Injury to murine airway epithelial cells by pollen enzyn

Thorax 53, 368-371 DOI: 10.1136/thx.53.5.368

Citation Report

#	Article	IF	CITATIONS
1	The Biological Function of Allergens: Relevant for the Induction of Allergic Diseases?. International Archives of Allergy and Immunology, 1998, 117, 215-219.	2.1	38
2	Substrate preference profiles of proteases released by allergenic pollens. Clinical and Experimental Allergy, 2000, 30, 571-576.	2.9	43
3	Oncostatin M synergises with house dust mite proteases to induce the production of PGE ₂ from cultured lung epithelial cells. British Journal of Pharmacology, 2000, 131, 465-472.	5.4	19
4	Protease-activated Receptor-2 (PAR2) in the Airways. Pulmonary Pharmacology and Therapeutics, 2001, 14, 183-191.	2.6	110
5	Seasonal differences of peak expiratory flow rate variability and mediators of allergic inflammation in non-atopic adolescents. Pediatric Allergy and Immunology, 2001, 12, 238-246.	2.6	8
6	Role of protease-activated receptors in airway function: a target for therapeutic intervention?. , 2002, 95, 239-257.		79
7	Interaction of environmental allergens with airway epithelium as a key component of asthma. Current Allergy and Asthma Reports, 2003, 3, 101-108.	5.3	26
8	Monitoring of seasonal variability in bronchial hyper-responsiveness and sputum cell counts in non-asthmatic subjects with rhinitis and effect of specific immunotherapy. Clinical and Experimental Allergy, 2003, 33, 873-881.	2.9	24
9	Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates. Respiratory Research, 2003, 4, 10.	3.6	38
10	Enzymes as occupational and environmental respiratory sensitisers. International Archives of Occupational and Environmental Health, 2005, 78, 279-286.	2.3	32
11	Potential roles in rhinitis for protease and other enzymatic activities of allergens. Current Allergy and Asthma Reports, 2005, 5, 221-226.	5.3	19
12	Comparative Proteomics of Nasal Fluid in Seasonal Allergic Rhinitis. Journal of Proteome Research, 2006, 5, 330-338.	3.7	98
13	Purification of a novel aminopeptidase from theÂpollen of Parietaria judaica that alters epithelial integrity and degrades neuropeptides. Journal of Allergy and Clinical Immunology, 2006, 118, 878-884.	2.9	22
14	Doença alérgica polÃnica: polens alergógenos e seus principais alérgenos. Revista Brasileira De Otorrinolaringologia, 2006, 72, 562-567.	0.2	14
15	Innate Immune Responses to Environmental Allergens. Clinical Reviews in Allergy and Immunology, 2006, 30, 129-140.	6.5	37
16	Airway remodelling in asthma: Current understanding and implications for future therapies. , 2006, 112, 474-488.		82
17	Pollen allergic disease: pollens and its major allergens. Brazilian Journal of Otorhinolaryngology, 2006, 72, 562-567.	1.0	39
18	The role of epithelial injury and repair in the origins of asthma. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 63-68.	2.3	83

