Investigation of the bottleneck leading to the domestica

Proceedings of the National Academy of Sciences of the Unite 95, 4441-4446

DOI: 10.1073/pnas.95.8.4441

Citation Report

#	Article	IF	CITATIONS
1	Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15007-15012.	3.3	49
2	The limits of selection during maize domestication. Nature, 1999, 398, 236-239.	13.7	715
3	Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5586-5591.	3.3	422
4	Insight into Speciation from Historical Demography in the Phytophagous Beetle Genus Ophraella. Evolution; International Journal of Organic Evolution, 1999, 53, 1846.	1.1	14
5	INSIGHT INTO SPECIATION FROM HISTORICAL DEMOGRAPHY IN THE PHYTOPHAGOUS BEETLE GENUS <i>OPHRAELLA</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1846-1856.	1.1	42
6	Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Molecular Biology and Evolution, 1999, 16, 491-501.	3.5	104
7	Patterns of genetic diversification within the Adh gene family in the grasses (Poaceae). Molecular Biology and Evolution, 1999, 16, 1086-1097.	3.5	68
8	Evolution of genes and taxa: a primer. , 2000, 42, 1-23.		73
9	Maize as a model for the evolution of plant nuclear genomes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7008-7015.	3.3	213
10	Evolution of genes and taxa: a primer. , 2000, , 1-23.		4
11	Molecular Diversity, Structure and Domestication of Grasses. Genetical Research, 2001, 77, 213-8.	0.3	262
12	Genealogical portraits of speciation in montane grasshoppers (genusMelanoplus) from the sky islands of the Rocky Mountains. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 319-324.	1.2	49
13	Genetic Evidence and the Origin of Maize. Latin American Antiquity, 2001, 12, 84-86.	0.3	39
14	Bottleneck Effect. , 2001, , 233-235.		1
17	Molecular Evolution of the Wound-Induced Serine Protease Inhibitor wip1 in Zea and Related Genera. Molecular Biology and Evolution, 2001, 18, 2092-2101.	3.5	61
18	Microsatellite variation in cassava (Manihot esculenta , Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal of Botany, 2001, 88, 131-142.	0.8	219
19	Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the United States of America, 2001, 98, 11479-11484.	3.3	1,060
20	Intraspecific violation of genetic colinearity and its implications in maize. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9573-9578.	3.3	453

#	Article	IF	CITATIONS
21	Agricultural and Biological Diversity in Latin America: Implications for Development, Testing, and Commercialization of Herbicide-Resistant Crops1. Weed Technology, 2002, 16, 200-214.	0.4	15
22	Low Nucleotide Diversity at the pal1 Locus in the Widely Distributed Pinus sylvestris. Molecular Biology and Evolution, 2002, 19, 179-188.	3.5	125
23	Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9650-9655.	3.3	260
24	Genetic diversity and selection in the maize starch pathway. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12959-12962.	3.3	298
25	A Comparison between Crop Domestication, Classical Plant Breeding, and Genetic Engineering. Crop Science, 2002, 42, 1780-1790.	0.8	171
26	Rate and Pattern of Mutation at Microsatellite Loci in Maize. Molecular Biology and Evolution, 2002, 19, 1251-1260.	3.5	248
27	Utility of Low-Copy Nuclear Gene Sequences in Plant Phylogenetics. Critical Reviews in Biochemistry and Molecular Biology, 2002, 37, 121-147.	2.3	319
28	SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics, 2002, 3, 19.	2.7	390
29	Plant molecular diversity and applications to genomics. Current Opinion in Plant Biology, 2002, 5, 107-111.	3.5	333
30	Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theoretical and Applied Genetics, 2002, 105, 440-448.	1.8	82
31	Microsatellites in Zea – variability, patterns of mutations, and use for evolutionary studies. Theoretical and Applied Genetics, 2002, 104, 436-450.	1.8	193
32	What has QTL mapping taught us about plant domestication?. New Phytologist, 2002, 154, 591-608.	3.5	123
33	Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Molecular Biology, 2002, 48, 805-820.	2.0	135
34	Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theoretical and Applied Genetics, 2003, 107, 1083-1093.	1.8	113
35	Molecular evolution of the maize sex-determining gene TASSELSEED2 in Bouteloua (Poaceae). Molecular Phylogenetics and Evolution, 2003, 29, 519-528.	1.2	11
36	RECENT RADIATION OF ENDEMIC CARIBBEAN DROSOPHILA OF THE DUNNI SUBGROUP INFERRED FROM MULTILOCUS DNA SEQUENCE VARIATION. Evolution; International Journal of Organic Evolution, 2003, 57, 2566-2579.	1.1	33
37	Candidate Genes, Quantitative Trait Loci, and Functional Trait Evolution in Plants. International Journal of Plant Sciences, 2003, 164, S7-S20.	0.6	73
38	RECENT RADIATION OF ENDEMIC CARIBBEAN DROSOPHILA OF THE DUNNI SUBGROUP INFERRED FROM MULTILOCUS DNA SEQUENCE VARIATION. Evolution; International Journal of Organic Evolution, 2003, 57, 2566.	1.1	4

