Diverse signaling pathways modulate nuclear receptor complexes

Proceedings of the National Academy of Sciences of the Unite 95, 2920-2925

DOI: 10.1073/pnas.95.6.2920

Citation Report

#	Article	IF	CITATIONS
1	Mechanistic concepts in androgen-dependence of prostate cancer. , 1998, 17, 421-427.		45
2	Interdomain communication regulating ligand binding by PPAR-Î ³ . Nature, 1998, 396, 377-380.	13.7	331
3	Signal-specific co-activator domain requirements for Pit-1 activation. Nature, 1998, 395, 301-306.	13.7	273
5	Phase-mapping of periodically domain-inverted LiNbO3 with coherent X-rays. Nature, 1998, 395, 306-306.	13.7	1
6	Regulation and regulatory parameters of histone modifications. , 1998, 72, 203-213.		87
7	Comparison of tamoxifen ligands on estrogen receptor interaction with estrogen response elements. Molecular and Cellular Endocrinology, 1998, 143, 79-90.	1.6	26
8	Coactivators and corepressors as mediators of nuclear receptor function: An update. Molecular and Cellular Endocrinology, 1998, 143, 1-7.	1.6	100
9	Molecular Mechanism of Androgen Action. Trends in Endocrinology and Metabolism, 1998, 9, 317-324.	3.1	53
10	Genistein-Mediated Attenuation of Tamoxifen-Induced Antagonism from Estrogen Receptor-Regulated Genes. Biochemical and Biophysical Research Communications, 1998, 253, 38-43.	1.0	39
11	A Potent Antidiabetic Thiazolidinedione with Unique Peroxisome Proliferator-activated Receptor γ-activating Properties. Journal of Biological Chemistry, 1998, 273, 32679-32684.	1.6	170
12	Estrogen Receptor Activation Function 1 Works by Binding p160 Coactivator Proteins. Molecular Endocrinology, 1998, 12, 1605-1618.	3.7	338
13	Two Separate NCoR (Nuclear Receptor Corepressor) Interaction Domains Mediate Corepressor Action on Thyroid Hormone Response Elements. Molecular Endocrinology, 1998, 12, 1567-1581.	3.7	62
14	Eukaryotic Conditional Expression System. BioTechniques, 1999, 27, 106-110.	0.8	4
15	Stimulation of Aromatase P450 Promoter (II) Activity in Endometriosis and Its Inhibition in Endometrium Are Regulated by Competitive Binding of Steroidogenic Factor-1 and Chicken Ovalbumin Upstream Promoter Transcription Factor to the Same cis-Acting Element. Molecular Endocrinology, 1999–13, 239-253	3.7	200
16	Opposing Effects of Corepressor and Coactivators in Determining the Dose-Response Curve of Agonists, and Residual Agonist Activity of Antagonists, for Glucocorticoid Receptor-Regulated Gene Expression. Molecular Endocrinology, 1999, 13, 2108-2121.	3.7	116
17	Comparative Analyses of Mechanistic Differences Among Antiestrogens1. Endocrinology, 1999, 140, 5828-5840.	1.4	214
18	A Corepressor and Chicken Ovalbumin Upstream Promoter Transcriptional Factor Proteins Modulate Peroxisome Proliferator-Activated Receptor-γ2/Retinoid X Receptor α-Activated Transcription from the Murine Lipoprotein Lipase Promoter*. Endocrinology, 1999, 140, 1586-1593.	1.4	26
19	A Fusion Protein of the Estrogen Receptor (ER) and Nuclear Receptor Corepressor (NCoR) Strongly Inhibits Estrogen-Dependent Responses in Breast Cancer Cells. Molecular Endocrinology, 1999, 13, 2122-2136.	3.7	27

ITATION REDO

#	Article	IF	CITATIONS
20	Interdomain Signaling in a Two-domain Fragment of the Human Glucocorticoid Receptor. Journal of Biological Chemistry, 1999, 274, 24737-24741.	1.6	93
21	Aromatase inhibitors in relation to other forms of endocrine therapy for breast cancer Endocrine-Related Cancer, 1999, 6, 271-276.	1.6	31
22	Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. Journal of Molecular Endocrinology, 1999, 23, 255-275.	1.1	294
23	A role for RNA helicase A in post-transcriptional regulation of HIV type 1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 709-714.	3.3	140
24	Regulation of the Transcriptional Activity of the Peroxisome Proliferator-activated Receptor α by Phosphorylation of a Ligand-independent trans-Activating Domain. Journal of Biological Chemistry, 1999, 274, 10505-10510.	1.6	158
25	Polyamine biosynthesis inhibitors alter protein-protein interactions involving estrogen receptor in MCF-7 breast cancer cells. Journal of Molecular Endocrinology, 1999, 22, 131-139.	1.1	18
26	Nuclear Receptor Coregulators: Cellular and Molecular Biology*. Endocrine Reviews, 1999, 20, 321-344.	8.9	1,501
27	Unique forms of human and mouse nuclear receptor corepressor SMRT. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2639-2644.	3.3	156
28	A peroxisome proliferator-activated receptor ligand inhibits adipocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6102-6106.	3.3	323
29	Statistical Analysis of Array Expression Data as Applied to the Problem of Tamoxifen Resistance. Journal of the National Cancer Institute, 1999, 91, 453-459.	3.0	182
30	Identification of Nuclear Receptor Corepressor as a Peroxisome Proliferator-activated Receptor α Interacting Protein. Journal of Biological Chemistry, 1999, 274, 15901-15907.	1.6	117
31	Estrogen receptor (ER) modulators each induce distinct conformational changes in ER Â and ER Â. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3999-4004.	3.3	397
32	Direct Visualization of the Human Estrogen Receptor \hat{I}_{\pm} Reveals a Role for Ligand in the Nuclear Distribution of the Receptor. Molecular Biology of the Cell, 1999, 10, 471-486.	0.9	233
33	The Estrogen Receptor Enhances AP-1 Activity by Two Distinct Mechanisms with Different Requirements for Receptor Transactivation Functions. Molecular Endocrinology, 1999, 13, 1672-1685.	3.7	343
34	Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999, 401, 173-177.	13.7	808
35	Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature, 1999, 401, 177-180.	13.7	256
40	Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nature Medicine, 1999, 5, 635-642.	15.2	152
41	An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cellular and Molecular Life Sciences, 1999, 55, 932	2.4	173

	CHAHON		
#	ARTICLE Orphan Nuclear Receptors: From Gene to Function*, Endocrine Reviews, 1999, 20, 689-725,	IF 8.9	CITATIONS
43	Cell Membrane and Nuclear Estrogen Receptors (ERs) Originate from a Single Transcript: Studies of ERα and ERβ Expressed in Chinese Hamster Ovary Cells. Molecular Endocrinology, 1999, 13, 307-319.	3.7	896
44	Ligand-independent Activation of Steroid Receptors: New Roles for Old Players. Trends in Endocrinology and Metabolism, 1999, 10, 41-46.	3.1	108
45	The Molecular Pharmacology of SERMs. Trends in Endocrinology and Metabolism, 1999, 10, 301-311.	3.1	260
46	Evolving Concepts of Selective Estrogen Receptor Action: From Basic Science to Clinical Applications. Trends in Endocrinology and Metabolism, 1999, 10, 299-300.	3.1	22
47	Ligand-Independent Recruitment of SRC-1 to Estrogen Receptor \hat{I}^2 through Phosphorylation of Activation Function AF-1. Molecular Cell, 1999, 3, 513-519.	4.5	424
48	Phosphorylation of the Nuclear Receptor SF-1 Modulates Cofactor Recruitment. Molecular Cell, 1999, 3, 521-526.	4.5	358
49	Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Molecular and Cellular Endocrinology, 1999, 156, 85-93.	1.6	87
50	The localization and interactions of huntingtin. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1021-1027.	1.8	19
51	Nuclear-Receptor Ligands and Ligand-Binding Domains. Annual Review of Biochemistry, 1999, 68, 559-581.	5.0	326
52	Human Genes Involved in Chromatin Remodeling in Transcription Initiation, and Associated Diseases: An Overview Using the GENATLAS Database. Molecular Genetics and Metabolism, 1999, 67, 261-277.	0.5	11
53	The peroxisome proliferator-activated receptorγ (PPARγ) as a regulator of monocyte/macrophage function. Journal of Leukocyte Biology, 1999, 66, 733-739.	1.5	276
54	A Novel Role for Helix 12 of Retinoid X Receptor in Regulating Repression. Molecular and Cellular Biology, 1999, 19, 6448-6457.	1.1	102
55	The Androgen Receptor Amino-Terminal Domain Plays a Key Role in p160 Coactivator-Stimulated Gene Transcription. Molecular and Cellular Biology, 1999, 19, 6085-6097.	1.1	245
56	Selective Estrogen Receptor Modulators: Structure, Function, and Clinical Use. Journal of Clinical Oncology, 2000, 18, 3172-3186.	0.8	317
57	Prediction of interaction partners for orphan nuclear receptors by prior-based protein sequence profiles. Journal of Molecular Recognition, 2000, 13, 117-126.	1.1	0
58	An issue of tissues: divining the split personalities of selective estrogen receptor modulators. Nature Medicine, 2000, 6, 960-962.	15.2	61
59	The dual function steroid receptor coactivator/ubiquitin protein-ligase integrator E6-AP is overexpressed in mouse mammary tumorigenesis. Breast Cancer Research and Treatment, 2000, 62, 185-195.	1.1	20

	CITATION	Report	
#	Article	IF	CITATIONS
60	The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. Journal of Mammary Gland Biology and Neoplasia, 2000, 5, 307-324.	1.0	121
61	Estrogen receptor alpha in human breast cancer: occurrence and significance. , 2000, 5, 271-281.		264
62	Oestrogen and growth factor cross-talk and endocrine insensitivity and acquired resistance in breast cancer. British Journal of Cancer, 2000, 82, 501-513.	2.9	93
63	Development and characterization of a tamoxifen-resistant breast carcinoma xenograft. British Journal of Cancer, 2000, 82, 1844-1850.	2.9	19
64	Formation of a Powerful Capping Motif Corresponding to Start of "Helix 12" in Agonist-Bound Estrogen Receptor-α Contributes to Increased Constitutive Activity of the Protein. Cell Biochemistry and Biophysics, 2000, 33, 53-62.	0.9	15
65	Molecular Pharmacology of Estrogen and Progesterone Receptors. , 2000, , 3-11.		1
66	Phosphorylation of Steroid Receptor Coactivator-1. Journal of Biological Chemistry, 2000, 275, 4475-4483.	1.6	235
67	DAX-1 Functions as an LXXLL-containing Corepressor for Activated Estrogen Receptors. Journal of Biological Chemistry, 2000, 275, 39855-39859.	1.6	151
68	The histone deacetylase-3 complex contains nuclear receptor corepressors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7202-7207.	3.3	321
69	Tamoxifen-Bound Estrogen Receptor (ER) Strongly Interacts with the Nuclear Matrix Protein HET/SAF-B, a Novel Inhibitor of ER-Mediated Transactivation. Molecular Endocrinology, 2000, 14, 369-381.	3.7	89
70	Nuclear Hormone Receptor Coregulators In Action: Diversity For Shared Tasks. Molecular Endocrinology, 2000, 14, 329-347.	3.7	350
71	Selection of Estrogen Receptor β- and Thyroid Hormone Receptor β-Specific Coactivator-Mimetic Peptides Using Recombinant Peptide Libraries. Molecular Endocrinology, 2000, 14, 605-622.	3.7	44
72	Characterization of Transactivational Property and Coactivator Mediation of Rat Mineralocorticoid Receptor Activation Function-1 (AF-1). Molecular Endocrinology, 2000, 14, 889-899.	3.7	74
73	Development of Peptide Antagonists That Target Estrogen Receptor β-Coactivator Interactions. Molecular Endocrinology, 2000, 14, 2010-2023.	3.7	69
74	The SMRT Corepressor Is Regulated by a MEK-1 Kinase Pathway: Inhibition of Corepressor Function Is Associated with SMRT Phosphorylation and Nuclear Export. Molecular and Cellular Biology, 2000, 20, 6612-6625.	1.1	166
75	Ecdysone receptors and their biological actions. Vitamins and Hormones, 2000, 60, 1-73.	0.7	469
76	A Tissue-Specific Coactivator of Steroid Receptors, Identified in a Functional Genetic Screen. Molecular and Cellular Biology, 2000, 20, 2411-2422.	1.1	286
77	Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Human Molecular Genetics, 2000, 9, 267-274.	1.4	227

