Elevated anxiety and antidepressant-like responses in a mice

Proceedings of the National Academy of Sciences of the Unite 95, 15049-15054

DOI: 10.1073/pnas.95.25.15049

Citation Report

#	Article	IF	CITATIONS
1	Serotonin receptor knockouts: A moody subject. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15153-15154.	3.3	37
2	Knockout Corner: 5-HT1A receptor inactivation: anxiety or depression as a murine experience. International Journal of Neuropsychopharmacology, 1999, 2, 327-331.	1.0	18
3	Constitutive Gi2-dependent Activation of Adenylyl Cyclase Type II by the 5-HT1A Receptor. Journal of Biological Chemistry, 1999, 274, 35469-35474.	1.6	58
4	Anxiety: at the intersection of genes and experience. Nature Neuroscience, 1999, 2, 780-782.	7.1	32
5	Synaptic physiology in C. elegans. Nature Neuroscience, 1999, 2, 782-782.	7.1	0
6	Complications associated with genetic background effects in research using knockout mice. Psychopharmacology, 1999, 147, 5-7.	1.5	147
7	Altered Emotional States in Knockout Mice Lacking 5-HT1A or 5-HT1B Receptors. Neuropsychopharmacology, 1999, 21, 52S-60S.	2.8	228
8	Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. , 1999, 40, 343-355.		113
9	The new biology of anorexia and bulimia nervosa: implications for advances in treatment. European Eating Disorders Review, 1999, 7, 157-161.	2.3	0
10	Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends in Pharmacological Sciences, 1999, 20, 246-252.	4.0	64
11	Differential discrimination of G-protein coupling of serotonin1A receptors from bovine hippocampus by an agonist and an antagonist. FEBS Letters, 1999, 457, 389-392.	1.3	46
12	Genetic Inactivation of the Serotonin _{1A} Receptor in Mice Results in Downregulation of Major GABA _A Receptor α Subunits, Reduction of GABA _A Receptor Binding, and Benzodiazepine-Resistant Anxiety. Journal of Neuroscience, 2000, 20, 2758-2765.	1.7	186
13	A review of the role of serotonin receptors in psychiatric disorders. Human Psychopharmacology, 2000, 15, 397-415.	0.7	211
14	Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. European Journal of Neuroscience, 2000, 12, 3291-3306.	1.2	115
15	Heritability and Prevalence of Specific Fears and Phobias in Childhood. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2000, 41, 927-937.	3.1	71
16	Knockout Mice Reveal Opposite Roles for Serotonin 1A and 1B Receptors in Prepulse Inhibition. Neuropsychopharmacology, 2000, 22, 650-659.	2.8	72
17	Commentary: The broken mouse: the role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice. Current Opinion in Neurobiology, 2000, 10, 146-152.	2.0	114
18	Selective breeding of 5-HT1A receptor-mediated responses: application to emotion and receptor action. Pharmacology Biochemistry and Behavior, 2000, 67, 701-708.	1.3	25

#	Article		CITATIONS
19	Mouse models of serotonin receptor function: toward a genetic dissection of serotonin systems. , 2000, 88, 133-142.		54
20	Pharmacogenetics and the serotonin system: initial studies and future directions. European Journal of Pharmacology, 2000, 410, 165-181.	1.7	236
21	Mice lacking PKC gamma exhibit decreased anxiety. Behavior Genetics, 2000, 30, 111-121.	1.4	59
22	Loss of aggression, after transfer onto a C57BL/6J background, in mice carrying a targeted disruption of the neuronal nitric oxide synthase gene. Behavior Genetics, 2000, 30, 367-373.	1.4	42
23	Role of disulfides and sulfhydryl groups in agonist and antagonist binding in serotonin1A receptors from bovine hippocampus. Cellular and Molecular Neurobiology, 2000, 20, 665-681.	1.7	19
24	Habituation of activity in an open field: A survey of inbred strains and F1 hybrids. Behavior Genetics, 2000, 30, 285-293.	1.4	159
25	Distress vocalizations in maternally separated mouse pups: modulation via 5-HT 1A , 5-HT 1B and GABA A receptors. Psychopharmacology, 2000, 149, 277-285.	1.5	81
26	List of transgenic and knockout mice: behavioral profiles. Mammalian Genome, 2000, 11, 260-274.	1.0	67
27	Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains. Mammalian Genome, 2000, 11, 555-564.	1.0	151
28	Reduction in the Density and Expression, But Not G-Protein Coupling, of Serotonin Receptors (5-HT _{1A}) in 5-HT Transporter Knock-Out Mice: Gender and Brain Region Differences. Journal of Neuroscience, 2000, 20, 7888-7895.	1.7	214
29	Novel Dual Repressor Elements for Neuronal Cell-specific Transcription of the Rat 5-HT1A Receptor Gene. Journal of Biological Chemistry, 2000, 275, 8161-8168.	1.6	62
30	Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14731-14736.	3.3	342
31	Neurochemical Individuality. Archives of General Psychiatry, 2000, 57, 1105.	13.8	93
32	Dissection of behavior and psychiatric disorders using the mouse as a model. Human Molecular Genetics, 2000, 9, 953-965.	1.4	104
33	Effect of alcohols on G-protein coupling of serotonin1A receptors from bovine hippocampus. Brain Research Bulletin, 2000, 52, 597-601.	1.4	18
34	Natural animal models of human psychiatric conditions: assessment of mechanism and validity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2000, 24, 727-776.	2.5	167
35	The effects of compounds varying in selectivity as 5-HT1A receptor antagonists in three rat models of anxiety. Neuropharmacology, 2000, 39, 1848-1857.	2.0	72
36	Behavioral profile of wild mice in the elevated plus-maze test for anxiety. Physiology and Behavior, 2000, 71, 509-516.	1.0	122

#	Article	IF	CITATIONS
37	Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents. Journal of Psychopharmacology, 2000, 14, 114-138.	2.0	201
38	Altered fear circuits in 5-HT1A receptor KO mice. Biological Psychiatry, 2000, 48, 1157-1163.	0.7	166
39	Role of serotonin in memory impairment. Annals of Medicine, 2000, 32, 210-221.	1.5	357
40	Combining genetic and genomic approaches to study mood disorders. European Neuropsychopharmacology, 2001, 11, 413-421.	0.3	17
41	Stress-induced hyperthermia in the 5-HT1A receptor knockout mouse is normal. Biological Psychiatry, 2001, 49, 569-574.	0.7	38
42	5-HT1B receptor knockout, but not 5-HT1A receptor knockout mice, show reduced startle reactivity and footshock-induced sensitization, as measured with the acoustic startle response. Behavioural Brain Research, 2001, 118, 169-178.	1.2	44
43	Measuring normal and pathological anxiety-like behaviour in mice: a review. Behavioural Brain Research, 2001, 125, 141-149.	1.2	753
44	Serotonin Receptors Modulate GABA _A Receptor Channels through Activation of Anchored Protein Kinase C in Prefrontal Cortical Neurons. Journal of Neuroscience, 2001, 21, 6502-6511.	1.7	191
45	The α _{2A} -Adrenergic Receptor Plays a Protective Role in Mouse Behavioral Models of Depression and Anxiety. Journal of Neuroscience, 2001, 21, 4875-4882.	1.7	211
46	Mouse Molecular Genetic Technologies. Archives of General Psychiatry, 2001, 58, 995.	13.8	24
47	The genetic basis of the pharmacological effects of anxiolytics: a review based on rodent models. Behavioural Pharmacology, 2001, 12, 451-460.	0.8	62
48	Is this mouse anxious? The difficulties of interpreting the effects of genetic action. Commentary on Belzung â€The genetic basis of the pharmacological effects of anxiolytics' and Olivier et al. â€The 5-HT 1A receptor knockout mouse and anxiety'. Behavioural Pharmacology, 2001, 12, 461-465.	0.8	5
49	The 5-HT 1A receptor knockout mouse and anxiety. Behavioural Pharmacology, 2001, 12, 439-450.	0.8	84
50	Dissecting GABAergic and serotonergic involvement in anxiety. Commentary on Belzung †The genetic basis of the pharmacological effects of anxiolytics' and Olivier et al. †The 5-HT 1A receptor knockout mouse and anxiety'. Behavioural Pharmacology, 2001, 12, 467-470.	0.8	1
51	Anxious genes, emerging themes. Commentary on Belzung â€̃The genetic basis of the pharmacological effects of anxiolytics' and Olivier et al. â€̃The 5-HT 1A receptor knockout mouse and anxiety'. Behavioural Pharmacology, 2001, 12, 471-476.	0.8	10
52	Behavioral characterization of dopamine Dâ, receptor null mutant mice Behavioral Neuroscience, 2001, 115, 1129-1144.	0.6	146
53	Mouse anxiety: the power of knockout. Pharmacogenomics Journal, 2001, 1, 187-192.	0.9	17
54	Serotonin 1A receptors in mood disorders: a combined genetic and genomic approach. Behavioural Pharmacology, 2001, 12, 429-438.	0.8	22

#	Article	IF	CITATIONS
55	The molecular neurobiology of stress – evidence from genetic and epigenetic models. Behavioural Pharmacology, 2001, 12, 381-427.	0.8	31
56	Appropriate use of â€~knockout' mice as models of depression or models of testing the efficacy of antidepressants. Psychopharmacology, 2001, 153, 393-394.	1.5	19
57	A prescription to resist proscriptions for murine models of depression. Psychopharmacology, 2001, 153, 395-398.	1.5	43
59	Further characterisation of potential antidepressant action of flibanserin. Psychopharmacology, 2001, 159, 64-69.	1.5	12
60	Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neuroscience and Biobehavioral Reviews, 2001, 25, 261-273.	2.9	191
61	5-HT1A receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. Journal of Neurochemistry, 2001, 77, 607-617.	2.1	86
62	Regional changes in density of serotonin transporter in the brain of 5-HT1Aand 5-HT1Bknockout mice, and of serotonin innervation in the 5-HT1Bknockout. Journal of Neurochemistry, 2001, 78, 619-630.	2.1	57
63	Nicotine regulates 5-HT1Areceptor gene expression in the cerebral cortex and dorsal hippocampus. European Journal of Neuroscience, 2001, 13, 1267-1271.	1.2	56
64	Modulation of antagonist binding to serotonin1A receptors from bovine hippocampus by metal ions. Cellular and Molecular Neurobiology, 2001, 21, 453-464.	1.7	16
65	Molecular Pathways of Anxiety Revealed by Knockout Mice. Molecular Neurobiology, 2001, 23, 101-120.	1.9	33
66	Differential sensitivity to the anxiolytic effects of ethanol and flunitrazepam in PKCγ null mutant mice. Pharmacology Biochemistry and Behavior, 2001, 69, 99-110.	1.3	24
67	Differential effects of 5-HT1A receptor deletion upon basal and fluoxetine-evoked 5-HT concentrations as revealed by in vivo microdialysis. Brain Research, 2001, 902, 11-17.	1.1	51
68	QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Current Biology, 2001, 11, 725-734.	1.8	156
69	Precision in mouse behavior genetics. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5957-5960.	3.3	19
70	Heterodimerization of Mineralocorticoid and Glucocorticoid Receptors at a Novel Negative Response Element of the 5-HT1A Receptor Gene. Journal of Biological Chemistry, 2001, 276, 14299-14307.	1.6	151
71	Enhanced Detection of Receptor Constitutive Activity in the Presence of Regulators of G Protein Signaling: Applications to the Detection and Analysis of Inverse Agonists and Low-Efficacy Partial Agonists. Molecular Pharmacology, 2002, 61, 1211-1221.	1.0	25
72	The structural basis of g-protein-coupled receptor function and dysfunction in human diseases. , 2002, , 144-227.		20
74	Serotonin 5-HT1A Receptors Regulate AMPA Receptor Channels through Inhibiting Ca2+/Calmodulin-dependent Kinase II in Prefrontal Cortical Pyramidal Neurons. Journal of Biological Chemistry, 2002, 277, 36553-36562.	1.6	113