	CITATION	N REPORT	
# 39	ARTICLE DNA from primitive maize landraces and archaeological remains: implications for the domestication of maize and its expansion into South America. Journal of Archaeological Science, 2003, 30, 901-908.	IF 1.2	Citations 90
40	Contrasting Effects of Selection on Sequence Diversity and Linkage Disequilibrium at Two Phytoene Synthase Loci[W]. Plant Cell, 2003, 15, 1795-1806.	3.1	239
41	AGRICULTURE: Prehistoric GM Corn. Science, 2003, 302, 1158-1159.	6.0	47
42	Effects of inbreeding on the genetic diversity of populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1051-1070.	1.8	384
43	Contrasting selection modes at the <i>Adh1</i> locus in outcrossing <i>Miscanthus sinensis</i> vs. inbreeding <i>Miscanthus condensatus</i> (Poaceae). American Journal of Botany, 2003, 90, 561-570.	0.8	54
44	Characterization and adaptive evolution of αâ€ŧubulin genes in the <i>Miscanthus sinensis</i> complex (Poaceae). American Journal of Botany, 2003, 90, 1513-1521.	0.8	9
45	Pattern of diversity in the genomic region near the maize domestication gene tb1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 700-707.	3.3	294
46	Comparative Population Genetics of the Panicoid Grasses: Sequence Polymorphism, Linkage Disequilibrium and Selection in a Diverse Sample of Sorghum bicolor. Genetics, 2004, 167, 471-483.	1.2	106
47	Molecular-Genetic Characterization of CMS-SRestorer-of-FertilityAlleles Identified in Mexican Maize and Teosinte. Genetics, 2004, 166, 959-970.	1.2	34
48	Fine-scale Geographical Structure, Intra-individual Polymorphism and Recombination in Nuclear Ribosomal Internal Transcribed Spacers in Armeria (Plumbaginaceae). Annals of Botany, 2004, 93, 189-200.	1.4	103
49	Gene-history correlation and population structure. Physical Biology, 2004, 1, 220-228.	0.8	7
50	Selection Versus Demography: A Multilocus Investigation of the Domestication Process in Maize. Molecular Biology and Evolution, 2004, 21, 1214-1225.	3.5	251
51	Pattern of polymorphism after strong artificial selection in a domestication event. Proceedings of the United States of America, 2004, 101, 10667-10672.	3.3	295
52	Sequence Polymorphism in Polyploid Wheat and Their D-Genome Diploid Ancestor. Genetics, 2004, 167, 941-947.	1.2	140
53	Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany, 2004, 17, 145.	0.3	367
54	Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends in Genetics, 2004, 20, 103-111.	2.9	216
55	GISHGenomic in situ hybridization reveals cryptic genetic differences between maize and its putative wild progenitor Zea mays subsp. parviglumis. Genome, 2004, 47, 947-953.	0.9	10
56	A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome, 2004, 47, 389-398.	0.9	120

#	Article	IF	CITATIONS
57	Human impacts on forest genetic resources in the temperate zone: an updated review. Forest Ecology and Management, 2004, 197, 257-271.	1.4	78
58	The Genetics of Maize Evolution. Annual Review of Genetics, 2004, 38, 37-59.	3.2	529
59	Genealogy of the "Green Revolution" gene in rice. Genes and Genetic Systems, 2005, 80, 351-356.	0.2	47
60	Molecular Evolution of the Opaque-2 Gene in Zea mays L Journal of Molecular Evolution, 2005, 61, 551-558.	0.8	20
61	Quantitative trait loci and the study of plant domestication. Genetica, 2005, 123, 197-204.	0.5	26
62	Cross-species Transferability of Rice Microsatellites in its Wild Relatives and the Potential for Conservation Genetic Studies. Genetic Resources and Crop Evolution, 2005, 52, 931-940.	0.8	28
63	An Analysis of Genetic Diversity Across the Maize Genome Using Microsatellites. Genetics, 2005, 169, 1617-1630.	1.2	147
64	Quantitative trait loci and the study of plant domestication. , 2005, , 197-204.		4
65	Gene and Genome Changes During Domestication of Cereals. , 2004, , 165-198.		14
66	Estimating a Nucleotide Substitution Rate for Maize from Polymorphism at a Major Domestication Locus. Molecular Biology and Evolution, 2005, 22, 2304-2312.	3.5	82
67	Molecular Evolution of FLORICAULA/LEAFY Orthologs in the Andropogoneae (Poaceae). Molecular Biology and Evolution, 2005, 22, 1082-1094.	3.5	56
68	Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12801-12806.	3.3	109
69	Evolution of DNA Sequence Nonhomologies among Maize Inbreds. Plant Cell, 2005, 17, 343-360.	3.1	290
70	Molecular Population Genetics and the Search for Adaptive Evolution in Plants. Molecular Biology and Evolution, 2005, 22, 506-519.	3.5	301
71	The genome organization and diversification of maize and its allied species revisited: evidences from classical and FISH-GISH cytogenetic analysis. Cytogenetic and Genome Research, 2005, 109, 259-267.	0.6	22
72	On the Effect of Fluctuating Recombination Rates on the Decorrelation of Gene Histories in the Human Genome. Genetics, 2005, 169, 1175-1178.	1.2	0
73	A Large-Scale Screen for Artificial Selection in Maize Identifies Candidate Agronomic Loci for Domestication and Crop Improvement. Plant Cell, 2005, 17, 2859-2872.	3.1	234
74	Genetic Diversity and the Evolutionary History of Plant Immunity Genes in Two Species of Zea. Molecular Biology and Evolution, 2005, 22, 2480-2490.	3.5	31