	CITATION	CITATION REPORT	
#	Article	IF	Citations
78	Steroid hormone receptors: an update. Human Reproduction Update, 2000, 6, 225-236.	5.2	512
79	Modulation of Estrogen Receptor- $\hat{l}\pm$ Transcriptional Activity by the Coactivator PGC-1. Journal of Biological Chemistry, 2000, 275, 16302-16308.	1.6	193
80	Cell Signaling Switches HOX-PBX Complexes from Repressors to Activators of Transcription Mediated by Histone Deacetylases and Histone Acetyltransferases. Molecular and Cellular Biology, 2000, 20, 8623-8633.	1.1	179
81	Recruitment of Nuclear Receptor Corepressor and Coactivator to the Retinoic Acid Receptor by Retinoid Ligands. Journal of Biological Chemistry, 2000, 275, 19401-19408.	1.6	35
82	An Antiestrogen-responsive Estrogen Receptor-α Mutant (D351Y) Shows Weak AF-2 Activity in the Presence of Tamoxifen. Journal of Biological Chemistry, 2000, 275, 37552-37558.	1.6	24
83	Association with Ets-1 Causes Ligand- and AF2-Independent Activation of Nuclear Receptors. Molecular and Cellular Biology, 2000, 20, 8793-8802.	1.1	49
84	8-Bromo-Cyclic AMP Induces Phosphorylation of Two Sites in SRC-1 That Facilitate Ligand-Independent Activation of the Chicken Progesterone Receptor and Are Critical for Functional Cooperation between SRC-1 and CREB Binding Protein. Molecular and Cellular Biology, 2000, 20, 8720-8730.	1.1	226
85	A Dominant-negative Peroxisome Proliferator-activated Receptor γ (PPARγ) Mutant Is a Constitutive Repressor and Inhibits PPARγ-mediated Adipogenesis. Journal of Biological Chemistry, 2000, 275, 5754-5759.	1.6	249
86	A Novel Nuclear Receptor Corepressor Complex, N-CoR, Contains Components of the Mammalian SWI/SNF Complex and the Corepressor KAP-1. Journal of Biological Chemistry, 2000, 275, 40463-40470.	1.6	279
87	Estrogen receptor pathways to AP-1. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 311-317.	1.2	785
88	Development of peptide antagonists that target estrogen receptor–cofactor interactions. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 327-335.	1.2	36
89	Transcriptional Repression by Nuclear Hormone Receptors. Trends in Endocrinology and Metabolism, 2000, 11, 6-10.	3.1	268
90	Nuclear receptor conformation, coregulators, and tamoxifen-resistant breast cancer. Steroids, 2000, 65, 579-584.	0.8	52
91	Estrogen receptor interaction with co-activators and co-repressorsâ~†. Steroids, 2000, 65, 227-251.	0.8	413
92	Combinatorial Roles of the Nuclear Receptor Corepressor in Transcription and Development. Cell, 2000, 102, 753-763.	13.5	475
93	Cofactor Dynamics and Sufficiency in Estrogen Receptor–Regulated Transcription. Cell, 2000, 103, 843-852.	13.5	1,571
94	Estrogen receptor transcription and transactivation Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Research, 2000, 2, 335-44.	2.2	236
95	Single-Tube Gene-Specific Expression Analysis by High Primer Density Multiplex Reverse Transcription. Molecular Genetics and Metabolism, 2001, 74, 435-448.	0.5	9

#	Article	IF	CITATIONS
96	Molecular and pharmacological aspects of antiestrogen resistance. Journal of Steroid Biochemistry and Molecular Biology, 2001, 76, 71-84.	1.2	125
97	Contribution of steroid receptor coactivator-1 and CREB binding protein in ligand-independent activity of estrogen receptor β. Journal of Steroid Biochemistry and Molecular Biology, 2001, 77, 19-27.	1.2	64
98	Estrogen receptor antibodies: specificity and utility in detection, localization and analyses of estrogen receptor \hat{l}_{\pm} and \hat{l}^2 . Steroids, 2001, 66, 1-16.	0.8	83
99	Phosphatidylinositol 3-Kinase/AKT-mediated Activation of Estrogen Receptor α. Journal of Biological Chemistry, 2001, 276, 9817-9824.	1.6	831
100	Proteins Accompanying the Estrogen Receptor α and β: A Model for Studying Protein Hetero-Complexes. Biocatalysis and Biotransformation, 2001, 19, 427-442.	1.1	2
101	Structureâ°'Function Evaluation of ER Î \pm and β Interplay with SRC Family Coactivators. ER Selective Ligands. Biochemistry, 2001, 40, 6756-6765.	1.2	102
102	Mechanisms of Estrogen Action. Physiological Reviews, 2001, 81, 1535-1565.	13.1	1,671
103	Protein coregulators that mediate estrogen receptor function. Reproduction, Fertility and Development, 2001, 13, 221.	0.1	17
105	Oestrogen receptors, growth factors and the control of breast cancer. Breast, 2001, 10, 27-35.	0.9	7
106	Transcriptional coregulators of the nuclear receptor superfamily: coactivators and corepressors. Cellular and Molecular Life Sciences, 2001, 58, 289-297.	2.4	116
107	The pleiotropic functions of peroxisome proliferator-activated receptor Î ³ . Journal of Molecular Medicine, 2001, 79, 30-47.	1.7	193
108	Estrogen receptor and breast cancer. Seminars in Cancer Biology, 2001, 11, 339-352.	4.3	265
109	The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II). Molecular and Cellular Biochemistry, 2001, 220, 1-13.	1.4	46
110	The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nature Medicine, 2001, 7, 584-590.	15.2	798
111	Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene, 2001, 20, 3047-3054.	2.6	240
112	The development of androgen-independent prostate cancer. Nature Reviews Cancer, 2001, 1, 34-45.	12.8	2,057
113	Transcriptional activities of estrogen receptor alpha and beta in yeast properties of raloxifene 1 1Abbreviations: ERE, estrogen response element; E2, 17Î ² -estradiol; RAL, raloxifene; ERα, estrogen receptor α; ERÎ ² , estrogen receptor I ² ; and SERM, selective estrogen receptor modulator Biochemical Pharmacology, 2001, 62, 953-961.	2.0	39
114	Structural Insights into the Mode of Action of a Pure Antiestrogen. Structure, 2001, 9, 145-153.	1.6	331

#	Article	IF	CITATIONS
115	BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9587-9592.	3.3	192
116	Ligand- and Coactivator-mediated Transactivation Function (AF2) of the Androgen Receptor Ligand-binding Domain Is Inhibited by the Cognate Hinge Region. Journal of Biological Chemistry, 2001, 276, 7493-7499.	1.6	66
117	Forkhead Homologue in Rhabdomyosarcoma Functions as a Bifunctional Nuclear Receptor-interacting Protein with Both Coactivator and Corepressor Functions. Journal of Biological Chemistry, 2001, 276, 27907-27912.	1.6	144
118	Arsenic Trioxide Is a Potent Inhibitor of the Interaction of SMRT Corepressor with Its Transcription Factor Partners, Including the PML-Retinoic Acid Receptor α Oncoprotein Found in Human Acute Promyelocytic Leukemia. Molecular and Cellular Biology, 2001, 21, 7172-7182.	1.1	59
119	Estrogen Receptor Binding to DNA Is Not Required for Its Activity through the Nonclassical AP1 Pathway. Journal of Biological Chemistry, 2001, 276, 13615-13621.	1.6	248
120	Agonist-dependent Repression Mediated by Mutant Estrogen Receptor α That Lacks the Activation Function 2 Core Domain. Journal of Biological Chemistry, 2001, 276, 37280-37283.	1.6	22
121	Coregulator Codes of Transcriptional Regulation by Nuclear Receptors. Journal of Biological Chemistry, 2001, 276, 36865-36868.	1.6	441
122	The Tamoxifen-responsive Estrogen Receptor α Mutant D351Y Shows Reduced Tamoxifen-dependent Interaction with Corepressor Complexes. Journal of Biological Chemistry, 2001, 276, 42684-42691.	1.6	47
123	Peroxisome Proliferator-activated Receptor δ (PPARÎ)-mediated Regulation of Preadipocyte Proliferation and Gene Expression Is Dependent on cAMP Signaling. Journal of Biological Chemistry, 2001, 276, 3175-3182.	1.6	156
124	Transactivation Specificity of Glucocorticoid VersusProgesterone Receptors. Journal of Biological Chemistry, 2001, 276, 24806-24816.	1.6	36
125	Identification of a Phosphorylation Site in the Hinge Region of the Human Progesterone Receptor and Additional Amino-terminal Phosphorylation Sites. Journal of Biological Chemistry, 2001, 276, 8475-8483.	1.6	92
126	Direct Acetylation of the Estrogen Receptor α Hinge Region by p300 Regulates Transactivation and Hormone Sensitivity. Journal of Biological Chemistry, 2001, 276, 18375-18383.	1.6	312
127	Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. Journal of Molecular Endocrinology, 2001, 27, 1-9.	1.1	225
128	Acyl-CoA Esters Antagonize the Effects of Ligands on Peroxisome Proliferator-activated Receptor α Conformation, DNA Binding, and Interaction with Co-factors. Journal of Biological Chemistry, 2001, 276, 21410-21416.	1.6	46
129	The Human Estrogen Receptor-α Is a Ubiquitinated Protein Whose Stability Is Affected Differentially by Agonists, Antagonists, and Selective Estrogen Receptor Modulators. Journal of Biological Chemistry, 2001, 276, 35684-35692.	1.6	404
130	Multiple Regions of ETO Cooperate in Transcriptional Repression. Journal of Biological Chemistry, 2001, 276, 9889-9895.	1.6	75
131	Perspective: Female Steroid Hormone Action. Endocrinology, 2001, 142, 2194-2199.	1.4	55
132	New Antiprogestins with Partial Agonist Activity: Potential Selective Progesterone Receptor Modulators (SPRMs) and Probes for Receptor- and Coregulator-Induced Changes in Progesterone	37	55

Receptor Induction Properties. Molecular Endocrinology, 2001, 15, 255-270.

