Neural basis of an inherited speech and language disord

Proceedings of the National Academy of Sciences of the Unite 95, 12695-12700

DOI: 10.1073/pnas.95.21.12695

Citation Report

#	Article	IF	CITATIONS
1	Structural Maturation of Neural Pathways in Children and Adolescents: In Vivo Study. Science, 1999, 283, 1908-1911.	6.0	1,196
2	Functional and Structural Brain Abnormalities Associated with a Genetic Disorder of Speech and Language. American Journal of Human Genetics, 1999, 65, 1215-1221.	2.6	82
3	The neuroanatomy of autism. NeuroReport, 1999, 10, 1647-1651.	0.6	439
4	Support for linkage of autism and specific language impairment to 7q3 from two chromosome rearrangements involving band 7q31. , 2000, 96, 228-234.		64
5	Detecting bilateral abnormalities with voxel-based morphometry. Human Brain Mapping, 2000, 11, 223-232.	1.9	50
6	A voxel-based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory. Annals of Neurology, 2000, 47, 36-45.	2.8	899
7	Research on speech motor control and its disorders. Journal of Communication Disorders, 2000, 33, 391-428.	0.8	236
8	Developmental amnesia associated with early hypoxic-ischaemic injury. Brain, 2000, 123, 499-507.	3.7	307
9	Oral Dyspraxia in Inherited Speech and Language Impairment and Acquired Dysphasia. Brain and Language, 2000, 75, 17-33.	0.8	140
10	What dysarthrias can tell us about the neural control of speech. Journal of Phonetics, 2000, 28, 273-302.	0.6	93
11	The SPCH1 Region on Human 7q31: Genomic Characterization of the Critical Interval and Localization of Translocations Associated with Speech and Language Disorder. American Journal of Human Genetics, 2000, 67, 357-368.	2.6	214
12	Voxel-Based Morphometry—The Methods. NeuroImage, 2000, 11, 805-821.	2.1	7,674
13	The neural basis of lexicon and grammar in first and second language: the declarative/procedural model. Bilingualism, 2001, 4, 105-122.	1.0	496
14	A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage, 2001, 14, 21-36.	2.1	4,189
15	Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains. NeuroImage, 2001, 14, 685-700.	2.1	1,189
16	Prosody-voice characteristics of children and adults with apraxia of speech. Clinical Linguistics and Phonetics, 2001, 15, 275-307.	0.5	41
17	The declarative/procedural model of lexicon and grammar. , 2001, 30, 37-69.		372
18	Planar Asymmetry Tips the Phonological Playground and Environment Raises the Bar. Child Development, 2001, 72, 988-1002.	1.7	66

#	Article	IF	CITATIONS
19	A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews Neuroscience, 2001, 2, 717-726.	4.9	713
20	A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 2001, 413, 519-523.	13.7	1,969
21	High-throughput screening. Nature, 2001, 413, 549-550.	13.7	0
22	Structural Asymmetries in the Human Brain: a Voxel-based Statistical Analysis of 142 MRI Scans. Cerebral Cortex, 2001, 11, 868-877.	1.6	418
23	Issues Contrasting Adult Acquired Versus Developmental Apraxia of Speech. Seminars in Speech and Language, 2002, 23, 257-266.	0.5	69
24	MRI analysis of an inherited speech and language disorder: structural brain abnormalities. Brain, 2002, 125, 465-478.	3.7	368
25	Dissociations in Processing Past Tense Morphology: Neuropathology and Behavioral Studies. Journal of Cognitive Neuroscience, 2002, 14, 79-94.	1.1	134
26	Language-impaired children: No sign of the FOXP2 mutation. NeuroReport, 2002, 13, 1075-1077.	0.6	93
27	Genetics of Childhood Disorders: XXXVII. News Flash: A Gene for Expressive Language. Journal of the American Academy of Child and Adolescent Psychiatry, 2002, 41, 482-485.	0.3	0
28	Regional changes in brain gray and white matter in patients with schizophrenia demonstrated with voxel-based analysis of MRI. Schizophrenia Research, 2002, 55, 41-54.	1.1	159
29	A voxel-based morphometric study of ageing in 465 normal adult human brains. , 0, , .		60
30	FOXP2 Is Not a Major Susceptibility Gene for Autism or Specific Language Impairment. American Journal of Human Genetics, 2002, 70, 1318-1327.	2.6	197
31	Anatomical Correlates of Learning Novel Speech Sounds. Neuron, 2002, 35, 997-1010.	3.8	267
32	Rules or connections in past-tense inflections: what does the evidence rule out?. Trends in Cognitive Sciences, 2002, 6, 465-472.	4.0	388
33	On the nature and evolution of the neural bases of human language. American Journal of Physical Anthropology, 2002, 119, 36-62.	2.1	217
34	FOXP2: novel exons, splice variants, and CAG repeat length stability. Human Genetics, 2002, 111, 136-144.	1.8	80
35	Computational and evolutionary aspects of language. Nature, 2002, 417, 611-617.	13.7	375
36	Magnetic resonance approaches to the identification of focal pathophysiology in children with brain disease. Developmental Science, 2002, 5, 279-285.	1.3	2