	Сітатіо	n Report	
#	Article	IF	CITATIONS
75	Molecular targets in the treatment of anxiety. Biological Psychiatry, 2002, 52, 1008-1030.	0.7	147
76	Solubilization of high affinity G-protein-coupled serotonin 1A receptors from bovine hippocampus using pre-micellar CHAPS at low concentration. Molecular Membrane Biology, 2002, 19, 211-220.	2.0	38
77	Decreased G-protein coupling of serotonin 5-HT1A receptors in the brain of 5-HT1B knockout mouse. Neuropharmacology, 2002, 42, 941-949.	2.0	13
78	Contrasting phenotypes of C57BL/6JOlaHsd, 129S2/SvHsd and 129/SvEv mice in two exploration-based tests of anxiety-related behaviour. Physiology and Behavior, 2002, 77, 301-310.	1.0	117
79	Genetic basis of anxiety-like behaviour: a critical review. Brain Research Bulletin, 2002, 57, 57-71.	1.4	142
80	Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Research Reviews, 2002, 39, 154-180.	9.1	229
81	Enhanced Locomotor, Reinforcing, and Neurochemical Effects of Cocaine in Serotonin 5-Hydroxytryptamine 2C Receptor Mutant Mice. Journal of Neuroscience, 2002, 22, 10039-10045.	1.7	148
82	Neurogenetics of Personality Disorders. , 0, , 1387-1412.		0
83	Involvement of 5-HT _{1A} Receptors in Homeostatic and Stress-Induced Adaptive Regulations of Paradoxical Sleep: Studies in 5-HT _{1A} Knock-Out Mice. Journal of Neuroscience, 2002, 22, 4686-4692.	1.7	152
84	Modification of serotonin neuron properties in mice lacking 5-HT1A receptors. European Journal of Pharmacology, 2002, 435, 195-203.	1.7	62
85	GABAA–benzodiazepine receptor complex sensitivity in 5-HT1A receptor knockout mice on a 129/Sv background. European Journal of Pharmacology, 2002, 447, 67-74.	1.7	34
86	5-HT1A receptor-mediated regulation of mitogen-activated protein kinase phosphorylation in rat brain. European Journal of Pharmacology, 2002, 452, 155-162.	1.7	37
87	Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacology Biochemistry and Behavior, 2002, 71, 533-554.	1.3	1,637
88	Reduced anxiety- and depression-like behaviors in Emx1 homozygous mutant mice. Brain Research, 2002, 937, 32-40.	1.1	33
89	A chronic treatment with fluoxetine decreases 5-HT1A receptors labeling in mice selected as a genetic model of helplessness. Brain Research, 2002, 936, 68-75.	1.1	42
90	Autonomic Changes Associated with Enhanced Anxiety in 5-HT1A Receptor Knockout Mice. Neuropsychopharmacology, 2002, 27, 380-390.	2.8	68
91	Influence of forced swimming-induced stress on the anxiolytic-like effect of 5HT1A agents in mice. Psychopharmacology, 2002, 162, 147-155.	1.5	20
92	When cells become depressed: focus on neural stem cells in novel treatment strategies against depression. Journal of Neural Transmission, 2002, 109, 947-962.	1.4	35

#	Article	IF	CITATIONS
93	Absence of anxiolytic response to chlordiazepoxide in two common background strains exposed to the elevated plus-maze: importance and implications of behavioural baseline. Genes, Brain and Behavior, 2002, 1, 242-251.	1.1	64
94	Serotonin sustains serenity. Nature, 2002, 416, 377-379.	13.7	18
95	Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature, 2002, 416, 396-400.	13.7	866
96	Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nature Genetics, 2002, 32, 116-127.	9.4	163
97	Regulation of the avidity of ternary complexes containing the human 5-HT1Areceptor by mutation of a receptor contact site on the interacting G protein α subunit. British Journal of Pharmacology, 2002, 137, 345-352.	2.7	5
98	Regulation of GABAergic Inhibition by Serotonin Signaling in Prefrontal Cortex: Molecular Mechanisms and Functional Implications. Molecular Neurobiology, 2002, 26, 203-216.	1.9	87
99	Genetic animal models of anxiety. Neurogenetics, 2003, 4, 109-135.	0.7	138
100	Anxiety-related traits in mice with modified genes of the serotonergic pathway. European Journal of Pharmacology, 2003, 480, 185-204.	1.7	99
101	N-ethyl-N-nitrosourea mouse mutants in the dissection of behavioural and psychiatric disorders. European Journal of Pharmacology, 2003, 480, 205-217.	1.7	19
102	The Vogel conflict test: procedural aspects, γ-aminobutyric acid, glutamate and monoamines. European Journal of Pharmacology, 2003, 463, 67-96.	1.7	128
103	5-HT1A receptor knockout mouse as a genetic model of anxiety. European Journal of Pharmacology, 2003, 463, 177-184.	1.7	148
104	5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. European Journal of Pharmacology, 2003, 463, 185-197.	1.7	83
105	Stress-induced hyperthermia and anxiety: pharmacological validation. European Journal of Pharmacology, 2003, 463, 117-132.	1.7	183
106	Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes, Brain and Behavior, 2003, 2, 365-380.	1.1	294
107	Central 5-Ht Receptor Hypersensitivity in Migraine Without Aura. Cephalalgia, 2003, 23, 29-34.	1.8	33
108	The developmental role of serotonin: news from mouse molecular genetics. Nature Reviews Neuroscience, 2003, 4, 1002-1012.	4.9	1,130
109	Flibanserin, a potential antidepressant drug, lowers 5-HT and raises dopamine and noradrenaline in the rat prefrontal cortex dialysate: role of 5-HT1A receptors. British Journal of Pharmacology, 2003, 139, 1281-1288.	2.7	53
110	Knockouts model the 100 best-selling drugs—will they model the next 100?. Nature Reviews Drug Discovery, 2003, 2, 38-51.	21.5	380

#	Article		CITATIONS
111	Hyperactivity and Reduced Energy Cost of Physical Activity in Serotonin 5-HT2C Receptor Mutant Mice. Diabetes, 2003, 52, 315-320.	0.3	110
112	The neurobiology and control of anxious states. Progress in Neurobiology, 2003, 70, 83-244.	2.8	815
113	A genetic screen for mouse mutations with defects in serotonin responsiveness. Molecular Brain Research, 2003, 115, 162-172.	2.5	13
114	Differing central amine receptor sensitivity in different migraine subtypes? A neuroendocrine study using buspirone. Pain, 2003, 101, 283-290.	2.0	12
115	Family 1 G protein-coupled receptor function in the CNS Insights from gene knockout mice. Brain Research Reviews, 2003, 41, 125-152.	9.1	15
116	Toward a molecular architecture of personality. Behavioural Brain Research, 2003, 139, 1-20.	1.2	231
117	Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice. Behavioural Brain Research, 2003, 141, 137-145.	1.2	60
118	Pet-1 ETS Gene Plays a Critical Role in 5-HT Neuron Development and Is Required for Normal Anxiety-like and Aggressive Behavior. Neuron, 2003, 37, 233-247.	3.8	428
119	Isolation and Characterization of the Canine Serotonin Receptor 1A Gene (htr1A). , 2003, 94, 49-56.		19
120	Mice Lacking the Serotonin Transporter Exhibit 5-HT1A Receptor-Mediated Abnormalities in Tests for Anxiety-like Behavior. Neuropsychopharmacology, 2003, 28, 2077-2088.	2.8	289
121	Involvement of 5-HT 1A Receptors in Animal Tests of Anxiety and Depression: Evidence from Genetic Models. Stress, 2003, 6, 101-110.	0.8	93
122	The Genes and Brains of Mice and Men. American Journal of Psychiatry, 2003, 160, 646-656.	4.0	103
123	New Lessons From Knockout Mice: The Role of Serotonin During Development and Its Possible Contribution to the Origins of Neuropsychiatric Disorders. CNS Spectrums, 2003, 8, 572-577.	0.7	38
124	The neural substrates of anxiety. , 2003, , 308-337.		3
125	Impaired Repression at a 5-Hydroxytryptamine 1A Receptor Gene Polymorphism Associated with Major Depression and Suicide. Journal of Neuroscience, 2003, 23, 8788-8799.	1.7	662
126	Freud-1: A Neuronal Calcium-Regulated Repressor of the 5-HT1A Receptor Gene. Journal of Neuroscience, 2003, 23, 7415-7425.	1.7	94
127	Developmental Aspects of Panic and Related Anxiety Disorders. Neuroembryology, 2003, 2, 72-80.	1.1	2
128	The 5-Hydroxytryptamine(1A) Receptor Is Stably Palmitoylated, and Acylation Is Critical for Communication of Receptor with Gi Protein, Journal of Biological Chemistry, 2004, 279, 3280-3291.	1.6	67

#	Article		CITATIONS
129	Variability in the Benzodiazepine Response of Serotonin 5-HT1A Receptor Null Mice Displaying Anxiety-Like Phenotype: Evidence for Genetic Modifiers in the 5-HT-Mediated Regulation of GABAA Receptors. Journal of Neuroscience, 2004, 24, 6343-6351.		42
130	Co-expression and In Vivo Interaction of Serotonin1A and Serotonin2A Receptors in Pyramidal Neurons of Prefrontal Cortex. Cerebral Cortex, 2004, 14, 281-299.	1.6	316
131	5-HT1A Receptors, Gene Repression, and Depression: Guilt by Association. Neuroscientist, 2004, 10, 575-593.	2.6	223
132	Effects of tandospirone, a novel anxiolytic agent, on human 5-HT1A receptors expressed in Chinese hamster ovary cells (CHO cells). Biogenic Amines, 2004, 18, 319-328.	0.3	12
133	Psychobiological Mechanisms of Resilience and Vulnerability: Implications for Successful Adaptation to Extreme Stress. American Journal of Psychiatry, 2004, 161, 195-216.	4.0	1,298
134	Human 5-HT1A receptor C(â^1019)G polymorphism and psychopathology. International Journal of Neuropsychopharmacology, 2004, 7, 441-451.	1.0	141
135	Corticotropin-Releasing Factor and Acute Stress Prolongs Serotonergic Regulation of GABA Transmission in Prefrontal Cortical Pyramidal Neurons. Journal of Neuroscience, 2004, 24, 5000-5008.	1.7	103
136	Long-term effects of culture of preimplantation mouse embryos on behavior. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1595-1600.	3.3	256
137	GENETIC APPROACHES TO THE STUDY OF ANXIETY. Annual Review of Neuroscience, 2004, 27, 193-222.	5.0	124
138	Psychobiological Mechanisms of Resilience and Vulnerability. Focus (American Psychiatric) Tj ETQq1 1 0.784314	rgBT/Ove 0.4	rlo <u>ck</u> 10 Tf 50
139	Expression of Serotonin1A and Serotonin2A Receptors in Pyramidal and GABAergic Neurons of the Rat Prefrontal Cortex. Cerebral Cortex, 2004, 14, 1100-1109.	1.6	402
140	GABAB receptors in 5-HT transporter- and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. Journal of Neurochemistry, 2004, 89, 886-896.	2.1	33
141	From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nature Reviews Drug Discovery, 2004, 3, 136-151.	21.5	192
142	In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Molecular Psychiatry, 2004, 9, 326-357.	4.1	553
143	The developmental origins of anxiety. Nature Reviews Neuroscience, 2004, 5, 545-552.	4.9	442
144	Mice lacking 5-HT7 receptors show specific impairments in contextual learning. European Journal of Neuroscience, 2004, 19, 1913-1922.	1.2	134
145	Mutant G-protein-coupled receptors as a cause of human diseases. , 2004, 104, 173-206.		281
146	8-OH-DPAT acts on both 5-HT1A and 5-HT7 receptors to induce hypothermia in rodents. European Journal of Pharmacology, 2004, 487, 125-132.	1.7	169

