Nectar Sugars in Proteaceae: Patterns and Processes

Australian Journal of Botany 46, 489 DOI: 10.1071/bt97039

Citation Report

#	Article	IF	CITATIONS
1	Sugar Preferences and Xylose Metabolism of a Mammal Pollinator, the Namaqua Rock Mouse (Aethomys namaquensis). Physiological and Biochemical Zoology, 1999, 72, 438-444.	1.5	24
2	The Nutritional, Morphologic, and Physiologic Bases of Nectarivory in Australian Birds. , 2000, 14, 85-94.		34
3	LEAF BLACKENING IN PROTEA FLOWERS: RECENT DEVELOPMENTS. Acta Horticulturae, 2001, , 197-204.	0.2	9
4	Pollination by passerine birds: why are the nectars so dilute?. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 131, 645-652.	1.6	92
5	Xylose as a nectar sugar: from biochemistry to ecology1. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 131, 613-620.	1.6	56
6	How important is the relationship between Protea humiflora (Proteaceae) and its non-flying mammal pollinators?. Oecologia, 2002, 132, 361-368.	2.0	41
7	Nectar as food for birds: the physiological consequences of drinking dilute sugar solutions. Plant Systematics and Evolution, 2003, 238, 139-153.	0.9	165
8	Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian rainforest. Austral Ecology, 2004, 29, 418-429.	1.5	137
9	Concentration and temperature effects on sugar intake and preferences in a sunbird and a hummingbird. Functional Ecology, 2004, 18, 223-232.	3.6	77
10	Evolutionary changes in nectar sugar composition associated with switches between bird and insect pollination: the Canarian bird-flower element revisited. Functional Ecology, 2004, 18, 670-676.	3.6	89
11	The effect of different oral antibiotics on the gastrointestinal microflora of a wild rodent (Aethomys namaquensis). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 138, 475-483.	1.8	27
12	Nectar sugar composition and floral scent compounds of diurnal and nocturnal Conophytum species (Aizoaceae). South African Journal of Botany, 2004, 70, 191-205.	2.5	16
13	Sugar Preferences in Nectar- and Fruit-Eating Birds: Behavioral Patterns and Physiological Causes1. Biotropica, 2005, 38, 051128134355005.	1.6	34
14	Sugars in Mediterranean Floral Nectars: An Ecological and Evolutionary Approach. Journal of Chemical Ecology, 2005, 31, 1065-1088.	1.8	106
15	Use of native and exotic garden plants by suburban nectarivorous birds. Biological Conservation, 2005, 121, 545-559.	4.1	104
16	Mixed hummingbird: Long-proboscid-fly pollination in 'ornithophilous' Embothrium coccineum (Proteaceae) along a rainfall gradient in Patagonia, Argentina. Austral Ecology, 2006, 31, 512-519.	1.5	24
17	Xylose utilization and short-chain fatty acid production by selected components of the intestinal microflora of a rodent pollinator (Aethomys namaquensis). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 631-641.	1.5	8
18	Nectar Xylose Metabolism in a Rodent Pollinator (Aethomys namaquensis): Defining the Role of Gastrointestinal Microflora Using14C‣abeled Xylose. Physiological and Biochemical Zoology, 2006, 79, 159-168.	1.5	9

