Expression of the peroxisome proliferator-activated rec atherosclerosis and regulation in macrophages by color oxidized low density lipoprotein

Proceedings of the National Academy of Sciences of the Unite 95, 7614-7619

DOI: 10.1073/pnas.95.13.7614

Citation Report

#	Article	IF	CITATIONS
1	PPARÎ ³ 3 mRNA: a distinct PPARÎ ³ mRNA subtype transcribed from an independent promoter. FEBS Letters, 1998, 438, 55-60.	1.3	290
2	Peroxisome Proliferator-Activated Receptor Gamma Activators Inhibit Gene Expression and Migration in Human Vascular Smooth Muscle Cells. Circulation Research, 1998, 83, 1097-1103.	2.0	565
3	Peroxisome proliferator-activated receptor γ C161→T polymorphism and coronary artery disease. Cardiovascular Research, 1999, 44, 588-594.	1.8	123
4	Peroxisome proliterator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Current Opinion in Lipidology, 1999, 10, 245-258.	1.2	386
5	A Review of Metabolic and Cardiovascular Effects of Oral Antidiabetic Agents: Beyond Glucose-Level Lowering. European Journal of Cardiovascular Prevention and Rehabilitation, 1999, 6, 337-346.	3.1	50
6	Two Polymorphisms in the Peroxisome Proliferator-Activated Receptor-Î ³ Gene Are Associated with Severe Overweight among Obese Women*. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3708-3712.	1.8	206
7	Peroxisome Proliferator-Activated Receptor Activators Inhibit Thrombin-Induced Endothelin-1 Production in Human Vascular Endothelial Cells by Inhibiting the Activator Protein-1 Signaling Pathway. Circulation Research, 1999, 85, 394-402.	2.0	489
8	Peroxisome Proliferator–Activated Receptor Activators Target Human Endothelial Cells to Inhibit Leukocyte–Endothelial Cell Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2094-2104.	1.1	353
9	Interleukin 1β Induces Type II-secreted Phospholipase A2 Gene in Vascular Smooth Muscle Cells by a Nuclear Factor IºB and Peroxisome Proliferator-activated Receptor-mediated Process. Journal of Biological Chemistry, 1999, 274, 23085-23093.	1.6	87
10	Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. Current Opinion in Biotechnology, 1999, 10, 564-570.	3.3	184
11	The relation between insulin resistance and cardiovascular complications of the insulin resistance syndrome. Diabetes, Obesity and Metabolism, 1999, 1, 8-16.	2.2	30
12	Interleukin-4-dependent production of PPAR-Î ³ ligands in macrophages by 12/15-lipoxygenase. Nature, 1999, 400, 378-382.	13.7	822
13	An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cellular and Molecular Life Sciences, 1999, 55, 932.	2.4	173
14	Lipid mediators that modulate the extracellular matrix structure and function in vascular cells. Current Atherosclerosis Reports, 1999, 1, 142-149.	2.0	10
15	Atherosclerotic plaque rupture: emerging insights and opportunities. American Journal of Cardiology, 1999, 84, 15-20.	0.7	100
16	Pathophysiological Events during Pregnancy Influence the Development of Atherosclerosis in Humans. Trends in Cardiovascular Medicine, 1999, 9, 205-214.	2.3	53
17	Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism*. Endocrine Reviews, 1999, 20, 649-688.	8.9	2,435
18	Orphan Nuclear Receptors: Shifting Endocrinology into Reverse. Science, 1999, 284, 757-760.	6.0	469

#	Article	IF	CITATIONS
19	Peroxisome proliferator-activated receptor-Î ³ : a versatile metabolic regulator. Annals of Medicine, 1999, 31, 342-351.	1.5	82
20	Medical significance of peroxisome proliferator-activated receptors. Lancet, The, 1999, 354, 141-148.	6.3	446
21	Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet, The, 1999, 354, 1234-1241.	6.3	564
22	Lipoprotein lipase, a key role in atherosclerosis?. FEBS Letters, 1999, 462, 1-6.	1.3	59
23	Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions. FEBS Letters, 1999, 462, 145-150.	1.3	88
24	Substitution of a conserved amino acid residue alters the ligand binding properties of peroxisome proliferator activated receptors. FEBS Letters, 1999, 463, 205-210.	1.3	8
25	Prostaglandin D2 and sleep regulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1436, 606-615.	1.2	134
26	PPARÎ ³ Activation Induces the Expression of the Adipocyte Fatty Acid Binding Protein Gene in Human Monocytes. Biochemical and Biophysical Research Communications, 1999, 261, 456-458.	1.0	167
27	Peroxisome Proliferator-Activated Receptor γ1 Expression in Porcine White Blood Cells: Dynamic Regulation with Acute Endotoxemia. Biochemical and Biophysical Research Communications, 1999, 263, 749-753.	1.0	25
28	Advanced Glycation End Product-Induced Peroxisome Proliferator-Activated Receptor Î ³ Gene Expression in the Cultured Mesangial Cells. Biochemical and Biophysical Research Communications, 1999, 264, 441-448.	1.0	54
29	Low Density Lipoprotein (LDL) Modification: Basic Concepts and Relationship to Atherosclerosis. Blood Purification, 1999, 17, 66-78.	0.9	44
30	The peroxisome proliferator-activated receptorγ (PPARγ) as a regulator of monocyte/macrophage function. Journal of Leukocyte Biology, 1999, 66, 733-739.	1.5	276
31	Lipidology. Current Opinion in Lipidology, 1999, 10, 64.	1.2	3
32	Regulation of macrophage gene expression by peroxisome-proliferator-activated receptor y. Current Opinion in Lipidology, 1999, 10, 485-490.	1.2	54
33	Peroxisome proliterator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Current Opinion in Lipidology, 1999, 10, 151-160.	1.2	210
34	Peroxisome proliferator-activated receptors (PPARs) and their implications in diseases. Current Opinion in Endocrinology, Diabetes and Obesity, 2000, 7, 8-18.	0.6	16
35	Metabolism of oxidized LDL by macrophages. Current Opinion in Lipidology, 2000, 11, 473-481.	1.2	61
36	PPAR agonists as direct modulators of the vessel wall in cardiovascular disease. Medicinal Research Reviews, 2000, 20, 350-366.	5.0	35

#	Article	IF	CITATIONS
37	Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. Journal of Internal Medicine, 2000, 247, 371-380.	2.7	205
38	Peroxisome proliferatorâ€activated receptors in tumorigenesis: Targets of tumour promotion and treatment. Immunology and Cell Biology, 2000, 78, 436-441.	1.0	70
39	Gene expression profiling of cardiovascular disease models. Current Opinion in Biotechnology, 2000, 11, 598-601.	3.3	10
40	Peroxisome proliferator-activated receptors in the cardiovascular system. British Journal of Pharmacology, 2000, 129, 823-834.	2.7	314
41	Lipid oxidation products in cell signaling. Free Radical Biology and Medicine, 2000, 28, 1370-1378.	1.3	186
42	PPAR Signaling in the Control of Cardiac Energy Metabolism. Trends in Cardiovascular Medicine, 2000, 10, 238-245.	2.3	440
43	COX-2 and the cyclopentenone prostaglandins - a new chapter in the book of inflammation?. Prostaglandins and Other Lipid Mediators, 2000, 62, 33-43.	1.0	45
44	PPARÎ ³ : observations in the hematopoietic systemâ ⁻ †. Prostaglandins and Other Lipid Mediators, 2000, 62, 45-73.	1.0	53
45	Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 448, 121-138.	0.4	414
46	Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochemical Pharmacology, 2000, 60, 1245-1250.	2.0	202
47	Nitric Oxide Synthase 2 and Cyclooxygenase 2 Interactions in Inflammation. Immunologic Research, 2000, 22, 319-342.	1.3	95
48	The effect of γ-interferon to inhibit macrophage-high density lipoprotein interactions is reversed by Δ12,14-prostaglandin J2J2. Lipids, 2000, 35, 1239-1247.	0.7	11
49	New insights into the role of COX 2 in inflammation. Journal of Molecular Medicine, 2000, 78, 121-129.	1.7	113
50	Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflammation Research, 2000, 49, 497-505.	1.6	853
51	Activation of Peroxisome Proliferator-Activated Receptor γ Does Not Inhibit IL-6 or TNF-α Responses of Macrophages to Lipopolysaccharide In Vitro or In Vivo. Journal of Immunology, 2000, 164, 1046-1054.	0.4	189
52	Activation of Peroxisome Proliferator-activated Receptor-Î ³ Pathway Inhibits Osteoclast Differentiation. Journal of Biological Chemistry, 2000, 275, 14388-14393.	1.6	102
53	Nuclear receptors in metabolic diseases. Expert Opinion on Therapeutic Targets, 2000, 4, 377-396.	1.0	4
54	Differential Regulation of Macrophage Peroxisome Proliferator–Activated Receptor Expression by Glucose. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 104-110.	1.1	48

#	Article	IF	CITATIONS
55	Expression of Peroxisome Proliferator Activated Receptors (PPARs) in Human Hair Follicles and PPARα Involvement in Hair Growth. Acta Dermato-Venereologica, 2000, 80, 329-334.	0.6	46
56	In Vivo Uptake of Radiolabeled MDA2, an Oxidation-Specific Monoclonal Antibody, Provides an Accurate Measure of Atherosclerotic Lesions Rich in Oxidized LDL and Is Highly Sensitive to Their Regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 689-697.	1.1	119
57	Modulation of Vascular Inflammation In Vitro and In Vivo by Peroxisome Proliferator–Activated Receptor-γ Activators. Circulation, 2000, 101, 235-238.	1.6	515
58	Large Scale Gene Expression Analysis of Cholesterol-loaded Macrophages. Journal of Biological Chemistry, 2000, 275, 37324-37332.	1.6	113
59	Expression and Function of PPARÎ ³ in Rat and Human Vascular Smooth Muscle Cells. Circulation, 2000, 101, 1311-1318.	1.6	434
60	CLA-1/SR-BI Is Expressed in Atherosclerotic Lesion Macrophages and Regulated by Activators of Peroxisome Proliferator-Activated Receptors. Circulation, 2000, 101, 2411-2417.	1.6	405
61	The Nuclear Receptor PPARÎ ³ and Immunoregulation: PPARÎ ³ Mediates Inhibition of Helper T Cell Responses. Journal of Immunology, 2000, 164, 1364-1371.	0.4	442
62	Induction of lκBα Expression as a Mechanism Contributing to the Anti-inflammatory Activities of Peroxisome Proliferator-activated Receptor-α Activators. Journal of Biological Chemistry, 2000, 275, 36703-36707.	1.6	417
63	Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells. FASEB Journal, 2000, 14, 1996-2007.	0.2	191
64	Maternal Hypercholesterolemia Enhances Atherogenesis in Normocholesterolemic Rabbits, Which Is Inhibited by Antioxidant or Lipid-Lowering Intervention During Pregnancy. Circulation Research, 2000, 87, 946-952.	2.0	128
65	Retinoids and Arterial Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1882-1888.	1.1	18
66	Regulation of Macrophage Gene Expression by the Peroxisome Proliferator-Activated Receptor-γ. Hormone Research in Paediatrics, 2000, 54, 275-280.	0.8	62
67	Expression of Macrophage (M݆) Scavenger Receptor, CD36, in Cultured Human Aortic Smooth Muscle Cells in Association With Expression of Peroxisome Proliferator Activated Receptor-γ, Which Regulates Gain of M݆-Like Phenotype In Vitro, and Its Implication in Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1027-1032.	1.1	83
68	Differential Expression of Peroxisome Proliferator-activated Receptors (PPARs) in the Developing Human Fetal Digestive Tract. Journal of Histochemistry and Cytochemistry, 2000, 48, 603-611.	1.3	77
69	Transforming Growth Factor-β1 (TGF-β1) and TGF-β2 Decrease Expression of CD36, the Type B Scavenger Receptor, through Mitogen-activated Protein Kinase Phosphorylation of Peroxisome Proliferator-activated Receptor-γ. Journal of Biological Chemistry, 2000, 275, 1241-1246.	1.6	152
70	Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis. Journal of Biological Chemistry, 2000, 275, 17527-17535.	1.6	371
71	PPAR-Î ³ agonists: therapeutic role in diabetes, inflammation and cancer. Trends in Pharmacological Sciences, 2000, 21, 469-474.	4.0	369
72	Peroxisome Proliferator–Activated Receptor-γ Ligands Inhibit Nitric Oxide Synthesis in Vascular Smooth Muscle Cells. Hypertension, 2000, 35, 1232-1236.	1.3	41

#	Article	IF	CITATIONS
74	The PPARs:  From Orphan Receptors to Drug Discovery. Journal of Medicinal Chemistry, 2000, 43, 527-550.	2.9	1,706
75	PPARs in Inflammation, Atherosclerosis and Thrombosis. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 187-194.	3.1	40
76	25-hydroxycholesterol induces lipopolysaccharide-tolerance and decreases a lipopolysaccharide-induced TNF-1± secretion in macrophages. Atherosclerosis, 2001, 158, 61-71.	0.4	36
77	Thiazolidinediones, peroxisome proliferator-activated receptor Î ³ agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis, 2001, 158, 113-119.	0.4	102
78	Vascular endothelial growth factor synthesis in vascular smooth muscle cells is enhanced by 7-ketocholesterol and lysophosphatidylcholine independently of their effect on nitric oxide generation. Atherosclerosis, 2001, 159, 325-332.	0.4	44
79	Peroxisome proliferator-activated receptors (PPARs): nuclear receptors with functions in the vascular wall. Clinical Research in Cardiology, 2001, 90, III125-III132.	1.2	44
80	Peroxisome Proliferator–Activated Receptor γ and Metabolic Disease. Annual Review of Biochemistry, 2001, 70, 341-367.	5.0	552
81	PPARÎ ³ Ligands Inhibit TNF-α-Induced LOX-1 Expression in Cultured Endothelial Cells. Biochemical and Biophysical Research Communications, 2001, 286, 541-546.	1.0	52
82	Identification of a Novel Peroxisome Proliferator-Activated Receptor (PPAR) Î ³ Promoter in Man and Transactivation by the Nuclear Receptor RORα1. Biochemical and Biophysical Research Communications, 2001, 287, 383-390.	1.0	112
83	Ppars, metabolic disease and atherosclerosis. Pharmacological Research, 2001, 44, 345-352.	3.1	110
84	Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer's disease. Neurobiology of Aging, 2001, 22, 937-944.	1.5	167
85	New roles for PPARs in cholesterol homeostasis. Trends in Pharmacological Sciences, 2001, 22, 441-443.	4.0	16
86	Current Concepts of the Pathogenesis of the Acute Coronary Syndromes. Circulation, 2001, 104, 365-372.	1.6	1,387
87	Inhibition of the transcription factors AP-1 and NF-κB in CD4 T cells by peroxisome proliferator-activated receptor γ ligands. International Immunopharmacology, 2001, 1, 803-812.	1.7	101
88	A PPARÎ ³ -LXR-ABCA1 Pathway in Macrophages Is Involved in Cholesterol Efflux and Atherogenesis. Molecular Cell, 2001, 7, 161-171.	4.5	1,240
89	Regulation of p85î± phosphatidylinositol-3-kinase expression by peroxisome proliferator-activated receptors (PPARs) in human muscle cells. FEBS Letters, 2001, 502, 98-102.	1.3	18
90	Atherosclerosis. Cell, 2001, 104, 503-516.	13.5	2,772
91	La disfunción endotelial en la angiopatÃa diabética. El factor de crecimiento del endotelio vascular. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2001, 48, 198-201.	0.8	2

