9	4
267	Harmonic and Geometric Analysis. Advanced Courses in Mathematics, CRM Barcelona, 2015, , .	0.3	3
269	Visual Orientation Selectivity Based Structure Description. IEEE Transactions on Image Processing, 2015, 24, 4602-4613.	6.0	60
270	Contrast invariance of orientation tuning in the lateral geniculate nucleus of the feline visual system. European Journal of Neuroscience, 2015, 42, 2250-2257.	1.2	5
271	Cortical Correlates of Low-Level Perception: From Neural Circuits to Percepts. Neuron, 2015, 88, 110-126.	3.8	53
272	Transcranial Magnetic Stimulation Changes Response Selectivity of Neurons in the Visual Cortex. Brain Stimulation, 2015, 8, 613-623.	0.7	13
273	Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1. Frontiers in Neural Circuits, 2016, 10, 37.	1.4	35
274	Direction selectivity of neurons in the visual cortex is nonâ€linear and laminaâ€dependent. European Journal of Neuroscience, 2016, 43, 1389-1399	1.2	3

#	Article	IF	CITATIONS
275	Categorically distinct types of receptive fields in early visual cortex. Journal of Neurophysiology, 2016, 115, 2556-2576.	0.9	21
276	Mechanisms of Orientation Selectivity in the Primary Visual Cortex. Annual Review of Vision Science, 2016, 2, 85-107.	2.3	73
277	Orientation selectivity based visual pattern for reduced-reference image quality assessment. Information Sciences, 2016, 351, 18-29.	4.0	81
278	Canonical computations of cerebral cortex. Current Opinion in Neurobiology, 2016, 37, 75-84.	2.0	90
279	Comparison of mechanisms for contrast-invariance of orientation selectivity in simple cells. Neuroscience, 2017, 348, 41-62.	1.1	0
280	Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Progress in Neurobiology, 2017, 156, 214-255.	2.8	50
281	Enhanced Just Noticeable Difference Model for Images With Pattern Complexity. IEEE Transactions on Image Processing, 2017, 26, 2682-2693.	6.0	118
282	Cortical cells reveal APP as a new player in the regulation of GABAergic neurotransmission. Scientific Reports, 2017, 7, 370.	1.6	31
283	The divisive normalization model of V1 neurons: a comprehensive comparison of physiological data and model predictions. Journal of Neurophysiology, 2017, 118, 3051-3091.	0.9	16
284	Receptive Fields and Profiles, and Wavelet Analysis. Lecture Notes in Morphogenesis, 2017, , 45-111.	0.2	0
285	Hierarchical Feature Degradation Based Blind Image Quality Assessment. , 2017, , .		14
286	Spike-Triggered Regression for Synaptic Connectivity Reconstruction in Neuronal Networks. Frontiers in Computational Neuroscience, 2017, 11, 101.	1.2	3
287	Relationship between the Dynamics of Orientation Tuning and Spatiotemporal Receptive Field Structures of Cat LGN Neurons. Neuroscience, 2018, 377, 26-39.	1.1	4
288	Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased. Journal of Neuroscience, 2018, 38, 595-612.	1.7	20
289	Method of experimental synaptic conductance estimation: Limitations of the basic approach and extension to voltage-dependent conductances. Neurocomputing, 2018, 275, 2414-2425.	3.5	8
290	Analysis and numerical solver for excitatory-inhibitory networks with delay and refractory periods. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52, 1733-1761.	0.8	11
291	Visual physiology of the layer 4 cortical circuit in silico. PLoS Computational Biology, 2018, 14, e1006535.	1.5	75
292	Investigation of Feedback Connections Effect of a Spike Timing Neural Network Model of Early Visual System. , 2018, , .		6

#	Article	IF	CITATIONS
293	A new approach to solving the feature-binding problem in primate vision. Interface Focus, 2018, 8, 20180021.	1.5	15
294	Does experience provide a permissive or instructive influence on the development of direction selectivity in visual cortex?. Neural Development, 2018, 13, 16.	1.1	9
295	Shaping the collision selectivity in a looming sensitive neuron model with parallel ON and OFF pathways and spike frequency adaptation. Neural Networks, 2018, 106, 127-143.	3.3	39
296	Transplanted Cells Are Essential for the Induction But Not the Expression of Cortical Plasticity. Journal of Neuroscience, 2019, 39, 7529-7538.	1.7	11
297	Blind Image Quality Assessment With Joint Entropy Degradation. IEEE Access, 2019, 7, 30925-30936.	2.6	18
298	Stochastic neural field model of stimulus-dependent variability in cortical neurons. PLoS Computational Biology, 2019, 15, e1006755.	1.5	15
299	Spike Timing Neural Model of Motion Perception and Decision Making. Frontiers in Computational Neuroscience, 2019, 13, 20.	1.2	12
300	Spatial and Temporal Feature-Based Reduced Reference Quality Assessment for Rate-Varying Videos in Wireless Networks. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33, 1950021.	0.7	1
301	Blind image quality assessment with hierarchy: Degradation from local structure to deep semantics. Journal of Visual Communication and Image Representation, 2019, 58, 353-362.	1.7	22
302	Age-related Spike Timing Dependent Plasticity of Brain-inspired Model of Visual Information Processing with Reinforcement Learning. , 2020, , .		0
303	The ins and outs of inhibitory synaptic plasticity: Neuron types, molecular mechanisms and functional roles. European Journal of Neuroscience, 2021, 54, 6882-6901.	1.2	16
304	A heuristic framework for perceptual saliency prediction. Journal of Visual Communication and Image Representation, 2020, 73, 102913.	1.7	0
305	STDP Training of Hierarchical Spike Timing Model of Visual Information Processing. , 2020, , .		0
306	Parallel Implementation of the Model of Retina Ganglion Cells Layer. , 2020, , .		2
307	Voltage-Gated Intrinsic Conductances Shape the Input-Output Relationship of Cortical Neurons in Behaving Primate V1. Neuron, 2020, 107, 185-196.e4.	3.8	15
308	Local organization of spatial frequency tuning dynamics in the cat visual areas 17 and 18. Journal of Neurophysiology, 2020, 124, 178-191.	0.9	1
309	Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron, 2020, 106, 388-403.e18.	3.8	163
310	A Robust Collision Perception Visual Neural Network With Specific Selectivity to Darker Objects. IEEE Transactions on Cybernetics, 2020, 50, 5074-5088.	6.2	32