#	Article	IF	CITATIONS
37	Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. Journal of Comparative Neurology, 2003, 460, 266-279.	0.9	432
38	Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia. Human Brain Mapping, 2003, 18, 194-200.	1.9	182
39	Expression ofFoxp2, a gene involved in speech and language, in the developing and adult striatum. Journal of Neuroscience Research, 2003, 73, 61-72.	1.3	151
40	No change in the structure of the brain in migraine: a voxel-based morphometric study. European Journal of Neurology, 2003, 10, 53-57.	1.7	102
41	Broca's area and the language instinct. Nature Neuroscience, 2003, 6, 774-781.	7.1	373
42	Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 2003, 6, 1230-1237.	7.1	342
43	Genetic and environmental risks for specific language impairment in children. International Journal of Pediatric Otorhinolaryngology, 2003, 67, S143-S157.	0.4	28
44	Cellular and network properties in the functioning of the nervous system: from central pattern generators to cognition. Brain Research Reviews, 2003, 41, 229-267.	9.1	74
45	Genetic and environmental risks for specific language impairment in children. International Congress Series, 2003, 1254, 225-245.	0.2	3
46	FOXP2 in focus: what can genes tell us about speech and language?. Trends in Cognitive Sciences, 2003, 7, 257-262.	4.0	253
47	DECIPHERING THE GENETIC BASIS OF SPEECH AND LANGUAGE DISORDERS. Annual Review of Neuroscience, 2003, 26, 57-80.	5.0	135
48	A diagnostic marker for childhood apraxia of speech: the lexical stress ratio. Clinical Linguistics and Phonetics, 2003, 17, 549-574.	0.5	89
49	Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in posttraumatic stress disorder due to terrorism. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9039-9043.	3.3	349
50	FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 2003, 126, 2455-2462.	3.7	313
51	A diagnostic marker for childhood apraxia of speech: the coefficient of variation ratio. Clinical Linguistics and Phonetics, 2003, 17, 575-595.	0.5	59
52	New directions in structural imaging. , 2003, , 95-127.		2
53	Genes and behaviour: finding a genetic substrate for cognitive neuropsychiatry. , 2003, , 30-56.		0
54	Molecular and Comparative Genetics of Mental Retardation. Genetics, 2004, 166, 835-881.	1.2	233