#	Article	IF	CITATIONS
20	Nectar chemistry. , 2007, , 215-264.		303
21	Proteaceae., 2007,, 364-404.		27
22	Phylogenetic constraints vs. ecology in the nectar composition of Acanthaceae. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 62-69.	1.2	43
25	Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biological Reviews, 2007, 82, 83-111.	10.4	99
26	Xylose in the nectar of Puya raimondii (Bromeliaceae), the Queen of the Puna. Biochemical Systematics and Ecology, 2007, 35, 554-556.	1.3	6
27	Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biology, 2008, 10, 502-511.	3.8	99
28	Nectar concentration affects sugar preferences in two Australian honeyeaters and a lorikeet. Functional Ecology, 2008, 22, 599-605.	3.6	44
29	Mice pollinate the Pagoda Lily, Whiteheadia bifolia (Hyacinthaceae) — First field observations with photographic documentation of rodent pollination in South Africa. South African Journal of Botany, 2009, 75, 713-719.	2.5	56
30	Rodent pollination in Protea nana. South African Journal of Botany, 2009, 75, 720-725.	2.5	34
31	Class Magnoliopsida (Dicotyledons). , 2009, , 7-588.		3
32	Relationships of Natural Enemies and Non-Prey Foods. , 2009, , .		235
33	Floral nectar sugar composition and flowering phenology of the food plants used by the western pygmy possum, <i>Cercartetus concinnus</i> , at Innes National Park, South Australia. Ecological Research, 2010, 25, 579-589.	1.5	20
34	Variation in nectar-sugar profile of Anchusa and allied genera (Boraginaceae). Botanical Journal of the Linnean Society, 0, 162, 616-627.	1.6	13
35	Bee Food: The Chemistry and Nutritional Value of Nectar, Pollen and Mixtures of the Two. African Zoology, 2011, 46, 197-204.	0.4	69
36	Evidence for rodent pollination in Erica hanekomii (Ericaceae). Botanical Journal of the Linnean Society, 2011, 166, 163-170.	1.6	32
37	Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two. African Zoology, 2011, 46, 197-204.	0.4	186
38	Toward a quantitative nutritional ecology: the right-angled mixture triangle. Ecological Monographs, 2011, 81, 407-427.	5.4	178
39	Preliminary observations of insect pollination in Protea punctata (Proteaceae). South African Journal of Botany, 2012, 83, 63-67.	2.5	8

#	Article	IF	CITATIONS
40	Evidence for beetle pollination in the African grassland sugarbushes (Protea: Proteaceae). Plant Systematics and Evolution, 2012, 298, 857-869.	0.9	40
41	Do hummingbirds have a sweet-tooth? Gustatory sugar thresholds and sugar selection in the broad-billed hummingbird Cynanthus latirostris. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 161, 307-314.	1.8	16
42	Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production. Antonie Van Leeuwenhoek, 2012, 101, 393-402.	1.7	20
43	Intrapopulation heterogeneity in floral nectar attributes and foraging insects of an ecotonal Mediterranean species. Plant Ecology, 2013, 214, 799-809.	1.6	25
44	Nectar sugar composition of <scp>E</scp> uropean <scp>C</scp> aryophylloideae (<scp>C</scp> aryophyllaceae) in relation to flower length, pollination biology and phylogeny. Journal of Evolutionary Biology, 2013, 26, 2244-2259.	1.7	48
45	A comparison of floral resource exploitation by native and invasive Argentine ants. Arthropod-Plant Interactions, 2013, 7, 177-190.	1.1	8
46	Sugar Preferences of Avian Nectarivores Are Correlated with Intestinal Sucrase Activity. Physiological and Biochemical Zoology, 2013, 86, 499-514.	1.5	22
47	Flower visitation by honey possums (Tarsipes rostratus) in a coastal banksia heathland infested with the plant pathogen Phytophthora cinnamomi. Australian Mammalogy, 2013, 35, 166.	1.1	5
48	Mistletoebirds and Xylose: Australian Frugivores Differ in Their Handling of Dietary Sugars. Physiological and Biochemical Zoology, 2014, 87, 445-455.	1.5	3
49	Main sugar composition of floral nectar in three species groups of <i>Scrophularia</i> (Scrophulariaceae) with different principal pollinators. Plant Biology, 2014, 16, 1075-1086.	3.8	23
50	Adaptation for rodent pollination in Leucospermum arenarium (Proteaceae) despite rapid pollen loss during grooming. Annals of Botany, 2014, 113, 931-938.	2.9	28
51	Microbiology of sugarâ€rich environments: diversity, ecology and system constraints. Environmental Microbiology, 2015, 17, 278-298.	3.8	144
52	Molecular mechanisms of xylose utilization by <scp><i>P</i></scp> <i>seudomonas fluorescens</i> : overlapping genetic responses to xylose, xylulose, ribose and mannitol. Molecular Microbiology, 2015, 98, 553-570.	2.5	26
53	Pollination of macadamia: Review and opportunities for improving yields. Scientia Horticulturae, 2015, 197, 411-419.	3.6	34
54	Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecology, 2015, 15, 2.	3.0	52
55	Reward quality predicts effects of bird-pollinators on the reproduction of African Protea shrubs. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 209-217.	2.7	26
56	Advancements in nutrition and nutritional therapy. , 2016, , 142-176.		8
57	Generalist social bees maximize diversity intake in plant speciesâ€rich and resourceâ€abundant environments. Ecosphere, 2017, 8, e01758.	2.2	42