#	ARTICLE Behavioral and physiological mouse models for anxiety: effects of flesinoxan in 129S6/SvEvTac and	IF 1.7	Citations
148	Identification of Quantitative Trait Loci for Anxiety and Locomotion Phenotypes in Rat Recombinant Inbred Strains. Behavior Genetics, 2004, 34, 93-103.	1.4	31
149	The Serotonergic System and Anxiety. NeuroMolecular Medicine, 2004, 5, 027-040.	1.8	153
150	Solubilization of Serotonin1AReceptors Heterologously Expressed in Chinese Hamster Ovary Cells. Cellular and Molecular Neurobiology, 2004, 24, 293-300.	1.7	20
151	Genetic and environmental factors interact to influence anxiety. Neurotoxicity Research, 2004, 6, 493-501.	1.3	39
152	Ligand Binding Characteristics of the Human Serotonin1A Receptor Heterologously Expressed in CHO Cells. Bioscience Reports, 2004, 24, 101-115.	1.1	40
153	Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter. Psychopharmacology, 2004, 174, 512-24.	1.5	79
154	Cell typeâ€dependent recruitment of trichostatin Aâ€sensitive repression of the human 5â€HT1A receptor gene. Journal of Neurochemistry, 2004, 88, 857-868.	2.1	45
155	Temperature-dependent interaction of the bovine hippocampal serotonin1Areceptor with G-proteins. Molecular Membrane Biology, 2004, 21, 119-123.	2.0	19
156	Serotonin and brain development. International Review of Neurobiology, 2004, 59, 111-174.	0.9	283
157	Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1663, 188-200.	1.4	220
158	The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochemical and Biophysical Research Communications, 2004, 320, 557-562.	1.0	31
159	Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin1A receptors. Molecular Brain Research, 2004, 129, 104-116.	2.5	108
160	Age-dependent effects of serotonin-1A receptor gene deletion in spatial learning abilities in mice. Molecular Brain Research, 2004, 130, 39-48.	2.5	31
161	Juvenile 5HT 1B receptor knockout mice exhibit reduced pharmacological sensitivity to 5HT 1A receptor activation. International Journal of Developmental Neuroscience, 2004, 22, 405-413.	0.7	14
162	Stress-induced hyperthermia. Handbook of Behavioral Neuroscience, 2005, 15, 135-155.	0.0	5
163	The naturally occurring Arg219Leu variant of the human 5-HT1A receptor: impairment of signal transduction. Pharmacogenetics and Genomics, 2005, 15, 257-264.	0.7	11
164	Enhanced serotonin response in the hippocampus of G??z protein knock-out mice. NeuroReport, 2005, 16, 921-925.	0.6	18

# 165	ARTICLE The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neuroscience and Biobehavioral Reviews, 2005, 29, 571-625.	IF 2.9	Citations 1,266
166	Oxidative stress is the new stress. Nature Medicine, 2005, 11, 1281-1282.	15.2	120
167	Memory stem cells sustain disease. Nature Medicine, 2005, 11, 1282-1283.	15.2	7
168	Behavioral performance of tfm mice supports the beneficial role of androgen receptors in spatial learning and memory. Brain Research, 2005, 1034, 132-138.	1.1	45
169	Early postnatal stress alters the 5-HTergic modulation to emotional stress at postadolescent periods of rats. Hippocampus, 2005, 15, 775-781.	0.9	48
170	Reduction in 5-HT1A receptor density, 5-HT1A mRNA expression, and functional correlates for 5-HT1A receptors in genetically defined aggressive rats. Journal of Neuroscience Research, 2005, 80, 286-292.	1.3	66
171	Mutant mouse models of depression: Candidate genes and current mouse lines. Neuroscience and Biobehavioral Reviews, 2005, 29, 805-828.	2.9	102
172	Membrane Organization and Dynamics of the G-Protein-Coupled Serotonin1A Receptor Monitored Using Fluorescence-Based Approaches. Journal of Fluorescence, 2005, 15, 785-796.	1.3	7
173	Transmembrane Signaling in the Brain by Serotonin, A Key Regulator of Physiology and Emotion. Bioscience Reports, 2005, 25, 363-385.	1.1	60
174	The Serotonin1A A Receptor: A Representative Member of the Serotonin Receptor Family. Cellular and Molecular Neurobiology, 2005, 25, 553-580.	1.7	222
176	State-Dependent Alterations in Hippocampal Oscillations in Serotonin 1A Receptor-Deficient Mice. Journal of Neuroscience, 2005, 25, 6509-6519.	1.7	62
177	G-Protein-Gated Potassium (GIRK) Channels Containing the GIRK2 Subunit Are Control Hubs for Pharmacologically Induced Hypothermic Responses. Journal of Neuroscience, 2005, 25, 7801-7804.	1.7	35
178	Structure and Variation of Three Canine Genes Involved in Serotonin Binding and Transport: The Serotonin Receptor 1A Gene (htr1A), Serotonin Receptor 2A Gene (htr2A), and Serotonin Transporter Gene (slc6A4). Journal of Heredity, 2005, 96, 786-796.	1.0	23
179	Postnatal treatment with NAN-190 but not with 5-HT1A receptor agonists retards growth of the rat brain. International Journal of Developmental Neuroscience, 2005, 23, 485-493.	0.7	2
180	Cholesterol modulates the antagonist-binding function of hippocampal serotonin1A receptors. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1714, 35-42.	1.4	48
181	Transient overexpression of the 5-HT1A receptor impairs water-maze but not hole-board performance. Neurobiology of Learning and Memory, 2005, 84, 57-68.	1.0	25
182	Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochemical and Biophysical Research Communications, 2005, 327, 1036-1041.	1.0	45
183	5-HT7 Receptor Inhibition and Inactivation Induce Antidepressantlike Behavior and Sleep Pattern. Biological Psychiatry, 2005, 58, 831-837.	0.7	237

ARTICLE IF CITATIONS Serotonin 5-HT1A Receptors Regulate NMDA Receptor Channels through a Microtubule-Dependent 184 1.7 198 Mechanism. Journal of Neuroscience, 2005, 25, 5488-5501. Animal models of anxiety. Drug Discovery Today: Disease Models, 2006, 3, 369-374. 1.2 Mice over-expressing the 5-HT1A receptor in cortex and dentate gyrus display exaggerated locomotor 186 1.2 53 and hypothermic response to 8-OH-DPAT. Behavioural Brain Research, 2006, 167, 328-341. Models of anxiety: Responses of rats to novelty in an open space and an enclosed space. Behavioural Brain Research, 2006, 171, 26-49. Models of anxiety: Responses of mice to novelty and open spaces in a 3D maze. Behavioural Brain 188 1.2 45 Research, 2006, 174, 9-38. Effects of the 5-HT7 receptor antagonist SB-269970 on rat hormonal and temperature responses to the 5-HT1A/7 receptor agonist 8-OH-DPAT. Neuroscience Letters, 2006, 404, 122-126. 1.0 Serotonin 2A receptor gene is associated with personality traits, but not to disorder, in patients with 190 1.0 52 borderline personality disorder. Neuroscience Letters, 2006, 408, 214-219. Role of cholesterol in the function and organization of G-protein coupled receptors. Progress in 5.3 259 Lipid Research, 2006, 45, 295-333. 192 Genetic Influences on Moral Capacity: What Genetic Mutants Can Teach Us., 0,, 77-96. 1 Association of the functional [minus sign]1019C/G 5-HT 1A polymorphism with prefrontal cortex and amygdala activation measured with 3 T fMRI in panic disorder. International Journal of 1.0 Neuropsychopharmacology, 2006, 9, 349. Susceptibility Genes for the Side Effect of Antipsychotics on Body Weight and Obesity. Current Drug 194 29 1.0 Targets, 2006, 7, 1681-1695. Hypothermic responses to 8-OH-DPAT in the Ts65Dn mouse model of Down syndrome. NeuroReport, 0.6 2006, 17, 837-841. Behavioral and Neurological Phenotyping in the Mouse., 0, , 135-175. 196 3 The anxiety-like phenotype of 5-HT1Areceptor null mice is associated with genetic background-specific perturbations in the préfrontal cortex GABA?glutamate system. Journal of Neurochemistry, 2006, 99, 2.1 892-899. Ontogeny of brain and blood serotonin levels in 5-HT1Areceptor knockout mice: potential relevance 198 2.1 42 to the neurobiology of autism. Journal of Neurochemistry, 2006, 99, 1019-1031. Identifying interactions between genes and early environment in the mouse. Genes, Brain and Behavior, 2006, 5, 189-199. 199 44 Increased Fear Response to Contextual Cues in Mice Lacking the 5-HT1A Receptor. 200 2.8 136 Neuropsychopharmacology, 2006, 31, 101-111. Genetic Inactivation of Melanin-Concentrating Hormone Receptor Subtype 1 (MCHR1) in Mice Exerts 2.8 Anxiolytic-Like Behavioral Effects. Neuropsychopharmacology, 2006, 31, 112-120.

#	Article	IF	CITATIONS
202	Ligand Binding and G-protein Coupling of the Serotonin1A Receptor in Cholesterol-enriched Hippocampal Membranes. Bioscience Reports, 2006, 26, 79-87.	1.1	4
203	Prolonged Treatment with Ligands Affects Ligand Binding to the Human Serotonin1A Receptor in Chinese Hamster Ovary Cells. Cellular and Molecular Neurobiology, 2006, 26, 247-257.	1.7	0
204	Characteristics of Binding of [3H]WAY100635 to Rat Hippocampal Membranes. Neurochemical Research, 2006, 31, 1135-1140.	1.6	10
205	S100A1-deficient male mice exhibit increased exploratory activity and reduced anxiety-related responses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1307-1319.	1.9	24
206	The influence of sex and social isolation housing on pre- and postsynaptic 5-HT1A receptors. Brain Research, 2006, 1103, 76-87.	1.1	40
207	From genes to aggressive behavior: the role of serotonergic system. BioEssays, 2006, 28, 495-503.	1.2	205
208	Animal Models of Depression. , 2006, , 223-292.		0
209	A Null Mutation of the Serotonin 6 Receptor Alters Acute Responses to Ethanol. Neuropsychopharmacology, 2006, 31, 1801-1813.	2.8	61
210	Blockade of 5-HT1A Receptors by (±)-Pindolol Potentiates Cortical 5-HT Outflow, but not Antidepressant-Like Activity of Paroxetine: Microdialysis and Behavioral Approaches in 5-HT1A Receptor Knockout Mice. Neuropsychopharmacology, 2006, 31, 2162-2172.	2.8	63
211	Canadian Association of Neurosciences Review: Postnatal Development of the Mammalian Neocortex: Role of Activity Revisited. Canadian Journal of Neurological Sciences, 2006, 33, 158-169.	0.3	14
212	cAMP Response Element-Binding Protein Deficiency Allows for Increased Neurogenesis and a Rapid Onset of Antidepressant Response. Journal of Neuroscience, 2007, 27, 7860-7868.	1.7	88
213	Emerging anxiolytics. Expert Opinion on Emerging Drugs, 2007, 12, 541-554.	1.0	19
214	Psychobiological mechanisms of resilience: Relevance to prevention and treatment of stress-related psychopathology. Development and Psychopathology, 2007, 19, 889-920.	1.4	236
215	Serotonin and energy balance: molecular mechanisms and implications for type 2 diabetes. Expert Reviews in Molecular Medicine, 2007, 9, 1-24.	1.6	118
216	The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behavioural Pharmacology, 2007, 18, 391-418.	0.8	592
217	Early life stress effects on adult stress-induced corticosterone secretion and anxiety-like behavior in the C57BL/6 mouse are not as robust as initially thought. Hormones and Behavior, 2007, 52, 417-426.	1.0	45
218	Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Progress in Neurobiology, 2007, 81, 133-178.	2.8	297
219	[18F]MPPF as a tool for the in vivo imaging of 5-HT1A receptors in animal and human brain. Neuropharmacology, 2007, 52, 695-707.	2.0	79