#	Article	IF	CITATIONS
133	Histone Acetylation / Deacetylation and Cancer: An "Open" and "Shut" Case?. Current Molecular Medicine, 2001, 1, 401-429.	0.6	87
134	SYNTHETIC RETINOIDS DISSOCIATE COACTIVATOR BINDING FROM COREPRESSOR RELEASE. Journal of Receptor and Signal Transduction Research, 2002, 22, 31-61.	1.3	12
135	Chromatin remodeling and tissue-selective responses of nuclear hormone receptors. Biochemistry and Cell Biology, 2002, 80, 343-351.	0.9	35
136	Androgen Receptor (AR) Coregulators: An Overview. Endocrine Reviews, 2002, 23, 175-200.	8.9	767
137	The PGC-1-related Protein PERC Is a Selective Coactivator of Estrogen Receptor α. Journal of Biological Chemistry, 2002, 277, 13918-13925.	1.6	201
138	Molecular Cloning and Characterization of CAPER, a Novel Coactivator of Activating Protein-1 and Estrogen Receptors. Journal of Biological Chemistry, 2002, 277, 1229-1234.	1.6	92
139	Modulation of Induction Properties of Glucocorticoid Receptor-Agonist and -Antagonist Complexes by Coactivators Involves Binding to Receptors but Is Independent of Ability of Coactivators to Augment Transactivation. Journal of Biological Chemistry, 2002, 277, 49256-49266.	1.6	32
140	Insulin Induces Heterologous Desensitization of G Protein-Coupled Receptor and Insulin-Like Growth Factor I Signaling by Downregulating β-Arrestin-1. Molecular and Cellular Biology, 2002, 22, 6272-6285.	1.1	76
141	The Transcription Factor B-Myb Is Maintained in an Inhibited State in Target Cells through Its Interaction with the Nuclear Corepressors N-CoR and SMRT. Molecular and Cellular Biology, 2002, 22, 3663-3673.	1.1	37
142	Enhancement of VDR-Mediated Transcription by Phosphorylation: Correlation with Increased Interaction Between the VDR and DRIP205, a Subunit of the VDR-Interacting Protein Coactivator Complex. Molecular Endocrinology, 2002, 16, 301-314.	3.7	78
143	Identification of a Negative Regulatory Surface within Estrogen Receptor α Provides Evidence in Support of a Role for Corepressors in Regulating Cellular Responses to Agonists and Antagonists. Molecular Endocrinology, 2002, 16, 1778-1792.	3.7	97
144	Differences in the Abilities of Estrogen Receptors to Integrate Activation Functions Are Critical for Subtype-Specific Transcriptional Responses. Molecular Endocrinology, 2002, 16, 1810-1827.	3.7	45
145	Direct Interactions between Corepressors and Coactivators Permit the Integration of Nuclear Receptor-Mediated Repression and Activation. Molecular Endocrinology, 2002, 16, 1482-1491.	3.7	50
146	The Glucocorticoid Receptor: Molecular Mechanism and New Therapeutic Opportunities. Inflammation and Allergy: Drug Targets, 2002, 1, 127-136.	3.1	42
147	TR Surfaces and Conformations Required to Bind Nuclear Receptor Corepressor. Molecular Endocrinology, 2002, 16, 271-286.	3.7	96
148	Multiple Phosphorylation Events Control Chicken Ovalbumin Upstream Promoter Transcription Factor I Orphan Nuclear Receptor Activity. Molecular Endocrinology, 2002, 16, 1332-1351.	3.7	18
149	Reduction of Coactivator Expression by Antisense Oligodeoxynucleotides Inhibits ERα Transcriptional Activity and MCF-7 Proliferation. Molecular Endocrinology, 2002, 16, 253-270.	3.7	65
150	Differential Gene Regulation by PPARÎ ³ Agonist and Constitutively Active PPARÎ ³ 2. Molecular Endocrinology, 2002, 16, 1040-1048.	3.7	64

#	Article	IF	CITATIONS
151	Endometrial nuclear receptor co-factors SRC-1 and N-CoR are increased in human endometrium during menstruation. Molecular Human Reproduction, 2002, 8, 644-650.	1.3	33
152	Deregulated MAPK Activity Prevents Adipocyte Differentiation of Fibroblasts Lacking the Retinoblastoma Protein. Journal of Biological Chemistry, 2002, 277, 26335-26339.	1.6	34
153	Novel Mechanism of Nuclear Receptor Corepressor Interaction Dictated by Activation Function 2 Helix Determinants. Molecular and Cellular Biology, 2002, 22, 6831-6841.	1.1	88
154	A Structural Model of the Constitutive Androstane Receptor Defines Novel Interactions That Mediate Ligand-Independent Activity. Molecular and Cellular Biology, 2002, 22, 5270-5280.	1.1	105
155	Genetic engineering of the glucocorticoid receptor by fusion with the herpes viral protein VP22 causes selective loss of transactivation. Journal of Endocrinology, 2002, 172, 615-625.	1.2	9
156	RU486-induced Glucocorticoid Receptor Agonism Is Controlled by the Receptor N Terminus and by Corepressor Binding. Journal of Biological Chemistry, 2002, 277, 26238-26243.	1.6	126
157	Developmentally Regulated N-terminal Variants of the Nuclear Receptor Hepatocyte Nuclear Factor 4α Mediate Multiple Interactions through Coactivator and Corepressor-Histone Deacetylase Complexes. Journal of Biological Chemistry, 2002, 277, 44677-44687.	1.6	56
158	The Stat5-RARα fusion protein represses transcription and differentiation through interaction with a corepressor complex. Blood, 2002, 99, 2647-2652.	0.6	39
159	Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor δ-mediated transactivation. Biochemical Journal, 2002, 363, 157.	1.7	59
160	Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor δ-mediated transactivation. Biochemical Journal, 2002, 363, 157-165.	1.7	88
161	The Estrogen-Occupied Estrogen Receptor Functions as a Negative Regulator to Inhibit Cell Proliferation Induced by Insulin/IGF-1: A Cell Context-Specific Antimitogenic Action of Estradiol on Rat Lactotrophs in Culture. Endocrinology, 2002, 143, 2750-2758.	1.4	37
162	Tissue-specific estrogenic response and molecular mechanisms. Toxicology Letters, 2002, 127, 217-224.	0.4	114
163	The role of transcription factors in allergic inflammation. Journal of Allergy and Clinical Immunology, 2002, 110, 553-564.	1.5	36
164	PPARÎ ³ ANDGLUCOSEHOMEOSTASIS. Annual Review of Nutrition, 2002, 22, 167-197.	4.3	393
165	Chemoprevention of Breast Cancer. Drugs and Aging, 2002, 19, 43-78.	1.3	6
166	Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators. Cell, 2002, 108, 465-474.	13.5	1,345
167	Exchange of N-CoR Corepressor and Tip60 Coactivator Complexes Links Gene Expression by NF-κB and β-Amyloid Precursor Protein. Cell, 2002, 110, 55-67.	13.5	543
168	Molecular perspectives on selective estrogen receptor modulators (SERMs): progress in understanding their tissue-specific agonist and antagonist actions. Steroids, 2002, 67, 15-24.	0.8	155

#	Article	IF	CITATIONS
169	Genetic network identification by high density, multiplexed reversed transcriptional (HD-MRT) analysis in steroidogenic axis model cell lines. Molecular Genetics and Metabolism, 2002, 77, 159-178.	0.5	9
170	A Dynamic Structural Model for Estrogen Receptor-α Activation by Ligands, Emphasizing the Role of Interactions between Distant A and E Domains. Molecular Cell, 2002, 10, 1019-1032.	4.5	114
171	Steroid receptors in human breast tumorigenesis and breast cancer progression. Biomedicine and Pharmacotherapy, 2002, 56, 65-77.	2.5	49
172	Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation. Journal of Steroid Biochemistry and Molecular Biology, 2002, 81, 333-341.	1.2	130
173	Design of thyroid hormone receptor antagonists from first principles. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 59-73.	1.2	62
174	Nuclear receptor coregulators: multiple modes of modification. Trends in Endocrinology and Metabolism, 2002, 13, 55-60.	3.1	302
175	Acetylation in hormone signaling and the cell cycle. Cytokine and Growth Factor Reviews, 2002, 13, 259-276.	3.2	45
176	Structural regions of ERα critical for synergistic transcriptional responses contain co-factor interacting surfaces. Molecular and Cellular Endocrinology, 2002, 192, 171-185.	1.6	12
177	Antiandrogens: selective androgen receptor modulators. Molecular and Cellular Endocrinology, 2002, 198, 97-103.	1.6	61
178	I. PPARÎ ³ in the gastrointestinal tract: gain or pain?. American Journal of Physiology - Renal Physiology, 2002, 282, G581-G585.	1.6	47
179	Two antiestrogens affect differently chromatin remodeling of trefoil factor 1 (pS2) gene and the fate of estrogen receptor in MCF7 cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1578, 12-20.	2.4	16
180	DNA binding and protein interactions of the AHR/ARNT heterodimer that facilitate gene activation. Chemico-Biological Interactions, 2002, 141, 63-76.	1.7	136
181	In vivo test systems for the quantitative and qualitative analysis of the biological activity of phytoestrogens. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 777, 191-202.	1.2	57
182	Endocrine-responsive breast cancer and strategies for combating resistance. Nature Reviews Cancer, 2002, 2, 101-112.	12.8	759
183	Relationship of coregulator and oestrogen receptor isoform expression to de novo tamoxifen resistance in human breast cancer. British Journal of Cancer, 2002, 87, 1411-1416.	2.9	63
184	Peroxisome proliferator-activated receptors: Lipid binding proteins controling gene expression. Molecular and Cellular Biochemistry, 2002, 239, 131-138.	1.4	58
185	Expression of Sex Steroid Receptors and their Co-Factors in Normal and Malignant Breast Tissue: AIB1 is a Carcinoma-Specific Co-Activator. Breast Cancer Research and Treatment, 2003, 78, 193-204.	1.1	86
186	Role of the Estrogen Receptor Coactivator AIB1 (SRC-3) and HER-2/neu in Tamoxifen Resistance in Breast Cancer. Journal of the National Cancer Institute, 2003, 95, 353-361.	3.0	717

#	Article	IF	CITATIONS
187	A dominant negative PPARÎ ³ mutant shows altered cofactor recruitment and inhibits adipogenesis in 3T3-L1 cells. Diabetologia, 2003, 46, 365-377.	2.9	42
188	Endocrine-resistant breast cancer: Underlying mechanisms and strategies for overcoming resistance. Breast Cancer, 2003, 10, 112-119.	1.3	46
189	Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast, 2003, 12, 362-367.	0.9	129
190	Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor ?. International Journal of Cancer, 2003, 107, 353-358.	2.3	193
191	Reporter gene assay demonstrates functional differences in estrogen receptor activity in purified breast cancer cells: A pilot study. International Journal of Cancer, 2003, 107, 700-706.	2.3	7
192	Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. Journal of Cellular Biochemistry, 2003, 88, 340-355.	1.2	2
193	Peroxisome proliferator-activated receptors (PPARS): regulators of gene expression in heart and skeletal muscle. Acta Physiologica Scandinavica, 2003, 178, 425-434.	2.3	144
194	Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene, 2003, 22, 7316-7339.	2.6	421
195	Effects of Retinoid Ligands on RIP140:Â Molecular Interaction with Retinoid Receptors and Biological Activityâ€. Biochemistry, 2003, 42, 971-979.	1.2	25
196	Both N- and C-terminal transactivation functions of DNA-bound ERα are blocked by a novel synthetic estrogen ligand. Biochemical and Biophysical Research Communications, 2003, 312, 656-662.	1.0	28
197	Estrogen receptor phosphorylation. Steroids, 2003, 68, 1-9.	0.8	428
198	RORα Coordinates Reciprocal Signaling in Cerebellar Development through Sonic hedgehog and Calcium-Dependent Pathways. Neuron, 2003, 40, 1119-1131.	3.8	139
199	Ligand-independent coactivation of ERα AF-1 by steroid receptor RNA activator (SRA) via MAPK activation. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 123-131.	1.2	59
200	Identification of estrogen receptor beta expression in Chinese hamster ovary (CHO) cells and comparison of estrogen-responsive gene transcription in cells adapted to serum-free media. Journal of Steroid Biochemistry and Molecular Biology, 2003, 86, 41-55.	1.2	13
201	p33ING1b stimulates the transcriptional activity of the estrogen receptor α via its activation function (AF) 2 domain. Journal of Steroid Biochemistry and Molecular Biology, 2003, 87, 57-63.	1.2	18
202	Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Research, 2003, 6, 39-52.	2.2	165
203	Subtype Specific Effects of Peroxisome Proliferator-Activated Receptor Ligands on Corepressor Affinity. Biochemistry, 2003, 42, 9278-9287.	1.2	44
204	The Interplay between the Glucocorticoid Receptor and Nuclear Factor-κB or Activator Protein-1: Molecular Mechanisms for Gene Repression. Endocrine Reviews, 2003, 24, 488-522.	8.9	808