	CHATION N	LPORT	
#	Article	IF	CITATIONS
75	The Effects of Artificial Selection on the Maize Genome. Science, 2005, 308, 1310-1314.	6.0	742
77	Multilocus Analysis of Nucleotide Variation and Speciation in Oryza officinalis and Its Close Relatives. Molecular Biology and Evolution, 2006, 24, 769-783.	3.5	51
78	Patterns of Nucleotide Diversity in Wild and Cultivated Sunflower. Genetics, 2006, 173, 321-330.	1.2	177
79	The Molecular Genetics of Crop Domestication. Cell, 2006, 127, 1309-1321.	13.5	1,701
80	4. Maize Origins, Domestication, and Selection. , 2006, , 67-90.		30
81	Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae). Molecular Ecology, 2006, 15, 1467-1480.	2.0	127
82	Domestication history in the Medicago sativa species complex: inferences from nuclear sequence polymorphism. Molecular Ecology, 2006, 15, 1589-1602.	2.0	60
83	Grouping of accessions of Mexican races of maize revisited with SSR markers. Theoretical and Applied Genetics, 2006, 113, 177-185.	1.8	81
84	The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends in Genetics, 2006, 22, 126-131.	2.9	229
85	Documenting domestication: the intersection of genetics and archaeology. Trends in Genetics, 2006, 22, 139-155.	2.9	366
86	Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Research, 2006, 34, D752-D757.	6.5	89
87	CISâ€based characterization of the geographic distributions of wild and cultivated populations of the Mesoamerican fruit tree <i>Spondias purpurea</i> (Anacardiaceae). American Journal of Botany, 2006, 93, 1757-1767.	0.8	51
88	Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17644-17649.	3.3	213
89	Genome-Wide Patterns of Nucleotide Polymorphism in Domesticated Rice. PLoS Genetics, 2007, 3, e163.	1.5	406
90	Patterns of Selection and Tissue-Specific Expression among Maize Domestication and Crop Improvement Loci. Plant Physiology, 2007, 144, 1642-1653.	2.3	17
91	Genomic Screening for Artificial Selection during Domestication and Improvement in Maize. Annals of Botany, 2007, 100, 967-973.	1.4	70
92	Multilocus Analysis of Nucleotide Variation of Oryza sativa and Its Wild Relatives: Severe Bottleneck during Domestication of Rice. Molecular Biology and Evolution, 2007, 24, 875-888.	3.5	329
93	A Weak Effect of Background Selection on Trinucleotide Microsatellites in Maize. Journal of Heredity, 2007, 99, 45-55.	1.0	3

ARTICLE

IF CITATIONS

Population Structure and Its Effects on Patterns of Nucleotide Polymorphism in Teosinte (Zea mays) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

95	How some people became farmers. , 2007, , 36-52.		0
96	Agricultural improvement in modern times. , 2007, , 261-278.		1
97	Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proceedings of the United States of America, 2007, 104, 8641-8648.	3.3	385
98	Grinding up Wheat: A Massive Loss of Nucleotide Diversity Since Domestication. Molecular Biology and Evolution, 2007, 24, 1506-1517.	3.5	331
99	Progress and prospects in mapping recent selection in the genome. Heredity, 2007, 98, 340-348.	1.2	121
100	Maize Sh2 gene is constrained by natural selection but escaped domestication. Journal of Evolutionary Biology, 2007, 20, 503-516.	0.8	13
101	CONTRASTING PATTERNS OF SYNONYMOUS AND NONSYNONYMOUS SEQUENCE EVOLUTION IN ASEXUAL AND SEXUAL FRESHWATER SNAIL LINEAGES. Evolution; International Journal of Organic Evolution, 2007, 61, 2728-2735.	1.1	61
102	Molecular Population Genetics of Rice Domestication. Journal of Integrative Plant Biology, 2007, 49, 769-775.	4.1	8
103	Phylogeography of the Bitter Apple, Citrullus Colocynthis. Genetic Resources and Crop Evolution, 2007, 54, 327-336.	0.8	56
104	Creation of new maize germplasm using alien introgression from Zea mays ssp. mexicana. Euphytica, 2008, 164, 789-801.	0.6	32
105	Allelic diversification at the wx locus in landraces of Asian rice. Theoretical and Applied Genetics, 2008, 116, 979-989.	1.8	142
106	Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the Beta vulgaris complex species. Theoretical and Applied Genetics, 2008, 116, 1063-1077.	1.8	60
107	Contrasting population genetic structure and gene flow between Oryza rufipogon and Oryza nivara. Theoretical and Applied Genetics, 2008, 117, 1181-1189.	1.8	41
108	Nucleotide diversity of the homoeologous adh1 loci in the American allotetraploid Oryza species. Plant Systematics and Evolution, 2008, 276, 243-253.	0.3	5
109	Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms. Molecular Genetics and Genomics, 2008, 279, 255-266.	1.0	29
110	GENETIC VARIATION IN WILD AND CULTIVATED POPULATIONS OF THE HAPLOID– DIPLOID RED ALGA GRACILARIA CHILENSIS: HOW FARMING PRACTICES FAVOR ASEXUAL REPRODUCTION AND HETEROZYGOSITY. Evolution; International Journal of Organic Evolution, 2008, 62, 1500-1519.	1.1	129
111	Kernel amino acid composition and protein content of introgression lines from Zea mays ssp. mexicana into cultivated maize. Journal of Cereal Science, 2008, 48, 387-393.	1.8	36