		CITATION REPORT		
# 220	ARTICLE Embryonic and postnatal development of the serotonergic raphe system and its target reg 5-HT1A receptor deletion or overexpressing mouse mutants. Neuroscience, 2007, 147, 38	gions in 8-402.	IF 1.1	CITATIONS
221	Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin1A the plasma membrane of living cells. Biochimica Et Biophysica Acta - Biomembranes, 2007	receptor in , 1768, 655-668.	1.4	97
222	What's wrong with my mouse model?. Behavioural Brain Research, 2007, 179, 1-18.		1.2	251
223	5-HT1A-iCre, a new transgenic mouse line for genetic analyses of the serotonergic pathwa and Cellular Neurosciences, 2007, 36, 27-35.	y. Molecular	1.0	9
224	The 5-HT7 receptor influences stereotypic behavior in a model of obsessive-compulsive dis Neuroscience Letters, 2007, 414, 247-251.	order.	1.0	70
225	Major depression as a disorder of serotonin resistance: inference from diabetes mellitus ty International Journal of Neuropsychopharmacology, 2007, 10, 839-50.	pe II.	1.0	6
226	Serotonin Activates the Hypothalamic-Pituitary-Adrenal Axis via Serotonin 2C Receptor Sti Journal of Neuroscience, 2007, 27, 6956-6964.	mulation.	1.7	243
228	Psychotropic and Neurotropic Activity. , 2007, , 565-876.			6
229	Behavioral Evaluation of Male and Female Mice Pups Exposed to Fluoxetine during Pregnancy and Lactation. Pharmacology, 2007, 80, 49-56.		0.9	131
230	Role of Apolipoprotein E in Anxiety. Neural Plasticity, 2007, 2007, 1-7.		1.0	45
232	Genetically Engineered Animals. , 2007, , 151-170.			0
233	The Freud-1/CC2D1A family: Transcriptional regulators implicated in mental retardation. Jo Neuroscience Research, 2007, 85, 2833-2838.	urnal of	1.3	24
234	Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dem Nature Neuroscience, 2007, 10, 896-902.	tate gyrus.	7.1	137
235	Plasticity of 5â€HT 1A receptorâ€mediated signaling during early postnatal brain developr Neurochemistry, 2007, 101, 918-928.	nent. Journal of	2.1	26
236	Serotonin 5-HT2Creceptors regulate anxiety-like behavior. Genes, Brain and Behavior, 200	7, 6, 491-496.	1.1	220
237	Deletion of the 5-HT3A-receptor subunit blunts the induction of cocaine sensitization. Ger and Behavior, 2007, 7, 070607052624001-???.	nes, Brain	1.1	10
238	Galanin receptor subtype 2 (GalR2) null mutant mice display an anxiogenic-like phenotype the elevated plus-maze. Pharmacology Biochemistry and Behavior, 2007, 86, 8-20.	specific to	1.3	100
239	Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. Neural Transmission, 2007, 114, 49-75.	Journal of	1.4	113

# 240	ARTICLE Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neuroscience and Biobehavioral Reviews, 2008, 32, 1293-1314.	IF 2.9	CITATIONS 232
241	Molecular Targets of Anxiety: From Membrane to Nucleus. Neurochemical Research, 2008, 33, 1925-1932.	1.6	52
242	Evaluation of the Serotonergic Genes htr1A, htr1B, htr2A, and slc6A4 in Aggressive Behavior of Golden Retriever Dogs. Behavior Genetics, 2008, 38, 55-66.	1.4	31
243	Altered Serotonin and Dopamine Metabolism in the CNS of Serotonin 5-HT1A or 5-HT1B Receptor Knockout Mice. Journal of Neurochemistry, 2008, 75, 2415-2426.	2.1	81
244	Serotonin Receptors. Chemical Reviews, 2008, 108, 1614-1641.	23.0	751
245	The brain 5-HT1Areceptor gene expression in hibernation. Genes, Brain and Behavior, 2008, 7, 300-305.	1.1	17
246	SK3 K ⁺ channelâ€deficient mice have enhanced dopamine and serotonin release and altered emotional behaviors. Genes, Brain and Behavior, 2008, 7, 836-848.	1.1	35
247	Maternal fluoxetine treatment decreases behavioral response to dopaminergic drugs in female pups. Neurotoxicology and Teratology, 2008, 30, 487-494.	1.2	15
250	Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology, 2008, 55, 977-985.	2.0	158
251	Anxiogenesis in adult rats treated chronically with cocaine during adolescence: Effects of extended abstinence and 8-OH-DPAT treatment. Brain Research Bulletin, 2008, 76, 402-411.	1.4	7
252	Perinatal exposure to 5-metoxytryptamine, behavioural-stress reactivity and functional response of 5-HT1A receptors in the adolescent rat. Behavioural Brain Research, 2008, 186, 98-106.	1.2	26
253	Learning and memory in 5-HT1A-receptor mutant mice. Behavioural Brain Research, 2008, 195, 78-85.	1.2	41
254	Molecular biology of 5-HT receptors. Behavioural Brain Research, 2008, 195, 198-213.	1.2	675
255	Animal Models for Anxiety Disorders. , 2008, , 203-216.		1
256	Molecular genetics of anxiety in mice and men. Annals of Medicine, 2008, 40, 92-109.	1.5	78
257	The development of emotion-related neural circuitry in health and psychopathology. Development and Psychopathology, 2008, 20, 1231-1250.	1.4	118
258	5-HT1A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. International Journal of Neuropsychopharmacology, 2008, 11, 701-21.	1.0	56
259	Activation of 5-HT2A/C Receptors Counteracts 5-HT1A Regulation of N-Methyl-D-aspartate Receptor Channels in Pyramidal Neurons of Prefrontal Cortex. Journal of Biological Chemistry, 2008, 283, 17194-17204.	1.6	108

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
260	Â-Ca2+/Calmodulin-Dependent Protein Kinase II Contributes to the Developmental Program Anxiety in Serotonin Receptor 1A Knock-Out Mice. Journal of Neuroscience, 2008, 28, 6250-	ning of 1.7	7	81
261	Chapter 4.6 Genetic factors underlying anxiety-behavior: A meta-analysis of rodent studies ir targeted mutations of neurotransmission genes. Handbook of Behavioral Neuroscience, 200 325-354.	ivolving 8, 17, 0.	7	1
262	Chapter 4.3 Modulation of anxiety behaviors by 5-HT-interacting drugs. Handbook of Behavi Neuroscience, 2008, , 241-268.	oral o.	7	5
263	Apolipoprotein E and anxiety. Future Lipidology, 2008, 3, 97-103.	0.	5	1
265	Neuro-imaging and genetics. , 2008, , 317-344.			4
266	Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior. Frontiers Behavioral Neuroscience, 2008, 2, 4.	n 1.0	0	33
267	KF-1 ubiquitin ligase: an anxiety suppressor. Frontiers in Neuroscience, 2009, 3, 15-24.	1.4	4	9
268	Layer II/III of the Prefrontal Cortex: Inhibition by the Serotonin 5-HT _{1A} Receptor Development and Stress. Journal of Neuroscience, 2009, 29, 10094-10103.	in 1.7	7	72
269	Inhibition of Monoamine Oxidases Desensitizes 5-HT _{1A} Autoreceptors and Allov to Induce a Neurochemical and Behavioral Sensitization. Journal of Neuroscience, 2009, 29,	vs Nicotine 1.7 987-997. 1.7	7	26
270	Mutant mice with reduced NMDA-NR1 glycine affinity or lack of d-amino acid oxidase function altered anxiety-like behaviors. Pharmacology Biochemistry and Behavior, 2009, 91, 610-620.	on exhibit 1.:	3	64
271	Increasing the number of 5-HT1A-receptors in cortex and hippocampus does not induce mne deficits in mice. Pharmacology Biochemistry and Behavior, 2009, 92, 76-81.	monic 1.	3	10
272	Deficits in adult prefrontal cortex neurons and behavior following early post-natal NMDA antagonist treatment. Pharmacology Biochemistry and Behavior, 2009, 93, 322-330.	1.:	3	36
273	Early postnatal stress affects 5-HT1A receptor function in the medial prefrontal cortex in adu European Journal of Pharmacology, 2009, 615, 76-82.	ılt rats. 1.7	7	15
274	Criteria for validating mouse models of psychiatric diseases. American Journal of Medical Ger Part B: Neuropsychiatric Genetics, 2009, 150B, 1-11.	netics 1.	1	96
275	Pharmacogenetics of anxiolytic drugs. Journal of Neural Transmission, 2009, 116, 667-677.	1.4	4	39
276	Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons. Journal of Neurodevelopmental Disorders, 2009, 1, 224-236.	1.	5	36
277	Pharmacological targeting of the serotonergic system for the treatment of obesity. Journal c Physiology, 2009, 587, 49-60.	f 1.;	3	148
278	Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: implications for impulsive behavior and neuronal morphology. Genes, Brain and Behavior, 20 356-368.	09, 8, 1.	1	66

#	Article	IF	CITATIONS
279	Interest of using genetically manipulated mice as models of depression to evaluate antidepressant drugs activity: a review. Fundamental and Clinical Pharmacology, 2009, 23, 23-42.	1.0	36
280	Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: Relevance for neuropsychiatric disorders. Behavioural Brain Research, 2009, 198, 83-90.	1.2	186
281	5-HT1A receptor function in major depressive disorder. Progress in Neurobiology, 2009, 88, 17-31.	2.8	482
282	Exaggerated feedback control decreases brain serotonin concentration and elicits hyperactivity in a rat model of diet-restriction-induced anorexia nervosa. Appetite, 2009, 52, 44-50.	1.8	29
283	The Serotonin-1A Receptor in Anxiety Disorders. Biological Psychiatry, 2009, 66, 627-635.	0.7	285
284	The bright side of being blue: Depression as an adaptation for analyzing complex problems Psychological Review, 2009, 116, 620-654.	2.7	466
285	A role for LYNX2 in anxiety-related behavior. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4477-4482.	3.3	105
286	Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacological Reports, 2009, 61, 761-777.	1.5	167
288	Mutant mouse models and antidepressant drug research: focus on serotonin and brain-derived neurotrophic factor. Behavioural Pharmacology, 2009, 20, 18-32.	0.8	47
289	No association between the serotonin-1A receptor gene single nucleotide polymorphism rs6295C/G and symptoms of anxiety or depression, and no interaction between the polymorphism and environmental stressors of childhood anxiety or recent stressful life events on anxiety or depression. Psychiatric Genetics. 2010. 20. 8-13.	0.6	25
290	Differences in 5-HT1A receptor-mediated hypothermia in rats with low or high exploratory activity. Behavioural Pharmacology, 2010, 21, 765-768.	0.8	3
293	Pharmacological characterization of MP349, a novel 5-HT1A-receptor antagonist with anxiolytic-like activity, in mice and rats. Journal of Pharmacy and Pharmacology, 2010, 55, 533-543.	1.2	19
294	Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands. European Journal of Medicinal Chemistry, 2010, 45, 1508-1514.	2.6	29
295	Enhanced prefrontal serotonin 5-HT1A currents in a mouse model of Williams-Beuren syndrome with low innate anxiety. Journal of Neurodevelopmental Disorders, 2010, 2, 99-108.	1.5	29
296	Acute lecozotan administration increases learning and memory in rats without affecting anxiety or behavioral depression. Pharmacology Biochemistry and Behavior, 2010, 95, 325-330.	1.3	12
297	Brain serotonin system in the coordination of food intake and body weight. Pharmacology Biochemistry and Behavior, 2010, 97, 84-91.	1.3	219
298	Differential distribution of 5-HT1A and 5-HT1B-like immunoreactivities in rat central nucleus of the amygdala neurones projecting to the caudal dorsomedial medulla oblongata. Brain Research, 2010, 1330, 20-30.	1.1	14
299	5-HT1A receptor-regulated signal transduction pathways in brain. Cellular Signalling, 2010, 22, 1406-1412.	1.7	170

#	Article	IF	CITATIONS
300	Postnatal handling reverses social anxiety in serotonin receptor 1A knockout mice. Genes, Brain and Behavior, 2010, 9, 26-32.	1.1	28
301	Role of maternal 5â€HT _{1A} receptor in programming offspring emotional and physical development. Genes, Brain and Behavior, 2010, 9, 877-885.	1.1	19
302	Pet-1 is required across different stages of life to regulate serotonergic function. Nature Neuroscience, 2010, 13, 1190-1198.	7.1	155
303	Serotonin receptor 1A modulates actin dynamics and restricts dendritic growth in hippocampal neurons. European Journal of Neuroscience, 2010, 32, 18-26.	1.2	33
305	Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy. Frontiers in Neuroscience, 2010, 4, 35.	1.4	66
306	The serotonin transporter and animal models of depression. , 2010, , 135-169.		Ο
307	Animal models of anxiety disorders: behavioral and genetic approaches. , 0, , 156-167.		1
308	Serotonin Modulates Fast-Spiking Interneuron and Synchronous Activity in the Rat Prefrontal Cortex through 5-HT _{1A} and 5-HT _{2A} Receptors. Journal of Neuroscience, 2010, 30, 2211-2222.	1.7	172
309	Substitution of 5-HT1A Receptor Signaling by a Light-activated G Protein-coupled Receptor. Journal of Biological Chemistry, 2010, 285, 30825-30836.	1.6	120
310	Transient Early-Life Forebrain Corticotropin-Releasing Hormone Elevation Causes Long-Lasting Anxiogenic and Despair-Like Changes in Mice. Journal of Neuroscience, 2010, 30, 2571-2581.	1.7	74
311	The serotonin _{1A} receptor gene as a genetic and prenatal maternal environmental factor in anxiety. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7592-7597.	3.3	56
314	Early-Life Blockade of 5-HT1A Receptors Alters Adult Anxiety Behavior and Benzodiazepine Sensitivity. Biological Psychiatry, 2010, 67, 309-316.	0.7	54
315	Acute tryptophan depletion in C57BL/6 mice does not induce central serotonin reduction or affective behavioural changes. Neurochemistry International, 2010, 56, 21-34.	1.9	24
316	Panic disorder and serotonergic genes (SLC6A4, HTR1A and HTR2A): Association and interaction with childhood trauma and parenting. Neuroscience Letters, 2010, 485, 11-15.	1.0	34
317	A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons. Molecular and Cellular Neurosciences, 2010, 45, 245-257.	1.0	87
318	Synchronized Activity between the Ventral Hippocampus and the Medial Prefrontal Cortex during Anxiety. Neuron, 2010, 65, 257-269.	3.8	599
319	5-HT1A Autoreceptor Levels Determine Vulnerability to Stress and Response to Antidepressants. Neuron, 2010, 65, 40-52.	3.8	373
320	Cellular Effects of Serotonin in the CNS. Handbook of Behavioral Neuroscience, 2010, 21, 219-231.	0.7	8