#	Article	IF	CITATIONS
205	Regulation of Androgen Receptor Activity by the Nuclear Receptor Corepressor SMRT. Journal of Biological Chemistry, 2003, 278, 5052-5061.	1.6	154
206	Regulation of Nuclear Receptor Transcriptional Activity by a Novel DEAD Box RNA Helicase (DP97). Journal of Biological Chemistry, 2003, 278, 4628-4638.	1.6	55
207	Ligand-Independent Interactions of p160/Steroid Receptor Coactivators and CREB-Binding Protein (CBP) with Estrogen Receptor-α: Regulation by Phosphorylation Sites in the A/B Region Depends on Other Receptor Domains. Molecular Endocrinology, 2003, 17, 1296-1314.	3.7	133
208	Identification of a Novel Testicular Orphan Receptor-4 (TR4)-associated Protein as Repressor for the Selective Suppression of TR4-mediated Transactivation. Journal of Biological Chemistry, 2003, 278, 7709-7717.	1.6	21
209	T:G Mismatch-specific Thymine-DNA Glycosylase Potentiates Transcription of Estrogen-regulated Genes through Direct Interaction with Estrogen Receptor α. Journal of Biological Chemistry, 2003, 278, 38586-38592.	1.6	108
210	Estrogen receptor corepressors a role in human breast cancer?. Endocrine-Related Cancer, 2003, 10, 517-536.	1.6	111
211	Apoptotic Action of 17Â-Estradiol in Raloxifene-Resistant MCF-7 Cells In Vitro and In Vivo. Journal of the National Cancer Institute, 2003, 95, 1586-1597.	3.0	140
212	Regulation of nuclear receptor and cofactor expression in breast cancer cell lines. European Journal of Endocrinology, 2003, 148, 469-479.	1.9	21
213	Full Activation of Estrogen Receptor α Activation Function-1 Induces Proliferation of Breast Cancer Cells. Journal of Biological Chemistry, 2003, 278, 26704-26714.	1.6	80
215	Nuclear receptor superfamily: Principles of signaling. Pure and Applied Chemistry, 2003, 75, 1619-1664.	0.9	41
216	New insights into estrogen receptor function in human breast cancer. Annals of Medicine, 2003, 35, 614-631.	1.5	47
217	Differential SERM Effects on Corepressor Binding Dictate ERα Activity in Vivo. Journal of Biological Chemistry, 2003, 278, 6912-6920.	1.6	122
218	Contrasting Effects of Prenyltransferase Inhibitors on Estrogen-Dependent Cell Cycle Progression and Estrogen Receptor-Mediated Transcriptional Activity in MCF-7 Cells. Endocrinology, 2003, 144, 989-998.	1.4	18
219	Dynamic Inhibition of Nuclear Receptor Activation by Corepressor Binding. Molecular Endocrinology, 2003, 17, 366-372.	3.7	36
220	Dominant-Negative Nuclear Receptor Corepressor Relieves Transcriptional Inhibition of Retinoic Acid Receptor but Does Not Alter the Agonist/Antagonist Activities of the Tamoxifen-Bound Estrogen Receptor. Molecular Endocrinology, 2003, 17, 1543-1554.	3.7	14
221	Dissociation of Steroid Receptor Coactivator 1 and Nuclear Receptor Corepressor Recruitment to the Human Glucocorticoid Receptor by Modification of the Ligand-Receptor Interface: The Role of Tyrosine 735. Molecular Endocrinology, 2003, 17, 845-859.	3.7	56
222	Estrogen receptor action through target genes with classical and alternative response elements. Pure and Applied Chemistry, 2003, 75, 1757-1769.	0.9	17
223	Transcriptional regulation of cellular fatty acid homeostasis. Advances in Molecular and Cell Biology, 2003, , 319-336.	0.1	0

#	Article	IF	CITATIONS
224	Function and mode of action of nuclear receptors: Estrogen, progesterone, and vitamin D. Pure and Applied Chemistry, 2003, 75, 1671-1683.	0.9	4
225	Molecular mechanisms of cross-talk between growth factors and nuclear receptor signaling. Pure and Applied Chemistry, 2003, 75, 1743-1756.	0.9	16
226	Estrogen Receptors and Anti-Estrogen Therapies. , 2004, 119, 271-292.		1
227	Pharmacology of Nuclear Receptor–Coregulator Recognition. Vitamins and Hormones, 2004, 68, 145-183.	0.7	27
228	Equilibrium Interactions of Corepressors and Coactivators with Agonist and Antagonist Complexes of Glucocorticoid Receptors. Molecular Endocrinology, 2004, 18, 1376-1395.	3.7	96
229	Endocrine therapy and other targeted therapies for metastatic breast cancer. Expert Review of Anticancer Therapy, 2004, 4, 1179-1195.	1.1	9
230	ARA67/PAT1 Functions as a Repressor To Suppress Androgen Receptor Transactivation. Molecular and Cellular Biology, 2004, 24, 1044-1057.	1.1	33
232	Differential Recruitment of Coregulator Proteins Steroid Receptor Coactivator-1 and Silencing Mediator for Retinoid and Thyroid Receptors to the Estrogen Receptor-Estrogen Response Element by Î ² -Estradiol and 4-Hydroxytamoxifen in Human Breast Cancer. Journal of Clinical Endocrinology and Metabolism 2004 89 375-383	1.8	92
233	Expression of Nuclear Receptors and Cofacotrs in Human Endometrium and Myometrium. Journal of the Society for Gynecologic Investigation, 2004, 11, 104-112.	1.9	79
234	Mechanisms of tamoxifen resistance. Endocrine-Related Cancer, 2004, 11, 643-658.	1.6	523
235	Breast Cancer Chemoprevention Phase I Evaluation of Biomarker Modulation by Arzoxifene, a Third Generation Selective Estrogen Receptor Modulator. Clinical Cancer Research, 2004, 10, 5403-5417.	3.2	65
236	Analysis of co-factor function in a glucocorticoid-resistant small cell carcinoma cell line. Journal of Endocrinology, 2004, 183, 375-383.	1.2	19
238	Identification of Tamoxifen-Induced Coregulator Interaction Surfaces within the Ligand-Binding Domain of Estrogen Receptors. Molecular and Cellular Biology, 2004, 24, 3445-3459.	1.1	50
239	Recruitment of Distinct Chromatin-modifying Complexes by Tamoxifen-complexed Estrogen Receptor at Natural Target Gene Promoters in Vivo. Journal of Biological Chemistry, 2004, 279, 15050-15058.	1.6	120
240	Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors $\hat{I}\pm$ and \hat{I}^2 by coactivators and corepressors. Journal of Molecular Endocrinology, 2004, 33, 387-410.	1.1	173
241	Histone deacetylase inhibition and estrogen receptor alpha levels modulate the transcriptional activity of partial antiestrogens. Journal of Molecular Endocrinology, 2004, 32, 583-594.	1.1	40
242	Selective Estrogen Receptor Modulators. Cancer Research, 2004, 64, 1522-1533.	0.4	321
243	Synergistic Interactions between Tamoxifen and Trastuzumab (Herceptin). Clinical Cancer Research, 2004, 10, 1409-1420.	3.2	70

#	Article	IF	CITATIONS
244	Coregulator Function: A Key to Understanding Tissue Specificity of Selective Receptor Modulators. Endocrine Reviews, 2004, 25, 45-71.	8.9	860
246	Estrogen receptor-alpha interaction with the CREB binding protein coactivator is regulated by the cellular environment. Journal of Molecular Endocrinology, 2004, 32, 307-323.	1.1	15
247	Liver X receptor-α mediates cholesterol efflux in glomerular mesangial cells. American Journal of Physiology - Renal Physiology, 2004, 287, F886-F895.	1.3	48
248	Expression of estrogen receptor coregulators in normal and malignant human endometrium. Gynecologic Oncology, 2004, 92, 304-313.	0.6	59
249	Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochemical Pharmacology, 2004, 68, 1239-1246.	2.0	56
250	Mechanisms responsible for regulation of pyruvate dehydrogenase kinase 4 gene expression. Advances in Enzyme Regulation, 2004, 44, 109-121.	2.9	61
251	Reproductive toxicity assessment of lasofoxifene, a selective estrogen receptor modulator (SERM), in male rats. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2004, 71, 142-149.	1.4	10
252	Cloning and functional characterization of a rat Daxx that functions as a corepressor for the androgen receptor. Cell Biology International, 2004, 28, 609-614.	1.4	3
253	Selective oestrogen receptor modulators in desmoid tumours. Expert Opinion on Investigational Drugs, 2004, 13, 1457-1468.	1.9	30
254	Molecular Mechanisms, Physiological Consequences and Pharmacological Implications of Estrogen Receptor Action. Molecular Diagnosis and Therapy, 2004, 4, 19-28.	3.3	84
255	Estrogen Receptor Mutations in Human Disease. Endocrine Reviews, 2004, 25, 869-898.	8.9	350
256	The Role of Corepressors in Transcriptional Regulation by Nuclear Hormone Receptors. Annual Review of Physiology, 2004, 66, 315-360.	5.6	289
257	Mechanisms of Tamoxifen Resistance: Increased Estrogen Receptor-HER2/neu Cross-Talk in ER/HER2-Positive Breast Cancer. Journal of the National Cancer Institute, 2004, 96, 926-935.	3.0	1,048
258	SMRT and N-CoR Corepressors Are Regulated by Distinct Kinase Signaling Pathways. Journal of Biological Chemistry, 2004, 279, 54676-54686.	1.6	76
259	Androgen Receptor in Prostate Cancer. Endocrine Reviews, 2004, 25, 276-308.	8.9	1,475
260	Mini-review: estrogen action in the uterus and insulin-like growth factor-I. Growth Hormone and IGF Research, 2004, 14, 431-435.	0.5	23
261	Tamoxifen induces the expression of maspin through estrogen receptor-α. Cancer Letters, 2004, 209, 55-65.	3.2	26
262	SRA coactivation of estrogen receptor-α is phosphorylation-independent, and enhances 4-hydroxytamoxifen agonist activity. Biochemical and Biophysical Research Communications, 2004, 323, 332-338.	1.0	24

#	Article	IF	CITATIONS
263	A new MCF-7 breast cancer cell line resistant to the arzoxifene metabolite desmethylarzoxifene. Molecular and Cellular Endocrinology, 2004, 220, 97-107.	1.6	3
264	Immediate early gene X-1 (IEX-1), a hydroxytamoxifen regulated gene with increased stimulation in MCF-7 derived resistant breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2004, 88, 247-259.	1.2	14
265	The Flt3 internal tandem duplication mutant inhibits the function of transcriptional repressors by blocking interactions with SMRT. Blood, 2004, 103, 4650-4658.	0.6	42
266	Phosphorylation of androgen receptor isoforms. Biochemical Journal, 2004, 383, 267-276.	1.7	46
267	Molecular mechanisms of crosstalk between thyroid hormones and estrogens. Current Opinion in Endocrinology, Diabetes and Obesity, 2005, 12, 381-388.	0.6	13
268	Nuclear receptors and their coregulators in kidney. Kidney International, 2005, 68, 2444-2461.	2.6	14
269	Resistance to endocrine therapy in breast cancer. Cancer Chemotherapy and Pharmacology, 2005, 56, 39-46.	1.1	51
270	Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemotherapy and Pharmacology, 2005, 56, 10-20.	1.1	170
272	The p160 family coactivators regulate breast cancer cell proliferation and invasion through autocrine/paracrine activity of SDF-11±/CXCL12. Carcinogenesis, 2005, 26, 1706-1715.	1.3	61
273	The Clinical Relevance of Steroid Hormone Receptor Corepressors: Table 1 Clinical Cancer Research, 2005, 11, 2822-2831.	3.2	36
274	Binding of Estrogen Receptor β to Estrogen Response Element in Situ Is Independent of Estradiol and Impaired by Its Amino Terminus. Molecular Endocrinology, 2005, 19, 2696-2712.	3.7	41
275	Estrogen down-regulation of the corepressor N-CoR: Mechanism and implications for estrogen derepression of N-CoR-regulated genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13153-13157.	3.3	79
276	Cell Cycle Progression Stimulated by Tamoxifen-Bound Estrogen Receptor-α and Promoter-Specific Effects in Breast Cancer Cells Deficient in N-CoR and SMRT. Molecular Endocrinology, 2005, 19, 1543-1554.	3.7	101
277	Corepressor Binding to Progesterone and Glucocorticoid Receptors Involves the Activation Function-1 Domain and Is Inhibited by Molybdate. Molecular Endocrinology, 2005, 19, 1483-1500.	3.7	31
278	Transcriptional Regulation by Steroid Receptor Coactivator Phosphorylation. Endocrine Reviews, 2005, 26, 393-399.	8.9	147
279	The Src Kinase Pathway Promotes Tamoxifen Agonist Action in Ishikawa Endometrial Cells through Phosphorylation-Dependent Stabilization of Estrogen Receptor α Promoter Interaction and Elevated Steroid Receptor Coactivator 1 Activity. Molecular Endocrinology, 2005, 19, 732-748.	3.7	84
280	LIGAND CONTROL OF COREGULATOR RECRUITMENT TO NUCLEAR RECEPTORS. Annual Review of Physiology, 2005, 67, 309-333.	5.6	239
281	Selective Estrogen-Receptor Modulators for Primary Prevention of Breast Cancer. Journal of Clinical Oncology, 2005, 23, 1644-1655.	0.8	91