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
311	Contrast response in a comprehensive network model of macaque V1. Journal of Vision, 2020, 20, 16.	0.1	13
312	Network mechanism for insect olfaction. Cognitive Neurodynamics, 2021, 15, 103-129.	2.3	5
316	Cellular connectomes as arbiters of local circuit models in the cerebral cortex. Nature Communications, 2021, 12, 2785.	5.8	11
317	Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1. Scientific Reports, 2021, 11, 10783.	1.6	6
318	Temporal filtering of luminance and chromaticity in macaque visual cortex. IScience, 2021, 24, 102536.	1.9	2
319	An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push–Pull and Broad Inhibition. Journal of Neuroscience, 2021, 41, 7797-7812.	1.7	2
320	A strategy for mapping biophysical to abstract neuronal network models applied to primary visual cortex. PLoS Computational Biology, 2021, 17, e1009007.	1.5	2
323	Coding of Objects in Low-Level Visual Cortical Areas. Lecture Notes in Computer Science, 2005, , 57-63.	1.0	7
324	Large-Scale Computational Modeling of the Primary Visual Cortex. , 2009, , 263-296.		10
325	Orientation Selectivity Tuning of a Spike Timing Neural Network Model of the First Layer of the Human Visual Cortex. Studies in Computational Intelligence, 2019, , 291-303.	0.7	11
326	Modulation of Synchrony by Interneurons. , 2008, , 317-332.		2
327	The emergence of polychronization and feature binding in a spiking neural network model of the primate ventral visual system Psychological Review, 2018, 125, 545-571.	2.7	11
333	â—¾ Contour-, Surface-, and Object-Related Coding in the Visual Cortex. , 2011, , 171-188.		1
334	Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells. PLoS Computational Biology, 2018, 14, e1005930.	1.5	6
335	Refractory density model of cortical direction selectivity: Lagged-nonlagged, transient-sustained, and On-Off thalamic neuron-based mechanisms and intracortical amplification. PLoS Computational Biology, 2020, 16, e1008333.	1.5	8
336	Contrast Adaptation Contributes to Contrast-Invariance of Orientation Tuning of Primate V1 Cells. PLoS ONE, 2009, 4, e4781.	1.1	24
337	How Lateral Connections and Spiking Dynamics May Separate Multiple Objects Moving Together. PLoS ONE, 2013, 8, e69952.	1.1	7
338	Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems. PLoS ONE, 2014, 9, e87636.	1.1	26

#	Article	IF	CITATIONS
339	Kinetic theory for neuronal network dynamics. Communications in Mathematical Sciences, 2006, 4, 97-127.	0.5	63
340	The role of fluctuations in coarse-grained descriptions of neuronal networks. Communications in Mathematical Sciences, 2012, 10, 307-354.	0.5	7
341	Narrow and Broad Î ³ Bands Process Complementary Visual Information in Mouse Primary Visual Cortex. ENeuro, 2021, 8, ENEURO.0106-21.2021.	0.9	9
344	Ratio of Average Inhibitory to Excitatory Conductance Modulates the Response of Simple Cell. Lecture Notes in Computer Science, 2006, , 82-89.	1.0	0
345	Visual Cortical Models of Orientation Tuning. , 2009, , 269-275.		0
347	$\hat{a}-3/4$ 3D and Spatiotemporal Interpolation in Object and Surface Formation. , 2011, , 209-234.		0
348	Modeling the Emergence of Orientation Selectivity in the Cerebral Cortex. , 2014, , 1-15.		0
355	Enhanced Saliency Prediction via Orientation Selectivity. , 2020, , .		0
357	STDP Plasticity in TRN Within Hierarchical Spike Timing Model ofÂVisual Information Processing. IFIP Advances in Information and Communication Technology, 2020, , 279-290.	0.5	3
358	Brain-Inspired Spike Timing Model of Dynamic Visual Information Perception and Decision Making with STDP and Reinforcement Learning. Lecture Notes in Computer Science, 2020, , 421-435.	1.0	2
359	HPC parallel implementation combining NEST Simulator and Python modules. Cluster Computing, 0, , 1.	3.5	0
362	Sensory coding and contrast invariance emerge from the control of plastic inhibition over emergent selectivity. PLoS Computational Biology, 2021, 17, e1009566.	1.5	5
363	Analytic Model for Feature Maps in the Primary Visual Cortex. Frontiers in Computational Neuroscience, 2022, 16, 659316.	1.2	2
366	Emergence of Orientation Selectivity in the Cerebral Cortex, Modeling. , 2022, , 1294-1307.		Ο
369	Mechanisms for Spontaneous Symmetry Breaking in Developing Visual Cortex. Physical Review X, 2022, 12, .	2.8	1
371	Classification of natural images inspired by the human visual system. Neurocomputing, 2023, 518, 60-69.	3.5	5
373	Simulations of cortical networks using spatially extended conductanceâ€based neuronal models. Journal of Physiology, 2023, 601, 3123-3139.	1.3	6