		CITATION R	EPORT	
#	Article		IF	CITATIONS
321	The Role of Serotonin in Depression. Handbook of Behavioral Neuroscience, 2010, 21,	493-505.	0.7	16
322	The Behavioral Genetics of Serotonin: Relevance to Anxiety and Depression. Handbook Neuroscience, 2010, 21, 749-789.	of Behavioral	0.7	11
323	Serotonin in Panic and Anxiety Disorders. Handbook of Behavioral Neuroscience, 2010	, 21, 667-685.	0.7	7
324	Transgenic and Mutant Tools to Model Brain Disorders. Neuromethods, 2010, , .		0.2	4
325	Serotonin and the Neurobiology of Anxious States. Handbook of Behavioral Neuroscie 379-397.	nce, 2010, 21,	0.7	17
326	Sex differences and phase of light cycle modify chronic stress effects on anxiety and d behavior. Behavioural Brain Research, 2011, 222, 212-222.	epressive-like	1.2	100
327	Regulation of dorsal raphe nucleus function by serotonin autoreceptors: A behavioral p Journal of Chemical Neuroanatomy, 2011, 41, 234-246.	perspective.	1.0	73
328	Interaction of the natural anxiolytic Galphimine-B with serotonergic drugs on dorsal hip rats. Journal of Ethnopharmacology, 2011, 137, 724-729.	bpocampus in	2.0	22
329	Predicting cortisol stress responses in older individuals: Influence of serotonin recepto (HTR1A) and stressful life events. Hormones and Behavior, 2011, 60, 105-111.	r 1A gene	1.0	37
330	The serotonergic system in Parkinson's disease. Progress in Neurobiology, 2011, 95, 1	63-212.	2.8	156
331	Cross-species behavioural genetics: A starting point for unravelling the neurobiology o psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry 1383-1390.	f human 1, 2011, 35,	2.5	14
332	Effects of maternal l-tryptophan depletion and corticosterone administration on neuro adjustments in mouse dams and their adolescent and adult daughters. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1479-1492.	behavioral	2.5	21
333	Characterization of 5-HT1A/1Bâ^'/â^' mice: An animal model sensitive to anxiolytic trea Neuropharmacology, 2011, 61, 478-488.	tments.	2.0	38
334	Neuropeptide Y-Y2 receptor knockout mice: influence of genetic background on anxie behaviors. Neuroscience, 2011, 176, 420-430.	ty-related	1.1	30
335	Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience, 202	11, 197, 17-27.	1.1	33
336	The HTR1A and HTR1B receptor genes influence stress-related information processing. Neuropsychopharmacology, 2011, 21, 129-139.	European	0.3	33
337	Mouse Models of Depression. , 0, , .			11
338	Tracheal Occlusion Conditioning in Conscious Rats Modulates Gene Expression Profile Thalamus. Frontiers in Physiology, 2011, 2, 24.	of Medial	1.3	11

#	Article	IF	CITATIONS
339	Blue Again: Perturbational Effects of Antidepressants Suggest Monoaminergic Homeostasis in Major Depression. Frontiers in Psychology, 2011, 2, 159.	1.1	79
340	Maternal Genetic Mutations as Gestational and Early Life Influences in Producing Psychiatric Disease-Like Phenotypes in Mice. Frontiers in Psychiatry, 2011, 2, 25.	1.3	9
341	Neurobiology of resilience. , 2011, , 1-29.		19
342	Antidepressants and the resilience to early-life stress in inbred mouse strains. Pharmacogenetics and Genomics, 2011, 21, 779-789.	0.7	28
343	The age of anxiety: role of animal models of anxiolytic action in drug discovery. British Journal of Pharmacology, 2011, 164, 1129-1161.	2.7	220
344	Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor. Psychoneuroendocrinology, 2011, 36, 266-278.	1.3	30
345	Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. , 2011, 129, 120-148.		168
346	Role of central serotonin and melanocortin systems in the control of energy balance. European Journal of Pharmacology, 2011, 660, 70-79.	1.7	68
347	Juvenile stress attenuates the dorsal hippocampal postsynaptic 5-HT1A receptor function in adult rats. Psychopharmacology, 2011, 214, 329-337.	1.5	27
348	Serotonin1A receptor deletion does not interact with maternal separation-induced increases in startle reactivity and prepulse inhibition deficits. Psychopharmacology, 2011, 214, 353-365.	1.5	15
349	Cellular correlates of anxiety in CA1 hippocampal pyramidal cells of 5-HT1A receptor knockout mice. Psychopharmacology, 2011, 213, 453-463.	1.5	15
350	The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors. Psychopharmacology, 2011, 213, 465-473.	1.5	145
351	The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology, 2011, 213, 265-287.	1.5	206
352	KF-1 Ubiquitin Ligase: Anxiety Suppressor Model. Cell Biochemistry and Biophysics, 2011, 60, 69-75.	0.9	1
353	Role of the 5-HT7 Receptor in the Central Nervous System: from Current Status to Future Perspectives. Molecular Neurobiology, 2011, 43, 228-253.	1.9	134
354	Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Molecular Brain, 2011, 4, 21.	1.3	112
355	The clinical implications of mouse models of enhanced anxiety. Future Neurology, 2011, 6, 531-571.	0.9	68
356	Serotonin-1A Autoreceptors Are Necessary and Sufficient for the Normal Formation of Circuits Underlying Innate Anxiety. Journal of Neuroscience, 2011, 31, 6008-6018.	1.7	169

#	ARTICLE	IF	CITATIONS
357	Serotonin 1A receptor-mediated signaling through ERK and PKCα is essential for normal synaptogenesis in neonatal mouse hippocampus. Translational Psychiatry, 2012, 2, e66-e66.	2.4	61
358	Stress-Induced Activation of the Dynorphin/Ĵº-Opioid Receptor System in the Amygdala Potentiates Nicotine Conditioned Place Preference. Journal of Neuroscience, 2012, 32, 1488-1495.	1.7	87
359	Hippocampal <scp>SPARC</scp> regulates depressionâ€related behavior. Genes, Brain and Behavior, 2012, 11, 966-976.	1.1	17
360	Primum Non Nocere: An Evolutionary Analysis of Whether Antidepressants Do More Harm than Good. Frontiers in Psychology, 2012, 3, 117.	1.1	93
361	Validation of the dimensionality emergence assay for the measurement of innate anxiety in laboratory mice. European Neuropsychopharmacology, 2012, 22, 153-163.	0.3	16
362	Cannabidiol injected into the bed nucleus of the stria terminalis reduces the expression of contextual fear conditioning via 5-HT _{1A} receptors. Journal of Psychopharmacology, 2012, 26, 104-113.	2.0	80
363	A biologically inspired action selection algorithm based on principles of neuromodulation. , 2012, , .		19
364	Genetic Mouse Models of Depression. Current Topics in Behavioral Neurosciences, 2012, 14, 55-78.	0.8	25
365	Interactions between corticotropin-releasing factor and the serotonin 1A receptor system on acoustic startle amplitude and prepulse inhibition of the startle response in two rat strains. Neuropharmacology, 2012, 62, 256-263.	2.0	12
366	Anxiolytic effects of 5-HT1A receptors and anxiogenic effects of 5-HT2C receptors in the amygdala of mice. Neuropharmacology, 2012, 62, 474-484.	2.0	63
367	Early intervention with fluoxetine reverses abnormalities in the serotonergic system and behavior of rats exposed prenatally to dexamethasone. Neuropharmacology, 2012, 63, 292-300.	2.0	53
368	Brain growth trajectories in mouse strains with central and peripheral serotonin differences: relevance to autism models. Neuroscience, 2012, 210, 286-295.	1.1	15
369	Mouse Testing Methods in Psychoneuroimmunology: An Overview of How to Measure Sickness, Depressive/Anxietal, Cognitive, and Physical Activity Behaviors. Methods in Molecular Biology, 2012, 934, 243-276.	0.4	22
370	Transcriptional regulation of the 5-HT _{1A} receptor: implications for mental illness. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2402-2415.	1.8	102
371	Relationships among variables and their equilibrium values: caveats of timeâ€ l ess interpretation. Biological Reviews, 2012, 87, 275-289.	4.7	7
372	Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats. Brain, Behavior, and Immunity, 2012, 26, 459-468.	2.0	83
373	Maternal high-fat diet in mice programs emotional behavior in adulthood. Behavioural Brain Research, 2012, 233, 398-404.	1.2	144
374	The Role of Serotonin in Axon and Dendrite Growth. International Review of Neurobiology, 2012, 106, 105-126.	0.9	42

ARTICLE IF CITATIONS Characterization of serotonin neurotransmission in knockout mice: implications for major 375 1.4 38 depression. Reviews in the Neurosciences, 2012, 23, 429-43. Subtle alterations in breathing and heart rate control in the 5-HT_{1A}receptor knockout mouse in early postnatal development. Journal of Applied Physiology, 2012, 113, 1585-1593. 376 1.2 24 Anxiolytic-Like Effects of Chrysanthemum indicum Aqueous Extract in Mice: Possible Involvement of 377 1.1 10 GABAAReceptors and 5-HT1AReceptors. Biomolecules and Therapeutics, 2012, 20, 413-417. Internalization of serotonin 5â€HT_{1A} autoreceptors as an imaging biomarker of 378 antidepressant response. Environmental Sciences Europe, 2012, 1, 239-245. Increased Serotonin-1A (5-HT1A) Autoreceptor Expression and Reduced Raphe Serotonin Levels in Deformed Epidermal Autoregulatory Factor-1 (Deaf-1) Gene Knock-out Mice. Journal of Biological 379 1.6 67 Chemistry, 2012, 287, 6615-6627. Role of the 5-HT1A Serotonergic System in Anxiolytic-Like Effects of Silymarin. Neurophysiology, 2012, 380 0.2 44, 49-55. Efficacy and safety of aripiprazole in child and adolescent patients. European Child and Adolescent 381 2.8 41 Psychiatry, 2012, 21, 361-368. Polymorphism of Serotonin 5-HT Receptors as the Basis of the Multifunctionality of Serotonin. 0.2 Neuroscience and Behavioral Physiology, 2012, 42, 161-166. Acute 5-HT1A autoreceptor knockdown increases antidepressant responses and serotonin release in 383 1.5 64 stressful conditions. Psychopharmacology, 2013, 225, 61-74. Behavioral Neurobiology of Depression and Its Treatment. Current Topics in Behavioral 384 0.8 Neurosciences, 2013, Serotonin 1<scp>A</scp> autoâ€receptors are not sufficient to modulate anxiety in mice. European 385 1.2 8 Journal of Neuroscience, 2013, 38, 2621-2627. 50 years of hurdles and hope in anxiolytic drug discovery. Nature Reviews Drug Discovery, 2013, 12, 21.5 334 667-687. Gender differences in genetic mouse models evaluated for depressive-like and antidepressant behavior. 387 1.5 21 Pharmacological Reports, 2013, 65, 1580-1590. Genetic approaches for understanding the role of serotonin receptors in mood and behavior. Current Opinion in Neurobiology, 2013, 23, 399-406. 39 Serotonin 5-HT1A Receptors as Targets for Agents to Treat Psychiatric Disorders: Rationale and 389 2.7 245 Current Status of Research. CNS Drugs, 2013, 27, 703-716. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects 1.0 235 and role of nitric oxide. Interdisciplinary Toxicology, 2013, 6, 126-135. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: 391 1.1 89 Implications for underlying fear circuits. Neuroscience, 2013, 247, 253-272. Anxiolytic effects of Julibroside C1 isolated from Albizzia julibrissin in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 44, 184-192.