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
58	A review of the methods for storing floral nectars in the field. Plant Biology, 2017, 19, 497-503.	3.8	8
59	Reproductive biology of three co-occurring, primarily small-mammal pollinated Protea species (Proteaceae). South African Journal of Botany, 2017, 113, 337-345.	2.5	8
60	Contrasting carbon metabolism in saprotrophic and pathogenic microascalean fungi from Protea trees. Fungal Ecology, 2017, 30, 88-100.	1.6	7
61	Pollinator adaptation and the evolution of floral nectar sugar composition. Journal of Evolutionary Biology, 2017, 30, 112-127.	1.7	71
62	Evaluation of three popular diets fed to pet sugar gliders (<i>Petaurus breviceps</i>): Intake, digestion and nutrient balance. Journal of Animal Physiology and Animal Nutrition, 2018, 102, e193-e208.	2.2	4
63	Mutualism between coâ€occurring plant species in South Africa's Mediterranean climate heathland is mediated by birds. Plant Biology, 2018, 20, 224-230.	3.8	10
64	Genomic overview of closely related fungi with different Protea host ranges. Fungal Biology, 2018, 122, 1201-1214.	2.5	1
65	Fiberâ€optic refractometer for <i>in vivo</i> sugar concentration measurements of lowâ€nectarâ€producing flowers. New Phytologist, 2019, 224, 987-993.	7.3	12
66	Comparison of the ecology and evolution ofÂplants with a generalist bird pollination system between continents and islands worldwide. Biological Reviews, 2019, 94, 1658-1671.	10.4	15
67	What Do Nectarivorous Bats Like? Nectar Composition in Bromeliaceae With Special Emphasis on Bat-Pollinated Species. Frontiers in Plant Science, 2019, 10, 205.	3.6	22
68	Characters, Pollination Biology and Life Cycle. , 2019, , 55-91.		0
69	Limits to alien black rats (Rattus rattus) acting as equivalent pollinators to extinct native small mammals: the influence of stem width on mammal activity at native Banksia ericifolia inflorescences. Biological Invasions, 2020, 22, 329-338.	2.4	6
70	Missing for almost 100 years: the rare and potentially threatened bee, Pharohylaeus lactiferus (Hymenoptera, Colletidae). Journal of Hymenoptera Research, 0, 81, 165-180.	0.8	8
71	Evolutionary and Ecological Considerations on Nectar-Mediated Tripartite Interactions in Angiosperms and Their Relevance in the Mediterranean Basin. Plants, 2021, 10, 507.	3.5	5
72	Differences in Nectar Traits between Ornithophilous and Entomophilous Plants on Mount Cameroon. Plants, 2021, 10, 1161.	3.5	8
73	The role of plant–pollinator interactions in structuring nectar microbial communities. Journal of Ecology, 2021, 109, 3379-3395.	4.0	22
75	A rapid and accurate visual assessment of nectar production can reveal patterns of temporal variation in Banksia ericifolia (Proteaceae). Australian Journal of Botany, 2002, 50, 595.	0.6	13
76	Taxonomic patterns in the distribution of polyols within the Proteaceae. Australian Journal of Botany, 2005, 53, 205.	0.6	32

CITATION REPORT

#	Article	IF	CITATIONS
77	Diversity and species turnover on an altitudinal gradient in Western Cape, South Africa: baseline data for monitoring range shifts in response to climate change. Bothalia, 2008, 38, .	0.3	13
78	A new suprageneric classification of the Proteaceae, with an annotated checklist of genera. Telopea, 2006, , 314-344.	0.4	83
79	Variation in nectar quality across 34 grassland plant species. Plant Biology, 2022, 24, 134-144.	3.8	21
81	Improving floral nectar storage on filter paper for sugar recovery. Australian Journal of Botany, 2021, , .	0.6	1
95	Sweet solutions: nectar chemistry and quality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210163.	4.0	45
96	Honey bees save energy in honey processing by dehydrating nectar before returning to the nest. Scientific Reports, 2022, 12, .	3.3	3
97	Interactions between protea plants and their animal mutualists and antagonists are structured more by energetic than morphological trait matching. Functional Ecology, 2023, 37, 176-189.	3.6	7
98	Unseen fungal biodiversity and complex inter-organismal interactions in Protea flower heads. Fungal Biology Reviews, 2023, 45, 100317.	4.7	2
100	Non-flying mammal pollination in Massonia grandiflora. South African Journal of Botany, 2024, 165, 79-90.	2.5	0