#	Article	IF	CITATIONS
282	Stimulatory Cross-talk between NFAT3 and Estrogen Receptor in Breast Cancer Cells. Journal of Biological Chemistry, 2005, 280, 43188-43197.	1.6	57
283	Transcriptional Activities of Retinoic Acid Receptors. Vitamins and Hormones, 2005, 70, 199-264.	0.7	107
284	Thyroid hormone can increase estrogen-mediated transcription from a consensus estrogen response element in neuroblastoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4890-4895.	3.3	33
285	Functional interactions with Pit-1 reorganize co-repressor complexes in the living cell nucleus. Journal of Cell Science, 2005, 118, 3277-3288.	1.2	14
286	The Nuclear Receptor Corepressors NCoR and SMRT Decrease Peroxisome Proliferator-activated Receptor Î ³ Transcriptional Activity and Repress 3T3-L1 Adipogenesis. Journal of Biological Chemistry, 2005, 280, 13600-13605.	1.6	198
287	Glucocorticoid Receptor Ligand Binding Domain Is Sufficient for the Modulation of Glucocorticoid Induction Properties by Homologous Receptors, Coactivator Transcription Intermediary Factor 2, and Ubc9. Molecular Endocrinology, 2005, 19, 290-311.	3.7	48
288	Molecular insights into endocrine resistance. European Journal of Cancer, Supplement, 2005, 3, 225-236.	2.2	2
289	Role of Activation Function Domain-1, DNA Binding, and Coactivator GRIP1 in the Expression of Partial Agonist Activity of Glucocorticoid Receptorâ ʿʿAntagonist Complexes. Biochemistry, 2005, 44, 3547-3561.	1.2	29
290	Selective hormone-dependent repression of estrogen receptor beta by a p38-activated ErbB2/ErbB3 pathway. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 23-37.	1.2	30
291	Expression of ZER6 in ERα-Positive Breast Cancer. Journal of Surgical Research, 2005, 126, 86-91.	0.8	10
292	Expression of nuclear hormone receptors, their coregulators and type I iodothyronine 5′-deiodinase gene in mammary tissue of nonlactating and postlactating rats. Life Sciences, 2005, 77, 2584-2593.	2.0	12
293	Corepressor subnuclear organization is regulated by estrogen receptor via a mechanism that requires the DNA-binding domain. Molecular and Cellular Endocrinology, 2005, 231, 33-47.	1.6	12
294	A novel pesticide-induced conformational state of the oestrogen receptor ligand-binding domain, detected by conformation-specific peptide binding. FEBS Letters, 2005, 579, 541-548.	1.3	29
295	Biology of Progesterone Receptor Loss in Breast Cancer and Its Implications for Endocrine Therapy. Journal of Clinical Oncology, 2005, 23, 7721-7735.	0.8	430
296	Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocrine-Related Cancer, 2005, 12, 721-747.	1.6	242
297	Endocrinology and hormone therapy in breast cancer: New insight into estrogen receptor-α function and its implication for endocrine therapy resistance in breast cancer. Breast Cancer Research, 2005, 7, 205-11.	2.2	62
298	Endocrinology and hormone therapy in breast cancer: Selective oestrogen receptor modulators and downregulators for breast cancer – have they lost their way?. Breast Cancer Research, 2005, 7, 119-30.	2.2	35
301	Overview of Nomenclature of Nuclear Receptors. Pharmacological Reviews, 2006, 58, 685-704.	7.1	540

#	Article	IF	CITATIONS
302	Anti-hormone Therapy: Principles of Endocrine Therapy of Cancer. Topics in Medicinal Chemistry, 2006, , 19-82.	0.4	2
303	Lessons learnt from structural studies of the oestrogen receptor. Best Practice and Research in Clinical Endocrinology and Metabolism, 2006, 20, 1-14.	2.2	114
304	Direct Association between the CREB-Binding Protein (CBP) and Nuclear Receptor Corepressor (N-CoR)â€. Biochemistry, 2006, 45, 13150-13162.	1.2	16
305	Macrophage/Cancer Cell Interactions Mediate Hormone Resistance by a Nuclear Receptor Derepression Pathway. Cell, 2006, 124, 615-629.	13.5	237
306	NCOR1 mRNA is an independent prognostic factor for breast cancer. Cancer Letters, 2006, 237, 123-129.	3.2	28
307	Structure–function relationship of estrogen receptor α and β: Impact on human health. Molecular Aspects of Medicine, 2006, 27, 299-402.	2.7	445
308	Role of estrogen receptor Î \pm transcriptional coregulators in tamoxifen resistance in breast cancer. Maturitas, 2006, 54, 342-351.	1.0	54
309	Targeted mutation of key residues at the start of helix 12 in the hERα ligand-binding domain identifies the role of hydrogen-bonding and hydrophobic interactions in the activity of the protein. Journal of Steroid Biochemistry and Molecular Biology, 2006, 98, 1-11.	1.2	2
310	Biomolecular markers of breast cancer. Frontiers in Bioscience - Landmark, 2006, 11, 1818.	3.0	57
311	A Tale of two Estrogen Receptors (ERs): How Differential ER-Estrogen Responsive Element Interactions Contribute to Subtype-Specific Transcriptional Responses. Nuclear Receptor Signaling, 2006, 4, nrs.04015.	1.0	8
312	Nuclear Receptor Corepressors and PPARÎ ³ . Nuclear Receptor Signaling, 2006, 4, nrs.04003.	1.0	33
313	Sequential Adjuvant Hormone Therapy in Postmenopausal Breast Cancer: Rationale and Clinical Results. International Journal of Biological Markers, 2006, 21, 111-122.	0.7	0
314	An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila. EMBO Journal, 2006, 25, 3191-3202.	3.5	47
315	Transcription in four dimensions: nuclear receptorâ€directed initiation of gene expression. EMBO Reports, 2006, 7, 161-167.	2.0	169
316	Bidirectional cross talk between ERα and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Research and Treatment, 2006, 96, 131-146.	1.1	133
317	Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. Cancer Cell, 2006, 10, 487-499.	7.7	68
318	Steroid Receptors and Their Role in the Biology and Control of Breast Cancer Growth. Seminars in Oncology, 2006, 33, 631-641.	0.8	66
319	Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells. Journal of Cellular Biochemistry, 2006, 98, 1163-1184.	1.2	43

#	Article	IF	CITATIONS
320	Steroid hormone receptors and coregulators in endocrine-resistant and estrogen-independent breast cancer cells. International Journal of Cancer, 2006, 118, 832-840.	2.3	23
321	PAX8-Peroxisome Proliferator-Activated Receptor γ (PPARγ) Disrupts Normal PAX8 or PPARγ Transcriptional Function and Stimulates Follicular Thyroid Cell Growth. Endocrinology, 2006, 147, 367-376.	1.4	60
322	The Corepressors Silencing Mediator of Retinoid and Thyroid Hormone Receptor and Nuclear Receptor Corepressor Are Involved in Agonist- and Antagonist-Regulated Transcription by Androgen Receptor. Molecular Endocrinology, 2006, 20, 1048-1060.	3.7	118
323	Antagonist-Induced, Activation Function-2-Independent Estrogen Receptor α Phosphorylation. Molecular Endocrinology, 2006, 20, 516-533.	3.7	16
324	The G Protein-Coupled Receptor GPR30 Mediates the Proliferative Effects Induced by 17β-Estradiol and Hydroxytamoxifen in Endometrial Cancer Cells. Molecular Endocrinology, 2006, 20, 631-646.	3.7	333
325	Estrogen Receptors as Therapeutic Targets in Breast Cancer. Current Topics in Medicinal Chemistry, 2006, 6, 195-213.	1.0	29
326	Extranuclear expression of hormone receptors in primary breast cancer. Annals of Oncology, 2006, 17, 1213-1220.	0.6	22
327	ErbB Receptor Signaling and Therapeutic Resistance to Aromatase Inhibitors. Clinical Cancer Research, 2006, 12, 1008s-1012s.	3.2	43
329	Decreased Chicken Ovalbumin Upstream Promoter Transcription Factor II Expression in Tamoxifen-Resistant Breast Cancer Cells. Cancer Research, 2006, 66, 10188-10198.	0.4	34
330	Hormono-sensibilité et hormonorésistance aux anti-estrogènes et inhibiteurs d'aromatase. , 2006, , 371-383.		Ο
331	Estrogen Receptor Pathway: Resistance to Endocrine Therapy and New Therapeutic Approaches. Clinical Cancer Research, 2006, 12, 4790-4793.	3.2	59
332	3-Phosphoinositide-Dependent Protein Kinase-1 Activates the Peroxisome Proliferator-Activated Receptor-Î ³ and Promotes Adipocyte Differentiation. Molecular Endocrinology, 2006, 20, 268-278.	3.7	34
333	Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3100-3105.	3.3	73
334	Genetics and pharmacogenetics of estrogen response. Expert Review of Endocrinology and Metabolism, 2007, 2, 503-516.	1.2	3
335	Cellular Mechanisms of Endocrine Disruption. , 2007, , 135-174.		1
336	Ajulemic Acid, a Synthetic Nonpsychoactive Cannabinoid Acid, Bound to the Ligand Binding Domain of the Human Peroxisome Proliferator-activated Receptor Î ³ . Journal of Biological Chemistry, 2007, 282, 18625-18633.	1.6	58
337	Structural Insights into Corepressor Recognition by Antagonist-bound Estrogen Receptors. Journal of Biological Chemistry, 2007, 282, 10449-10455.	1.6	75
338	Membrane-Initiated Actions of Estrogens in Neuroendocrinology: Emerging Principles. Endocrine Reviews, 2007, 28, 1-19.	8.9	214