#	Article	IF	CITATIONS
393	Electrophysiological evidence for rapid 5-HT1A autoreceptor inhibition by vilazodone, a 5-HT1A receptor partial agonist and 5-HT reuptake inhibitor. European Journal of Pharmacology, 2013, 714, 359-365.	1.7	24
394	A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin Type 1A Receptor. Cell Reports, 2013, 3, 509-519.	2.9	37
395	Neonatal lipopolysaccharide treatment has longâ€ŧerm effects on monoaminergic and cannabinoid receptors in the rat. Synapse, 2013, 67, 290-299.	0.6	25
396	5-HT1A receptor as a key player in the brain 5-HT system. Reviews in the Neurosciences, 2013, 24, 1-14.	1.4	100
397	Rethinking 5-HT _{1A} Receptors: Emerging Modes of Inhibitory Feedback of Relevance to Emotion-Related Behavior. ACS Chemical Neuroscience, 2013, 4, 72-83.	1.7	76
398	Imaging the serotonin 1A receptor using [¹¹ C]WAY100635 in healthy controls and major depression. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120004.	1.8	53
399	Serotonergic Genes (5-HTT and HTR1A) and Separation Life Events: Gene-by-Environment Interaction for Panic Disorder. Neuropsychobiology, 2013, 67, 192-200.	0.9	22
400	The role of the serotonergic and GABA system in translational approaches in drug discovery for anxiety disorders. Frontiers in Pharmacology, 2013, 4, 74.	1.6	39
401	Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities. PLoS ONE, 2013, 8, e59032.	1.1	16
402	Antidepressant activity: contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions. Frontiers in Pharmacology, 2013, 4, 98.	1.6	17
403	A neurorobotic platform to test the influence of neuromodulatory signaling on anxious and curious behavior. Frontiers in Neurorobotics, 2013, 7, 1.	1.6	58
404	A Tale of Two Maladies? Pathogenesis of Depression with and without the Huntington's Disease Gene Mutation. Frontiers in Neurology, 2013, 4, 81.	1.1	28
405	A dynamic, embodied paradigm to investigate the role of serotonin in decision-making. Frontiers in Integrative Neuroscience, 2013, 7, 78.	1.0	10
406	Profile of aripiprazole in the treatment of bipolar disorder in children and adolescents. Adolescent Health, Medicine and Therapeutics, 2014, 5, 211.	0.7	10
407	Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Frontiers in Behavioral Neuroscience, 2014, 8, 199.	1.0	222
408	Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Frontiers in Behavioral Neuroscience, 2014, 8, 241.	1.0	120
410	Fresh approaches to antidepressant drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 407-421.	2.5	7
411	There is no association between the serotonin receptor gene and bipolar I disorder in the Korean population. Nordic Journal of Psychiatry, 2014, 68, 488-493.	0.7	3

#	Article	IF	CITATIONS
412	The functional â^'1019C/G HTR1A polymorphism and mechanisms of fear. Translational Psychiatry, 2014, 4, e490-e490.	2.4	37
413	<scp>NCAM</scp> deficiency in the mouse forebrain impairs innate and learned avoidance behaviours. Genes, Brain and Behavior, 2014, 13, 468-477.	1.1	11
414	Postnatal maintenance of the 5-Ht1a-Pet1 autoregulatory loop by serotonin in the raphe nuclei of the brainstem. Molecular Brain, 2014, 7, 48.	1.3	17
415	Synergistic Regulation of Glutamatergic Transmission by Serotonin and Norepinephrine Reuptake Inhibitors in Prefrontal Cortical Neurons. Journal of Biological Chemistry, 2014, 289, 25177-25185.	1.6	15
416	Neuronal ablation of p-Akt at Ser473 leads to altered 5-HT1A/2A receptor function. Neurochemistry International, 2014, 73, 113-121.	1.9	15
417	P5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology, 2014, 231, 623-636.	1.5	172
418	Functional associations among G protein-coupled neurotransmitter receptors in the human brain. BMC Neuroscience, 2014, 15, 16.	0.8	10
419	Psychoneurobiochemistry of tourism marketing. Tourism Management, 2014, 44, 140-148.	5.8	53
420	Specific binding and characteristics of geissoschizine methyl ether, an indole alkaloid of Uncaria Hook, in the rat brain. Journal of Ethnopharmacology, 2014, 158, 264-270.	2.0	14
421	Descending Control of Itch Transmission by the Serotonergic System via 5-HT1A-Facilitated GRP-GRPR Signaling. Neuron, 2014, 84, 821-834.	3.8	106
422	Serotonin antagonists induce anxiolytic and anxiogenic-like behavior in zebrafish in a receptor-subtype dependent manner. Pharmacology Biochemistry and Behavior, 2014, 126, 170-180.	1.3	61
423	Developmental Effects of Serotonin 1A Autoreceptors on Anxiety and Social Behavior. Neuropsychopharmacology, 2014, 39, 291-302.	2.8	72
424	Vertebrate Cone Opsins Enable Sustained and Highly Sensitive Rapid Control of G i/o Signaling in Anxiety Circuitry. Neuron, 2014, 81, 1263-1273.	3.8	96
425	Conditioned fear in low- and high-anxious rats is differentially regulated by cortical subcortical and midbrain 5-HT1A receptors. Neuroscience, 2014, 268, 159-168.	1.1	18
426	Adaptive changes in serotonin metabolism preserve normal behavior in mice with reduced TPH2 activity. Neuropharmacology, 2014, 85, 73-80.	2.0	35
427	Tests of unconditioned anxiety — Pitfalls and disappointments. Physiology and Behavior, 2014, 135, 55-71.	1.0	192
428	The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 55, 94-100.	2.5	83
430	Use of aripiprazole for delirium in the elderly: a short review. Psychogeriatrics, 2015, 15, 75-84.	0.6	12

#	Article	IF	CITATIONS
431	Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability. Frontiers in Behavioral Neuroscience, 2015, 9, 235.	1.0	33
432	The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Frontiers in Pharmacology, 2015, 6, 162.	1.6	110
433	Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands. International Journal of Molecular Sciences, 2015, 16, 18474-18506.	1.8	76
434	Anxious and Nonanxious Mice Show Similar Hippocampal Sensory Evoked Oscillations under Urethane Anesthesia: Difference in the Effect of Buspirone. Neural Plasticity, 2015, 2015, 1-9.	1.0	7
435	Involvement of Vascular Endothelial Growth Factor in Serotonin 1A Receptor-Mediated Neuroproliferation in Neonatal Mouse Hippocampus. Advances in Experimental Medicine and Biology, 2015, 842, 375-388.	0.8	5
436	Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: Contribution of 5HT1A receptors and stressful experiences. Behavioural Brain Research, 2015, 286, 49-56.	1.2	52
437	Strain-Dependent Variations in Stress Coping Behavior Are Mediated by a 5-HT/GABA Interaction within the Prefrontal Corticolimbic System. International Journal of Neuropsychopharmacology, 2015, 18, pyu074-pyu074.	1.0	22
438	ls serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neuroscience and Biobehavioral Reviews, 2015, 51, 164-188.	2.9	214
439	GABAergic Control of Depression-Related Brain States. Advances in Pharmacology, 2015, 73, 97-144.	1.2	107
440	Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice. Psychopharmacology, 2015, 232, 2429-2441.	1.5	83
441	Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: Evidence from gene expression data. Psychiatry Research, 2015, 228, 729-740.	1.7	15
442	Activation of 5-HT1A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease. Neuropharmacology, 2015, 95, 181-191.	2.0	32
443	Treatment-resistant depression: are animal models of depression fit for purpose?. Psychopharmacology, 2015, 232, 3473-3495.	1.5	116
444	Deletion of GIRK2 Subunit of GIRK Channels Alters the 5-HT _{1A} Receptor-Mediated Signaling and Results in a Depression-Resistant Behavior. International Journal of Neuropsychopharmacology, 2015, 18, pyv051.	1.0	34
445	Effects of Silexan on the Serotonin-1A Receptor and Microstructure of the Human Brain: A Randomized, Placebo-Controlled, Double-Blind, Cross-Over Study with Molecular and Structural Neuroimaging. International Journal of Neuropsychopharmacology, 2015, 18, pyu063-pyu063.	1.0	49
446	The role of prolactin in andrology: what is new?. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 233-248.	2.6	56
447	Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, 2015, , .	0.8	4
448	Sex dependent reduction by prenatal stress of the expression of 5HT1A receptors in the prefrontal cortex and CRF type 2 receptors in the raphe nucleus in rats: reversal by citalopram.	1.5	21

#	Article	IF	CITATIONS
449	Role of organic cation transporters (OCTs) in the brain. , 2015, 146, 94-103.		63
450	Monoamine-Sensitive Developmental Periods Impacting Adult Emotional and Cognitive Behaviors. Neuropsychopharmacology, 2015, 40, 88-112.	2.8	128
451	Involvement of 5-HT1AReceptors in the Anxiolytic-Like Effects of Quercitrin and Evidence of the Involvement of the Monoaminergic System. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-10.	0.5	13
452	Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region. Frontiers in Neuroscience, 2016, 10, 266.	1.4	7
453	Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats. Neuroscience, 2016, 330, 50-56.	1.1	6
454	<i>In utero</i> exposure to diesel exhaust particles induces anxiogenic effects on male offspring via chronic activation of serotonergic neuron in dorsal raphe nucleus. Journal of Toxicological Sciences, 2016, 41, 583-593.	0.7	10
455	MicroRNA's impact on neurotransmitter and neuropeptide systems: small but mighty mediators of anxiety. Pflugers Archiv European Journal of Physiology, 2016, 468, 1061-1069.	1.3	8
456	Dissociating the therapeutic effects of environmental enrichment and exercise in a mouse model of anxiety with cognitive impairment. Translational Psychiatry, 2016, 6, e794-e794.	2.4	43
457	Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiology of Learning and Memory, 2016, 134, 379-391.	1.0	55
458	Personality modulates proportions of CD4 + regulatory and effector T cells in response to socially induced stress in a rodent of wild origin. Physiology and Behavior, 2016, 167, 255-264.	1.0	12
459	The 5â€hydroxytryptamine ₄ receptor enables differentiation of informational content and encoding in the hippocampus. Hippocampus, 2016, 26, 875-891.	0.9	22
460	Prospects for the development of animal models of bipolar disorder. , 0, , 8-20.		0
461	Novel Targets for Drug Treatment in Psychiatry. , 2016, , 601-654.		0
462	Serotonin 1A and Serotonin 4 Receptors. Neuroscientist, 2016, 22, 26-45.	2.6	77
463	5-HT2C receptors in psychiatric disorders: A review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 66, 120-135.	2.5	87
464	RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer. AAPS Journal, 2016, 18, 560-572.	2.2	27
465	Studies of the Effects of a Complex of Buspirone with Glycyrrhyzic Acid on the Behavior of Mice during Formation of an Anxious-Depressive State. Neuroscience and Behavioral Physiology, 2016, 46, 153-159.	0.2	0
466	Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis. Neuropharmacology, 2016, 101, 165-178.	2.0	64