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
93	Gene expression in visceral and subcutaneous adipose tissues. Annals of Medicine, 2001, 33, 547-	555.	1.5	93
94	Oxidation-Sensitive Transcription Factors and Molecular Mechanisms in the Arterial Wall. Antioxidants and Redox Signaling, 2001, 3, 1119-1130.		2.5	64
95	Novel Candidate Genes for Atherosclerosis Are Identified by Representational Difference Analysis-Based Transcript Profiling of Cholesterol-Loaded Macrophages. Pathobiology, 2001, 69, 304-314.		1.9	15
96	Peroxisome proliferator-activated receptor-Î ³ activity is associated with renal microvasculature. American Journal of Physiology - Renal Physiology, 2001, 281, F1036-F1046.		1.3	66
97	The Pleiotropic Nature of the Vascular PPAR Gene Regulatory Pathway. Circulation Research, 2001 935-937.	, 89,	2.0	17
98	Gene Expression in Atherogenesis. Thrombosis and Haemostasis, 2001, 86, 404-412.		1.8	25
99	Title is missing!. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 211-2	17.	1.5	44
100	Peroxisome proliferator-activated receptors in macrophage biology: friend or foe?. Current Opinior in Lipidology, 2001, 12, 519-527.	1	1.2	50
101	15-Deoxy-Δ12,14-prostaglandin J2, a specific ligand for peroxisome proliferator-activated receptor induces neuronal apoptosis. NeuroReport, 2001, 12, 839-843.	-ĵ3,	0.6	95
102	Title is missing!. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 187-19	94.	1.5	66
103	Title is missing!. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 203-2	10.	1.5	54
104	Identification of a peroxisome-proliferator-activated-receptor response element in the apolipoprote E gene control region. Biochemical Journal, 2001, 357, 521.	ein	1.7	48
105	Identification of a peroxisome-proliferator-activated-receptor response element in the apolipoprote E gene control region. Biochemical Journal, 2001, 357, 521-527.	ein	1.7	49
106	Nonhypoglycemic Effects of Thiazolidinediones. Annals of Internal Medicine, 2001, 134, 61.		2.0	359
107	Potential roles of the peroxisome proliferator-activated receptor-gamma in macrophage biology an atherosclerosis. Journal of Endocrinology, 2001, 169, 461-464.	ıd	1.2	38
108	The pleiotropic functions of peroxisome proliferator-activated receptor Î ³ . Journal of Molecular Medicine, 2001, 79, 30-47.		1.7	193
109	The role of fibric acids in atherosclerosis. Current Atherosclerosis Reports, 2001, 3, 83-92.		2.0	164
111	Peroxisome proliferator-activated receptor agonists prevent 25-OH-cholesterol induced c-jun activation and cell death. , 2001, 1, 10.			12

#	Article	IF	CITATIONS
112	Peroxisome proliferator-activated receptors (PPARs): Novel therapeutic targets in renal disease. Kidney International, 2001, 60, 14-30.	2.6	257
113	Peroxisome proliferator-activated receptor-Î ³ agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney International, 2001, 59, 1899-1910.	2.6	182
114	Identification and Quantitation of Unique Fatty Acid Oxidation Products in Human Atherosclerotic Plaque Using High-Performance Liquid Chromatography. Analytical Biochemistry, 2001, 292, 234-244.	1.1	69
115	Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes/Metabolism Research and Reviews, 2001, 17, 27-43.	1.7	60
116	Multiple role of reactive oxygen species in the arterial wall. Journal of Cellular Biochemistry, 2001, 82, 674-682.	1.2	216
117	Peroxisome proliferator-activated receptor Î ³ activators affect the maturation of human monocyte-derived dendritic cells. European Journal of Immunology, 2001, 31, 2857-2865.	1.6	212
118	The role of PPAR-Î ³ in macrophage differentiation and cholesterol uptake. Nature Medicine, 2001, 7, 41-47.	15.2	476
119	PPAR-Î ³ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine, 2001, 7, 48-52.	15.2	1,014
120	Lack of macrophage fatty-acid–binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nature Medicine, 2001, 7, 699-705.	15.2	616
121	Prostaglandin-J2 induces synthesis of interleukin-8 by endothelial cells in a PPARÎ ³ -independent manner. Prostaglandins and Other Lipid Mediators, 2001, 66, 165-177.	1.0	56
122	12/15-Lipoxygenase, Oxidative Modification of LDL and Atherogenesis. Trends in Cardiovascular Medicine, 2001, 11, 116-124.	2.3	114
123	The Orphan Nuclear Receptor Small Heterodimer Partner as a Novel Coregulator of Nuclear Factor-κB in Oxidized Low Density Lipoprotein-treated Macrophage Cell Line RAW 264.7. Journal of Biological Chemistry, 2001, 276, 33736-33740.	1.6	48
124	Control of Vascular Cell Proliferation and Migration by PPAR-Â: A new approach to the macrovascular complications of diabetes. Diabetes Care, 2001, 24, 392-397.	4.3	158
125	PPARs, Insulin Resistance and Type 2 Diabetes. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 211-217.	3.1	24
126	Human-Derived Anti-Oxidized LDL Autoantibody Blocks Uptake of Oxidized LDL by Macrophages and Localizes to Atherosclerotic Lesions In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1333-1339.	1.1	197
127	Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2610-2615.	3.3	271
128	Oxidized Alkyl Phospholipids Are Specific, High Affinity Peroxisome Proliferator-activated Receptor γ Ligands and Agonists. Journal of Biological Chemistry, 2001, 276, 16015-16023.	1.6	243
129	Peroxisome Proliferator-activated Receptor Î ³ Inhibits Transforming Growth Factor Î ² -induced Connective Tissue Growth Factor Expression in Human Aortic Smooth Muscle Cells by Interfering with Smad3, Journal of Biological Chemistry, 2001, 276, 45888-45894	1.6	162

#	Article	IF	CITATIONS
130	IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor Â1. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2443-2448.	3.3	146
131	Antiatherogenic Effects of Thiazolidinediones?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 295-296.	1.1	20
132	Peroxisome Proliferator-Activated Receptors (PPARs) and Their Role in the Vessel Wall: Possible Mediators of Cardiovascular Risk?. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 203-210.	3.1	25
133	Differential Regulation of Chemokine Gene Expression by 15-Deoxy-Δ12,1412,14 Prostaglandin J2. Journal of Immunology, 2001, 166, 7104-7111.	0.4	95
134	Troglitazone Inhibits Formation of Early Atherosclerotic Lesions in Diabetic and Nondiabetic Low Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 365-371.	1.1	376
135	Anti-Inflammatory Mechanisms in the Vascular Wall. Circulation Research, 2001, 88, 877-887.	2.0	392
136	Regulation of Peroxisome Proliferator-activated Receptor Î ³ Expression in Human Asthmatic Airways. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1487-1494.	2.5	187
137	PPARÎ ³ : a Nuclear Regulator of Metabolism, Differentiation, and Cell Growth. Journal of Biological Chemistry, 2001, 276, 37731-37734.	1.6	1,034
138	The Peroxisome Proliferator-activated Receptor δ Promotes Lipid Accumulation in Human Macrophages. Journal of Biological Chemistry, 2001, 276, 44258-44265.	1.6	243
139	Platelet-Derived Growth Factor Promotes the Expression of Peroxisome Proliferator-Activated Receptor γ in Vascular Smooth Muscle Cells by a Phosphatidylinositol 3-Kinase/Akt Signaling Pathway. Circulation Research, 2001, 89, 1058-1064.	2.0	43
140	Oxidized Low Density Lipoprotein Exposure Alters the Transcriptional Response of Macrophages to Inflammatory Stimulus. Journal of Biological Chemistry, 2001, 276, 45729-45739.	1.6	49
141	Heat shock proteins: new keys to the development of cytoprotective therapies. Expert Opinion on Therapeutic Targets, 2001, 5, 267-287.	1.0	63
142	Intimal Smooth Muscle Cells as a Target for Peroxisome Proliferator-Activated Receptor-Î ³ Ligand Therapy. Circulation Research, 2002, 91, 210-217.	2.0	58
143	Peroxisome Proliferator-Activated Receptor-Î ³ Agonist 15-Deoxy-Δ12,1412,14-Prostaglandin J2 Ameliorates Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2002, 168, 2508-2515.	0.4	283
144	Novel 5′ Exon of Scavenger Receptor CD36 Is Expressed in Cultured Human Vascular Smooth Muscle Cells and Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 412-417.	1.1	38
145	Cyclooxygenase-2 Is Induced in Monocytes by Peroxisome Proliferator Activated Receptor Î ³ and Oxidized Alkyl Phospholipids from Oxidized Low Density Lipoprotein. Journal of Biological Chemistry, 2002, 277, 13029-13036.	1.6	94
146	How best to counteract the enemies? By controlling inflammation in the coronary circulation. European Heart Journal Supplements, 2002, 4, G53-G65.	0.0	2
147	Novel insulin sensitizers: pharmacogenomic aspects. Pharmacogenomics, 2002, 3, 99-116.	0.6	33

#	Article	IF	CITATIONS
148	PPARÎ ³ but not PPARα Ligands Are Potent Repressors of Major Histocompatibility Complex Class II Induction in Atheroma-Associated Cells. Circulation Research, 2002, 90, 356-362.	2.0	52
149	Maternal Hypercholesterolemia During Pregnancy Promotes Early Atherogenesis in LDL Receptor-Deficient Mice and Alters Aortic Gene Expression Determined by Microarray. Circulation, 2002, 105, 1360-1367.	1.6	145
150	Differential Effects of Metformin and Troglitazone on Cardiovascular Risk Factors in Patients With Type 2 Diabetes. Diabetes Care, 2002, 25, 542-549.	4.3	189
151	Antiinflammatory and Antiarteriosclerotic Effects of Pioglitazone. Hypertension, 2002, 40, 687-693.	1.3	140
152	Cyclooxygenase-2 Promotes Early Atherosclerotic Lesion Formation in LDL Receptor–Deficient Mice. Circulation, 2002, 105, 1816-1823.	1.6	278
153	Lack of association between peroxisome proliferator-activated receptor-gamma-2 gene variants and the occurrence of coronary heart disease in patients with diabetes mellitus. European Journal of Endocrinology, 2002, 146, 545-551.	1.9	32
154	Biologic aspects of vulnerable plaque. Current Opinion in Cardiology, 2002, 17, 616-625.	0.8	33
155	Cyclooxygenase-2 and atherosclerosis. Current Opinion in Lipidology, 2002, 13, 497-504.	1.2	42
156	Roles of peroxisome proliferator-activated receptor Î ³ in lipid homeostasis and inflammatory responses of macrophages. Current Opinion in Lipidology, 2002, 13, 305-312.	1.2	27
157	Differential Regulation of Vascular Endothelial Growth Factor Expression by Peroxisome Proliferator-activated Receptors in Bladder Cancer Cells. Journal of Biological Chemistry, 2002, 277, 23534-23543.	1.6	99
158	Early Growth Response Factor-1 Is a Critical Transcriptional Mediator of Peroxisome Proliferator-activated Receptor-γ1 Gene Expression in Human Aortic Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 26808-26814.	1.6	56
159	Angiotensin II is associated with activation of NF-κB-mediated genes and downregulation of PPARs. Physiological Genomics, 2002, 11, 21-30.	1.0	262
160	Upregulation of interleukin-8 expression by prostaglandin D2 metabolite 15-deoxy-delta12, 14 prostaglandin J2 (15d-PGJ2) in human THP-1 macrophages. Atherosclerosis, 2002, 160, 11-20.	0.4	49
161	Peroxisome proliferator-activated receptor α and γ agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis, 2002, 165, 101-110.	0.4	45
162	The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis, 2002, 165, 259-269.	0.4	170
163	Conditional Disruption of the Peroxisome Proliferator-Activated Receptor Î ³ Gene in Mice Results in Lowered Expression of ABCA1, ABCG1, and apoE in Macrophages and Reduced Cholesterol Efflux. Molecular and Cellular Biology, 2002, 22, 2607-2619.	1.1	357
164	Genetic analysis of four novel peroxisome proliferator activated receptor-Î ³ splice variants in monkey macrophages. Biochemical and Biophysical Research Communications, 2002, 293, 274-283.	1.0	59
165	TGF-β1 induces peroxisome proliferator-activated receptor γ1 and γ2 expression in human THP-1 monocytes. Biochemical and Biophysical Research Communications, 2002, 297, 794-799.	1.0	22