#	Article	IF	CITATIONS
112	Probability Models for DNA Sequence Evolution. Probability and Its Applications, 2008, , .	0.8	233
113	The genetic expectations of a protracted model for the origins of domesticated crops. Proceedings of the United States of America, 2008, 105, 13982-13986.	3.3	244
114	Molecular insights into the evolution of crop plants. American Journal of Botany, 2008, 95, 113-122.	0.8	130
115	The Reticulate History of Medicago (Fabaceae). Systematic Biology, 2008, 57, 466-482.	2.7	93
116	Expression and Nucleotide Diversity of the Maize RIK Gene. Journal of Heredity, 2008, 99, 407-416.	1.0	3
117	Nonindependent Domestication of the Two Rice Subspecies, <i>Oryza sativa</i> ssp. <i>indica</i> and ssp. <i>japonica</i> , Demonstrated by Multilocus Microsatellites. Genetics, 2008, 179, 965-976.	1.2	90
118	Testing for Neutrality in Samples With Sequencing Errors. Genetics, 2008, 179, 1409-1424.	1.2	77
119	The Role of Regulatory Genes During Maize Domestication: Evidence From Nucleotide Polymorphism and Gene Expression. Genetics, 2008, 178, 2133-2143.	1.2	16
120	Detecting multiple origins of domesticated crops. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13701-13702.	3.3	50
121	Multilocus Patterns of Nucleotide Polymorphism and the Demographic History of <i>Populus tremula</i> . Genetics, 2008, 180, 329-340.	1.2	173
122	Retroelement Insertional Polymorphisms, Diversity and Phylogeography within Diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) Sub-taxa in Iran. Annals of Botany, 2008, 101, 855-861.	1.4	49
123	<i>Ustilago maydis</i> populations tracked maize through domestication and cultivation in the Americas. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1037-1046.	1.2	54
124	Demography and weak selection drive patterns of transposable element diversity in natural populations of <i>Arabidopsis lyrata</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13965-13970.	3.3	99
125	Patterns of Polymorphism and Demographic History in Natural Populations of Arabidopsis lyrata. PLoS ONE, 2008, 3, e2411.	1.1	163
126	Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9979-9986.	3.3	133
127	Historical Divergence and Gene Flow in the Genus Zea. Genetics, 2009, 181, 1399-1413.	1.2	175
128	Molecular population genetics and agronomic alleles in seed banks: searching for a needle in a haystack?. Journal of Experimental Botany, 2009, 60, 2541-2552.	2.4	41
129	Patterns of nucleotide diversity in wild and cultivated rice. Plant Systematics and Evolution, 2009, 281, 97-106.	0.3	13

#	Article	IF	CITATIONS
130	Origin and evolution of Chinese waxy maize: evidence from the Globulin-1 gene. Genetic Resources and Crop Evolution, 2009, 56, 247-255.	0.8	36
131	Artificial Selection and Domestication: Modern Lessons from Darwin's Enduring Analogy. Evolution: Education and Outreach, 2009, 2, 5-27.	0.3	55
132	Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theoretical and Applied Genetics, 2009, 120, 93-115.	1.8	201
133	Diversification in flowering time due to tandem <i>FTâ€like</i> gene duplication, generating novel Mendelian factors in wild and cultivated rice. Molecular Ecology, 2009, 18, 1537-1549.	2.0	33
134	The nature of selection during plant domestication. Nature, 2009, 457, 843-848.	13.7	818
135	SNP deserts of Asian cultivated rice: genomic regions under domestication. Journal of Evolutionary Biology, 2009, 22, 751-761.	0.8	43
136	Overcoming paralogy and incomplete lineage sorting to detect a phylogeographic signal: a <i>GapC</i> study of <i>Armeria pungens</i> . Botany, 2009, 87, 164-177.	0.5	5
137	The Palomero Genome Suggests Metal Effects on Domestication. Science, 2009, 326, 1078-1078.	6.0	77
138	The LTR-Retrotransposons of Maize. , 2009, , 307-327.		24
139	Genetic diversity and structure in semiwild and domesticated chiles (<i>Capsicum annuum</i> ;) Tj ETQq1 1 0.784	314 rgBT 0.8	/Overlock 1
141	Cloning and genetic diversity analysis of a new P5CS gene from common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2010, 120, 1393-1404.	1.8	28
142	Domestication and plant genomes. Current Opinion in Plant Biology, 2010, 13, 160-166.	3.5	89
143	Population genetics of foxtail millet and its wild ancestor. BMC Genetics, 2010, 11, 90.	2.7	53
144	Evidence of selection at the <i>ramosa1</i> locus during maize domestication. Molecular Ecology, 2010, 19, 1296-1311.	2.0	62
145	Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza) Tj ETQq0 0 0 rgBT	/Overlock 2.0	10 Tf 50 18
146	Genetic Architecture of Novel Traits in the Hopi Sunflower. Journal of Heredity, 2010, 101, 727-736.	1.0	12
147	Signatures of Recent Directional Selection Under Different Models of Population Expansion During Colonization of New Selective Environments. Genetics, 2010, 184, 571-585.	1.2	14
148	Maize Cobs and Cultures: History of Zea mays L , 2010, , .		23