#	Article	IF	CITATIONS
55	Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density. Journal of Neuroscience, 2004, 24, 10410-10415.	1.7	1,223
56	Productive use of the English past tense in children with focal brain injury and specific language impairment. Brain and Language, 2004, 88, 202-214.	0.8	33
57	Contributions of memory circuits to language: the declarative/procedural model. Cognition, 2004, 92, 231-270.	1.1	1,391
58	Genetic Components of Vocal Learning. Annals of the New York Academy of Sciences, 2004, 1016, 325-347.	1.8	32
59	Orofacial apraxia in corticobasal degeneration, progressive supranuclear palsy, multiple system atrophy and Parkinson?s disease. Journal of Neurology, 2004, 251, 1317-1323.	1.8	45
60	Association between theFOXP2 gene and autistic disorder in Chinese population. American Journal of Medical Genetics Part A, 2004, 127B, 113-116.	2.4	77
61	Parallel FoxP1 and FoxP2 Expression in Songbird and Human Brain Predicts Functional Interaction. Journal of Neuroscience, 2004, 24, 3152-3163.	1.7	327
63	Pleiotropic Effects of a Chromosome 3 Locus on Speech-Sound Disorder and Reading. American Journal of Human Genetics, 2004, 74, 283-297.	2.6	124
64	Mapping IQ and gray matter density in healthy young people. NeuroImage, 2004, 23, 800-805.	2.1	226
65	Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson's disease. NeuroImage, 2004, 23, 663-669.	2.1	139
66	What counts as evidence in linguistics?. Studies in Language, 2004, 28, 480-526.	0.2	43
67	The Origins of Modernity: Was Autonomous Speech the Critical Factor?. Psychological Review, 2004, 111, 543-552.	2.7	42
68	Retinal abnormalities in human albinism translate into a reduction of grey matter in the occipital cortex. European Journal of Neuroscience, 2005, 22, 2475-2480.	1.2	56
69	FOXP2 and the neuroanatomy of speech and language. Nature Reviews Neuroscience, 2005, 6, 131-138.	4.9	472
70	Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Human Brain Mapping, 2005, 25, 222-236.	1.9	102
71	Arachnoidal cyst, orofacial dysplasia, poor motor control, and severe language delay. American Journal of Medical Genetics, Part A, 2005, 137A, 110-111.	0.7	0
72	The Evolution of Language: A Comparative Review. Biology and Philosophy, 2005, 20, 193-203.	0.7	144
73	Dissection of molecular mechanisms underlying speech and language disorders. Applied Psycholinguistics, 2005, 26, 111-128.	0.8	25

	Сплнон	REFORT	
#	Article	IF	Citations
74	Spect Findings in Children with Specific Language Impairment. Cortex, 2005, 41, 316-326.	1.1	35
75	Specific Language Impairment is not Specific to Language: the Procedural Deficit Hypothesis. Cortex, 2005, 41, 399-433.	1.1	662
76	Bilateral thalamic gray matter changes in patients with restless legs syndrome. NeuroImage, 2005, 24, 1242-1247.	2.1	117
77	Identification of FOXP2 Truncation as a Novel Cause of Developmental Speech and Language Deficits. American Journal of Human Genetics, 2005, 76, 1074-1080.	2.6	438
79	Can Developmental Disorders Reveal the Component Parts of the Human Language Faculty?. Language Learning and Development, 2005, 1, 65-92.	0.7	54
80	The dawn of cognitive genetics? Crucial developmental caveats. Trends in Cognitive Sciences, 2005, 9, 126-135.	4.0	57
81	Congenital prosopagnosia: face-blind from birth. Trends in Cognitive Sciences, 2005, 9, 180-187.	4.0	315
82	Generalist Genes and Learning Disabilities Psychological Bulletin, 2005, 131, 592-617.	5.5	498
83	Regional cerebral perfusion abnormalities in developmental language disorder. European Archives of Psychiatry and Clinical Neuroscience, 2006, , .	1.8	0
84	Temporal and Spatial Dynamics of Brain Structure Changes during Extensive Learning. Journal of Neuroscience, 2006, 26, 6314-6317.	1.7	681
85	The Neural Basis of Language Development and Its Impairment. Neuron, 2006, 52, 941-952.	3.8	147
86	Voxel-based morphometry in Alzheimer's patients. Journal of Alzheimer's Disease, 2006, 10, 445-447.	1.2	13
87	Expression of FoxP2 during zebrafish development and in the adult brain. International Journal of Developmental Biology, 2006, 50, 435-438.	0.3	29
90	Language and life history: A new perspective on the development and evolution of human language. Behavioral and Brain Sciences, 2006, 29, 259-280.	0.4	368
91	The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics, 2006, 7, 9-20.	7.7	265
92	The tortuous route from genes to behavior: A neuroconstructivist approach. Cognitive, Affective and Behavioral Neuroscience, 2006, 6, 9-17.	1.0	84
93	Regional cerebral perfusion abnormalities in developmental language disorder. European Archives of Psychiatry and Clinical Neuroscience, 2006, 256, 131-137.	1.8	8
94	Tangled webs: Tracing the connections between genes and cognition. Cognition, 2006, 101, 270-297.	1.1	185