#	Article	IF	CITATIONS
166	Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Letters, 2002, 512, 85-90.	1.3	69
167	PPARÎ ³ ligands, troglitazone and pioglitazone, up-regulate expression of HMG-CoA synthase and HMG-CoA reductase gene in THP-1 macrophages. FEBS Letters, 2002, 520, 177-181.	1.3	36
168	Further insight on the hypoglycemic and nonhypoglycemic effects of troglitazone 400 or 600 mg/d: Effects on the very-low-density and high-density lipoprotein particle distribution. Metabolism: Clinical and Experimental, 2002, 51, 44-51.	1.5	12
169	Sex and hormonal status influence the effects of psyllium on lipoprotein remodeling and composition. Metabolism: Clinical and Experimental, 2002, 51, 500-507.	1.5	19
170	Effect of peroxisome proliferator-activated receptor gamma on thromboxane A2 and prostaglandin E2 production in macrophage cell lines. Prostaglandins Leukotrienes and Essential Fatty Acids, 2002, 67, 245-251.	1.0	2
171	Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPARγ-dependent mechanism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1581, 89-99.	1.2	267
172	Age-related phenotypes in the staggerer mouse expand the RORα nuclear receptor's role beyond the cerebellum. Molecular and Cellular Endocrinology, 2002, 186, 1-5.	1.6	68
174	Vascular Inflammation Is Negatively Autoregulated by Interaction Between CCAAT/Enhancer-Binding Protein-δ and Peroxisome Proliferator-Activated Receptor-γ. Circulation Research, 2002, 91, 427-433.	2.0	120
175	The Generation of Monoclonal Antibodies against Human Peroxisome Proliferator-activated Receptors (PPARs). Journal of Atherosclerosis and Thrombosis, 2002, 9, 233-242.	0.9	36
176	Maternal Hypercholesterolemia During Pregnancy Promotes Early Atherogenesis in LDL Receptor-Deficient Mice and Alters Aortic Gene Expression Determined by Microarray. Circulation, 2002, 105, 1360-1367.	1.6	133
177	Quantitative trait locus mapping of genes that regulate HDL cholesterol in SM/J and NZB/B1NJ inbred mice. Physiological Genomics, 2002, 9, 93-102.	1.0	25
178	PPAR-γ ligands modulate effects of LPS in stimulated rat synovial fibroblasts. American Journal of Physiology - Cell Physiology, 2002, 282, C125-C133.	2.1	78
179	PPAR., 2002,, 141-158.		0
180	Expression of peroxisome proliferator-activated receptors alpha and gamma in differentiating human colon carcinoma Caco-2 cells. Biology of the Cell, 2002, 94, 15-27. Toxicological consequences of altered peroxisome proliferator-activated receptor î ³ (PPAR ³) expression	0.7	22
181	in the liver: insights from models of obesity and type 2 diabetes11Abbreviations: PPÀR, peroxisome proliferator-activated receptor; 15d-PGJ2, 15-deoxy-l°12,14-prostaglandin J2; NEFA, non-esterified fatty acid; T2DM, type 2 (non-insulin-dependent) diabetes mellitus; LPS, lipopolysaccharide; NSAIDs, nonsteroidal anti-inflammatory drugs; IL, interleukin; TNF α, tumor necrosis factor-α; TRAIL, tumor	2.0	117
182	necrosis fac. Biochemical Pharmacology, 2002, 63, 1-10. Oxidized lipoproteins and macrophages. Vascular Pharmacology, 2002, 38, 239-248.	1.0	32
183	Vascular protective effects by activation of nuclear receptor PPARÎ ³ . Journal of Diabetes and Its Complications, 2002, 16, 46-49.	1.2	41
184	Roles of peroxisome proliferator-activated receptor Î ³ in cardiovascular disease. Journal of Diabetes and Its Complications, 2002, 16, 108-114.	1.2	24

#	Article	IF	CITATIONS
185	Natural ligands of PPARÎ ³ :. Cellular Signalling, 2002, 14, 573-583.	1.7	123
186	Peroxisome proliferator-activated receptor ? agonists: Potential use for treating chronic inflammatory diseases. Arthritis and Rheumatism, 2002, 46, 598-605.	6.7	30
187	Orphan nuclear receptors find a home in the arterial wall. Current Atherosclerosis Reports, 2002, 4, 213-221.	2.0	22
188	Insulin resistance, diabetes, and atherosclerosis: Thiazolidinediones as therapeutic interventions. Current Cardiology Reports, 2002, 4, 514-521.	1.3	29
189	Peroxisome proliferator-activated receptor \hat{I}^3 and atherosclerosis. Current Hypertension Reports, 2002, 4, 71-77.	1.5	22
190	Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney International, 2002, 61, 2142-2148.	2.6	90
191	Role of Peroxisome Proliferator-Activated Receptor gamma Ligands in the Vessel Wall. European Surgery - Acta Chirurgica Austriaca, 2002, 34, 121-126.	0.3	1
192	PPARgamma and the thiazolidinediones: molecular basis for a treatment of 'Syndrome X'?. Diabetes, Obesity and Metabolism, 2002, 4, 239-248.	2.2	21
193	Eicosapentaenoic Acid Induces mRNA Expression of Peroxisome Proliferatorâ€Activated Receptor γ. Obesity, 2002, 10, 518-525.	4.0	117
194	Anti-inflammatory properties of lipid oxidation products. Journal of Molecular Medicine, 2003, 81, 613-626.	1.7	73
195	Effect of 15-deoxy-Δ12,14-prostaglandin J2 on acute lung injury induced by lipopolysaccharide in mice. European Journal of Pharmacology, 2003, 481, 261-269.	1.7	20
196	The potential role of peroxisome proliferator–activated receptors on inflammation in type 2 diabetes mellitus and atherosclerosis. American Journal of Cardiology, 2003, 92, 34-41.	0.7	70
197	A non-thiazolidinedione partial peroxisome proliferator-activated receptor γ ligand inhibits vascular smooth muscle cell growth. European Journal of Pharmacology, 2003, 466, 225-234.	1.7	43
198	Expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor-? and levels of prostaglandin E2 and 15-deoxy-?12,14-prostaglandin J2 in human breast cancer and metastasis. International Journal of Cancer, 2003, 103, 84-90.	2.3	58
199	Modulation of PPARÎ ³ activity with pharmaceutical agents: Treatment of insulin resistance and atherosclerosis. Journal of Cellular Biochemistry, 2003, 89, 38-47.	1.2	60
200	Effects of peroxisome proliferator-activated receptor-? agonists on central nervous system inflammation. Journal of Neuroscience Research, 2003, 71, 315-325.	1.3	136
201	Rapid induction of peroxisome proliferator–activated receptor γ expression in human monocytes by monosodium urate monohydrate crystals. Arthritis and Rheumatism, 2003, 48, 231-239.	6.7	73
202	Noradrenaline induces expression of peroxisome proliferator activated receptor gamma (PPARγ) in murine primary astrocytes and neurons. Journal of Neurochemistry, 2003, 86, 907-916.	2.1	47

#	Article	IF	Citations
203	PPARÎ ³ and metabolism: insights from the study of human genetic variants. Clinical Endocrinology, 2003, 59, 267-277.	1.2	78
204	The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. Journal of the American College of Cardiology, 2003, 42, 1757-1763.	1.2	192
205	Reduced atherosclerosis in hormone-sensitive lipase transgenic mice overexpressing cholesterol acceptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1634, 76-85.	1.2	16
206	Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL: roles of peroxidation, lipoprotein-associated phospholipase A2 and PPARγ. FEBS Letters, 2003, 553, 145-150.	1.3	32
207	Microarray analysis of peroxisome proliferator-activated receptor-Î ³ induced changes in gene expression in macrophages. Biochemical and Biophysical Research Communications, 2003, 308, 505-510.	1.0	54
208	Downregulation of PPARÎ ³ expression in peripheral blood monocytes correlated with adhesion molecules in acute coronary syndrome. Clinica Chimica Acta, 2003, 336, 19-25.	0.5	6
209	The regulation of EN-RAGE (S100A12) gene expression in human THP-1 macrophages. Atherosclerosis, 2003, 171, 211-218.	0.4	66
210	Gene–gene interaction of PPARγ and ApoE affects coronary heart disease risk. International Journal of Cardiology, 2003, 92, 257-263.	0.8	45
211	Association of the PRO12ALA polymorphism of the PPAR-γ2 gene with oxidized low-density lipoprotein and cardiolipin autoantibodies in nondiabetic and type 2 diabetic subjects. Metabolism: Clinical and Experimental, 2003, 52, 213-217.	1.5	14
212	The Metabolic Syndrome: Peroxisome Proliferator-Activated Receptor Î ³ and Its Therapeutic Modulation. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2412-2421.	1.8	167
213	PPARÎ ³ Agonists and Vascular Risk Factors: Potential Effects on Cardiovascular Disease. Metabolic Syndrome and Related Disorders, 2003, 1, 23-32.	0.5	3
214	Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARÂ agonist. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 131-136.	3.3	525
215	Effect of thePro12AlaPolymorphism in the Peroxisome Proliferator-Activated Receptor (PPAR) γ2 Gene on the Expression of PPARγ Target Genes in Adipose Tissue of Massively Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1717-1722.	1.8	37
216	Differential recruitment of the coactivator proteins CREB-binding protein and steroid receptor coactivator-1 to peroxisome proliferator-activated receptor gamma/9-cis-retinoic acid receptor heterodimers by ligands present in oxidized low-density lipoprotein. Journal of Endocrinology, 2003,	1.2	21
217	GATA-6 Is Involved in PPARÎ ³ -Mediated Activation of Differentiated Phenotype in Human Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 404-410.	1.1	36
218	Elevated Plasma Levels of the Atherogenic Mediator Soluble CD40 Ligand in Diabetic Patients. Circulation, 2003, 107, 2664-2669.	1.6	190
219	Synergism Between Platelet-Activating Factor-Like Phospholipids and Peroxisome Proliferator-Activated Receptor γ Agonists Generated During Low Density Lipoprotein Oxidation That Induces Lipid Body Formation in Leukocytes. Journal of Immunology, 2003, 171, 2090-2098.	0.4	35
220	Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Expression Is Decreased in Pulmonary Hypertension and Affects Endothelial Cell Growth. Circulation Research, 2003, 92, 1162-1169.	2.0	280

#	Article	IF	CITATIONS
221	Adipogenic differentiating agents regulate expression of fatty acid binding protein and CD36 in the J744 macrophage cell line. Journal of Lipid Research, 2003, 44, 1877-1886.	2.0	48
222	Metalloproteinase Expression in PMA-stimulated THP-1 Cells. Journal of Biological Chemistry, 2003, 278, 51340-51346.	1.6	80
223	A Functional Polymorphism in a STAT5B Site of the Human PPARÎ ³ 3 Gene Promoter Affects Height and Lipid Metabolism in a French Population. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 289-294.	1.1	91
224	Activation of Peroxisome Proliferator–Activated Receptor Gamma and Retinoid X Receptor Results in Net Depletion of Cellular Cholesteryl Esters in Macrophages Exposed to Oxidized Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 475-482.	1.1	69
225	Peroxisome Proliferator-Activated Receptor Agonists Inhibit Interleukin-1β-Mediated Nitric Oxide Production in Cultured Lacrimal Gland Acinar Cells. Journal of Ocular Pharmacology and Therapeutics, 2003, 19, 579-587.	0.6	19
226	Cyclooxygenase isoforms and atherosclerosis. Expert Reviews in Molecular Medicine, 2003, 5, 1-18.	1.6	27
227	Peroxisome Proliferator-Activated Receptors. Hypertension, 2003, 42, 664-668.	1.3	149
228	Role of Monocytes in Atherogenesis. Physiological Reviews, 2003, 83, 1069-1112.	13.1	355
229	Peroxisome Proliferator-Activated Receptor Î ³ Ligands Increase Release of Nitric Oxide From Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 52-57.	1.1	278
230	Rosiglitazone Reduces the Accelerated Neointima Formation After Arterial Injury in a Mouse Injury Model of Type 2 Diabetes. Circulation, 2003, 108, 1994-1999.	1.6	75
231	Thiazolidinediones – some recent developments. Expert Opinion on Investigational Drugs, 2003, 12, 1179-1187.	1.9	56
232	Peroxisome proliferation-activated receptor-Î ³ ligands ameliorate experimental autoimmune myocarditis. Cardiovascular Research, 2003, 59, 685-694.	1.8	39
233	PPARÂ and PPARÂ negatively regulate specific subsets of lipopolysaccharide and IFN-Â target genes in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6712-6717.	3.3	395
234	Peroxisome Proliferator-Activated Receptor-Î ³ Is Deficient in Alveolar Macrophages from Patients with Alveolar Proteinosis. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 677-682.	1.4	121
235	Peroxisome proliferator-activated receptor-Î ³ agonists in atherosclerosis: current evidence and future directions. Current Opinion in Lipidology, 2003, 14, 567-573.	1.2	41
236	The peroxisome proliferator activated receptor \hat{I}' is required for the differentiation of THP-1 monocytic cells by phorbol ester. Nuclear Receptor, 2003, 1, 9.	10.0	21
237	Zinc Modulates PPARÎ ³ Signaling and Activation of Porcine Endothelial Cells. Journal of Nutrition, 2003, 133, 3058-3064.	1.3	71
238	Inflammatory Reactions in the Pathogenesis of Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 2003, 10, 63-71.	0.9	288