#	Article	IF	CITATIONS
149	Genetic Diversity of Eggplant Revealed by SSR Markers. , 2010, , .		3
150	A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Annals of Botany, 2010, 106, 505-514.	1.4	119
151	Ethnobotanic, Interdisciplinary and Multidisciplinary Methodologies. , 2010, , 149-223.		0
152	The Genetic Structure of Domestic Rabbits. Molecular Biology and Evolution, 2011, 28, 1801-1816.	3.5	101
153	A European perspective on maize history. Comptes Rendus - Biologies, 2011, 334, 221-228.	0.1	111
154	Genetic structure and domestication history of the grape. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3530-3535.	3.3	684
155	Processos evolutivos e a origem das plantas cultivadas. Ciencia Rural, 2011, 41, 1218-1228.	0.3	6
156	Cereal Domestication and Evolution of Branching: Evidence for Soft Selection in the Tb1 Orthologue of Pearl Millet (Pennisetum glaucum [L.] R. Br.). PLoS ONE, 2011, 6, e22404.	1.1	37
157	Multi-Locus Analysis Reveals A Different Pattern of Genetic Diversity for Mitochondrial and Nuclear DNA between Wild and Domestic Pigs in East Asia. PLoS ONE, 2011, 6, e26416.	1.1	11
158	Investigation of the domestication of common bean (Phaseolus vulgaris) using multilocus sequence data. Functional Plant Biology, 2011, 38, 953.	1.1	75
159	MADS-box genes of maize: frequent targets of selection during domestication. Genetical Research, 2011, 93, 65-75.	0.3	47
160	Gene flow among different teosinte taxa and into the domesticated maize gene pool. Genetic Resources and Crop Evolution, 2011, 58, 1243-1261.	0.8	51
161	Nucleotide Diversity and Selection Signature in the Domesticated Silkworm, <i>Bombyx mori</i> , and Wild Silkworm, <i>Bombyx mandarina</i> . Journal of Insect Science, 2011, 11, 1-16.	0.6	22
162	Domestication Relaxed Selective Constraints on the Yak Mitochondrial Genome. Molecular Biology and Evolution, 2011, 28, 1553-1556.	3.5	93
163	Molecular Evolution of the Endosperm Starch Synthesis Pathway Genes in Rice (Oryza sativa L.) and Its Wild Ancestor, O. rufipogon L Molecular Biology and Evolution, 2011, 28, 659-671.	3.5	29
164	The origin and evolution of maize and its introduction into South-Eastern Europe. Ratarstvo I Povrtarstvo, 2012, 49, 92-104.	0.6	4
165	Evolutionary History of Pearl Millet (Pennisetum glaucum [L.] R. Br.) and Selection on Flowering Genes since Its Domestication. Molecular Biology and Evolution, 2012, 29, 1199-1212.	3.5	48
166	MATING SYSTEM, HALDANE'S SIEVE, AND THE DOMESTICATION PROCESS. Evolution; International Journal of Organic Evolution, 2012, 67, no-no.	1.1	28

#	Article	IF	CITATIONS
167	Evidence of selection on fatty acid biosynthetic genes during the evolution of cultivated sunflower. Theoretical and Applied Genetics, 2012, 125, 897-907.	1.8	51
168	Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genetics, 2012, 44, 217-220.	9.4	532
169	Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics, 2012, 13, 452.	1.2	74
172	Introgression Between Cultivars and Wild Populations of Momordica charantia L. (Cucurbitaceae) in Taiwan. International Journal of Molecular Sciences, 2012, 13, 6469-6491.	1.8	20
173	Traditional home-garden conserving genetic diversity: a case study of Acacia pennata in southwest China. Conservation Genetics, 2012, 13, 891-898.	0.8	9
174	Crop genomics: advances and applications. Nature Reviews Genetics, 2012, 13, 85-96.	7.7	439
175	Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biology, 2013, 13, 25.	1.6	155
176	Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8057-8062.	3.3	1,065
177	Managing diversity: Domestication and gene flow in <i><scp>S</scp>tenocereus stellatus</i> Riccob. (Cactaceae) in Mexico. Ecology and Evolution, 2013, 3, 1340-1355.	0.8	41
178	Population structure of the primary gene pool of Oryza sativa in Thailand. Genetic Resources and Crop Evolution, 2013, 60, 335-353.	0.8	41
179	<scp>P</scp> leistocene climate change and the origin of two desert plant species, <i><scp>P</scp>ugionium cornutum</i> and <i><scp>P</scp>ugioniumÂdolabratum</i> (<scp>B</scp> rassicaceae), in northwest <scp>C</scp> hina. New Phytologist, 2013, 199, 277-287.	3.5	55
180	Comparative Analyses Identify the Contributions of Exotic Donors to Disease Resistance in a Barley Experimental Population. G3: Genes, Genomes, Genetics, 2013, 3, 1945-1953.	0.8	11
181	From Many, One: Genetic Control of Prolificacy during Maize Domestication. PLoS Genetics, 2013, 9, e1003604.	1.5	111
182	Interspecific differentiation and gene flow between two desert poplars inferred from six vacuolar Na ⁺ / <scp>H</scp> ⁺ exchanger loci. Journal of Systematics and Evolution, 2013, 51, 652-663.	1.6	2
183	Functional Gene Polymorphism to Reveal Species History: The Case of the CRTISO Gene in Cultivated Carrots. PLoS ONE, 2013, 8, e70801.	1.1	14
184	Detecting SNPs underlying domestication-related traits in soybean. BMC Plant Biology, 2014, 14, 251.	1.6	16
185	Domestication of Plants. , 2014, , 474-486.		21
186	Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 2014, 133, 679-701.	1.0	144