#	Article	IF	CITATIONS
19	Allergy in marathon runners and effect of Lactobacillus GG supplementation on allergic inflammatory markers. Respiratory Medicine, 2007, 101, 1123-1131.	2.9	45
20	Pollen proteolytic enzymes degrade tight junctions. Respirology, 2007, 12, 834-842.	2.3	164
21	Inflammatory effect of environmental proteases on airway mucosa. Current Allergy and Asthma Reports, 2007, 7, 368-374.	5.3	28
22	Airway wall remodeling in asthma: From the epithelial layer to the adventitia. Current Allergy and Asthma Reports, 2008, 8, 357-366.	5.3	63
23	Characterization of Proteases, Proteins, and Eicosanoid-Like Substances in Soluble Extracts from Allergenic Pollen Grains. International Archives of Allergy and Immunology, 2008, 147, 276-288.	2.1	43
24	Mechanisms in allergic airway inflammation – lessons from studies in the mouse. Expert Reviews in Molecular Medicine, 2008, 10, e15.	3.9	35
25	Protease Activity of Allergenic Pollen of Cedar, Cypress, Juniper, Birch and Ragweed. Allergology International, 2008, 57, 83-91.	3.3	68
26	Should we Target Allergen Protease Activity to Decrease the Burden of Allergic Airway Inflammation?. Inflammation and Allergy: Drug Targets, 2008, 7, 288-295.	1.8	12
27	Timothy grass pollen major allergen Phl p 1 activates respiratory epithelial cells by a nonâ€protease mechanism. Clinical and Experimental Allergy, 2009, 39, 1358-1369.	2.9	32
28	Airway Remodeling. , 2009, , 83-97.		2
29	Bibliographic review on the potential of microorganisms, microbial products and enzymes to induce respiratory sensitization. EFSA Supporting Publications, 2010, 7, .	0.7	39
30	Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 1088-1098.	5.7	115
31	Comparison of Timothy grass pollen extract―and single major allergenâ€induced gene expression and mediator release in airway epithelial cells: a metaâ€analysis. Clinical and Experimental Allergy, 2012, 42, 1479-1490.	2.9	8
32	Purified Timothy grass pollen major allergen Phl p 1 may contribute to the modulation of allergic responses through a pleiotropic induction of cytokines and chemokines from airway epithelial cells. Clinical and Experimental Immunology, 2012, 167, 413-421.	2.6	14
33	The on-line detection of biological particle emissions from selected agricultural materials using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique. Atmospheric Environment, 2013, 80, 415-425.	4.1	30
34	Streamer discharge reduces pollen-induced inflammatory responses and injury in human airway epithelial cells. Experimental Biology and Medicine, 2013, 238, 187-192.	2.4	1
35	Eosinophilic Airway Inflammation and Airway Hyperresponsiveness According to Aeroallergen Sensitization Pattern in Patients With Lower Airway Symptoms. Allergy, Asthma and Immunology Research, 2014, 6, 39.	2.9	18
36	Innate Type 2 Response to Alternaria Extract Enhances Ryegrass-Induced Lung Inflammation. International Archives of Allergy and Immunology, 2014, 163, 92-105.	2.1	50

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Secret of the major birch pollen allergen Bet v 1: identification of the physiological ligand. Biochemical Journal, 2014, 457, 379-390.	3.7	80
38	Bioaerosol Monitoring of the Atmosphere for Occupational and Environmental Purposes. Comprehensive Analytical Chemistry, 2016, 73, 391-420.	1.3	10
39	Multi-Approach Analysis for the Identification of Proteases within Birch Pollen. International Journal of Molecular Sciences, 2017, 18, 1433.	4.1	18
40	Pollens destroy respiratory epithelial cell anchors and drive alphaherpesvirus infection. Scientific Reports, 2019, 9, 4787.	3.3	24
41	Extracts of different pollen species and their effect on human tear fluid and an epithelial cell line. Cutaneous and Ocular Toxicology, 2019, 38, 93-103.	1.3	5
42	Acaciain peptidase : The first South American pollen peptidase potentially involved in respiratory allergy. Biotechnology and Applied Biochemistry, 2020, 67, 224-233.	3.1	3
43	Protease-Activated Pathways of Inflammation. , 2009, , 423-435.		2
44	Possible Involvement of Protease-Mediated Neutrophil Recruitment and Epithelial Barrier Disruption in Ragweed Pollen Sensitization. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 271-272.	2.9	3
45	IL-33–dependent induction of allergic lung inflammation by FcγRIII signaling. Journal of Clinical Investigation, 2013, 123, 2287-2297.	8.2	78
46	Pollen Proteases Play Multiple Roles in Allergic Disorders. International Journal of Molecular Sciences, 2020, 21, 3578.	4.1	17
47	Airway Remodeling. , 2002, , 67-78.		1
48	ĐĐ¼2Ñ,Đ,Đ²Đ,руÑĐ¼2Ñ‹Đμ Đ, Đ;Ñ€Đ¾Ñ,Đ,Đ²Đ¾Đ²Đ¾ÑĐ¿Đ°Đ»Đ,Ñ,ĐμĐ»ÑŒĐ½Ñ‹Đμ Đ¼Đ,Ñ~ĐμĐ½Đ, Đ	°Ð ℊÑ€ о	Ñ ,ᡚ Đ½Đ,Đ
50	Acacia longifolia. , 2014, , 738-742.		0
51	Role of Allergens in Airway Disease and Their Interaction with the Airway Epithelium. , 2009, , 291-309.		Ο
52	Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1418-1449.	5.7	132
53	Correlation between allergic rhinitis and asthma. Alergologia, 2023, 4, 170-177.	0.1	0