#	Article	IF	CITATIONS
240	Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control. Journal of Biomedicine and Biotechnology, 2004, 2004, 156-166.	3.0	93
241	Angiotensin II, PPAR-Gamma and atherosclerosis. Frontiers in Bioscience - Landmark, 2004, 9, 359.	3.0	31
242	A Comparison of Differences in the Gene Expression Profiles of Phorbol 12-myristate 13-acetate Differentiated THP-1 Cells and Human Monocyte-derived Macrophage. Journal of Atherosclerosis and Thrombosis, 2004, 11, 88-97.	0.9	153
243	Ala12Ala Genotype of the Peroxisome Proliferator-Activated Receptor γ2 Protects against Atherosclerosis. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4238-4242.	1.8	58
244	Peroxisome Proliferator-Activated Receptors and Atherogenesis. Circulation Research, 2004, 94, 1168-1178.	2.0	471
245	Peroxisome Proliferator-Activated Receptor-Î ³ Calls for Activation in Moderation: Lessons from Genetics and Pharmacology. Endocrine Reviews, 2004, 25, 899-918.	8.9	251
246	Antiinflammatory Roles of Peroxisome Proliferator–activated Receptor γ in Human Alveolar Macrophages. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 195-200.	2.5	154
247	Preventative Effects of Rosiglitazone on Restenosis After Coronary Stent Implantation in Patients With Type 2 Diabetes. Diabetes Care, 2004, 27, 2654-2660.	4.3	245
248	Nutritional modulation of the cell cycle and breast cancer. Endocrine-Related Cancer, 2004, 11, 603-622.	1.6	32
249	Modulation of PPAR in Aging, Inflammation, and Calorie Restriction. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B997-B1006.	1.7	136
250	Peroxisome Proliferator-Activated Receptor Î ³ : Implications for Cardiovascular Disease. Hypertension, 2004, 43, 297-305.	1.3	134
251	PPAR-Î ³ Agonists: Shifting Attention from the Belly to the Heart?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 798-800.	1.1	12
252	Interferon Regulatory Factor-1 Mediates PPARÎ ³ -Induced Apoptosis in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 257-263.	1.1	35
253	COX-2 and the cardiovascular system. , 2004, , 161-178.		0
254	Peroxisome Proliferator-Activated Receptor-Î ³ Ligands Ameliorate Experimental Autoimmune Myocarditis Associated with Inhibition of Self-Sensitive T Cells. Journal of Cardiovascular Pharmacology, 2004, 43, 868-875.	0.8	18
255	Oxidized Low Density Lipoprotein Blocks Lipopolysaccharide-induced Interferon Î ² Synthesis in Human Macrophages by Interfering with IRF3 Activation. Journal of Biological Chemistry, 2004, 279, 28781-28788.	1.6	14
256	Peroxisome Proliferator-activated Receptor Î ³ Ligands Regulate Myeloperoxidase Expression in Macrophages by an Estrogen-dependent Mechanism Involving the -463GA Promoter Polymorphism. Journal of Biological Chemistry, 2004, 279, 8300-8315.	1.6	95
257	Role of Nrf2 in the Regulation of CD36 and Stress Protein Expression in Murine Macrophages. Circulation Research, 2004, 94, 609-616.	2.0	388

#	Article	IF	CITATIONS
259	Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Ligands and Their Therapeutic Utility. Progress in Medicinal Chemistry, 2004, 42, 1-53.	4.1	21
260	Peroxysome proliferator-activated receptors' gene expression in Type 2 diabetic atheroma. European Journal of Clinical Investigation, 2004, 34, 643-644.	1.7	2
261	PPARÎ ³ ligands, 15-deoxy-Δ12,14 -prostaglandin J2 and rosiglitazone regulate human cultured airway smooth muscle proliferation through different mechanisms. British Journal of Pharmacology, 2004, 141, 517-525.	2.7	59
262	S. aureus-dependent microglial activation is selectively attenuated by the cyclopentenone prostaglandin 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2). Journal of Neurochemistry, 2004, 90, 1163-1172.	2.1	40
263	Thiazolidinediones increase arachidonic acid release and subsequent prostanoid production in a peroxisome proliferator-activated receptor γ-independent manner. Prostaglandins and Other Lipid Mediators, 2004, 73, 191-213.	1.0	16
264	Nuclear receptor signaling in macrophages. Biochemical Pharmacology, 2004, 67, 201-212.	2.0	85
265	Peroxisome proliferator-activated receptor Î ³ . Cardiovascular Radiation Medicine, 2004, 5, 44-48.	0.7	9
266	Inhibitory effect of pioglitazone on expression of adhesion molecules on neutrophils and endothelial cells. BioFactors, 2004, 20, 37-47.	2.6	49
267	Diabetes and Inflammation. Herz, 2004, 29, 749-759.	0.4	25
268	Peroxisome proliferator-activated receptor ? gene polymorphism is associated with serum triglyceride levels and body mass index in Japanese type 2 diabetic patients. Journal of Clinical Laboratory Analysis, 2004, 18, 317-321.	0.9	22
269	NUCLEAR RECEPTORS IN MACROPHAGE BIOLOGY: At the Crossroads of Lipid Metabolism and Inflammation. Annual Review of Cell and Developmental Biology, 2004, 20, 455-480.	4.0	262
270	Potency of arachidonic acid in polyunsaturated fatty acid-induced death of human monocyte?macrophages: implications for atherosclerosis*1. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, , .	1.0	0
271	The selective peroxisomal proliferator-activated receptor-gamma agonist has an additive effect on plaque regression in combination with simvastatin in experimental atherosclerosis. Journal of the American College of Cardiology, 2004, 43, 464-473.	1.2	99
272	Role of Fibric Acid Derivatives in the Management of Risk Factors for Coronary Heart Disease. Drugs, 2004, 64, 2177-2198.	4.9	67
273	Cyclooxygenase-2 and inflammation in atherosclerosis. Current Opinion in Pharmacology, 2004, 4, 116-123.	1.7	112
274	Capsaicin inhibits the production of tumor necrosis factor α by LPS-stimulated murine macrophages, RAW 264.7: a PPARγ ligand-like action as a novel mechanism. FEBS Letters, 2004, 572, 266-270.	1.3	79
275	Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Experimental Cell Research, 2004, 297, 424-433.	1.2	93
276	Potency of arachidonic acid in polyunsaturated fatty acid-induced death of human monocyte–macrophages: implications for atherosclerosis. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, 71, 251-262.	1.0	16

#	Article	IF	CITATIONS
277	Ciglitizone and 15d PGJ2 induce apoptosis in Jurkat and Raji cells. International Immunopharmacology, 2004, 4, 1171-1185.	1.7	14
278	The intricate interface between immune system and metabolism. Trends in Immunology, 2004, 25, 193-200.	2.9	187
279	Peroxisome proliferator-activated receptor-Î ³ agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. American Heart Journal, 2004, 147, 1032-1037.	1.2	68
281	Chemokines, Chemokine Receptors and Atherosclerosis. Current Topics in Membranes, 2005, , 223-253.	0.5	3
282	Expression and regulation of sterol 27-hydroxylase (CYP27A1) in human macrophages: a role for RXR and PPARÎ ³ ligands. Biochemical Journal, 2005, 385, 823-830.	1.7	70
283	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-?? IS A NEW THERAPEUTIC TARGET IN SEPSIS AND INFLAMMATION. Shock, 2005, 23, 393-399.	1.0	137
284	Nuclear Peroxisome Proliferator-Activated Receptors and Thiazolidinediones. International Anesthesiology Clinics, 2005, 43, 1-21.	0.3	14
285	Identification and characterization of novel peroxisome proliferator-activated receptor-gamma (PPAR-gamma) transcriptional variants in pig and human. Journal of Animal Breeding and Genetics, 2005, 122, 45-53.	0.8	20
286	Effects of 15-deoxy-Delta12,14-prostaglandin J2 on the expression of Toll-like receptor 4 and 2 in the murine lung in the presence of lipopolysaccharide. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 230-232.	0.9	5
287	End-stage renal disease - not an equal opportunity disease: the role of genetic polymorphisms. Journal of Internal Medicine, 2005, 258, 1-12.	2.7	36
288	Insulin alters nuclear factor-κB and peroxisome proliferator-activated receptor-γ protein expression induced by glycated bovine serum albumin in vascular smooth-muscle cells. Translational Research, 2005, 145, 144-150.	2.4	12
289	Pretreatment with peroxysome proliferator-activated receptor α agonist fenofibrate protects endothelium in rabbit Escherichia coli endotoxin-induced shock. Intensive Care Medicine, 2005, 31, 1269-1279.	3.9	77
290	RÃ1e des récepteurs nucléaires PPAR et ROR dans les cellules articulaires de la polyarthrite rhumatoÃ⁻de. Revue Du Rhumatisme (Edition Francaise), 2005, 72, 331-336.	0.0	0
291	Thiazolidinediones and cardiovascular disease. Current Atherosclerosis Reports, 2005, 7, 115-120.	2.0	6
292	Multi-site therapeutic modalities for inflammatory bowel diseases — mechanisms of action. , 2003, , 523-551.		0
293	Peroxisome proliferator-activated receptors and cardiovascular remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1037-H1043.	1.5	100
294	Anti-Atherogenic Role of Peroxisome Proliferator-Activated Receptor Ligands. Current Cardiology Reviews, 2005, 1, 89-102.	0.6	4
295	mRNA expression of genes involved in lipid efflux and matrix degradation in occlusive and ectatic atherosclerotic disease. Journal of Clinical Pathology, 2005, 58, 1255-1260.	1.0	24

#	Article	IF	CITATIONS
296	PPARÎ ³ -mediated insulin sensitization: the importance of fat versus muscle. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E287-E291.	1.8	196
297	Beneficial effects of PPAR-? ligands in ischemia?reperfusion injury, inflammation and shock. Cardiovascular Research, 2005, 65, 772-781.	1.8	188
298	Conditional Knockout of Macrophage PPARγIncreases Atherosclerosis in C57BL/6 and Low-Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1647-1653.	1.1	173
299	Rosiglitazone Improves Myocardial Glucose Uptake in Patients With Type 2 Diabetes and Coronary Artery Disease: A 16-Week Randomized, Double-Blind, Placebo-Controlled Study. Diabetes, 2005, 54, 2787-2794.	0.3	92
300	Rosiglitazone Protects against Ischemia/Reperfusion-Induced Leukocyte Adhesion in the Zucker Diabetic Fatty Rat. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1020-1027.	1.3	19
301	Cardioprotective effects of peroxisome proliferator activated receptor activators on acute myocarditis: anti-inflammatory actions associated with nuclear factor ÂB blockade. Heart, 2005, 91, 1203-1208.	1.2	29
303	A potent activator of PPARα and γ reduces the vascular cell recruitment and inhibits the intimal thickning in hypercholesterolemic rabbits. Atherosclerosis, 2005, 178, 1-7.	0.4	23
304	Inverse Relationship between 15-Lipoxygenase-2 and PPAR-Î ³ Gene Expression in Normal Epithelia Compared with Tumor Epithelia. Neoplasia, 2005, 7, 280-293.	2.3	56
305	Peroxisome Proliferator-Activated Receptor-?? and its Agonists in Hypertension and Atherosclerosis. American Journal of Cardiovascular Drugs, 2005, 5, 389-398.	1.0	17
306	Impaired expression of PPARÎ ³ protein contributes to the exaggerated growth of vascular smooth muscle cells in spontaneously hypertensive rats. Life Sciences, 2005, 77, 3037-3048.	2.0	15
307	The mouse CCR2 gene is regulated by two promoters that are responsive to plasma cholesterol and peroxisome proliferator-activated receptor l³ ligands. Biochemical and Biophysical Research Communications, 2005, 332, 188-193.	1.0	31
308	15d-PGJ2: The anti-inflammatory prostaglandin?. Clinical Immunology, 2005, 114, 100-109.	1.4	298
309	Study of a new PPARÎ ³ 2 promoter polymorphism and haplotype analysis in a French population. Molecular Genetics and Metabolism, 2005, 85, 140-148.	0.5	28
310	Adipose Development: From Stem Cell to Adipocyte. Critical Reviews in Biochemistry and Molecular Biology, 2005, 40, 229-242.	2.3	440
311	An overview on biological mechanisms of PPARs. Pharmacological Research, 2005, 51, 85-94.	3.1	580
312	Role of PPARs in the Pathogenesis of the Metabolic Syndrome. , 2005, , 253-269.		0
313	Role of insulin secretagogues and insulin sensitizing agents in the prevention of cardiovascular disease in patients who have diabetes. Cardiology Clinics, 2005, 23, 119-138.	0.9	14
315	Mechanisms of Disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nature Clinical Practice Cardiovascular Medicine, 2005, 2, 309-315.	3.3	127

#	Article	IF	CITATIONS
316	Cytokine response to lipoprotein lipid loading in human monocyte-derived macrophages. Lipids in Health and Disease, 2006, 5, 17.	1.2	33
317	Peroxisome Proliferator-Activated Receptor-??. BioDrugs, 2006, 20, 121-135.	2.2	15
318	Platelets as a Novel Target for PPAR?? Ligands. BioDrugs, 2006, 20, 231-241.	2.2	38
319	Peroxisome Proliferator-Activated Receptor-?? Agonists for Management and Prevention of Vascular Disease in Patients with and without Diabetes Mellitus. American Journal of Cardiovascular Drugs, 2006, 6, 231-242.	1.0	29
321	Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis, 2006, 187, 40-49.	0.4	113
322	Inhibition of gastric cancer cells associated angiogenesis by 15d-prostaglandin J2 through the downregulation of angiopoietin-1. Cancer Letters, 2006, 243, 246-254.	3.2	25
323	Peroxisome proliferator-activated receptors and acute lung injury. Current Opinion in Pharmacology, 2006, 6, 263-270.	1.7	23
324	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS: How Their Effects on Macrophages Can Lead to the Development of a New Drug Therapy Against Atherosclerosis. Annual Review of Pharmacology and Toxicology, 2006, 46, 1-39.	4.2	67
325	Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Progress in Lipid Research, 2006, 45, 466-486.	5.3	143
326	Peroxisome Proliferator-Activated Receptors and Shock State. Scientific World Journal, The, 2006, 6, 1770-1782.	0.8	8
327	Chapter 2 PPARγ, a key therapeutic target in the metabolic syndrome – unique insights derived from the study of human genetic variants. Advances in Molecular and Cellular Endocrinology, 2006, 5, 15-41.	0.1	0
328	Peroxisome Proliferator-Activated Receptor Î ³ Ligand Pioglitazone Alters Neointimal Composition in a Balloon-Denuded and Radiated Hypercholesterolemic Rabbit. Journal of Cardiovascular Pharmacology, 2006, 48, 299-305.	0.8	22
329	Controlling oxidative stress as a novel molecular approach to protecting the vascular wall in diabetes. Current Opinion in Lipidology, 2006, 17, 510-518.	1.2	60
330	The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-Î ^{3*} . Critical Care Medicine, 2006, 34, 1874-1882.	0.4	165
331	Receptor Ck-dependent signaling regulates hTERT gene transcription. BMC Cell Biology, 2006, 7, 2.	3.0	13
332	Altered PPARÎ ³ expression and activation after transient focal ischemia in rats. European Journal of Neuroscience, 2006, 24, 1653-1663.	1.2	131
333	15-deoxy-?12,14-prostaglandin J2 (15d-PGJ2) and ciglitazone modulate Staphylococcus aureus-dependent astrocyte activation primarily through a PPAR-?-independent pathway. Journal of Neurochemistry, 2006, 99, 1389-1402.	2.1	31
334	Peroxisome proliferator-activated receptor-? agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clinical and Experimental Allergy, 2006, 36, 1494-1504.	1.4	79