	CITATION REF	ORT	
#	Article	IF	CITATIONS
187	The Population Genetics of Cultivation: Domestication of a Traditional Chinese Medicine, Scrophularia ningpoensis Hemsl. (Scrophulariaceae). PLoS ONE, 2014, 9, e105064.	1.1	16
188	Heterosis Is Prevalent Among Domesticated but not Wild Strains of <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2014, 4, 315-323.	0.8	47
189	Role of Molecular Markers. , 2014, , 165-185.		2
190	Alien Gene Transfer in Crop Plants, Volume 1. , 2014, , .		2
191	Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?. Plant Science, 2014, 215-216, 48-58.	1.7	119
192	Reticulate evolution in North American black-fruited hawthorns (Crataegus section Douglasia;) Tj ETQq1 1 0.7843	14 rgBT /0 1.4	Oygrlock 10
193	Two Genomic Regions Contribute Disproportionately to Geographic Differentiation in Wild Barley. G3: Genes, Genomes, Genetics, 2014, 4, 1193-1203.	0.8	38
194	Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345, 1074-1079.	6.0	343
195	Patterns of nucleotide diversity and phenotypes of two domestication related genes (OsC1 and Wx) in indigenous rice varieties in Northeast India. BMC Genetics, 2014, 15, 71.	2.7	19
196	Population genetic structure and the effect of historical human activity on the genetic variability of Cryptomeria japonica core collection, in Japan. Tree Genetics and Genomes, 2014, 10, 1257-1270.	0.6	17
197	Extensive genetic diversity and low linkage disequilibrium within the COMT locus in maize exotic populations. Plant Science, 2014, 221-222, 69-80.	1.7	5
198	Surprisingly Low Limits of Selection in Plant Domestication. Evolutionary Bioinformatics, 2015, 11s2, EBO.S33495.	0.6	12
199	Nucleotide Diversity Analysis of Three Major Bacterial Blight Resistance Genes in Rice. PLoS ONE, 2015, 10, e0120186.	1.1	13
200	KRN4 Controls Quantitative Variation in Maize Kernel Row Number. PLoS Genetics, 2015, 11, e1005670.	1.5	147
201	Evolution Is an Experiment: Assessing Parallelism in Crop Domestication and Experimental Evolution. Molecular Biology and Evolution, 2015, 32, 1661-1671.	3.5	41
202	Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (<i>Helianthus annuus</i>) Genotypes. Genome Biology and Evolution, 2015, 7, 3368-3382.	1.1	36
203	AFLP assessment of the genetic diversity of Calotropis procera (Apocynaceae) in the West Africa region (Benin). Genetic Resources and Crop Evolution, 2015, 62, 863-878.	0.8	10
204	Independent Molecular Basis of Convergent Highland Adaptation in Maize. Genetics, 2015, 200, 1297-1312.	1.2	67

ARTICLE IF CITATIONS # Genomics and the Contrasting Dynamics of Annual and Perennial Domestication. Trends in Genetics, 205 2.9 145 2015, 31, 709-719. Molecular and Genomic Tools Provide Insights on Crop Domestication and Evolution. Advances in 206 2.4 Agronomy, 2016, 135, 181-223. Application of RAD Sequencing for Evaluating the Genetic Diversity of Domesticated Panax 207 1.1 19 notoginseng (Araliaceae). PLoS ONE, 2016, 11, e0166419. <scp>angsd</scp>â€wrapper: utilities for analysing nextâ€generation sequencing data. Molecular Ecology 208 Resources, 2016, 16, 1449-1454. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nature 209 9.4 158 Genetics, 2016, 48, 1083-1088. Nonfunctional alleles of longâ€day suppressor genes independently regulate flowering time. Journal of Integrative Plant Biology, 2016, 58, 540-548. 4.1 The Role of Deleterious Substitutions in Crop Genomes. Molecular Biology and Evolution, 2016, 33, 211 3.5 83 2307-2317. Recent demography drives changes in linked selection across the maize genome. Nature Plants, 2016, 2, 16084. Morphological and genetic diversity and seed germination behavior of a snow lotus (Saussurea) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 42 213 0.8 4 and Crop Evolution, 2017, 64, 927-934. Complex genetic architecture underlies maize tassel domestication. New Phytologist, 2017, 214, 214 3.5 852-864. Fast diffusion of domesticated maize to temperate zones. Scientific Reports, 2017, 7, 2077. 215 7 1.6 Genomic inferences of domestication events are corroborated by written records in <i>Brassica 216 rapa</i>. Molecular Ecology, 2017, 26, 3373-3388. Glossy15 Plays an Important Role in the Divergence of the Vegetative Transition between Maize and Its 217 3.9 16 Progénitor, Teosinte. Molecular Plant, 2017, 10, 1579-1583. Evolutionary genomics of grape (<i>Vitis vinifera</i> ssp. <i>vinifera</i>) domestication. Proceedings 3.3 of the National Academy of Sciences of the United States of America, 2017, 114, 11715-11720. 219 Evolution of meiotic recombination genes in maize and teosinte. BMC Genomics, 2017, 18, 106. 1.2 12 The interplay of demography and selection during maize domestication and expansion. Genome Biology, 2017, 18, 215. <i>ZmCCT9</i> enhances maize adaptation to higher latitudes. Proceedings of the National Academy of 221 3.3 210 Sciences of the United States of America, 2018, 115, E334-E341. Elevated Proportions of Deleterious Genetic Variation in Domestic Animals and Plants. Genome 1.1 Biology and Evolution, 2018, 10, 276-290.

	Сіта	tion Report	
#	Article	IF	CITATIONS
225	Evolution and Adaptation in the Maize Genome. Compendium of Plant Genomes, 2018, , 319-332.	0.3	6
226	Specific LTR-Retrotransposons Show Copy Number Variations between Wild and Cultivated Sunflowers. Genes, 2018, 9, 433.	1.0	16
227	Demography and its effects on genomic variation in crop domestication. Nature Plants, 2018, 4, 512-52	0. 4.7	173
228	Maize domestication and gene interaction. New Phytologist, 2018, 220, 395-408.	3.5	90
229	Origin and diversity of an underutilized fruit tree crop, cempedak (Artocarpus integer , Moraceae). American Journal of Botany, 2018, 105, 898-914.	0.8	9
230	A reâ€evaluation of the domestication bottleneck from archaeogenomic evidence. Evolutionary Applications, 2019, 12, 29-37.	1.5	79
231	The effects of clonal forestry on genetic diversity in wild and domesticated stands of forest trees. Scandinavian Journal of Forest Research, 2019, 34, 370-379.	0.5	39
232	Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21302-21311.	3.3	25
233	Parallelism and convergence in post-domestication adaptation in cereal grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180245.	1.8	16
234	GNI-A1 mediates trade-off between grain number and grain weight in tetraploid wheat. Theoretical and Applied Genetics, 2019, 132, 2353-2365.	1.8	43
235	<i>Zm<scp>MADS</scp>69</i> functions as a flowering activator through the <i>ZmRap2.7â€<scp>ZCN</scp>8</i> regulatory module and contributes to maize flowering time adaptation. New Phytologist, 2019, 221, 2335-2347.	3.5	100
236	Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant Journal, 2020, 101, 278-292.	2.8	25
237	Genetic mapping and survey of powdery mildew resistance in the wild Central Asian ancestor of cultivated grapevines in Central Asia. Horticulture Research, 2020, 7, 104.	2.9	14
238	Teosinte (Zea mays ssp parviglumis) growth and transcriptomic response to weed stress identifies similarities and differences between varieties and with modern maize varieties. PLoS ONE, 2020, 15, e0237715.	1.1	4
239	Genetic diversity and genome-wide association analysis in Chinese hulless oat germplasm. Theoretical and Applied Genetics, 2020, 133, 3365-3380.	1.8	12
240	Genetic Diversity and Population Structure of Maize Inbred Lines with Varying Levels of Resistance to Striga Hermonthica Using Agronomic Trait-Based and SNP Markers. Plants, 2020, 9, 1223.	1.6	8
241	Coalescent Models of Demographic History: Application to Plant Domestication. Population Genomics, 2020, , 1.	0.2	0
242	<i>dlf1</i> promotes floral transition by directly activating <i>ZmMADS4</i> and <i>ZmMADS67</i> in the maize shoot apex. New Phytologist, 2020, 228, 1386-1400.	3.5	26