#	Article	IF	CITATIONS
339	Response of SMRT (Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptor) and N-CoR (Nuclear Receptor Corepressor) Corepressors to Mitogen-Activated Protein Kinase Kinase Kinase Cascades Is Determined by Alternative mRNA Splicing. Molecular Endocrinology, 2007, 21, 1924-1939.	3.7	34
340	Progressive Loss of Estrogen Receptor α Cofactor Recruitment in Endocrine Resistance. Molecular Endocrinology, 2007, 21, 2615-2626.	3.7	21
341	Coactivators PGC-1β and SRC-1 Interact Functionally to Promote the Agonist Activity of the Selective Estrogen Receptor Modulator Tamoxifen. Journal of Biological Chemistry, 2007, 282, 26897-26907.	1.6	24
342	The Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptor (SMRT) Corepressor Is Required for Full Estrogen Receptor α Transcriptional Activity. Molecular and Cellular Biology, 2007, 27, 5933-5948.	1.1	85
343	Breast Cancer Chemosensitivity. Advances in Experimental Medicine and Biology, 2007, , .	0.8	2
344	Molecularly Targeted Therapeutics for Breast Cancer. BioDrugs, 2007, 21, 215-224.	2.2	15
345	Estrogen Receptors in Resistance to Hormone Therapy. Advances in Experimental Medicine and Biology, 2007, 608, 130-143.	0.8	50
346	Overview of Resistance to Systemic Therapy in Patients with Breast Cancer. Advances in Experimental Medicine and Biology, 2007, 608, 1-22.	0.8	721
348	Estrogen Sensitivity of Target Genes and Expression of Nuclear Receptor Co-Regulators in Rat Prostate after Pre- and Postnatal Exposure to the Ultraviolet Filter 4-Methylbenzylidene Camphor. Environmental Health Perspectives, 2007, 115, 42-50.	2.8	76
349	Molecular Pharmacology of Estrogen and Progesterone Receptors. , 2007, , 17-28.		0
350	Changes in expression of steroid receptors, their downstream target genes and their associated co-regulators during the sequential acquisition of tamoxifen resistance in vitro. International Journal of Oncology, 2007, 31, 557-65.	1.4	23
351	Retinoids in biological control and cancer. Journal of Cellular Biochemistry, 2007, 102, 886-898.	1.2	104
352	Non-steroidal antiandrogens act as AF-1 agonists under conditions of high androgen-receptor expression. Prostate, 2007, 67, 630-637.	1.2	7
353	Androgen receptorâ€mediated repression of novel target genes. Prostate, 2007, 67, 1371-1383.	1.2	49
354	Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene, 2007, 26, 1757-1768.	2.6	74
355	HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene, 2007, 26, 5439-5449.	2.6	188
356	Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nature Reviews Cancer, 2007, 7, 713-722.	12.8	191
357	Estrogen Receptors: How Do They Signal and What Are Their Targets. Physiological Reviews, 2007, 87, 905-931.	13.1	1,489

#	Article	IF	CITATIONS
358	An overview of nuclear receptor coregulators involved in cerebellar development. Cerebellum, 2008, 7, 48-59.	1.4	8
359	Augmentation of estrogen receptor-mediated transcription by steroid and xenobiotic receptor. Endocrine, 2008, 33, 305-316.	1.1	9
360	Deregulation of cofactor of BRCA1 expression in breast cancer cells. Journal of Cellular Biochemistry, 2008, 103, 1798-1807.	1.2	34
361	Electromagnetic fields alter the expression of estrogen receptor cofactors in breast cancer cells. Bioelectromagnetics, 2008, 29, 169-176.	0.9	54
362	Differential expression of genes for transcription factors in theca and granulosa cells following selection of a dominant follicle in cattle. Molecular Reproduction and Development, 2008, 75, 904-914.	1.0	23
363	Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Frontiers in Neuroendocrinology, 2008, 29, 238-257.	2.5	303
364	Minireview: Nuclear Receptors and Breast Cancer. Molecular Endocrinology, 2008, 22, 2215-2228.	3.7	126
365	Estrogen Receptor Pathways and Breast Cancer. , 2008, , 189-206.		2
367	What are comparative studies telling us about the mechanism of ERβ action in the ERE-dependent E2 signaling pathway?. Journal of Steroid Biochemistry and Molecular Biology, 2008, 109, 266-272.	1.2	7
368	Involvement of ZIP/p62 in the regulation of PPARα transcriptional activity by p38-MAPK. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 239-244.	1.2	13
369	Crosstalk between the Estrogen Receptor and the HER Tyrosine Kinase Receptor Family: Molecular Mechanism and Clinical Implications for Endocrine Therapy Resistance. Endocrine Reviews, 2008, 29, 217-233.	8.9	470
370	Interrogating the genome to understand oestrogen-receptor-mediated transcription. Expert Reviews in Molecular Medicine, 2008, 10, e10.	1.6	9
373	Regulation of Bone Cell Function by Estrogens. , 2008, , 383-423.		1
374	Inhibition of GATA2-dependent transactivation of the TSHβ gene by ligand-bound estrogen receptor α. Journal of Endocrinology, 2008, 199, 113-125.	1.2	15
375	Nuclear Receptor Coregulators Differentially Modulate Induction and Glucocorticoid Receptor-Mediated Repression of the Corticotropin-Releasing Hormone Gene. Endocrinology, 2008, 149, 725-732.	1.4	68
376	Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. Journal of Cell Biology, 2008, 183, 49-61.	2.3	56
377	Changes of Coregulators, MAP Kinase Activity and p27/kip1 with Estrogen or Antiestrogen Treatment in Breast Cancer Cell Line. Journal of Breast Cancer, 2008, 11, 56.	0.8	0
378	Genomics of Signaling Crosstalk of Estrogen Receptor $\hat{I}\pm$ in Breast Cancer Cells. PLoS ONE, 2008, 3, e1859.	1.1	26

	CITATIO	CITATION REPORT	
#	Article	IF	Citations
379	PPARÎ ³ and PPARδas Modulators of Neoplasia and Cell Fate. PPAR Research, 2008, 2008, 1-8.	1.1	19
380	Progesterone Action in Human Tissues: Regulation by Progesterone Receptor (PR) Isoform Expression, Nuclear Positioning and Coregulator Expression. Nuclear Receptor Signaling, 2009, 7, nrs.07009.	1.0	139
381	Autophagy facilitates the progression of ERα-positive breast cancer cells to antiestrogen resistance. Autophagy, 2009, 5, 400-403.	4.3	121
382	Repression of the Estrogen Receptor-α Transcriptional Activity by the Rho/Megakaryoblastic Leukemia 1 Signaling Pathway. Journal of Biological Chemistry, 2009, 284, 33729-33739.	1.6	18
383	G Protein Pathway Suppressor 2 (GPS2) Is a Transcriptional Corepressor Important for Estrogen Receptor α-mediated Transcriptional Regulation. Journal of Biological Chemistry, 2009, 284, 36395-36404	l. 1.6	43
384	Gonadotropin-Releasing Hormone-Mediated Phosphorylation of Estrogen Receptor-α Contributes to fosB Expression in Mouse Gonadotrophs. Endocrinology, 2009, 150, 4583-4593.	1.4	13
385	Potential of Selective Estrogen Receptor Modulators as Treatments and Preventives of Breast Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 481-499.	0.9	111
386	The potential role of estrogen receptors and the SRC family as targets for the treatment of breast cancer. Expert Opinion on Therapeutic Targets, 2009, 13, 665-674.	1.5	29
388	Corepressors, nuclear receptors, and epigenetic factors on DNA: A tail of repression. Psychoneuroendocrinology, 2009, 34, S39-S47.	1.3	20
389	Neuroactive steroids: An update of their roles in central and peripheral nervous system. Psychoneuroendocrinology, 2009, 34, S1-S8.	1.3	44
390	Expression of a phosphorylated p130 ^{Cas} substrate domain attenuates the phosphatidylinositol 3â€kinase/Akt survival pathway in tamoxifen resistant breast cancer cells. Journal of Cellular Biochemistry, 2009, 107, 364-375.	1.2	20
391	Interactions between the estrogen receptor, its cofactors and microRNAs in breast cancer. Breast Cancer Research and Treatment, 2009, 116, 425-432.	1.1	23
392	New insights into the functions and regulation of the transcriptional corepressors SMRT and N-CoR. Cell Division, 2009, 4, 7.	1.1	37
393	Expression of estrogen receptor co-regulators SRC-1, RIP140 and NCoR and their interaction with estrogen receptor in rat uterus, under the influence of ormeloxifene. Journal of Steroid Biochemistry and Molecular Biology, 2009, 116, 93-101.	1.2	10
394	Transcriptional Coactivators and Corepressors in Endocrine Response and Resistance in Breast Cancer. , 2009, , 27-38.		0
395	The Dark Side of Antihormonal Action in Breast Cancer. , 2009, , 63-84.		1
396	Endocrine Resistance in Breast Cancer- Where Are We NowWith Intelligent Combination Therapies?. , 2009, , 175-194.		0
397	The Epigenetics of Sex Differences in the Brain: Figure 1 Journal of Neuroscience, 2009, 29, 12815-12823	. 1.7	389

#	Article	IF	CITATIONS
398	Gene expression changes during the development of estrogen-independent and antiestrogen-resistant growth in breast cancer cell culture models. Anti-Cancer Drugs, 2009, 20, 51-58.	0.7	11
399	Overcoming Endocrine Resistance in Breast Cancer. Current Cancer Drug Targets, 2010, 10, 519-528.	0.8	7
400	Mechanisms of resistance to hormonal treatment in breast cancer. Clinical and Translational Oncology, 2010, 12, 246-252.	1.2	13
401	Prolactin and estradiol utilize distinct mechanisms to increase serine-118 phosphorylation and decrease levels of estrogen receptor \hat{I}_{\pm} in T47D breast cancer cells. Breast Cancer Research and Treatment, 2010, 120, 369-377.	1.1	15
402	E-cadherin mediates the aggregation of breast cancer cells induced by tamoxifen and epidermal growth factor. Breast Cancer Research and Treatment, 2010, 121, 79-89.	1.1	9
403	Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance. Breast Cancer Research and Treatment, 2010, 122, 395-407.	1.1	46
404	Transcriptomic analysis of tubular carcinomas of the breast reveals similarities and differences with molecular subtypeâ€matched ductal and lobular carcinomas. Journal of Pathology, 2010, 222, 64-75.	2.1	33
405	Hakai acts as a coregulator of estrogen receptor alpha in breast cancer cells. Cancer Science, 2010, 101, 2019-2025.	1.7	22
406	Modulation of Soluble Receptor Signaling by Coregulators. , 2010, , 183-206.		0
407	Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease. Journal of Inflammation Research, 2010, 3, 127.	1.6	5
408	Estrogen Receptors Recruit SMRT and N-CoR Corepressors through Newly Recognized Contacts between the Corepressor N Terminus and the Receptor DNA Binding Domain. Molecular and Cellular Biology, 2010, 30, 1434-1445.	1.1	37
409	Proteasomal degradation of retinoid X receptor α reprograms transcriptional activity of PPARγ in obese mice and humans. Journal of Clinical Investigation, 2010, 120, 1454-1468.	3.9	56
410	Estrogen Receptor Regulates E2F1 Expression to Mediate Tamoxifen Resistance. Molecular Cancer Research, 2010, 8, 343-352.	1.5	41
411	The Nuclear Receptor Corepressor Has Organizational Effects within the Developing Amygdala on Juvenile Social Play and Anxiety-Like Behavior. Endocrinology, 2010, 151, 1212-1220.	1.4	50
412	Cooperative Activation of Cyclin D1 and Progesterone Receptor Gene Expression by the SRC-3 Coactivator and SMRT Corepressor. Molecular Endocrinology, 2010, 24, 1187-1202.	3.7	30
413	Melatonin inhibits mitogenic cross-talk between retinoic acid-related orphan receptor alpha (RORα) and ERα in MCF-7 human breast cancer cells. Steroids, 2010, 75, 944-951.	0.8	25
414	Application of Aptamers in Food Safety. Chinese Journal of Analytical Chemistry, 2011, 39, 925-933.	0.9	13
415	Signalling pathways involved in endocrine resistance in breast cancer and associations with epithelial to mesenchymal transition (Review). International Journal of Oncology, 2011, 38, 1197-217.	1.4	59