		LIORI	
#	Article	IF	CITATIONS
95	Cognitive developmental biology: History, process and fortune's wheel. Cognition, 2006, 101, 298-332.	1.1	23
96	Cognitive architecture and descent with modificationâ ⁺ . Cognition, 2006, 101, 443-465.	1.1	65
97	On the uniqueness of humankind: is language working memory the final piece that made us human?. Journal of Human Evolution, 2006, 50, 226-229.	1.3	9
98	Voxel-based diffusion tensor analysis reveals aberrant anterior cingulum integrity in posttraumatic stress disorder due to terrorism. Psychiatry Research - Neuroimaging, 2006, 146, 231-242.	0.9	119
99	Word and nonword repetition in bilingual subjects: A PET study. Human Brain Mapping, 2006, 27, 153-161.	1.9	69
100	Morphometric and Psychometric Comparisons between Non-Substance-Abusing Patients with Posttraumatic Stress Disorder and Normal Controls. Psychotherapy and Psychosomatics, 2006, 75, 122-132.	4.0	54
101	The Genetic Bases of Speech Sound Disorders: Evidence From Spoken and Written Language. Journal of Speech, Language, and Hearing Research, 2006, 49, 1294-1312.	0.7	71
102	Bilateral grey-matter increase in the putamen in primary blepharospasm. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 1017-1020.	0.9	122
103	Ontogeny, Genetics, and Evolution: A Perspective from Developmental Cognitive Neuroscience. Biological Theory, 2006, 1, 44-51.	0.8	8
104	What developmental disorders can tell us about the nature and origins of language. Nature Neuroscience, 2006, 9, 1226-1229.	7.1	31
105	Functional MRI of Task Switching in Children with Specific Language Impairment (SLI). Neurocase, 2006, 12, 71-79.	0.2	48
106	The Medaka FoxP2, a Homologue of Human Language Gene FOXP2, has a Diverged Structure and Function. Journal of Biochemistry, 2007, 143, 407-416.	0.9	13
107	The Evolution of Human Speech. Current Anthropology, 2007, 48, 39-66.	0.8	275
108	The Evolution of Language Systems in the Human Brain. , 2007, , 529-547.		15
109	Neuropsychology and Genetics of Speech, Language, and Literacy Disorders. Pediatric Clinics of North America, 2007, 54, 543-561.	0.9	34
110	Brain Abnormalities in Language Disorders and in Autism. Pediatric Clinics of North America, 2007, 54, 563-583.	0.9	61
111	Speech and language disorders. , 0, , 469-487.		0
112	A review of association and linkage studies for genetical analyses of learning disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 923-943.	1.1	25