#	Article	IF	CITATIONS
243	Genetic diversity and domestication of hazelnut (<i>Corylus avellana</i> L.) in Turkey. Plants People Planet, 2020, 2, 326-339.	1.6	16
244	Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC Plant Biology, 2020, 20, 19.	1.6	40
245	Impacts of directed evolution and soil management legacy on the maize rhizobiome. Soil Biology and Biochemistry, 2020, 145, 107794.	4.2	22
246	The Temporal Dynamics of Background Selection in Nonequilibrium Populations. Genetics, 2020, 214, 1019-1030.	1.2	23
247	<i>TAC4</i> controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnology Journal, 2021, 19, 64-73.	4.1	38
248	Wholeâ€genome assembly and resequencing reveal genomic imprint and key genes of rapid domestication in narrowâ€leafed lupin. Plant Journal, 2021, 105, 1192-1210.	2.8	12
249	Genomic inference of complex domestication histories in three Solanaceae species. Journal of Evolutionary Biology, 2021, 34, 270-283.	0.8	8
250	Genetics and Genomics of African Rice (Oryza glaberrima Steud) Domestication. Rice, 2021, 14, 6.	1.7	13
252	Circadian Clock Components Offer Targets for Crop Domestication and Improvement. Genes, 2021, 12, 374.	1.0	27
253	Chromosomeâ€level reference genome of the soursop (<i>Annonamuricata</i>): A new resource for Magnoliid research and tropical pomology. Molecular Ecology Resources, 2021, 21, 1608-1619.	2.2	18
255	Candidate genes and signatures of directional selection on fruit quality traits during apple domestication. American Journal of Botany, 2021, 108, 616-627.	0.8	6
257	The New Is Old: Novel Germination Strategy Evolved From Standing Genetic Variation in Weedy Rice. Frontiers in Plant Science, 2021, 12, 699464.	1.7	5
258	Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding. Nature Communications, 2021, 12, 4125.	5.8	49
259	De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, 373, 655-662.	6.0	282
262	Genomics of Long- and Short-Term Adaptation in Maize and Teosintes. Methods in Molecular Biology, 2020, 2090, 289-311.	0.4	9
263	Exploitation of Natural Biodiversity Through Genomics. , 2007, , 121-150.		16
265	Evolutionary Genomics and the Domestication of Grapes. Compendium of Plant Genomes, 2019, , 39-55.	0.3	17
267	Imperial botany and the early scientific breeders. , 2007, , 247-260.		2

#	Article	IF	CITATIONS
268	Speciation and Domestication in Maize and Its Wild Relatives: Evidence From the Globulin-1 Gene. Genetics, 1998, 150, 863-872.	1.2	112
269	The Molecular Evolution of terminal ear1, a Regulatory Gene in the Genus Zea. Genetics, 1999, 153, 1455-1462.	1.2	91
270	Variation and Selection at the <i>CAULIFLOWER</i> Floral Homeotic Gene Accompanying the Evolution of Domesticated <i>Brassica oleracea</i> . Genetics, 2000, 155, 855-862.	1.2	93
271	Copy Number Lability and Evolutionary Dynamics of the <i>Adh</i> Gene Family in Diploid and Tetraploid Cotton (Gossypium). Genetics, 2000, 155, 1913-1926.	1.2	83
272	Sequence Diversity in the Tetraploid Zea perennis and the Closely Related Diploid Z. diploperennis: Insights From Four Nuclear Loci. Genetics, 2001, 158, 401-412.	1.2	41
273	Genetic Analysis of Sunflower Domestication. Genetics, 2002, 161, 1257-1267.	1.2	252
274	Population Genetics of Duplicated Disease-Defense Genes, <i>hm1</i> and <i>hm2</i> , in Maize (<i>Zea) Tj ETQc 2002, 162, 851-860.</i>	0 0 0 rgB ⁻ 1.2	T /Overlock 2 53
275	Molecular Evidence on the Origin and Evolution of Glutinous Rice. Genetics, 2002, 162, 941-950.	1.2	181
276	Estimating the Time Since the Fixation of a Beneficial Allele. Genetics, 2003, 164, 1667-1676.	1.2	92
277	Molecular-Genetic Characterization of CMS-S <i>Restorer-of-Fertility</i> Alleles Identified in Mexican Maize and Teosinte. Genetics, 2004, 166, 959-970.	1.2	4
282	Mosaic Structure of Japanese Rice Genome Composed Mainly of Two Distinct Genotypes. Breeding Science, 2007, 57, 213-221.	0.9	5
283	Post-Domestication Selection in the Maize Starch Pathway. PLoS ONE, 2009, 4, e7612.	1.1	32
284	Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives. PLoS ONE, 2012, 7, e39563.	1.1	101
285	QTL Map Meets Population Genomics: An Application to Rice. PLoS ONE, 2013, 8, e83720.	1.1	9
286	Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern. PLoS ONE, 2017, 12, e0185925.	1.1	9
287	THE LOST ANCESTOR OF THE BROAD BEAN (VICIA FABA L.) AND THE ORIGIN OF PLANT CULTIVATION IN THE NEAR EAST. Vestnik VOGIS, 2015, 18, 831.	0.1	7
288	Genetic Diversity in CIMMYT Nontemperate Maize Germplasm: Landraces, Open Pollinated Varieties, and Inbred Lines. Crop Science, 2008, 48, 617-624.	0.8	93
289	Deciphering the puzzles of dog domestication. Zoological Research, 2020, 41, 97-104.	0.9	13