#	Article	IF	CITATIONS
416	Antiestrogens and Their Therapeutic Applications in Breast Cancer and Other Diseases. Annual Review of Medicine, 2011, 62, 217-232.	5.0	74
417	Epigenetic organization of brain sex differences and juvenile social play behavior. Hormones and Behavior, 2011, 59, 358-363.	1.0	37
418	Glucocorticoid-independent Repression of Tumor Necrosis Factor (TNF) α-stimulated Interleukin (IL)-6 Expression by the Glucocorticoid Receptor. Journal of Biological Chemistry, 2011, 286, 19297-19310.	1.6	43
419	Thyroid hormone receptor \hat{l}^21 domains responsible for the antagonism with the ras oncogene: role of corepressors. Oncogene, 2011, 30, 854-864.	2.6	23
420	HEXIM1 is a critical determinant of the response to tamoxifen. Oncogene, 2011, 30, 3563-3569.	2.6	22
421	FHL1 interacts with oestrogen receptors and regulates breast cancer cell growth. Journal of Cellular and Molecular Medicine, 2011, 15, 72-85.	1.6	52
422	Biological mechanisms and clinical implications of endocrine resistance in breast cancer. Breast, 2011, 20, S42-S49.	0.9	82
423	Mechanisms of Endocrine Resistance in Breast Cancer. Annual Review of Medicine, 2011, 62, 233-247.	5.0	963
424	Transient over-expression of estrogen receptor-α in breast cancer cells promotes cell survival and estrogen-independent growth. Breast Cancer Research and Treatment, 2011, 128, 357-368.	1.1	23
425	Acquisition of Sexual Receptivity: Roles of Chromatin Acetylation, Estrogen Receptor-α, and Ovarian Hormones. Endocrinology, 2011, 152, 3172-3181.	1.4	30
426	Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics, 2011, 6, 857-861.	1.3	56
427	Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish. Endocrinology, 2011, 152, 2690-2703.	1.4	79
428	Epigenetic modulation: a novel therapeutic target for overcoming hormonal therapy resistance. Epigenomics, 2011, 3, 451-470.	1.0	32
429	Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis. Journal of Cell Biology, 2011, 192, 55-67.	2.3	40
430	Sexually Selected Traits: A Fundamental Framework for Studies on Behavioral Epigenetics. ILAR Journal, 2012, 53, 253-269.	1.8	27
431	Role of SUMOylation in Full Antiestrogenicity. Molecular and Cellular Biology, 2012, 32, 3823-3837.	1.1	23
432	Targeting of the adaptor protein Tab2 as a novel approach to revert tamoxifen resistance in breast cancer cells. Oncogene, 2012, 31, 4353-4361.	2.6	26
433	Binding of the N-terminal Region of Coactivator TIF2 to the Intrinsically Disordered AF1 Domain of the Glucocorticoid Receptor Is Accompanied by Conformational Reorganizations. Journal of Biological Chemistry, 2012, 287, 44546-44560.	1.6	46

#	Article	IF	CITATIONS
435	Estradiol receptors in breast cancer cells: Associated co-factors as targets for new therapeutic approaches. Steroids, 2012, 77, 1249-1261.	0.8	27
437	Nuclear hormone receptors in podocytes. Cell and Bioscience, 2012, 2, 33.	2.1	13
438	αNAC interacts with histone deacetylase corepressors to control Myogenin and Osteocalcin gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 1208-1216.	0.9	9
439	The ligand-mediated nuclear mobility and interaction with estrogen-responsive elements of estrogen receptors are subtype specific. Journal of Molecular Endocrinology, 2012, 49, 249-266.	1.1	11
440	Tamoxifen-Induced Epigenetic Silencing of Oestrogen-Regulated Genes in Anti-Hormone Resistant Breast Cancer. PLoS ONE, 2012, 7, e40466.	1.1	54
441	Estrogenic Regulation of the GnRH Neuron. Frontiers in Endocrinology, 2012, 3, 52.	1.5	70
442	Promise and failure of targeted therapy in breast cancer. Frontiers in Bioscience - Scholar, 2012, S4, 356.	0.8	2
443	Tamoxifen Resistance in Breast Cancer. Biomolecules and Therapeutics, 2012, 20, 256-267.	1.1	213
444	Steroid receptor coactivators 1, 2, and 3: Critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Molecular and Cellular Endocrinology, 2012, 348, 430-439.	1.6	141
445	ErbB family receptor inhibitors as therapeutic agents in breast cancer: Current status and future clinical perspective. Medicinal Research Reviews, 2012, 32, 166-215.	5.0	72
446	Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor \hat{I}_{\pm} homo-dimerization. Biochemical and Biophysical Research Communications, 2013, 430, 400-405.	1.0	8
447	Mechanisms of Resistance to Endocrine Therapy in Breast Cancer: Focus on Signaling Pathways, miRNAs and Genetically Based Resistance. International Journal of Molecular Sciences, 2013, 14, 108-145.	1.8	203
448	Negative regulation of ERα by a novel protein CAC1 through association with histone demethylase LSD1. FEBS Letters, 2013, 587, 17-22.	1.3	18
449	Derailed Estrogen Signaling and Breast Cancer: An Authentic Couple. Endocrine Reviews, 2013, 34, 1-32.	8.9	104
450	Dithiiranylmethyloxy azaxanthone shows potent anti-tumor activity via suppression of HER2 expression and HER2-mediated signals in HER2-overexpressing breast cancer cells. European Journal of Pharmaceutical Sciences, 2013, 50, 181-190.	1.9	12
451	Sex Hormone Receptors in Breast Cancer. Vitamins and Hormones, 2013, 93, 99-133.	0.7	10
452	Modulation of Estrogen Receptor Alpha Activity and Expression During Breast Cancer Progression. Vitamins and Hormones, 2013, 93, 135-160.	0.7	24
453	SpliceArray Profiling of Breast Cancer Reveals a Novel Variant of <i>NCOR2/SMRT</i> That Is Associated with Tamoxifen Resistance and Control of <i>ERα</i> Transcriptional Activity. Cancer Research, 2013, 73, 246-255.	0.4	29

щ		IF	CITATION
# 454	KDM4B is a Master Regulator of the Estrogen Receptor Signalling Cascade. Nucleic Acids Research,	6.5	66
455	Class I Lysine Deacetylases Facilitate Glucocorticoid-induced Transcription. Journal of Biological Chemistry, 2013, 288, 28900-28912.	1.6	21
456	COREGULATORS AND THEIR ROLE IN SELECTIVE ESTROGEN RECEPTOR MODULATOR ACTION. , 2013, , 153-173.		0
457	The normal human ovary part II: how steroid hormones work. , 0, , 37-64.		2
458	Selective estrogen receptor modulators: tissue specificity and clinical utility. Clinical Interventions in Aging, 2014, 9, 1437.	1.3	157
459	Bisphenol a regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor. Hippocampus, 2014, 24, 1570-1580.	0.9	48
460	Minireview: The Versatile Roles of Lysine Deacetylases in Steroid Receptor Signaling. Molecular Endocrinology, 2014, 28, 607-621.	3.7	5
462	Emergence of Constitutively Active Estrogen Receptor-α Mutations in Pretreated Advanced Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2014, 20, 1757-1767.	3.2	529
463	Tristetraprolin Represses Estrogen Receptor α Transactivation in Breast Cancer Cells. Journal of Biological Chemistry, 2014, 289, 15554-15565.	1.6	18
464	Low levels of 3,3′-diindolylmethane activate estrogen receptor α and induce proliferation of breast cancer cells in the absence of estradiol. BMC Cancer, 2014, 14, 524.	1.1	36
465	Nuclear receptor modulation – Role of coregulators in selective estrogen receptor modulator (SERM) actions. Steroids, 2014, 90, 39-43.	0.8	46
466	Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha. Journal of Molecular Modeling, 2014, 20, 2338.	0.8	8
467	Sorafenib and nilotinib resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen receptor α. International Journal of Oncology, 2014, 45, 2167-2175.	1.4	16
468	Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncology Reports, 2014, 32, 3-15.	1.2	135
469	MDC1 Enhances Estrogen Receptor-mediated Transactivation and Contributes to Breast Cancer Suppression. International Journal of Biological Sciences, 2015, 11, 992-1005.	2.6	32
470	Optimizing the Use of Neoadjuvant Endocrine Therapy. Current Oncology Reports, 2015, 17, 33.	1.8	2
471	SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle, 2015, 14, 3734-3747.	1.3	25
472	Estrogen-related Receptor β Reduces the Subnuclear Mobility of Estrogen Receptor α and Suppresses Estrogen-dependent Cellular Function. Journal of Biological Chemistry, 2015, 290, 12332-12345.	1.6	37

#	Article	IF	CITATIONS
473	The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Research, 2015, 43, 196-207.	6.5	86
474	The changing role of ER in endocrine resistance. Breast, 2015, 24, S60-S66.	0.9	97
475	Roles for miRNAs in endocrine resistance in breast cancer. Endocrine-Related Cancer, 2015, 22, R279-R300.	1.6	63
476	Perinatal Neurohormonal Programming and Endocrine Disruption. , 2016, , 63-87.		1
477	PPAR <i>δ</i> as a Metabolic Initiator of Mammary Neoplasia and Immune Tolerance. PPAR Research, 2016, 2016, 1-7.	1.1	6
478	Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer. International Journal of Molecular Sciences, 2016, 17, 1434.	1.8	35
479	Nuclear and extranuclear-initiated estrogen receptor signaling crosstalk and endocrine resistance in breast cancer. Steroids, 2016, 114, 41-47.	0.8	29
480	LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Research, 2016, 44, 8655-8670.	6.5	62
481	Overcoming Resistance to Endocrine Therapy in Breast Cancer: New Approaches to a Nagging Problem. Medical Principles and Practice, 2016, 25, 28-40.	1.1	28
483	Neuroepigenetics of Sexual Differentiation of Brain and Behavior. Epigenetics and Human Health, 2016, , 209-232.	0.2	Ο
484	Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer. Molecular Endocrinology, 2016, 30, 965-976.	3.7	48
485	Discovery at the interface: Toward novel anti-proliferative agents targeting human estrogen receptor/S100 interactions. Cell Cycle, 2016, 15, 2806-2818.	1.3	5
486	COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR. Nature Communications, 2016, 7, 12044.	5.8	56
487	Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression. Clinical Cancer Research, 2016, 22, 3937-3949.	3.2	24
488	Rhodiola crenulata induces an early estrogenic response and reduces proliferation and tumorsphere formation over time in MCF7 breast cancer cells. Phytomedicine, 2016, 23, 87-94.	2.3	31
489	PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors. Cellular Oncology (Dordrecht), 2016, 39, 129-137.	2.1	16
490	FOXO factors and breast cancer: outfoxing endocrine resistance. Endocrine-Related Cancer, 2016, 23, R113-R130.	1.6	39
491	Estrogen and Progesterone Action. , 2016, , 2207-2215.e3.		0

#	Article	IF	CITATIONS
493	Characterisation of the transcriptome of male and female wild-type guppy brains with RNA-Seq and consequences of exposure to the pharmaceutical pollutant, 17α-ethinyl estradiol. Aquatic Toxicology, 2017, 186, 28-39.	1.9	15
494	Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis, 2017, 6, e299-e299.	2.1	67
495	Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiological Reviews, 2017, 97, 1045-1087.	13.1	283
496	Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis. Advances in Experimental Medicine and Biology, 2017, 1043, 401-426.	0.8	12
497	Antiestrogens: structure-activity relationships and use in breast cancer treatment. Journal of Molecular Endocrinology, 2017, 58, R15-R31.	1.1	66
498	Naringenin Inhibits Proliferation and Survival of Tamoxifen―Resistant Breast Cancer Cells. , 0, , .		4
499	Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. , 2018, 186, 1-24.		297
500	Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2–ERα–GREB1 Transcriptional Axis. Cancer Research, 2018, 78, 671-684.	0.4	80
501	Modulation of Soluble Receptor Signaling by Coregulators. , 2018, , 55-75.		0
502	Identification and Molecular Characterization of HOS15-interacting Proteins in Arabidopsis thaliana. Journal of Plant Biology, 2018, 61, 336-345.	0.9	22
503	Exploring Protein–Protein Interaction in the Study of Hormone-Dependent Cancers. International Journal of Molecular Sciences, 2018, 19, 3173.	1.8	19
504	Chemotherapeutic resistance: a nano-mechanical point of view. Biological Chemistry, 2018, 399, 1433-1446.	1.2	18
505	PPARÎ ³ Expression Is Diminished in Macrophages of Recurrent Miscarriage Placentas. International Journal of Molecular Sciences, 2018, 19, 1872.	1.8	28
506	KRAB-containing zinc finger protein ZNF496 inhibits breast cancer cell proliferation by selectively repressing ERα activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 841-853.	0.9	9
507	Nuclear receptors: recent drug discovery for cancer therapies. Endocrine Reviews, 2019, 40, 1207-1249.	8.9	65
508	The Histone Demethylase Enzymes KDM3A and KDM4B Co-Operatively Regulate Chromatin Transactions of the Estrogen Receptor in Breast Cancer. Cancers, 2019, 11, 1122.	1.7	14
509	Flow cytometry-based FRET identifies binding intensities in PPARÎ ³ 1 protein-protein interactions in living cells. Theranostics, 2019, 9, 5444-5463.	4.6	6
510	The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells, 2019, 8, 1280.	1.8	28