#	Article	IF	CITATIONS
113	The development of sentence interpretation: effects of perceptual, attentional and semantic interference. Developmental Science, 2007, 10, 794-813.	1.3	27
114	Evaluation and Proposal for Optimization of Neurophysiological Tests In Migraine: Part 2—Neuroimaging and The Nitroglycerin Test. Cephalalgia, 2007, 27, 1339-1359.	1.8	19
115	Relation between visual perceptual impairment and neonatal ultrasound diagnosis of haemorrhagicâ€ischaemic brain lesions in 5â€yearâ€old children. Developmental Medicine and Child Neurology, 2000, 42, 376-386.	1.1	1
116	The role of the basal ganglia and cerebellum in language processing. Brain Research, 2007, 1133, 136-144.	1.1	303
118	Expression of <i>FOXP2</i> in the developing monkey forebrain: Comparison with the expression of the genes <i>FOXP1</i> , <i>PBX3</i> , and <i>MEIS2</i> . Journal of Comparative Neurology, 2008, 509, 180-189.	0.9	73
119	Changes in neural activity associated with learning to articulate novel auditory pseudowords by covert repetition. Human Brain Mapping, 2008, 29, 1231-1242.	1.9	108
120	Assessment of linguistic abilities in Italian children with Specific Language Impairment. Neuropsychologia, 2008, 46, 2816-2823.	0.7	42
121	Language as shaped by the brain. Behavioral and Brain Sciences, 2008, 31, 489-509.	0.4	702
122	Evidence for Acquired Pregenual Anterior Cingulate Gray Matter Loss from a Twin Study of Combat-Related Posttraumatic Stress Disorder. Biological Psychiatry, 2008, 63, 550-556.	0.7	317
123	Aging in the CNS: Comparison of gray/white matter volume and diffusion tensor data. Neurobiology of Aging, 2008, 29, 102-116.	1.5	219
124	Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends in Neurosciences, 2008, 31, 265-272.	4.2	237
125	The origin of language as a product of the evolution of double-scope blending. Behavioral and Brain Sciences, 2008, 31, 520-521.	0.4	15
126	A biological infrastructure for communication underlies the cultural evolution of languages. Behavioral and Brain Sciences, 2008, 31, 518-518.	0.4	10
127	Brains, genes, and language evolution: A new synthesis. Behavioral and Brain Sciences, 2008, 31, 537-558.	0.4	7
128	Intersubjectivity evolved to fit the brain, but grammar co-evolved with the brain. Behavioral and Brain Sciences, 2008, 31, 523-524.	0.4	1
129	Memes shape brains shape memes. Behavioral and Brain Sciences, 2008, 31, 513-513.	0.4	3
130	Convergent cultural evolution may explain linguistic universals. Behavioral and Brain Sciences, 2008, 31, 515-516.	0.4	0
131	Adaptation to moving targets: Culture/gene coevolution, not either/or. Behavioral and Brain Sciences, 2008, 31, 511-512.	0.4	3

#	Article	IF	CITATIONS
132	Languages as evolving organisms – <i>The</i> solution to the logical problem of language evolution?. Behavioral and Brain Sciences, 2008, 31, 512-513.	0.4	1
133	Prolonged plasticity: Necessary and sufficient for language-ready brains. Behavioral and Brain Sciences, 2008, 31, 514-515.	0.4	2
134	Co-evolution of phylogeny and glossogeny: There is no "logical problem of language evolution― Behavioral and Brain Sciences, 2008, 31, 521-522.	0.4	10
135	Universal Grammar? Or prerequisites for natural language?. Behavioral and Brain Sciences, 2008, 31, 522-523.	0.4	23
136	Language as shaped by the brain; the brain as shaped by development. Behavioral and Brain Sciences, 2008, 31, 535-536.	0.4	0
137	Time on our hands: How gesture and the understanding of the past and future helped shape language. Behavioral and Brain Sciences, 2008, 31, 517-517.	0.4	0
138	Why is language well designed for communication?. Behavioral and Brain Sciences, 2008, 31, 518-519.	0.4	4
139	Language as shaped by social interaction. Behavioral and Brain Sciences, 2008, 31, 519-520.	0.4	8
140	Why and how the problem of the evolution of Universal Grammar (UG) is hard. Behavioral and Brain Sciences, 2008, 31, 524-525.	0.4	2
141	Language enabled by Baldwinian evolution of memory capacity. Behavioral and Brain Sciences, 2008, 31, 526-527.	0.4	0
142	Cortical-striatal-cortical neural circuits, reiteration, and the "narrow faculty of language― Behavioral and Brain Sciences, 2008, 31, 527-528.	0.4	3
143	Language as ergonomic perfection. Behavioral and Brain Sciences, 2008, 31, 530-531.	0.4	21
144	On language and evolution: Why neo-adaptationism fails. Behavioral and Brain Sciences, 2008, 31, 531-532.	0.4	1
145	Language acquisition recapitulates language evolution?. Behavioral and Brain Sciences, 2008, 31, 532-533.	0.4	1
146	Case-marking systems evolve to be easy to learn and process. Behavioral and Brain Sciences, 2008, 31, 534-535.	0.4	2
147	Language is shaped for social interactions, as well as by the brain. Behavioral and Brain Sciences, 2008, 31, 536-537.	0.4	4
148	The brain plus the cultural transmission mechanism determine the nature of language. Behavioral and Brain Sciences, 2008, 31, 533-534.	0.4	0
149	The potential for genetic adaptations to language. Behavioral and Brain Sciences, 2008, 31, 529-530.	0.4	2