#	Article	IF	CITATIONS
335	Tetrahydroisoquinoline PPARÎ ³ agonists: Design of novel, highly selective non-TZD antihyperglycemic agents. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6293-6297.	1.0	3
336	Anti-inflammatory Effects of PPAR-Î ³ Agonists Directly Correlate With PPAR-Î ³ Expression During Acute Pancreatitis. Journal of Gastrointestinal Surgery, 2006, 10, 1120-1130.	0.9	19
337	Investigational PPAR-Î ³ agonists for the treatment of Type 2 diabetes. Expert Opinion on Investigational Drugs, 2006, 15, 763-778.	1.9	33
338	Long-term exposure to oxidized low-density lipoprotein enhances tumor necrosis factor-α-stimulated endothelial adhesiveness of monocytes by activating superoxide generation and redox-sensitive pathways. Free Radical Biology and Medicine, 2006, 40, 817-826.	1.3	34
339	Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation. European Journal of Pharmacology, 2006, 533, 101-109.	1.7	114
340	Effects of Two Common Polymorphisms of Peroxisome Proliferator-Activated Receptor-Î ³ Gene on Metabolic Syndrome. Archives of Medical Research, 2006, 37, 86-94.	1.5	67
341	Identification and regulation of novel PPAR-γ splice variants in human THP-1 macrophages. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 32-43.	2.4	46
342	Niacin induces PPARÎ ³ expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochemical Pharmacology, 2006, 71, 646-656.	2.0	89
343	Peroxisome-proliferator-activated receptor-gamma (PPARÎ ³) activation protects neurons from NMDA excitotoxicity. Brain Research, 2006, 1073-1074, 460-469.	1.1	80
344	Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and 15d-prostaglandin J2—Mediated protection of brain after experimental cerebral ischemia in rat. Brain Research, 2006, 1096, 196-203.	1.1	74
345	Expression patterns of the chicken peroxisome proliferator-activated receptors (PPARs) during the development of the digestive organs. Gene Expression Patterns, 2006, 6, 171-179.	0.3	15
346	PPARÎ ³ activation induces CD36 expression and stimulates foam cell like changes in rVSMCs. Prostaglandins and Other Lipid Mediators, 2006, 80, 165-174.	1.0	65
347	PPAR Activity in the Vessel Wall: Anti-Atherogenic Properties. Current Medicinal Chemistry, 2006, 13, 3227-3238.	1.2	22
348	Antagonistic Effects of Oxidized Low Density Lipoprotein and α-Tocopherol on CD36 Scavenger Receptor Expression in Monocytes. Journal of Biological Chemistry, 2006, 281, 6489-6497.	1.6	80
349	Clinical Thiazolidinediones as PPARγ Ligands with the Potential for the Prevention of Cardiovascular Disease in Diabetes. Current Diabetes Reviews, 2006, 2, 227-239.	0.6	4
350	New Strategies in Evaluation of Therapeutic Efficacy in Fibromyalgia Syndrome. Current Pharmaceutical Design, 2006, 12, 67-71.	0.9	11
351	Anti-inflammatory effects of short-term pioglitazone therapy in men with advanced diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2006, 290, F600-F605.	1.3	79
352	PPAR-γ Agonists as Regulators of Microglial Activation and Brain Inflammation. Current Pharmaceutical Design, 2006, 12, 93-109.	0.9	191

#	Article	IF	CITATIONS
353	The Toxicology of Ligands for Peroxisome Proliferator-Activated Receptors (PPAR). Toxicological Sciences, 2006, 90, 269-295.	1.4	232
354	Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3781-3786.	3.3	313
355	Adipocyte enhancer-binding protein 1 is a potential novel atherogenic factor involved in macrophage cholesterol homeostasis and inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2346-2351.	3.3	62
356	International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacological Reviews, 2006, 58, 726-741.	7.1	869
357	Peroxisome Proliferator-Activated Receptor γ Is Required for Regulatory CD4+ T Cell-Mediated Protection against Colitis. Journal of Immunology, 2007, 178, 2940-2949.	0.4	145
358	PPAR-Î ³ knockout in pancreatic epithelial cells abolishes the inhibitory effect of rosiglitazone on caerulein-induced acute pancreatitis. American Journal of Physiology - Renal Physiology, 2007, 293, G319-G326.	1.6	20
359	The Role of PPARs in Lung Fibrosis. PPAR Research, 2007, 2007, 1-10.	1.1	95
360	Pioglitazone Inhibits In-Stent Restenosis in Atherosclerotic Rabbits by Targeting Transforming Growth Factor-β and MCP-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 182-189.	1.1	70
361	Peroxisome Proliferator Activated Receptor Ligands as Regulators of Airway Inflammation and Remodelling in Chronic Lung Disease. PPAR Research, 2007, 2007, 1-12.	1.1	39
362	Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinsons Disease. Current Neuropharmacology, 2007, 5, 35-46.	1.4	56
363	Peroxisome Proliferator-Activated Receptor γ and Adipose Tissue—Understanding Obesity-Related Changes in Regulation of Lipid and Glucose Metabolism. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 386-395.	1.8	423
364	Role of Redox Regulation and Lipid Rafts in Macrophages During Ox-LDL–Mediated Foam Cell Formation. Antioxidants and Redox Signaling, 2007, 9, 1499-1518.	2.5	63
365	Peroxisome Proliferator-Activated Receptor Î ³ Control of Dendritic Cell Function Contributes to Development of CD4+ T Cell Anergy. Journal of Immunology, 2007, 178, 2122-2131.	0.4	108
366	â€~Striking the Right Balance' in Targeting PPARγ in the Metabolic Syndrome: Novel Insights from Human Genetic Studies. PPAR Research, 2007, 2007, 1-14.	1.1	22
367	Inhibition of Interleukin-1β-Induced Group IIA Secretory Phospholipase A2 Expression by Peroxisome Proliferator-Activated Receptors (PPARs) in Rat Vascular Smooth Muscle Cells: Cooperation between PPARβ and the Proto-Oncogene <i>BCL-6</i> . Molecular and Cellular Biology, 2007, 27, 8374-8387.	1.1	34
368	Review: Imaging to assess effect of medical therapy in patients with diabetes mellitus. British Journal of Diabetes and Vascular Disease, 2007, 7, 157-164.	0.6	0
369	Low expression of ORF4, a dominant negative variant of peroxisome proliferator-activated receptor γ, in colorectal adenocarcinoma. Oncology Reports, 2007, 18, 489.	1.2	0
370	Vascular effects of PPARγ activators – From bench to bedside. Progress in Lipid Research, 2007, 46, 283-296.	5.3	21

#	Article	IF	CITATIONS
371	PPARÎ ³ gene C161T substitution is associated with reduced risk of coronary artery disease and decreased proinflammatory cytokine expression. American Heart Journal, 2007, 154, 718-724.	1.2	31
372	PPARÎ ³ in immunity and inflammation: cell types and diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1014-1030.	1.2	138
373	Quantification of PPAR-Î ³ protein in monocyte/macrophages from healthy smokers and non-smokers: A possible direct effect of nicotine. Life Sciences, 2007, 81, 906-915.	2.0	44
374	Inhibitory effect of PPAR on the expression of EMMPRIN in macrophages and foam cells. International Journal of Cardiology, 2007, 117, 373-380.	0.8	22
375	Combination Therapy With Telmisartan and Spironolactone Alleviates L-NAME Exacerbated Nephrosclerosis With an Increase in PPARGAMMA. and Decrease in TGFBETA.1. International Heart Journal, 2007, 48, 637-647.	0.5	17
376	Prostanoid Receptors in the Human Vascular Wall. Scientific World Journal, The, 2007, 7, 1359-1374.	0.8	106
377	Nutritional modulation of the inflammatory response in inflammatory bowel disease- From the molecular to the integrative to the clinical. World Journal of Gastroenterology, 2007, 13, 1.	1.4	56
378	Present concepts and future outlook: Function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. Journal of Cellular Physiology, 2007, 212, 1-12.	2.0	93
379	PPARÎ ³ -dependent regulation of human macrophages in phagocytosis of apoptotic cells. European Journal of Immunology, 2007, 37, 1343-1354.	1.6	133
380	A model of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice for the characterisation of intervention therapies. Journal of Neuroscience Methods, 2007, 163, 245-254.	1.3	56
381	PPARs and their metabolic modulation: new mechanisms for transcriptional regulation?. Journal of Internal Medicine, 2007, 262, 184-198.	2.7	132
382	Peroxisome Proliferatorâ€Activated Receptors: New Players in the Field of Reproduction. American Journal of Reproductive Immunology, 2007, 58, 289-310.	1.2	42
383	Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. European Journal of Pharmacology, 2007, 561, 194-201.	1.7	66
384	Comparison of vascular relaxation, lipolysis and glucose uptake by peroxisome proliferator-activated receptor-γ activation in +db/+m and +db/+db mice. European Journal of Pharmacology, 2007, 572, 40-48.	1.7	13
385	Inflammation in Diabetes Mellitus: Role of Peroxisome Proliferator-Activated Receptor–α and Peroxisome Proliferator-Activated Receptor–γ Agonists. American Journal of Cardiology, 2007, 99, 27-40.	0.7	119
386	An Oxidized Lipid–Peroxisome Proliferator-Activated Receptor γ–Chemokine Pathway in the Regulation of Macrophage-Vascular Smooth Muscle Cell Adhesion. Trends in Cardiovascular Medicine, 2007, 17, 269-274.	2.3	24
387	Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-I®B and JNK activation and suppression of COX-2 activity. Journal of Neuroimmunology, 2007, 192, 89-98.	1.1	70
388	Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Molecular and Cellular Biochemistry, 2007, 305, 133-143.	1.4	57

#	Article	IF	CITATIONS
389	Peroxisome proliferator-activated receptor γ (PPARγ) and colorectal carcinogenesis. Journal of Cancer Research and Clinical Oncology, 2007, 133, 917-928.	1.2	33
390	Transactivation of ERα by Rosiglitazone induces proliferation in breast cancer cells. Breast Cancer Research and Treatment, 2008, 108, 23-33.	1.1	22
391	Structure and physiological functions of the human peroxisome proliferator-activated receptor γ. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 331-345.	1.0	98
392	Effects of rosiglitazone on contralateral iliac artery after vascular injury in hypercholesterolemic rabbits. Thrombosis Journal, 2008, 6, 4.	0.9	2
393	Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. Journal of Neurochemistry, 2008, 76, 855-864.	2.1	87
394	Enhanced VDUP-1 gene expression by PPARÎ ³ agonist induces apoptosis in human macrophage. Journal of Cellular Physiology, 2008, 214, 183-191.	2.0	29
395	Biomolecular characterization of human glioblastoma cells in primary cultures: Differentiating and antiangiogenic effects of natural and synthetic PPARÎ ³ agonists. Journal of Cellular Physiology, 2008, 217, 93-102.	2.0	15
396	Troglitazone but not conjugated linoleic acid reduces gene expression and activity of matrix-metalloproteinases-2 and -9 in PMA-differentiated THP-1 macrophages. Journal of Nutritional Biochemistry, 2008, 19, 594-603.	1.9	17
397	A novel activity for substance P: stimulation of peroxisome proliferatorâ€activated receptorâ€î3 protein expression in human monocytes and macrophages. British Journal of Pharmacology, 2008, 154, 144-152.	2.7	24
398	Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages. Experimental Cell Research, 2008, 314, 3405-3414.	1.2	13
399	Nuclear receptors in macrophages: A link between metabolism and inflammation. FEBS Letters, 2008, 582, 106-116.	1.3	32
400	Narrowing in on Cardiovascular Disease: The Atheroprotective Role of Peroxisome Proliferator–Activated Receptor γ. Trends in Cardiovascular Medicine, 2008, 18, 39-44.	2.3	17
401	Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. Journal of Neuroinflammation, 2008, 5, 4.	3.1	107
402	Conjugated linoleic acid modulation of risk factors associated with atherosclerosis. Nutrition and Metabolism, 2008, 5, 22.	1.3	36
403	Peroxisome Proliferator-Activated Receptors (PPARs) and the Human Skin. American Journal of Clinical Dermatology, 2008, 9, 15-31.	3.3	114
404	Thioredoxin-1 and Its Natural Inhibitor, Vitamin D3 Up-Regulated Protein 1, Are Differentially Regulated by PPARα in Human Macrophages. Journal of Molecular Biology, 2008, 384, 564-576.	2.0	19
405	Pigment epithelium-derived factor induces THP-1 macrophage apoptosis and necrosis by the induction of the peroxisome proliferator-activated receptor gamma. Molecular Immunology, 2008, 45, 898-909.	1.0	37
406	The effects of rosiglitazone on aortic atherosclerosis of cholesterol-fed rabbits. Thrombosis Research, 2008, 123, 281-287.	0.8	21