#	Article	IF	CITATIONS
467	The role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacological Reports, 2016, 68, 263-274.	1.5	63
468	Disruption of 5-HT 1A function in adolescence but not early adulthood leads to sustained increases of anxiety. Neuroscience, 2016, 321, 210-221.	1.1	22
469	Animal models of major depression and their clinical implications. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 293-310.	2.5	276
470	How serotonin receptors regulate morphogenic signalling in neurons. Progress in Neurobiology, 2017, 151, 35-56.	2.8	86
471	Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders. Annual Review of Animal Biosciences, 2017, 5, 371-389.	3.6	46
472	Single Administration of HBK-15—a Triple 5-HT1A, 5-HT7, and 5-HT3 Receptor Antagonist—Reverses Depressive-Like Behaviors in Mouse Model of Depression Induced by Corticosterone. Molecular Neurobiology, 2018, 55, 3931-3945.	1.9	20
473	5-HT1A receptor: Role in the regulation of different types of behavior. Russian Journal of Genetics: Applied Research, 2017, 7, 109-120.	0.4	1
475	Anxiolytic effect of fatty acids and terpenes fraction from Aloysia triphylla: Serotoninergic, GABAergic and glutamatergic implications. Biomedicine and Pharmacotherapy, 2017, 96, 320-327.	2.5	15
476	Serotonin and brain function: a tale of two receptors. Journal of Psychopharmacology, 2017, 31, 1091-1120.	2.0	440
477	Serotonergic modulation of the activity of GLP-1 producing neurons in the nucleus of the solitary tract in mouse. Molecular Metabolism, 2017, 6, 909-921.	3.0	22
478	Perinatal westernâ€ŧype diet and associated gestational weight gain alter postpartum maternal mood. Brain and Behavior, 2017, 7, e00828.	1.0	19
479	Anxiogenic effects of a Lactobacillus, inulin and the synbiotic on healthy juvenile rats. Neuroscience, 2017, 359, 18-29.	1.1	28
480	HBK-15 protects mice from stress-induced behavioral disturbances and changes in corticosterone, BDNF, and NGF levels. Behavioural Brain Research, 2017, 333, 54-66.	1.2	18
481	HBK-14 and HBK-15 with antidepressant-like and/or memory-enhancing properties increase serotonin levels in the hippocampus after chronic treatment in mice. Metabolic Brain Disease, 2017, 32, 547-556.	1.4	15
482	Association of 5-HT1A Receptors with Affective Disorders. , 2017, , .		1
483	Investigating the Role of Serotonin in Methamphetamine Psychosis: Unaltered Behavioral Effects of Chronic Methamphetamine in 5-HT1A Knockout Mice. Frontiers in Psychiatry, 2017, 8, 61.	1.3	16
484	Marine Inspired 2-(5-Halo-1H-indol-3-yl)-N,N-dimethylethanamines as Modulators of Serotonin Receptors: An Example Illustrating the Power of Bromine as Part of the Uniquely Marine Chemical Space. Marine Drugs, 2017, 15, 248.	2.2	17
485	Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments. Frontiers in Neural Circuits, 2017, 11, 108.	1.4	152

		CITATION REPORT	
# 486	ARTICLE Modulation of hippocampal neuronal activity by So-ochim-tang-gamibang in mice subjected to chr restraint stress. BMC Complementary and Alternative Medicine, 2017, 17, 456.	IF ronic 3.7	Citations 4
487	Serotonin receptors in depression: from A to B. F1000Research, 2017, 6, 123.	0.8	121
488	The long-term effect of maternal dietary protein restriction on 5-HT1A receptor function and behavioral responses to stress in adulthood. Behavioural Brain Research, 2018, 349, 116-124.	1.2	13
489	Ketamine: A Promising Rapid-Acting Antidepressant. , 2018, , 223-239.		3
490	Experimental Animal Models for Depressive Disorders: Relevance to Drug Discovery. , 2018, , 221-	231.	0
491	Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy. Expert O on Therapeutic Targets, 2018, 22, 319-330.	pinion 1.5	32
492	Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tool Journal of Neuroscience Methods, 2018, 300, 37-47.	5. 1.3	128
493	Behavior of Adult 5-HT1A Receptor Knockout Mice Exposed to Stress During Prenatal Developmer Neuroscience, 2018, 371, 16-28.	t. 1.1	8
494	Anxiety and psychosomatic symptoms in palliative care: from neuro-psychobiological response to stress, to symptoms' management with clinical hypnosis and meditative states. Annals of Palli Medicine, 2018, 7, 75-111.	ative 0.5	20
495	HBK-17, a 5-HT1A Receptor Ligand With Anxiolytic-Like Activity, Preferentially Activates ß-Arresti Signaling. Frontiers in Pharmacology, 2018, 9, 1146.	ן 1.6	15
496	Neuronal nitric oxide synthase and affective disorders. IBRO Reports, 2018, 5, 116-132.	0.3	59
497	Distinct Phenotypes of Shank2 Mouse Models Reflect Neuropsychiatric Spectrum Disorders of Hu Patients With SHANK2 Variants. Frontiers in Molecular Neuroscience, 2018, 11, 240.	man 1.4	48
498	Mice exposed to bisphenol A exhibit depressive-like behavior with neurotransmitter and neuroactive steroid dysfunction. Hormones and Behavior, 2018, 102, 93-104.	/e 1.0	46
499	Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plasticity, 2018, 2 1-18.	018, 1.0	40
500	Mouse Testing Methods in Psychoneuroimmunology 2.0: Measuring Behavioral Responses. Metho Molecular Biology, 2018, 1781, 221-258.	ds in 0.4	9
501	Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sciences, 2018, 2 106-124.	10, 2.0	124
502	Social approach, anxiety, and altered tryptophan hydroxylase 2 activity in juvenile BALB/c and C57 mice. Behavioural Brain Research, 2019, 359, 918-926.	BL/6) 1.2	11
503	Dopamine D _{2L} Receptor Deficiency Causes Stress Vulnerability through 5-HT _{1, Receptor Dysfunction in Serotonergic Neurons. Journal of Neuroscience, 2019, 39, 7551-7563.}	A	10

	CITATION RE	PORT	
#	Article	IF	CITATIONS
504	Ultrasonic vocalization sex differences in 5-HT-R deficient mouse pups: Predictive phenotypes associated with later-life anxiety-like behaviors. Behavioural Brain Research, 2019, 373, 112062.	1.2	11
505	Effects of Acupuncture on Chronic Stress-Induced Depression-Like Behavior and Its Central Neural Mechanism. Frontiers in Psychology, 2019, 10, 1353.	1.1	30
506	Serotonin and feeding regulation. , 2019, , 225-268.		0
507	Serotonin Regulation of the Prefrontal Cortex: Cognitive Relevance and the Impact of Developmental Perturbation. ACS Chemical Neuroscience, 2019, 10, 3078-3093.	1.7	31
508	Novel objects elicit greater activation in the basolateral complex of the amygdala of wild rats compared with laboratory rats. Journal of Veterinary Medical Science, 2019, 81, 1121-1128.	0.3	8
509	Enhanced activity of pyramidal neurons in the infralimbic cortex drives anxiety behavior. PLoS ONE, 2019, 14, e0210949.	1.1	30
510	Functional Interrogation of a Depression-Related Serotonergic Single Nucleotide Polymorphism, rs6295, Using a Humanized Mouse Model. ACS Chemical Neuroscience, 2019, 10, 3197-3206.	1.7	12
511	Downâ€regulation of HTR1Aâ€rnodulated ACC activation contributes to stressâ€induced visceral hyperalgesia in rats. Neurogastroenterology and Motility, 2019, 31, e13620.	1.6	7
512	Sex-Dependent Modulation of Anxiety and Fear by 5-HT _{1A} Receptors in the Bed Nucleus of the Stria Terminalis. ACS Chemical Neuroscience, 2019, 10, 3154-3166.	1.7	22
513	CRISPR/Cas9-mediated in vivo gene editing reveals that neuronal 5-HT1A receptors in the dorsal raphe nucleus contribute to body temperature regulation in mice. Brain Research, 2019, 1719, 243-252.	1.1	7
514	Detailed chemical characterization and molecular modeling of serotonin inclusion complex with unmodified Î ² -cyclodextrin. Heliyon, 2019, 5, e01405.	1.4	14
515	Hippocampal activation of 5â€HT _{1B} receptors and BDNF production by vagus nerve stimulation in rats under chronic restraint stress. European Journal of Neuroscience, 2019, 50, 1820-1830.	1.2	29
516	hsa-miR-3177-5p and hsa-miR-3178 Inhibit 5-HT1A Expression by Binding the 3′-UTR Region in vitro. Frontiers in Molecular Neuroscience, 2019, 12, 13.	1.4	5
517	Gene knockout animal models of depression, anxiety and obsessive compulsive disorders. Psychiatric Genetics, 2019, 29, 191-199.	0.6	15
518	Tobacco smoke and ethanol during adolescence: Both combined- and single-drug exposures lead to short- and long-term disruption of the serotonergic system in the mouse brain. Brain Research Bulletin, 2019, 146, 94-103.	1.4	11
519	Brain Serotonin and Energy Homeostasis. , 2019, , 307-334.		1
520	Risk assessment and serotonin: Animal models and human psychopathologies. Behavioural Brain Research, 2019, 357-358, 9-17.	1.2	9
521	4-Nonylphenol and 4-tert-octylphenol induce anxiety-related behaviors through alternation of 5-HT receptors and transporters in the prefrontal cortex. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 230, 108701.	1.3	9

#	Article	IF	Citations
522	Comprehensive Physico-Chemical Characterization of a Serotonin Inclusion Complex with 2-Hydroxypropyl-Î ² -Cyclodextrin. Journal of Solution Chemistry, 2020, 49, 915-944.	0.6	8
523	Genetic Background Underlying 5-HT1A Receptor Functioning Affects the Response to Fluoxetine. International Journal of Molecular Sciences, 2020, 21, 8784.	1.8	15
524	Phenotyping in Mice Using Continuous Home Cage Monitoring and Ultrasonic Vocalization Recordings. Current Protocols in Mouse Biology, 2020, 10, e80.	1.2	11
525	A novel immunocompetent model of metastatic prostate cancerâ€induced bone pain. Prostate, 2020, 80, 782-794.	1.2	6
526	Effects of Maternal Stress on Measures of Anxiety and Fearfulness in Different Strains of Laying Hens. Frontiers in Veterinary Science, 2020, 7, 128.	0.9	25
527	Structure and function of serotonin GPCR heteromers. Handbook of Behavioral Neuroscience, 2020, 31, 217-238.	0.7	1
528	Serotonin in panic and anxiety disorders. Handbook of Behavioral Neuroscience, 2020, , 611-633.	0.7	7
529	Revisiting the behavioral genetics of serotonin: relevance to anxiety and depression. Handbook of Behavioral Neuroscience, 2020, , 665-709.	0.7	6
530	Large-scale network dynamics in neural response to emotionally negative stimuli linked to serotonin 1A binding in major depressive disorder. Molecular Psychiatry, 2021, 26, 2393-2401.	4.1	11
531	IntelliCage as a tool for measuring mouse behavior – 20 years perspective. Behavioural Brain Research, 2020, 388, 112620.	1.2	71
532	Long term effects of early life stress on HPA circuit in rodent models. Molecular and Cellular Endocrinology, 2021, 521, 111125.	1.6	11
533	Models for Assessing Anxiety and Depression in Multiple Sclerosis: from Mouse to Man. Neuromethods, 2021, , 183-195.	0.2	0
534	Genetics of Stress Responsiveness. , 2021, , 167-177.		0
535	GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS Journal, 2021, 288, 2602-2621.	2.2	14
536	New dual 5-HT1A and 5-HT7 receptor ligands derived from SYA16263. European Journal of Medicinal Chemistry, 2021, 214, 113243.	2.6	6
537	Potential of an aqueous extract of Lippia multiflora Moldenke (Verbenaceae) in the treatment of anxiety disorders: Possible involvement of serotoninergic transmission. GSC Biological and Pharmaceutical Sciences, 2021, 14, 277-289.	0.1	1
538	Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action. Behavioural Brain Research, 2021, 406, 113234.	1.2	16
539	N-(3-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}propyl)-1H-indazole-3-carboxamide (D2AAK3) as a potential antipsychotic: In vitro, in silico and in vivo evaluation of a multi-target ligand. Neurochemistry International, 2021, 146, 105016.	1.9	10