#	Article	IF	CITATIONS
150	Niche-construction, co-evolution, and domain-specificity. Behavioral and Brain Sciences, 2008, 31, 526-526.	0.4	7
151	Perceptual-motor constraints on sound-to-meaning correspondence in language. Behavioral and Brain Sciences, 2008, 31, 528-529.	0.4	7
152	Birdsong Decreases Protein Levels of FoxP2, a Molecule Required for Human Speech. Journal of Neurophysiology, 2008, 100, 2015-2025.	0.9	110
153	Brain and behavior: Which way does the shaping go?. Behavioral and Brain Sciences, 2008, 31, 516-517.	0.4	34
154	The Codes of Life. Biosemiotics Bookseries, 2008, , .	0.3	22
155	Language is shaped by the body. Behavioral and Brain Sciences, 2008, 31, 509-511.	0.4	17
156	Genes, Brains, and Language: An Epistemological Examination of how Genes can Underlie Human Cognitive Behavior. Review of General Psychology, 2008, 12, 170-180.	2.1	8
157	Language Features in a Mother and Daughter of a Chromosome 7;13 Translocation Involving <i>FOXP2</i> . Journal of Speech, Language, and Hearing Research, 2009, 52, 1157-1174.	0.7	43
158	FOXP Genes, Neural Development, Speech and Language Disorders. Advances in Experimental Medicine and Biology, 2009, 665, 117-129.	0.8	43
160	FOXP2 as a molecular window into speech and language. Trends in Genetics, 2009, 25, 166-177.	2.9	476
161	Evolutionary developmental linguistics: Naturalization of the faculty of language. Language Sciences, 2009, 31, 33-59.	0.5	48
162	Ageâ€related brain structural alterations in children with specific language impairment. Human Brain Mapping, 2009, 30, 1626-1636.	1.9	44
163	A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice. Cell, 2009, 137, 961-971.	13.5	555
164	Origins of the language: Correlation between brain evolution and language development. , 0, , 153-174.		6
165	The Speech and Language FOXP2 Gene Modulates the Phenotype of Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2010, 22, 923-931.	1.2	31
168	Individual differences in language development: relationship with motor skill at 21 months. Developmental Science, 2010, 13, 677-691.	1.3	68
169	Early and late talkers: school-age language, literacy and neurolinguistic differences. Brain, 2010, 133, 2185-2195.	3.7	92
170	Neural Representations and Mechanisms for the Performance of Simple Speech Sequences. Journal of Cognitive Neuroscience, 2010, 22, 1504-1529.	1.1	259

		Citation Report		
#	Article		IF	CITATIONS
171	Imagination, Planning, and Working Memory. Current Anthropology, 2010, 51, S99-S110		0.8	25
172	Uses and Abuses of the Enhancedâ€Workingâ€Memory Hypothesis in Explaining Modern Anthropology, 2010, 51, S67-S75.	Thinking. Current	0.8	11
173	A proposed reinterpretation and reclassification of aphasic syndromes. Aphasiology, 2010), 24, 363-394.	1.4	99
174	The cognitive niche: Coevolution of intelligence, sociality, and language. Proceedings of t Academy of Sciences of the United States of America, 2010, 107, 8993-8999.	he National	3.3	507
175	Emergence in Cognitive Science. Topics in Cognitive Science, 2010, 2, 751-770.		1.1	67
176	Forkhead Transcription Factors. Advances in Experimental Medicine and Biology, 2010, , .		0.8	5
177	Impaired procedural learning in language impairment: Results from probabilistic categoriz Journal of Clinical and Experimental Neuropsychology, 2010, 32, 249-258.	ation.	0.8	59
178	Early Language Delay and Specific Language Impairment. Developmental Disabilities Rese 2011, 17, 160-169.	arch Reviews,	2.9	25
179	There are Two Different Language Systems in the Brain. Journal of Behavioral and Brain Sc 01, 23-36.	:ience, 2011,	0.2	28
180	Abnormal functional lateralization and activity of language brain areas in typical specific la impairment (developmental dysphasia). Brain, 2011, 134, 3044-3058.	anguage	3.7	111
181	Role of the precentral gyrus of the insula in complex articulation. Cortex, 2011, 47, 800-8	.07.	1.1	119
182	Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience, 2011, 1	.75, 75-84.	1.1	139
183	Gray Matter Volumes of Pain-Related Brain Areas Are Decreased in Fibromyalgia Syndrom Pain, 2011, 12, 436-443.	e. Journal of	0.7	146
184	FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Cu Opinion in Neurobiology, 2011, 21, 415-424.	rrent	2.0	172
185	Endophenotypes of FOXP2: Dysfunction within the human articulatory network. Europea Paediatric Neurology, 2011, 15, 283-288.	n Journal of	0.7	50
186	Developmental disorders of speech and language. Progress in Brain Research, 2011, 189,	225-238.	0.9	41
188	Imaging genetics of FOXP2 in dyslexia. European Journal of Human Genetics, 2012, 20, 2	24-229.	1.4	44
189	The DISC1 promoter: characterization and regulation by FOXP2. Human Molecular Genet 2862-2872.	ics, 2012, 21,	1.4	39