#	Article	IF	CITATIONS
407	The PPARÎ ³ coding region and its role in visceral obesity. Biochemical and Biophysical Research Communications, 2008, 371, 177-179.	1.0	12
408	Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Current Opinion in Genetics and Development, 2008, 18, 461-467.	1.5	203
409	Fat and Beyond: The Diverse Biology of PPARÎ ³ . Annual Review of Biochemistry, 2008, 77, 289-312.	5.0	1,757
410	Rosiglitazone produces a greater reduction in circulating platelet activity compared with gliclazide in patients with type 2 diabetes mellitus—An effect probably mediated by direct platelet PPARγ activation. Atherosclerosis, 2008, 197, 718-724.	0.4	44
411	Anti-atherosclerotic properties of telmisartan in advanced atherosclerotic lesions in apolipoprotein E deficient mice. Atherosclerosis, 2008, 199, 295-303.	0.4	59
412	Peroxisome proliferator-activated receptors and the vascular system: beyond their metabolic effects. Journal of the American Society of Hypertension, 2008, 2, 227-238.	2.3	16
413	PPAR-, Microglial Cells, and Ocular Inflammation: New Venues for Potential Therapeutic Approaches. PPAR Research, 2008, 2008, 1-12.	1.1	29
414	Transcriptional Control of Vascular Smooth Muscle Cell Proliferation by Peroxisome Proliferator-Activated Receptor- ¹³ : Therapeutic Implications for Cardiovascular Diseases. PPAR Research, 2008, 2008, 1-11.	1.1	27
415	Regulation of Lymphocyte Function by PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>: Relevance to Thyroid Eye Disease-Related Inflammation. PPAR Research, 2008, 2008, 1-12.</mml:math 	1.1	27
416	Dialysis-related systemic microinflammation is associated with specific genomic patterns. Nephrology Dialysis Transplantation, 2008, 23, 1673-1681.	0.4	32
417	Tissue-specific expression of PPAR mRNAs in diabetic rats and divergent effects of cilostazol. Canadian Journal of Physiology and Pharmacology, 2008, 86, 465-471.	0.7	18
418	PPAR- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="E1"><mml:mi>γ</mml:mi></mml:math> in the Cardiovascular System. PPAR Research, 2008, 2008, 1-10.	1.1	39
419	The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects. PPAR Research, 2008, 2008, 1-16.	1.1	21
420	Peroxisome Proliferator-Activated Receptor-Î ³ Regulates the Expression of Alveolar Macrophage Macrophage Colony-Stimulating Factor. Journal of Immunology, 2008, 181, 235-242.	0.4	51
421	Peroxisome Proliferator-Activated Receptor-γ–Mediated Effects in the Vasculature. Circulation Research, 2008, 102, 283-294.	2.0	256
422	Novel targets and new potential: developments in the treatment of inflammation in chronic kidney disease. Expert Opinion on Investigational Drugs, 2008, 17, 451-467.	1.9	31
423	A Lesson in Moderation: Applying Pharmacodynamics to Clarify the Relationship Between Thiazolidinediones and Adverse Vascular Outcomes in Type 2 Diabetes. Journal of Clinical Pharmacology, 2008, 48, 999-1002.	1.0	1
424	Pleiotropic effects of thiazolidinediones. Expert Opinion on Pharmacotherapy, 2008, 9, 1087-1108.	0.9	61

#	Article	IF	CITATIONS
425	Peroxisome proliferator-activated receptor-Î ³ activation suppresses HIV-1 replication in an animal model of encephalitis. Aids, 2008, 22, 1539-1549.	1.0	37
426	Effects of Thiazolidinediones on Coronary Artery Disease: Review. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2008, 2, 211-217.	0.7	0
427	Does Osteoblast to Adipocyte Differentiation Play a Role in Osteoarthritis?. Current Rheumatology Reviews, 2008, 4, 202-205.	0.4	0
428	The Effect of Chlamydia pneumoniae on the Expression of Peroxisome Proliferator-Activated Receptor-Î ³ in Vascular Smooth Muscle Cells. Yonsei Medical Journal, 2008, 49, 230.	0.9	4
429	Activated PPARÎ ³ Targets Surface and Intracellular Signals That Inhibit the Proliferation of Lung Carcinoma Cells. PPAR Research, 2008, 2008, 1-8.	1.1	7
430	PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility. PPAR Research, 2008, 2008, 1-19.	1.1	36
431	Role of Peroxisome Proliferator-Activated Receptor Gamma and Its Ligands in the Treatment of Hematological Malignancies. PPAR Research, 2008, 2008, 1-18.	1.1	26
432	Macrophages, PPARs, and Cancer. PPAR Research, 2008, 2008, 1-11.	1.1	41
433	Peroxisome Proliferator-Activated Receptors in the Modulation of the Immune/Inflammatory Response in Atherosclerosis. PPAR Research, 2008, 2008, 1-7.	1.1	22
434	A Role for PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>in the Regulation of Cytokines in Immune Cells and Cancer. PPAR Research, 2008, 2008, 1-12.</mml:math 	1.1	32
435	Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats. Gut, 2009, 58, 1517-1527.	6.1	100
436	1,25(OH) ₂ Vitamin D Inhibits Foam Cell Formation and Suppresses Macrophage Cholesterol Uptake in Patients With Type 2 Diabetes Mellitus. Circulation, 2009, 120, 687-698.	1.6	340
437	PPARs and the Cardiovascular System. Antioxidants and Redox Signaling, 2009, 11, 1415-1452.	2.5	173
438	Lipoprotein Oxidation and Modification. , 2009, , 93-110.		2
439	Significant Synergistic Effect of Peroxisome Proliferator-Activated Receptor C-2821T and Diabetes on the Risk of Ischemic Stroke. Diabetes Care, 2009, 32, 2033-2035.	4.3	5
440	Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. , 2009, 122, 246-263.		127
441	Cardiac fibroblasts: At the heart of myocardial remodeling. , 2009, 123, 255-278.		864
442	Insulin resistance without obesity induced by cotton pellet granuloma in mice. Laboratory Investigation, 2009, 89, 362-369.	1.7	16

#	Article	IF	CITATIONS
443	PEROXISOME PROLIFERATORâ€ACTIVATED RECEPTOR γâ€INDEPENDENT EFFECTS OF THIAZOLIDINEDIONES ON HUMAN CARDIAC MYOFIBROBLAST FUNCTION. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 478-486.	0.9	33
444	Inhibition of human insulin gene transcription by peroxisome proliferatorâ€activated receptor γ and thiazolidinedione oral antidiabetic drugs. British Journal of Pharmacology, 2009, 157, 736-745.	2.7	12
445	Targeting PPAR receptors in the airway for the treatment of inflammatory lung disease. British Journal of Pharmacology, 2009, 158, 994-1003.	2.7	101
446	Downregulation of Peroxisome Proliferatorâ€activated Receptorâ€Î³ Expression in Hypertensive Atrial Fibrillation. Clinical Cardiology, 2009, 32, 337-345.	0.7	25
447	PPARÎ ³ activation induces autophagy in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2009, 41, 2334-2342.	1.2	95
448	Lipid ligand-activated transcription factors regulating lipid storage and release in human macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 486-493.	1.2	25
449	A combination of PPAR-Î ³ agonists and HMG CoA reductase inhibitors (statins) as a new therapy for the conservative treatment of AAS (aortic aneurysm syndromes). Medical Hypotheses, 2009, 73, 614-618.	0.8	11
451	Chapter 13 PPAR and Pain. International Review of Neurobiology, 2009, 85, 165-177.	0.9	36
452	Adiponectin reduces lipid accumulation in macrophage foam cells. Atherosclerosis, 2009, 202, 152-161.	0.4	117
453	PPARs: the vasculature, inflammation and hypertension. Current Opinion in Nephrology and Hypertension, 2009, 18, 128-133.	1.0	105
454	A Potential Role of Diet in Modulating Peroxisome Proliferator-Activated Receptor (PPAR)-Mediated Signalling in Arthritis. Current Rheumatology Reviews, 2009, 5, 246-251.	0.4	1
455	Macrophage activation induces formation of the anti-inflammatory lipid cholesteryl-nitrolinoleate. Biochemical Journal, 2009, 417, 223-238.	1.7	78
456	Peroxisome Proliferator-Activated Receptor .GAMMA. and Cardiovascular Diseases. Circulation Journal, 2009, 73, 214-220.	0.7	69
457	Activating Peroxisome Proliferator-Activated Receptor Î ³ Mutant Promotes Tumor Growth <i>In vivo</i> by Enhancing Angiogenesis. Cancer Research, 2009, 69, 9236-9244.	0.4	44
458	Lipid Rafts and Redox Regulation of Cellular Signaling in Cholesterol Induced Atherosclerosis. Current Cardiology Reviews, 2010, 6, 309-324.	0.6	31
459	PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nuclear Receptor Signaling, 2010, 8, nrs.08004.	1.0	70
460	Countervailing vascular effects of rosiglitazone in high cardiovascular risk mice: role of oxidative stress and PRMT-1. Clinical Science, 2010, 118, 583-592.	1.8	14
461	Predictive value of C-reactive protein after drug-eluting stent implantation. Future Cardiology, 2010, 6, 167-179.	0.5	11

#	Article	IF	CITATIONS
462	Macrophages, Inflammation, and Insulin Resistance. Annual Review of Physiology, 2010, 72, 219-246.	5.6	2,279
463	In Vitro Modulation of Peroxisome Proliferator-activated Receptor-Î ³ and Its Genes by C-Reactive Protein. Role of Atorvastatin. Archives of Medical Research, 2010, 41, 154-161.	1.5	9
464	Oxidative stress modulates PPARÎ ³ in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-1625.	1.3	70
465	Increased expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ in human atherosclerosis. Pathology Research and Practice, 2010, 206, 429-438.	1.0	18
466	STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPARÎ ³ -Regulated Gene Expression in Macrophages and Dendritic Cells. Immunity, 2010, 33, 699-712.	6.6	352
467	Visfatin is induced by peroxisome proliferatorâ€activated receptor gamma in human macrophages. FEBS Journal, 2010, 277, 3308-3320.	2.2	24
468	In vivo effects of rosiglitazone in a human neuroblastoma xenograft. British Journal of Cancer, 2010, 102, 685-692.	2.9	22
469	Lipid signaling in the atherogenesis context. Biochemistry (Moscow), 2010, 75, 793-810.	0.7	8
470	Imbalance of peroxisome proliferatorâ€activated receptor gamma and adiponectin predisposes Kawasaki disease patients to developing atherosclerosis. Pediatrics International, 2010, 52, 795-800.	0.2	9
471	Inflammation in Chronic Kidney Disease. , 2010, , 183-197.		2
472	Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease. Journal of Inflammation Research, 2010, 3, 127.	1.6	5
473	Anticancer actions of PPARÎ ³ ligands: Current state and future perspectives in human lung cancer. World Journal of Biological Chemistry, 2010, 1, 31.	1.7	14
474	Nitric Oxide in Airway Inflammation. , 2010, , 795-812.		0
475	Control of Macrophage Activation and Function by PPARs. Circulation Research, 2010, 106, 1559-1569.	2.0	447
476	Peroxisome Proliferator-Activated Receptor-γ (PPARγ) Agonist Improves Coronary Artery Endothelial Function in Diabetic Patients with Coronary Artery Disease. Journal of International Medical Research, 2010, 38, 86-94.	0.4	20
477	Targeted PPARγ deficiency in alveolar macrophages disrupts surfactant catabolism. Journal of Lipid Research, 2010, 51, 1325-1331.	2.0	95
478	Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor Î ³ Function in Adipocytes and Macrophages. Molecular and Cellular Biology, 2010, 30, 2078-2089.	1.1	189
479	MicroRNA-27b Contributes to Lipopolysaccharide-mediated Peroxisome Proliferator-activated Receptor γ (PPARγ) mRNA Destabilization. Journal of Biological Chemistry, 2010, 285, 11846-11853.	1.6	167

TION P

#	Article	IF	CITATIONS
480	<i>Mycobacterium tuberculosis</i> Activates Human Macrophage Peroxisome Proliferator-Activated Receptor Î ³ Linking Mannose Receptor Recognition to Regulation of Immune Responses. Journal of Immunology, 2010, 185, 929-942.	0.4	210
481	Oxidized low-density lipoprotein activates adipophilin through ERK1/2 signal pathway in RAW264.7 cells. Acta Biochimica Et Biophysica Sinica, 2010, 42, 635-645.	0.9	17
482	Therapeutic Implications of PPARÎ ³ in Cardiovascular Diseases. PPAR Research, 2010, 2010, 1-12.	1.1	12
483	ls There a Biological Basis for Treatment of Fibrodysplasia Ossificans Progressiva with Rosiglitazone? Potential Benefits and Undesired Effects. PPAR Research, 2010, 2010, 1-7.	1.1	2
484	Nuclear Receptors of the Peroxisome Proliferator-Activated Receptor (PPAR) Family in Gestational Diabetes: From Animal Models to Clinical Trials1. Biology of Reproduction, 2010, 83, 168-176.	1.2	51
485	PPARs: Important Regulators in Metabolism and Inflammation. , 2010, , 259-285.		1
486	Vitamin D regulates macrophage cholesterol metabolism in diabetes. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 430-433.	1.2	40
487	Aspirin inhibits MMP-9 mRNA expression and release via the PPARα/γ and COX-2/mPGES-1-mediated pathways in macrophages derived from THP-1 cells. Biomedicine and Pharmacotherapy, 2010, 64, 118-123.	2.5	13
488	Identification of a novel allele of peroxisome proliferator-activated receptor gamma (PPARG) and its association with resistance to Aeromonas salmonicida in Atlantic salmon (Salmo salar). Fish and Shellfish Immunology, 2010, 28, 394-400.	1.6	32
490	Mulberry Leaf Polyphenols Possess Antiatherogenesis Effect via Inhibiting LDL Oxidation and Foam Cell Formation. Journal of Agricultural and Food Chemistry, 2011, 59, 1985-1995.	2.4	64
491	Obesity, adipogenesis and insulin resistance. EndocrinologÃa Y Nutrición (English Edition), 2011, 58, 360-369.	0.5	29
492	Signaling in Atherosclerosis. , 2011, , 371-403.		0
493	Peroxisome Proliferator-Activated Receptors and Atherosclerosis. Angiology, 2011, 62, 523-534.	0.8	28
494	PPARs and Lipid Ligands in Inflammation and Metabolism. Chemical Reviews, 2011, 111, 6321-6340.	23.0	151
496	PPARÎ ³ in coronary atherosclerosis: In vivo expression pattern and correlations with hyperlipidemic status and statin treatment. Atherosclerosis, 2011, 218, 479-485.	0.4	19
497	Role of Peroxisome Proliferator-Activated ReceptorGAMMA. in Atherosclerosis - An Update Circulation Journal, 2011, 75, 528-535.	0.7	62
498	Adipocyte Enhancer-Binding Protein 1 (AEBP1) (a Novel Macrophage Proinflammatory Mediator) Overexpression Promotes and Ablation Attenuates Atherosclerosis in ApoEâ^'/â^' and LDLRâ^'/â^' Mice. Molecular Medicine, 2011, 17, 1056-1064.	1.9	23
499	Inflammationâ€mediated obesity and insulin resistance as targets for nutraceuticals. Annals of the New York Academy of Sciences, 2011, 1229, 140-146.	1.8	21