		CITATION REPORT		
#	Article		IF	CITATIONS
511	Pathways to Endocrine Therapy Resistance in Breast Cancer. Frontiers in Endocrinology	, 2019, 10, 573.	1.5	100
512	<i>Hox</i> > genes: Downstream "effectors―of retinoic acid signaling in vertebrate Genesis, 2019, 57, e23306.	embryogenesis.	0.8	45
513	Nuclear Receptors Are Differentially Expressed and Activated in KAIMRC1 Compared to MDA-MB231 Breast Cancer Cells. Molecules, 2019, 24, 2028.	MCF7 and	1.7	7
514	Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Europ Medicinal Chemistry, 2019, 177, 116-143.	bean Journal of	2.6	82
515	Estrogens and breast cancer: Mechanisms involved in obesity-related development, gro progression. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 161-170	wth and 0.	1.2	108
516	SNP mutationâ€related genes in breast cancer for monitoring and prognosis of patient on the TCGA database. Cancer Medicine, 2019, 8, 2303-2312.	s: A study based	1.3	31
517	Toxicity, cytotoxicity and biological activities of seeds of <i>Carapa procera</i> (DC), a International Journal of Biological and Chemical Sciences, 2019, 13, 49.	native oil tree.	0.1	2
518	An occult urothelial carcinoma with wide multiorgan metastases and its genetic alterat Medicine (United States), 2019, 98, e15245.	ion profiling.	0.4	4
519	Estrogen Receptor and Breast Cancer. Cancer Drug Discovery and Development, 2019,	, .	0.2	4
520	Molecular Mechanisms of Endocrine Resistance. Cancer Drug Discovery and Developme 265-307.	ent, 2019, ,	0.2	5
521	GPER and ERα mediate estradiol enhancement of mitochondrial function in inflamed ac through a PKA dependent mechanism. Journal of Steroid Biochemistry and Molecular Bi 185, 256-267.	lipocytes ology, 2019,	1.2	18
522	Selective estrogen receptor modulators (SERMS): keys to understanding their function. 2020, 27, 1171-1176.	. Menopause,	0.8	15
523	Selective Estrogen Receptor Degraders (SERDs): A Promising Strategy for Estrogen Rec Endocrine-Resistant Breast Cancer. Journal of Medicinal Chemistry, 2020, 63, 15094-15	eptor Positive 114.	2.9	52
524	IFI27/ISG12 Downregulates Estrogen Receptor α Transactivation by Facilitating Its Inte CRM1/XPO1 in Breast Cancer Cells. Frontiers in Endocrinology, 2020, 11, 568375.	raction With	1.5	15
525	Targeting mutated estrogen receptor alpha: Rediscovering old and identifying new ther strategies in metastatic breast cancer treatment. Current Opinion in Endocrine and Me Research, 2020, 15, 43-48.	apeutic tabolic	0.6	3
526	Pleiotropic Mechanisms Drive Endocrine Resistance in the Three-Dimensional Bone Mici Cancer Research, 2021, 81, 371-383.	roenvironment.	0.4	10
527	<i>In-silico</i> identification of potential inhibitors targeting the DNA binding domain or receptor α for the treatment of hormone therapy-resistant breast cancer. Journal of Bio Structure and Dynamics, 2022, 40, 5203-5210.	of estrogen omolecular	2.0	4
528	Overcoming oncogene addiction in breast and prostate cancers: a comparative mechar Endocrine-Related Cancer, 2021, 28, R31-R46.	iistic overview.	1.6	3

#	Article	IF	CITATIONS
529	Molecular Mechanisms of Endocrine Resistance in Estrogen-Receptor-Positive Breast Cancer. Frontiers in Endocrinology, 2021, 12, 599586.	1.5	44
530	Tristetraprolin: A cytosolic regulator of mRNA turnover moonlighting as transcriptional corepressor of gene expression. Molecular Genetics and Metabolism, 2021, 133, 137-147.	0.5	4
531	Nuclear translocation of MRTFA in MCF7 breast cancer cells shifts ERα nuclear/genomic to extra-nuclear/non genomic actions. Molecular and Cellular Endocrinology, 2021, 530, 111282.	1.6	7
532	Hormone Resistance. Cancer Treatment and Research, 2009, 147, 1-33.	0.2	2
533	Dynamics of Estrogen Receptor-mediated Transcriptional Activation of Responsive Genes In Vivo: Apprehending Transcription in Four Dimensions. Advances in Experimental Medicine and Biology, 2008, 617, 129-138.	0.8	18
534	Selective Estrogen Modulators as an Anticancer Tool:. Advances in Experimental Medicine and Biology, 2008, 630, 206-219.	0.8	48
536	Novel Approaches to Controlling Transcription. , 2002, 24, 137-178.		4
537	Estrogen Action and Breast Cancer. , 2004, , 317-358.		1
538	Clinical Approaches to Discovering and Testing New Breast Cancer Prevention Drugs. , 2005, , 213-237.		5
539	Corepressors and Nuclear Hormone Receptor Function. Current Topics in Microbiology and Immunology, 2001, 254, 101-116.	0.7	72
540	Regulation of SMRT and N-CoR Corepressor Function. Current Topics in Microbiology and Immunology, 2001, 254, 117-136.	0.7	41
541	Regulation of NF-Ð [®] B by Glucocorticoids. , 2003, , 221-239.		1
542	Regulation of Bone Cell Function by Estrogens. , 2001, , 305-337.		6
544	A Hox gene regulatory network for hindbrain segmentation. Current Topics in Developmental Biology, 2020, 139, 169-203.	1.0	42
545	An overview of nuclear receptor coregulators involved in cerebellar development. Cerebellum, 2008, 7, 1-12.	1.4	2
546	Troglitazone Inhibits Mitogenic Signaling by Insulin in Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2000, 35, 749-757.	0.8	33
547	itamin D and regulation of gene expression. Current Opinion in Clinical Nutrition and Metabolic Care, 1998, 1, 347-354.	1.3	47
548	Molecular determinants of nuclear receptor-corepressor interaction. Genes and Development, 1999, 13, 3198-3208.	2.7	455

#	Article	IF	CITATIONS
549	The coregulator exchange in transcriptional functions of nuclear receptors. Genes and Development, 2000, 14, 121-141.	2.7	1,810
550	The Mad Protein Family Links Transcriptional Repression to Cell Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63, 423-434.	2.0	49
551	Estrogen Signaling: A Subtle Balance Between ERÂ and ERÂ. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 281-292.	3.4	726
552	Coregulators in Nuclear Estrogen Receptor Action: From Concept to Therapeutic Targeting. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 343-357.	3.4	273
553	The Fight Against Tamoxifen Resistance in Breast Cancer Therapy: A New Target in the Battle?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 13-16.	3.4	2
554	The Importance of the Estrogen Receptor in Breast Cancer. , 2002, , 149-186.		9
555	Differential Gene Regulation by PPARÂ Agonist and Constitutively Active PPARÂ2. Molecular Endocrinology, 2002, 16, 1040-1048.	3.7	41
556	Prolactin Modulation of Immune and Inflammatory Responses. Endocrine Reviews, 2002, 57, 435-455.	7.1	177
557	Biological roles and mechanistic actions of co-repressor complexes. Journal of Cell Science, 2002, 115, 689-698.	1.2	278
558	The ETS Family Member TEL Binds to Nuclear Receptors RAR and RXR and Represses Gene Activation. PLoS ONE, 2011, 6, e23620.	1.1	6
559	Hormone Therapy for Metastatic Breast Cancer. Korean Journal of Medicine, 2017, 92, 251-258.	0.1	1
560	The role of Siah2 in tumorigenesis and cancer therapy. Gene, 2022, 809, 146028.	1.0	12
561	Thyroid Hormone Receptor Family Members. , 2000, , 135-151.		0
562	Applications of developmental biology to medicine and animal agriculture. , 2000, 54, 213-256.		0
564	Coactivators and Corepressors. , 2001, , 389-408.		0
565	The Androgen Receptor. , 2001, , 137-177.		1
567	ER. , 2002, , 308-335.		0
568	Androgen Receptor Interacting Proteins: Co-Activators And Co-Repressors. , 2002, , 91-138.		0

ARTICLE IF CITATIONS # Peroxisome proliferator-activated receptors: Lipid binding proteins controling gene expression. 569 21 2002, , 131-138. 570 SERM Modulation of Gene Expression., 2002, , 57-76. Transcriptional Control of the Development and Function of the Hypothalamic-Pituitary Axis., 2002,, 571 0 3-39. The Breast Cancer Phenotype and Endocrine Response., 2002, , 301-342. Corepressors in Mediating Repression by Nuclear Receptors., 2003, , 29-33. 573 0 New Molecular Therapeutic Interventions: The Case of Breast Cancers., 2010, , 571-611. 579 Estrogen and Progesterone Action., 2010, , 2318-2326. 1 Structural Insights into Estrogen Receptors and Antiestrogen Therapies. Cancer Drug Discovery and 0.2 580 Development, 2019, , 241-263. Contribution of HDAC3 to transcriptional repression by the human papillomavirus 31 E8^E2 protein. 581 1.3 6 Journal of General Virology, 2020, 101, 751-759. Challenges and Opportunities of Genomic Approaches in Therapeutics Development. Methods in 0.4 Molecular Biology, 2021, 2194, 107-126. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically 583 1.6 6 modified animals and pharmacological tools. Molecular and Cellular Endocrinology, 2022, 539, 111467. Mechanisms of Resistance to Hormone Therapy., 2006, , 805-821. Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. 588 2.4 14 Cellular and Molecular Life Sciences, 2014, 71, 1549. Peroxisome proliferator-activated receptors: lipid binding proteins controling gene expression. 589 1.4 Molecular and Cellular Biochemistry, 2002, 239, 131-8. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers, 2022, 14, 2402. 592 1.7 4 Functions of Papillomavirus E8^{E2} Proteins in Tissue Culture and In Vivo. Viruses, 2022, 14, 953. Exploring new pathways in endocrine-resistant breast cancer. Exploration of Targeted Anti-tumor 594 0.5 2 Therapy, 0, , 337-361. Effects of iron modulation on mesenchymal stem cell-induced drug resistance in estrogen 595 19 receptor-positive breast cancer. Oncogene, 2022, 41, 3705-3718.

#	Article	IF	CITATIONS
596	Transcriptional Repression of Aerobic Glycolysis by OVOL2 in Breast Cancer. Advanced Science, 2022, 9,	5.6	6
597	Epigenetic factors in breast cancer therapy. Frontiers in Genetics, 0, 13, .	1.1	1
598	The AF-2 cofactor binding region is key for the selective SUMOylation of estrogen receptor alpha by antiestrogens. Journal of Biological Chemistry, 2023, 299, 102757.	1.6	4
599	Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nature Communications, 2022, 13, .	5.8	5
600	Acetylation of nuclear receptors in health and disease: an update. FEBS Journal, 2024, 291, 217-236.	2.2	5
601	Diabetes Mellitus and iPSC-Based Therapy. , 2023, , 225-246.		0