ARTICLE IF CITATIONS Sequence Polymorphism of <1>waxy</1> Genes in Landraces of Waxy Maize from Southwest China. Acta 290 0.1 10 Agronomica Sinica (China), 2008, 34, 729-736. Empirical Analysis of Selection Screens for Domestication and Improvement Loci in Maize by Extended 1.6 DNA Sequencing. Plant Genome, 2008, 1, . Chapter 10. Using microbial community interactions within plant microbiomes to advance an 292 1 evergreen agricultural revolution., 2014, , 183-202. Morphological and genetic relationships between wild and domesticated forms of peppers (Capsicum) Tj ETQq1 1 Q784314 rgBT /Ov 293 An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. 294 5.8 41 Nature Communications, 2021, 12, 5832. Pest Management in Mesoamerican Agroecosystems. Advances in Agroecology, 2002, , . 0.3 296 Pest Management in Mesoamerican Agroecosystems. , 2002, , 69-104. 0 Crops and Cultures in the Pacific: New data and new techniques for the investigation of old 207 0.3 questions. Ethnobotany Research and Applications, 0, 2, 001. 298 Crop management in the classical and medieval periods., 2007, , 221-233. 0 299 Fluid genomes, uncertain species, and the genetics of crop domestication., 2007, , 65-77. 300 Agriculture: a mixed blessing. , 2007, , 124-136. 0 Evolution of agrourban cultures: III Africa, Europe, and the Americas., 2007, , 189-218. 301 The domestication of cereal crops., 2007, , 78-95. 302 1 Plant management and agriculture., 2007, , 20-35. 304 People and the emergence of crops., 2007, , 109-123. 0 The domestication of non-cereal crops., 2007,, 96-106. 306 Evolution of agrourban cultures: II South and east Asia. , 2007, , 174-188. 0 Agricultural improvement and the rise of crop breeding., 2007, , 234-246.

#	Article	IF	CITATIONS
308	Plant genomes. , 2007, , 55-64.		0
309	Evolution of agrourban cultures: I The Near East. , 2007, , 137-173.		0
310	The future of agriculture and humanity. , 2007, , 279-287.		0
311	Early human societies and their plants. , 2007, , 3-19.		0
312	Scientific, Botanical, and Biological Research on Maize. , 2010, , 85-147.		0
313	An Introduction to Maize Cobs and Cultures. , 2010, , 1-6.		0
329	Gene network simulations provide testable predictions for the molecular domestication syndrome. Genetics, 2022, 220, .	1.2	8
330	Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. Plant, Cell and Environment, 2022, 45, 751-770.	2.8	31
331	Evolution of genes and taxa: a primer. Plant Molecular Biology, 2000, 42, 1-23.	2.0	24
332	Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte. PLoS Genetics, 2021, 17, e1009797.	1.5	5
333	Homogenized Phylogeographic Structure across the Indo-Burma Ranges of a Large Monoecious Fig, Ficus altissima Blume. Diversity, 2021, 13, 654.	0.7	5
334	Genomic Designing for Abiotic Stress Tolerance in Pea (Pisum Sativum L.). , 2022, , 45-113.		2
337	Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication. Genome Biology, 2022, 23, .	3.8	10
345	Pangenomics and Crop Genome Adaptation in a Changing Climate. Plants, 2022, 11, 1949.	1.6	11
347	Fine mapping of candidate quantitative trait loci for plant and ear height in a maize nested-association mapping population. Frontiers in Plant Science, 0, 13, .	1.7	5
348	Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nature Genetics, 2022, 54, 1736-1745.	9.4	29
349	Pan-mitogenomics reveals the genetic basis of cytonuclear conflicts in citrus hybridization, domestication, and diversification. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
350	The Soursop Genome (Annona muricata L., Annonaceae). Compendium of Plant Genomes, 2022, , 149-174.	0.3	0

#	Article	IF	CITATIONS
351	Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. Plant Communications, 2023, 4, 100497.	3.6	13
352	Population structure analysis and genome-wide association study of a hexaploid oat landrace and cultivar collection. Frontiers in Plant Science, 0, 14, .	1.7	2
353	INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399- <i>ZmPHO2</i> signaling module in maize. Plant Cell, 2023, 35, 2208-2231.	3.1	1
354	Plants' Anatomical and Genetic Responses to Anthropogenic Climate Change and Human-Induced Activities. , 2023, , 403-441.		Ο
357	Population Genomics of Maize. Population Genomics, 2022, , .	0.2	1