#	Article	IF	CITATIONS
500	Differential Effect of Telmisartan and Amlodipine on Monocyte Chemoattractant Protein-1 and Peroxisome Proliferator-Activated Receptor-Gamma Gene Expression in Peripheral Monocytes in Patients With Essential Hypertension. American Journal of Cardiology, 2011, 107, 59-63.	0.7	20
501	Stabilization of superoxide dismutase by acetyl-l-carnitine in human brain endothelium during alcohol exposure: Novel protective approach. Free Radical Biology and Medicine, 2011, 51, 1601-1609.	1.3	48
502	Effects of the PPARG P12A and C161T gene variants on serum lipids in coronary heart disease patients with and without Type 2 diabetes. Molecular and Cellular Biochemistry, 2011, 358, 355-363.	1.4	37
503	Troglitazone-activated PPARγ inhibits LPS-induced lung alveolar type II epithelial cells injuries via TNF-α. Molecular Biology Reports, 2011, 38, 5009-5015.	1.0	9
504	Effects of 15-deoxy-â^†12,14-prostaglandin J2 on the production of IL-8 and the expression of Toll-like receptor 2 in human primary keratinocytes stimulated with lipopolysaccharide. Molecular Biology Reports, 2011, 38, 3207-3212.	1.0	6
505	Potential effect of phloroglucinol derivatives from Ecklonia cava on matrix metalloproteinase expression and the inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages. Fisheries Science, 2011, 77, 867-873.	0.7	16
506	15 kDa Granulysin versus GM-CSF for monocytes differentiation: analogies and differences at the transcriptome level. Journal of Translational Medicine, 2011, 9, 41.	1.8	11
507	Peroxisome Proliferator-activated Receptor Î ³ Induces Apoptosis and Inhibits Autophagy of Human Monocyte-derived Macrophages via Induction of Cathepsin L. Journal of Biological Chemistry, 2011, 286, 28858-28866.	1.6	35
508	Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease. Mucosal Immunology, 2011, 4, 304-313.	2.7	74
509	Role of Peroxisome Proliferator-Activated Receptor- <i><i>γ</i></i> in Vascular Inflammation. International Journal of Vascular Medicine, 2012, 2012, 1-9.	0.4	18
510	Disruption of Endothelial Peroxisome Proliferator-Activated Receptor γ Accelerates Diet-Induced Atherogenesis in LDL Receptor-Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 65-73.	1.1	38
511	PPAR Medicines and Human Disease: The ABCs of It All. PPAR Research, 2012, 2012, 1-16.	1.1	19
512	Biology and Therapeutic Applications of Peroxisome Proliferator- Activated Receptors. Current Topics in Medicinal Chemistry, 2012, 12, 548-584.	1.0	56
513	Role of PPARs inTrypanosoma cruziInfection: Implications for Chagas Disease Therapy. PPAR Research, 2012, 2012, 1-8.	1.1	12
514	Pro- and Antiatherogenic Effects of a Dominant-Negative P465L Mutation of Peroxisome Proliferator–Activated Receptor-l ³ in Apolipoprotein E–Null Mic. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1436-1444.	1.1	5
515	Mode of Peroxisome Proliferator-Activated Receptor Î ³ Activation by Luteolin. Molecular Pharmacology, 2012, 81, 788-799.	1.0	84
516	Changes in Gene Expression Profile in Human Subcutaneous Adipose Tissue during Significant Weight Loss. Obesity Facts, 2012, 5, 440-451.	1.6	24
517	Contribution of Dietary Factors to Peroxisome Proliferator-Activated Receptor-Mediated Inflammatory Signaling in Arthritic Diseases. Current Rheumatology Reviews, 2012, 8, 134-140.	0.4	2

#	Article	IF	CITATIONS
518	Involvement of mitogen-activated protein kinases and peroxisome proliferator-activated receptor I ³ in monosodium urate crystal-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. International Journal of Molecular Medicine, 2012, 29, 877-82.	1.8	2
519	Thiazolidinedioneâ€independent activation of peroxisome proliferatorâ€activated receptor γ is a potential target for diabetic macrovascular complications. Journal of Diabetes Investigation, 2012, 3, 11-23.	1.1	2
520	Berberine ameliorates COX-2 expression in rat small intestinal mucosa partially through PPARÎ ³ pathway during acute endotoxemia. International Immunopharmacology, 2012, 12, 182-188.	1.7	53
521	Bioactive oxidatively truncated phospholipids in inflammation and apoptosis: Formation, targets, and inactivation. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2456-2464.	1.4	56
522	The PPAR-gamma agonist pioglitazone protects cortical neurons from inflammatory mediators via improvement in peroxisomal function. Journal of Neuroinflammation, 2012, 9, 63.	3.1	73
523	The effects of PPARÎ ³ agonist rosiglitazone on neointimal hyperplasia in rabbit carotid anastomosis model. Journal of Cardiothoracic Surgery, 2012, 7, 57.	0.4	11
524	Beta-Mecaptoethanol Suppresses Inflammation and Induces Adipogenic Differentiation in 3T3-F442A Murine Preadipocytes. PLoS ONE, 2012, 7, e40958.	1.1	14
525	Anti-Atherosclerotic Potential of Dihydropyridine Calcium Channel Blockers. Journal of Atherosclerosis and Thrombosis, 2012, 19, 693-704.	0.9	20
526	Nuclear Hormone Receptors Enable Macrophages and Dendritic Cells to Sense Their Lipid Environment and Shape Their Immune Response. Physiological Reviews, 2012, 92, 739-789.	13.1	195
527	Modulation of diabetic retinopathy pathophysiology by natural medicines through PPARâ€Î³â€related pharmacology, British Journal of Pharmacology, 2012, 165, 4-19.	2.7	44
528	The effect of PPARG gene polymorphisms on the risk of coronary heart disease: a meta-analysis. Molecular Biology Reports, 2013, 40, 875-884.	1.0	15
529	Curcumin inhibits oxLDL-induced CD36 expression and foam cell formation through the inhibition of p38 MAPK phosphorylation. Food and Chemical Toxicology, 2013, 58, 77-85.	1.8	58
530	The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. Journal of Allergy and Clinical Immunology, 2013, 132, 264-286.	1.5	136
531	Peroxisome proliferator-activated receptor-Î ³ agonist pioglitazone suppresses experimental autoimmune uveitis. Experimental Eye Research, 2013, 116, 291-297.	1.2	18
532	Different effects of PPARA, PPARG and ApoE SNPs on serum lipids in patients with coronary heart disease based on the presence of diabetes. Gene, 2013, 523, 20-26.	1.0	21
533	Peroxisome proliferator-activated receptor-Î ³ mediates the anti-inflammatory effect of 3-hydroxy-4-pyridinecarboxylic acid derivatives: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2013, 62, 486-497.	2.6	27
534	Redox Control of Inflammation in Macrophages. Antioxidants and Redox Signaling, 2013, 19, 595-637.	2.5	303
535	PPARÎ ³ , an important gene related to lipid metabolism and immunity in Megalobrama amblycephala: Cloning, characterization and transcription analysis by <u>GeNorm. Gene, 2013, 512, 321-330.</u>	1.0	17

#	Article	IF	CITATIONS
536	Peroxisome Proliferator-Activated Receptor Targets for the Treatment of Metabolic Diseases. Mediators of Inflammation, 2013, 2013, 1-18.	1.4	257
537	Peroxisome proliferator-activated receptor (PPAR) isoforms in coronary heart disease. Turkish Journal of Biochemistry, 2013, 38, 372-384.	0.3	2
538	A Pro 12 Ala substitution in the PPARÎ ³ 2 polymorphism may decrease the number of diseased vessels and the severity of angiographic coronary artery. Coronary Artery Disease, 2013, 24, 347-351.	0.3	13
539	15-deoxy- Δ_{12,14} -prostaglandin J ₂ Down-Regulates Activin-Induced Activin Receptor, Smad, and Cytokines Expression via Suppression of NF- <i><i><i><i><i></i></i></i></i></i> B and MAPK Signaling in HepG2 Cells. PPAR Research, 2013, 2013, 1-7.	1.1	9
540	Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World Journal of Cardiology, 2013, 5, 164.	0.5	94
541	A Novel Splicing Variant of Peroxisome Proliferator-Activated Receptor-Î ³ (PparÎ ³ 1sv) Cooperatively Regulates Adipocyte Differentiation with PparÎ ³ 2. PLoS ONE, 2013, 8, e65583.	1.1	20
542	Emerging roles of peroxisome proliferator-activated receptor gamma in cancer. , 0, , 392-402.		0
543	Neoatherosclerosis: a novel player in late stent failure. Interventional Cardiology, 2014, 6, 217-225.	0.0	1
544	Macrophages in homeostatic immune function. Frontiers in Physiology, 2014, 5, 146.	1.3	58
545	15-Deoxy- <i>γ</i> 12,14-prostaglandin J2 Reduces Liver Impairment in a Model of ConA-Induced Acute Hepatic Inflammation by Activation of PPAR <i>γ</i> and Reduction in NF- <i>ΰ</i> B Activity. PPAR Research, 2014, 2014, 1-10.	1.1	38
546	The Rate of Decline of Glomerular Filtration Rate May Not Be Associated with Polymorphism of the PPARÎ ³ 2 Gene in Patients with Type 1 Diabetes and Nephropathy. PPAR Research, 2014, 2014, 1-6.	1.1	4
547	Hurling comets around a planetary nursery. Nature, 2014, 514, 440-441.	13.7	2
548	Molecular Determinants of Atherosclerosis. , 2014, , 183-215.		0
549	Oxidized Low-Density Lipoprotein Suppresses Expression of Prostaglandin E Receptor Subtype EP3 in Human THP-1 Macrophages. PLoS ONE, 2014, 9, e110828.	1.1	5
550	Effects of Pro12Ala polymorphism in peroxisome proliferator-activated receptor-γ2 gene on metabolic syndrome risk: A meta-analysis. Gene, 2014, 535, 79-87.	1.0	12
551	Treatment by cell transplant. Nature, 2014, 514, 438-440.	13.7	1
552	Induction of the nuclear receptor PPAR-Î ³ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nature Immunology, 2014, 15, 1026-1037.	7.0	443
553	Digital gene expression analysis of the pathogenesis and therapeutic mechanisms of ligustrazine and puerarin in rat atherosclerosis. Gene, 2014, 552, 75-80.	1.0	21

#	Article	IF	CITATIONS
554	Lipids in health and disease. Nature, 2014, 510, 47-47.	13.7	24
555	Genomewide effects of peroxisome proliferatorâ€activated receptor gamma in macrophages and dendritic cells – revealing complexity through systems biology. European Journal of Clinical Investigation, 2015, 45, 964-975.	1.7	11
556	Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling. Journal of Clinical Investigation, 2015, 125, 809-823.	3.9	58
557	Mechanisms of Peroxisome Proliferator Activated Receptor Î ³ Regulation by Non-steroidal Anti-inflammatory Drugs. Nuclear Receptor Signaling, 2015, 13, nrs.13004.	1.0	63
558	Endogenous 2-Arachidonoylglycerol Alleviates Cyclooxygenases-2 Elevation-Mediated Neuronal Injury From SO ₂ Inhalation via PPARγ Pathway. Toxicological Sciences, 2015, 147, 535-548.	1.4	15
560	Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized lowâ€density lipoproteinâ€loaded human macrophages. Biotechnology and Applied Biochemistry, 2015, 62, 840-847.	1.4	16
561	Supplementation of omega 3 fatty acids improves oxidative stress in activated BV2 microglial cell line. International Journal of Food Sciences and Nutrition, 2015, 66, 293-299.	1.3	35
562	Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E293-E301.	1.8	2
563	Cellular Metabolism and Macrophage Functional Polarization. International Reviews of Immunology, 2015, 34, 82-100.	1.5	274
564	Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARγ1 and LXRα transcriptional activity in a MAPK-dependent manner. European Journal of Nutrition, 2015, 54, 691-700.	1.8	21
565	Pioglitazone Attenuates Drug-Eluting Stent-Induced Proinflammatory State in Patients by Blocking Ubiquitination of PPAR. PPAR Research, 2016, 2016, 1-8.	1.1	5
566	PPARγ Represses Apolipoprotein A″ Gene but Impedes TNFαâ€Mediated ApoA″ Downregulation in HepG2 Ce Journal of Cellular Biochemistry, 2016, 117, 2010-2022.	ells. 1.2	14
567	Conditional knockout of tissue factor pathway inhibitor 2 in vascular endothelial cells accelerates atherosclerotic plaque development in mice. Thrombosis Research, 2016, 137, 148-156.	0.8	16
568	Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function. Translational Research, 2016, 172, 6-17.e3.	2.2	31
569	Pioglitazone, an anti-diabetic drug requires sustained MAPK activation for its anti-tumor activity in MCF7 breast cancer cells, independent of PPAR-γ pathway. Pharmacological Reports, 2016, 68, 144-154.	1.5	25
570	Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacological Research, 2017, 120, 226-241.	3.1	18
571	Troglitazone, a PPAR-Î ³ agonist, decreases LTC 4 concentration in mononuclear cells in patients with asthma. Pharmacological Reports, 2017, 69, 1315-1321.	1.5	5
572	Structural basis for differential activities of enantiomeric PPARÎ ³ agonists: Binding of S35 to the alternate site. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 674-681.	1.1	40