#	Article	IF	CITATIONS
540	Environment-Sensitive Fluorescence of 7-Nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-Labeled Ligands for Serotonin Receptors. Molecules, 2021, 26, 3848.	1.7	5
541	Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. , 2021, 223, 107808.		49
542	5-HT Receptors and the Development of New Antidepressants. International Journal of Molecular Sciences, 2021, 22, 9015.	1.8	38
543	Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean?. Chemistry and Physics of Lipids, 2021, 239, 105120.	1.5	6
544	Cannabinoids: Revealing their complexity and role in central networks of fear and anxiety. Neuroscience and Biobehavioral Reviews, 2021, 131, 30-46.	2.9	4
546	Genetic Alterations of the Murine Serotonergic Gene Pathway: The Neurodevelopmental Basis of Anxiety. , 2005, , 71-112.		17
547	Anxiety and Insomnia. , 2008, , 105-127.		6
548	Advances in the Study of Cognition, Behavioural Priorities and Emotions. Animal Welfare, 2009, , 47-94.	1.0	12
549	Promises and Limitations of Transgenic and Knockout Mice in Modeling Psychiatric Symptoms. Neurobiological Foundation of Aberrant Behaviors, 2000, , 55-77.	0.2	3
550	Transgenic Mouse Models and Human Psychiatric Disease. Contemporary Clinical Neuroscience, 2006, , 25-43.	0.3	2
551	5-HT7 Receptors as Favorable Pharmacological Targets for Drug Discovery. , 2006, , 517-535.		3
552	Effects of Serotonin-Related Gene Deletion on Measures of Anxiety, Depression, and Neurotransmission. , 2006, , 577-606.		5
553	Biological Theories of Depression and Implications for Current and New Treatments. , 2011, , 1-32.		2
554	Modeling Stress and Anxiety in Zebrafish. Neuromethods, 2011, , 73-88.	0.2	33
555	Functions of GABAA-Receptors: Pharmacology and Pathophysiology. Handbook of Experimental Pharmacology, 2001, , 101-116.	0.9	18
556	Molecular and Imaging Genetic Markers in Panic Disorder. , 2009, , 161-171.		3
557	Translational Studies in the Complex Role of Neurotransmitter Systems in Anxiety and Anxiety Disorders. Advances in Experimental Medicine and Biology, 2020, 1191, 121-140.	0.8	16
558	Animal Research in Psychiatry. Advances in Experimental Medicine and Biology, 2019, 1192, 283-296.	0.8	1

# 559	ARTICLE Ablation of olfactory bulb glutamatergic neurons induces depressive-like behaviors and sleep disturbances in mice. Psychopharmacology, 2020, 237, 2517-2530.	IF 1.5	CITATIONS
560	Stress and Anxiety Disorders. , 2002, , 443-465.		6
561	Evolutionary Ethics and Contemporary Biology. , 2006, , .		14
562	5-HT1A receptor and 5-HT1B receptor knockout mice in stress and anxiety paradigms. Behavioural Pharmacology, 2003, 14, 369-83.	0.8	56
563	International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacological Reviews, 2021, 73, 310-520.	7.1	127
564	Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cε. Journal of Clinical Investigation, 2002, 110, 1003-1010.	3.9	58
565	Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cε. Journal of Clinical Investigation, 2002, 110, 1003-1010.	3.9	114
566	The 5-HT 1A Receptor. Frontiers in Neuroscience, 2007, , 133-155.	0.0	8
568	Phenotypic Characterization of a Genetically Diverse Panel of Mice for Behavioral Despair and Anxiety. PLoS ONE, 2010, 5, e14458.	1.1	65
569	Stress-Induced Susceptibility to Sudden Cardiac Death in Mice with Altered Serotonin Homeostasis. PLoS ONE, 2012, 7, e41184.	1.1	30
570	Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLoS ONE, 2013, 8, e66962.	1.1	21
571	Severity classification of repeated isoflurane anesthesia in C57BL/6JRj mice—Assessing the degree of distress. PLoS ONE, 2017, 12, e0179588.	1.1	118
572	Reward and adversity processing circuits: their competition and interactions with dopamine and serotonin signaling. ScienceOpen Research, 2014, .	0.6	1
573	Genetic models to study adult neurogenesis Acta Biochimica Polonica, 2005, 52, 359-372.	0.3	6
574	Transcriptional Dys-regulation in Anxiety and Major Depression: 5-HT1A Gene Promoter Architecture as a Therapeutic Opportunity. Current Pharmaceutical Design, 2014, 20, 3738-3750.	0.9	38
575	Genetically Modified Mice as Tools to Understand the Neurobiological Substrates of Depression. Current Pharmaceutical Design, 2014, 20, 3718-3737.	0.9	2
576	Assessing the Neuronal Serotonergic Target-based Antidepressant Stratagem: Impact of In Vivo Interaction Studies and Knockout Models. Current Neuropharmacology, 2008, 6, 215-234.	1.4	9
577	5-HT1A Receptor Null Mutant Mice Responding Under a Differential-Reinforcement-of-Low-Rate 72-Second Schedule of Reinforcement. The Open Neuropsychopharmacology Journal, 2008, 1, 24-32.	0.3	6

#	Article	IF	CITATIONS
578	The psychobiology of resilience and vulnerability to anxiety disorders: implications for prevention and treatment. Dialogues in Clinical Neuroscience, 2003, 5, 207-221.	1.8	27
579	Experimental animal models for the simulation of depression and anxiety. Dialogues in Clinical Neuroscience, 2006, 8, 323-333.	1.8	56
580	Potential rat model of anxiety-like gastric hypersensitivity induced by sequential stress. World Journal of Gastroenterology, 2017, 23, 7594-7608.	1.4	16
581	A Brief Summary for 5-HT Receptors. Journal of Genetic Syndromes & Gene Therapy, 2013, 04, .	0.2	1
582	The Effects of 5-HTR1A Polymorphism on Cingulum Connectivity in Patients with Panic Disorder. Psychiatry Investigation, 2013, 10, 399.	0.7	7
583	Effect of DA-9701 on Colorectal Distension-Induced Visceral Hypersensitivity in a Rat Model. Gut and Liver, 2014, 8, 388-393.	1.4	7
584	The Freud-1/CC2D1A Family: Multifunctional Regulators Implicated in Mental Retardation. , 0, , .		2
585	The dorsal raphe nucleus in the control of energy balance. Trends in Neurosciences, 2021, 44, 946-960.	4.2	14
586	Laboratory models of anxiety. , 2002, , 249-286.		0
587	Biological basis of anxiety and strategies for pharmacological innovation. , 2002, , 31-66.		Ο
588			
	Biological Theories of Depression and Implications for Current and New Treatments. , 2004, , 1-32.		2
589	Biological Theories of Depression and Implications for Current and New Treatments. , 2004, , 1-32. Serotonin System Gene Knockouts. Receptors, 2006, , 537-575.	0.2	2
589 590	Biological Theories of Depression and Implications for Current and New Treatments. , 2004, , 1-32. Serotonin System Gene Knockouts. Receptors, 2006, , 537-575. Serotonergic Regulation of NMDA Receptor Trafficking and Function in Prefrontal Cortex. , 2007, , 91-101.	0.2	2 2 0
589 590 591	Biological Theories of Depression and Implications for Current and New Treatments. , 2004, , 1-32. Serotonin System Gene Knockouts. Receptors, 2006, , 537-575. Serotonergic Regulation of NMDA Receptor Trafficking and Function in Prefrontal Cortex. , 2007, , 91-101. Use of Mice with Targeted Genetic Inactivation in the Serotonergic System for the Study of Anxiety. Frontiers in Neuroscience, 2007, , 181-195.	0.2	2 2 0
589 590 591 593	Biological Theories of Depression and Implications for Current and New Treatments. , 2004, , 1-32. Serotonin System Gene Knockouts. Receptors, 2006, , 537-575. Serotonergic Regulation of NMDA Receptor Trafficking and Function in Prefrontal Cortex. , 2007, , 91-101. Use of Mice with Targeted Genetic Inactivation in the Serotonergic System for the Study of Anxiety. Frontiers in Neuroscience, 2007, , 181-195. Genetic Animal Models of Anxiety. Neuromethods, 2010, , 179-189.	0.2	2 2 0 0
589 590 591 593 594	Biological Theories of Depression and Implications for Current and New Treatments. , 2004, , 1-32.Serotonin System Gene Knockouts. Receptors, 2006, , 537-575.Serotonergic Regulation of NMDA Receptor Trafficking and Function in Prefrontal Cortex. , 2007, , 91-101.Use of Mice with Targeted Genetic Inactivation in the Serotonergic System for the Study of Anxiety. Frontiers in Neuroscience, 2007, , 181-195.Genetic Animal Models of Anxiety. Neuromethods, 2010, , 179-189.Neural Foundations of Major Depression: Classical Approaches and New Frontiers. , 2011, , 90-107.	0.2	2 2 0 0 0
589 590 591 593 594	Biological Theories of Depression and Implications for Current and New Treatments. , 2004, , 1-32. Serotonin System Gene Knockouts. Receptors, 2006, , 537-575. Serotonergic Regulation of NMDA Receptor Trafficking and Function in Prefrontal Cortex. , 2007, , 91-101. Use of Mice with Targeted Genetic Inactivation in the Serotonergic System for the Study of Anxiety. Frontiers in Neuroscience, 2007, , 181-195. Genetic Animal Models of Anxiety. Neuromethods, 2010, , 179-189. Neural Foundations of Major Depression: Classical Approaches and New Frontiers. , 2011, , 90-107. Genetics of Anxiety Disorders. Anxiety Disorder Research, 2014, 5, 73-84.	0.2	2 2 0 0 0 0

CITATION	Report

#	Article	IF	CITATIONS
600	Tests for Anxiolytic Activity. , 2016, , 1069-1214.		0
601	Tests for Anxiolytic Activity. , 2017, , 1-173.		0
602	Neuronale Mechanismen der Emotion. , 2018, , 663-694.		0
604	Novel Mechanisms of Drug Treatment in Psychiatry. , 2008, , 519-534.		0
606	Mood-related behavioral and neurochemical alterations in mice exposed to low chlorpyrifos levels during the brain growth spurt. PLoS ONE, 2020, 15, e0239017.	1.1	6
607	The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. Journal of Psychiatry and Neuroscience, 2004, 29, 252-65.	1.4	292
608	Possible Modulation of the Anexiogenic Effects of Vitex Agnus-castus by the Serotonergic System. Iranian Journal of Basic Medical Sciences, 2012, 15, 768-76.	1.0	3
610	The selective 5-HT1A receptor agonist NLX-112 displays anxiolytic-like activity in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 149-157.	1.4	4
611	Serotonin 1A Receptor Binding of [11C]CUMI-101 in Bipolar Depression Quantified using Positron Emission Tomography: Relationship to Psychopathology and Antidepressant Response. International Journal of Neuropsychopharmacology, 2022, , .	1.0	2
614	Effects of a Cc2d1a/Freud-1 Knockdown in the Hippocampus on Behavior, the Serotonin System, and BDNF. International Journal of Molecular Sciences, 2021, 22, 13319.	1.8	6
615	Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety. Frontiers in Cellular Neuroscience, 2021, 15, 804592.	1.8	3
616	Improved Serotonin Measurement with Fast-Scan Cyclic Voltammetry: Mitigating Fouling by SSRIs. Journal of the Electrochemical Society, 2022, 169, 045501.	1.3	8
617	5-HT Receptors and Temperature Homeostasis. Biomolecules, 2021, 11, 1914.	1.8	14
622	Genetic Dissection of Anxiety and Related Disorders. , 0, , 229-250.		0
624	Design Principles for Neurorobotics. Frontiers in Neurorobotics, 2022, 16, .	1.6	2
627	Serotonin and consciousness – A reappraisal. Behavioural Brain Research, 2022, 432, 113970.	1.2	4
628	Effect of the dietary intake of fish oil on psycho-social behavioral disorder caused by social-defeat stress. Physiology and Behavior, 2022, 254, 113913.	1.0	0
630	Serotonin-1A receptor, a psychiatric disease risk factor, influences offspring immunity via sex-dependent genetic nurture. IScience, 2022, 25, 105595.	1.9	2

\sim			<u> </u>	
	ΙΤΔΤ	$1 \cap N$	REDU	דסר
<u> </u>	והו		IVEL V	

#	Article	IF	CITATIONS
631	Baicalein exerts anxiolytic and antinociceptive effects in a mouse model of posttraumatic stress disorder: Involvement of the serotonergic system and spinal delta-opioid receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2023, 122, 110689.	2.5	3
632	On Associations between Fear-Induced Aggression, Bdnf Transcripts, and Serotonin Receptors in the Brains of Norway Rats: An Influence of Antiaggressive Drug TC-2153. International Journal of Molecular Sciences, 2023, 24, 983.	1.8	2
633	Early-Life Exposure to Traffic-Related Air Pollutants Induced Anxiety-like Behaviors in Rats via Neurotransmitters and Neurotrophic Factors. International Journal of Molecular Sciences, 2023, 24, 586.	1.8	2
634	Discovery of novel arylpiperazine-based DA/5-HT modulators as potential antipsychotic agents – Design, synthesis, structural studies and pharmacological profiling. European Journal of Medicinal Chemistry, 2023, 252, 115285.	2.6	1

640 Neurobiology of Anxiety Disorders. , 2023, , 1-43.