#	Article	IF	CITATIONS
573	YY-1224, a terpene trilactone-strengthened Ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1-42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2. Journal of Neuroinflammation, 2017, 14, 94.	3.1	25
574	Anti-leukemic effects of PPARÎ ³ ligands. Cancer Letters, 2018, 418, 10-19.	3.2	16
575	β4GalT1 Mediates PPARγ N-Glycosylation to Attenuate Microglia Inflammatory Activation. Inflammation, 2018, 41, 1424-1436.	1.7	4
576	Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cellular and Molecular Neurobiology, 2018, 38, 783-795.	1.7	59
577	Macrophage-Associated Lipin-1 Enzymatic Activity Contributes to Modified Low-Density Lipoprotein–Induced Proinflammatory Signaling and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 324-334.	1.1	34
578	Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Critical Reviews in Toxicology, 2018, 48, 52-108.	1.9	69
579	Effects of Flavored Nonalcoholic Beverages on Transcriptional Activities of Nuclear and Steroid Hormone Receptors: Proof of Concept for Novel Reporter Cell Line PAZ-PPARg. Journal of Agricultural and Food Chemistry, 2018, 66, 12066-12078.	2.4	4
580	Protein-protein interactions reveal key canonical pathways, upstream regulators, interactome domains, and novel targets in ALS. Scientific Reports, 2018, 8, 14732.	1.6	30
581	PLA-PEG Nanoparticles Improve the Anti-Inflammatory Effect of Rosiglitazone on Macrophages by Enhancing Drug Uptake Compared to Free Rosiglitazone. Materials, 2018, 11, 1845.	1.3	26
582	Signaling Mechanisms of Selective PPAR <i>γ</i> Modulators in Alzheimer's Disease. PPAR Research, 2018, 2018, 1-20.	1.1	48
583	Mulberry leaf tea alleviates diabetic nephropathy by inhibiting PKC signaling and modulating intestinal flora. Journal of Functional Foods, 2018, 46, 118-127.	1.6	32
584	The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. International Journal of Molecular Sciences, 2018, 19, 2189.	1.8	111
585	The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Frontiers in Immunology, 2018, 9, 31.	2.2	18
586	Lipid Droplet, a Key Player in Host-Parasite Interactions. Frontiers in Immunology, 2018, 9, 1022.	2.2	92
587	PPARÎ ³ Expression Is Diminished in Macrophages of Recurrent Miscarriage Placentas. International Journal of Molecular Sciences, 2018, 19, 1872.	1.8	28
588	Deletion of PPARÎ ³ in lung macrophages provides an immunoprotective response against M. tuberculosis infection in mice. Tuberculosis, 2018, 111, 170-177.	0.8	39
589	Structural basis for the inhibitory effects of a novel reversible covalent ligand on PPARÎ ³ phosphorylation. Scientific Reports, 2019, 9, 11168.	1.6	12
590	Structural Basis for the Regulation of PPARÎ ³ Activity by Imatinib. Molecules, 2019, 24, 3562.	1.7	11

#	Article	IF	CITATIONS
591	Modulation of nuclear receptor function: Targeting the protein-DNA interface. Molecular and Cellular Endocrinology, 2019, 484, 1-14.	1.6	17
592	Potential role of Peroxisome Proliferator Activated Receptor gamma analogues in regulation of endothelial progenitor cells in diabetes mellitus: An overview. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 1123-1129.	1.8	9
593	Transcriptomics analysis reveals candidate genes and pathways for susceptibility or resistance to Singapore grouper iridovirus in orange-spotted grouper (Epinephelus coioides). Developmental and Comparative Immunology, 2019, 90, 70-79.	1.0	20
594	Oxidized lipids: not just another brick in the wall. Canadian Journal of Physiology and Pharmacology, 2019, 97, 473-485.	0.7	9
595	Oxidized Low-Density Lipoprotein Receptor in Lymphocytes Prevents Atherosclerosis and Predicts Subclinical Disease. Circulation, 2019, 139, 243-255.	1.6	36
596	Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients, 2020, 12, 3476.	1.7	15
597	Differential Effects of Cancer-Associated Mutations Enriched in Helix H3 of PPARÎ ³ . Cancers, 2020, 12, 3580.	1.7	3
598	Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity. Cells, 2020, 9, 1708.	1.8	39
599	Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. International Journal of Molecular Sciences, 2020, 21, 4257	1.8	73
600	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191.	1.2	194
600 601	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191. Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994.	1.2 2,1	194 18
600 601 602	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191. Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994. Enhancing PPARÎ ³ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacological Research, 2020, 160, 105059.	1.2 2.1 3.1	194 18 24
600 601 602 603	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191. Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994. Enhancing PPARî ³ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacological Research, 2020, 160, 105059. PPARî ³ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2. Mucosal Immunology, 2021, 14, 468-478.	1.2 2.1 3.1 2.7	194 18 24 28
600 601 602 603	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191. Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994. Enhancing PPARî ³ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacological Research, 2020, 160, 105059. PPARî ³ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2. Mucosal Immunology, 2021, 14, 468-478. Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1519-1539.	1.2 2.1 3.1 2.7 2.3	194 18 24 28 55
 600 601 602 603 604 605 	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191. Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994. Enhancing PPARÎ ³ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacological Research, 2020, 160, 105059. PPARÎ ³ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2. Mucosal Immunology, 2021, 14, 468-478. Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH. Cellular and Molecular Castroenterology and Hepatology, 2021, 11, 1519-1539. Design of Novel PPAR Agonist for Neurodegenerative Disease. , 2021, , 249-270.	1.2 2.1 3.1 2.7 2.3	 194 18 24 28 55 0
 600 601 602 603 604 605 606 	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191. Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994. Enhancing PPARÎ ³ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacological Research, 2020, 160, 105059. PPARÎ ³ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2. Mucosal Immunology, 2021, 14, 468-478. Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1519-1539. Design of Novel PPAR Agonist for Neurodegenerative Disease. , 2021, , 249-270. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Frontiers in Endocrinology, 2021, 12, 624112.	1.2 2.1 3.1 2.7 2.3	 194 18 24 28 55 0 167
 600 601 602 603 604 605 606 607 	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191. Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994. Enhancing PPARÎ ³ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacological Research, 2020, 160, 105059. PPARÎ ³ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2. Mucosal Immunology, 2021, 14, 468-478. Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1519-1539. Design of Novel PPAR Agonist for Neurodegenerative Disease., 2021, , 249-270. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Frontiers in Endocrinology, 2021, 12, 624112. The Emerging Role of COX-2, 15-LOX and PPARÎ ³ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Current Medicinal Chemistry, 2021, 28, 2260-2300.	1.2 2.1 3.1 2.7 2.3 1.5	 194 18 24 28 55 0 167 11

#	Article	IF	CITATIONS
610	Lipoproteins and Oxidation. , 2006, , 17-48.		3
611	Modulation of Macrophage Function and Metabolism. Handbook of Experimental Pharmacology, 2005, , 665-695.	0.9	5
612	Transcriptional Regulation of Lipogenesis as a Therapeutic Target for Cancer Treatment. Cancer Drug Discovery and Development, 2014, , 259-275.	0.2	1
613	Isoprostane Activation of the Nuclear Hormone Receptor Ppar. Advances in Experimental Medicine and Biology, 2002, 507, 351-355.	0.8	14
614	Role of PPARs in Inflammation, Atherosclerosis, and Thrombosis. Medical Science Symposia Series, 2002, , 25-34.	0.0	1
615	The Oxidative Modification Hypothesis of Atherogenesis. Developments in Cardiovascular Medicine, 2000, , 49-74.	0.1	22
616	Therapeutic role of peroxisome proliferator-activated receptors in obesity, diabetes and inflammation. , 2003, 60, 93-132.		22
617	Nuclear Receptors as Regulators of Macrophage Homeostasis and Function. Handbook of Experimental Pharmacology, 2003, , 209-225.	0.9	1
618	PPARs and Atherosclerosis. , 2000, , 88-95.		1
619	PPARadigms and PPARadoxes: expanding roles for PPARÎ ³ in the control of lipid metabolism. Journal of Lipid Research, 2002, 43, 177-186.	2.0	223
620	Oxidized LDL induces the expression of ALBP/aP2 mRNA and protein in human THP-1 macrophages. Journal of Lipid Research, 2000, 41, 2017-2023.	2.0	119
621	Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-Î ³ . Journal of Lipid Research, 2000, 41, 688-696.	2.0	221
622	Inhibition of VCAM-1 expression in the arterial wall is shared by structurally different antioxidants that reduce early atherosclerosis in NZW rabbits. Journal of Lipid Research, 1999, 40, 1958-1966.	2.0	38
623	Peroxisome proliferator-activated receptors: mediators of a fast food impact on gene regulation. Current Opinion in Clinical Nutrition and Metabolic Care, 1999, 2, 307-312.	1.3	6
624	EFFECT OF CYCLOPENTANONE PROSTAGLANDIN 15-DEOXY-Δ12,14PGJ2 ON EARLY FUNCTIONAL RECOVERY FROM EXPERIMENTAL SPINAL CORD INJURY. Shock, 2008, 30, 142-152.	1.0	27
625	Expression of Peroxisome Proliferator-Activated Receptor-Î ³ in Vascular Smooth Muscle Cells Is Upregulated in Cystic Medial Degeneration of Annuloaortic Ectasia in Marfan Syndrome. Circulation, 2002, 106, .	1.6	10
626	Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator–activated receptor γ. Journal of Clinical Investigation, 2000, 106, 793-802.	3.9	159
627	Peroxisome proliferator–activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor–deficient mice. Journal of Clinical Investigation, 2000, 106, 523-531.	3.9	780

#	Article	IF	CITATIONS
628	Peroxisome proliferator–activated receptor γ ligands and atherosclerosis: ending the heartache. Journal of Clinical Investigation, 2000, 106, 629-631.	3.9	66
629	Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/Î′, and γ. Journal of Clinical Investigation, 2004, 114, 1564-1576.	3.9	494
630	The role of PPARs in inflammation and immunity. Journal of Leukocyte Biology, 2002, 71, 388-400.	1.5	278
631	Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-γ: counter-regulatory activity by IFN-γ. Journal of Leukocyte Biology, 2002, 71, 677-685.	1.5	91
632	Correlation of Peroxisome Proliferator-Activated Receptor-gamma (PPAR-gamma) and Retinoid X Receptor-alpha (RXR-alpha) expression with clinical risk factors in patients with advanced carotid atherosclerosis. Medical Science Monitor, 2011, 17, CR381-CR391.	0.5	24
633	15-Deoxy-Δ12,14 Prostaglandin J2 Reduces the Formation of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice. PLoS ONE, 2011, 6, e25541.	1.1	6
634	Ligands of peroxisome proliferator-activated receptor-gamma increase the generation of vascular endothelial growth factor in vascular smooth muscle cells and in macrophages Acta Biochimica Polonica, 2000, 47, 1147-1157.	0.3	59
635	Prostaglandin-J(2) upregulates expression of matrix metalloproteinase-1 independently of activation of peroxisome proliferator-activated receptor-gamma Acta Biochimica Polonica, 2003, 50, 677-689.	0.3	10
636	Peroxisome Proliferator–Activated Receptors and The Metabolic Syndrome. Indonesian Biomedical Journal, 2009, 1, 4.	0.2	2
637	PPARÎ ³ activation by troglitazone enhances human lung cancer cells to TRAIL-induced apoptosis via autophagy flux. Oncotarget, 2017, 8, 26819-26831.	0.8	22
638	Metabolic syndrome: the danger signal in atherosclerosis. Vascular Health and Risk Management, 2006, 2, 285-302.	1.0	82
639	Effects of PPARÎ ³ Ligands on Vascular Tone. Current Molecular Pharmacology, 2012, 5, 282-291.	0.7	13
640	PPAR Gamma at the Crossroads of Health and Disease: A Masterchef in Metabolic Homeostasis. Endocrinology & Metabolic Syndrome: Current Research, 2014, 03, .	0.3	10
641	Critical role of peroxisome proliferator-activated receptor α in promoting platelet hyperreactivity and thrombosis under hyperlipidemia. Haematologica, 2022, 107, 1358-1373.	1.7	7
643	Peroxisome Proliferator Activator Receptor Gamma Agonists Inhibit the Development of Atherosclerosis in Low Density Lipoprotein Receptor-Deficient Male Mice. Medical Science Symposia Series, 2002, , 143-148.	0.0	0
644	Functions of PPAR Gamma in Macrophages and Atherosclerosis. Medical Science Symposia Series, 2002, , 9-16.	0.0	0
645	PPARα, Lipoprotein Metabolism, Metabolic Diseases, and Atherosclerosis. Medical Science Symposia Series, 2002, , 63-79.	0.0	0
646	Multi-site therapeutic modalities for inflammatory bowel diseases — mechanisms of action. , 2003, , 523-551.		0

#	Article	IF	CITATIONS
647	Macrophage Lipid Uptake and Foam Cell Formation. Handbook of Experimental Pharmacology, 2003, , 147-172.	0.9	0
648	Thiazolidinediones in Cardiovascular Risk in Type 2 Diabetes Mellitus. , 2003, , 193-203.		1
649	Treatment of Vulnerable Plaques. , 2004, , 164-202.		0
651	Gene expression of PROSC (proline synthetase co-transcribed) in related to cytosine arabinoside sensitivity in human leukemia. Journal of Electrophoresis, 2008, 52, 53-56.	0.2	0
652	The Effects of Highexpression and Knockdown Adipophilin in The Activity of ERK1/2 and Expression of PPARÎ ³ and Lipid Accumulation in Cells*. Progress in Biochemistry and Biophysics, 2012, 38, 1132-1144.	0.3	1
653	Peroxisome Proliferator-Activated Receptor-Î ³ . , 2016, , 1-14.		0
654	Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function. Endocrine Abstracts, 0, , .	0.0	1
655	Platelet-activating factor and oxidized phosphatidylcholines do not suppress endotoxin-induced pro-inflammatory signaling among human myeloid and endothelial cells. AIMS Allergy and Immunology, 2017, 1, 108-123.	0.3	2
656	Peroxisome Proliferator-Activated Receptor-Î ³ . , 2018, , 3895-3908.		0
657	Insulin Resistance, Chronic Inflammation and the Link with Immunosenescence. , 2009, , 1247-1272.		0
658	Peroxisome proliferator activated receptor gamma: a potential therapeutic target in the management of ischaemic heart disease. Heart, 2001, 86, 255-8.	1.2	8
660	Molecular characterization, expression and functional analysis of large yellow croaker (Larimichthys crocea) peroxisome proliferator-activated receptor gamma. Fish and Shellfish Immunology, 2022, 123, 50-60.	1.6	1
667	PPAR-Based Therapies for the Management of Atherosclerosis. , 0, , 105-135.		0
669	2,2′,4,4′-Tetrabromodiphenyl Ether (PBDE 47) Selectively Stimulates Proatherogenic PPARγ Signatures in Human THP-1 Macrophages to Contribute to Foam Cell Formation. Chemical Research in Toxicology, 2022, 35, 1023-1035.	1.7	2
670	Three Days Delayed Recanalization Improved Neurological Function in pMCAO Rats by Increasing M2 Microglia—Possible Involvement of the IL-4R/STAT6/PPARγ Pathway. Translational Stroke Research, 2023, 14, 250-262.	2.3	6
671	Protective effect of berberine against LPS-induced injury in the intestine: a review. Cell Cycle, 2022, 21, 2365-2378.	1.3	16
672	Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells, 2022, 11, 2432.	1.8	20
673	The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells. International Journal of Molecular Sciences, 2022, 23, 9708.	1.8	14

ARTICLE

IF CITATIONS