#	Article	IF	CITATIONS
190	An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Molecular Psychiatry, 2012, 17, 1077-1085.	4.1	122
191	Genetic Variants of <i>FOXP2</i> and <i>KIAA0319/TTRAP/THEM2</i> Locus Are Associated with Altered Brain Activation in Distinct Language-Related Regions. Journal of Neuroscience, 2012, 32, 817-825.	1.7	179
192	An association study of sequence variants in the forkhead box P2 (FOXP2) gene and adulthood attention-deficit/hyperactivity disorder in two European samples. Psychiatric Genetics, 2012, 22, 155-160.	0.6	14
193	FOXP2, APOE, and PRNP: New Modulators in Primary Progressive Aphasia. Journal of Alzheimer's Disease, 2012, 28, 941-950.	1.2	16
194	Human brain evolution: From gene discovery to phenotype discovery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10709-10716.	3.3	73
195	Innovations in phenotyping of mouse models in the German Mouse Clinic. Mammalian Genome, 2012, 23, 611-622.	1.0	40
196	The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human Genetics, 2012, 131, 1687-1698.	1.8	115
197	Interaction between lexical and grammatical language systems in the brain. Physics of Life Reviews, 2012, 9, 198-214.	1.5	22
198	Reinforcement learning in young adults with developmental language impairment. Brain and Language, 2012, 123, 154-163.	0.8	24
201	Neural bases of childhood speech disorders: Lateralization and plasticity for speech functions during development. Neuroscience and Biobehavioral Reviews, 2012, 36, 439-458.	2.9	64
202	Vocal tract anatomy and the neural bases of talking. Journal of Phonetics, 2012, 40, 608-622.	0.6	77
203	The Language Phenomenon. The Frontiers Collection, 2013, , .	0.1	6
204	Detecting Deceptive Chat-Based Communication Using Typing Behavior and Message Cues. ACM Transactions on Management Information Systems, 2013, 4, 1-21.	2.1	34
205	Synapses, Language, and Being Human. Science, 2013, 342, 944-945.	6.0	11
206	Cognitive and personality analysis of startle reactivity in a large cohort of healthy males. Biological Psychology, 2013, 94, 582-591.	1.1	7
207	Small intragenic deletion in <i>FOXP2</i> associated with childhood apraxia of speech and dysarthria. American Journal of Medical Genetics, Part A, 2013, 161, 2321-2326.	0.7	75
208	Imaging-genetics in dyslexia: Connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Molecular Genetics and Metabolism, 2013, 110, 201-212.	0.5	47
209	Genes: Interactions with Language on Three Levels—Inter-Individual Variation, Historical Correlations and Genetic Biasing. The Frontiers Collection, 2013, , 139-161.	0.1	3

#	Article	IF	CITATIONS
210	FOXP2. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4, 547-560.	1.4	30
211	Articulating Novel Words: Children's Oromotor Skills Predict Nonword Repetition Abilities. Journal of Speech, Language, and Hearing Research, 2013, 56, 1800-1812.	0.7	39
212	miR-9 and miR-140-5p Target <i>FoxP2</i> and Are Regulated as a Function of the Social Context of Singing Behavior in Zebra Finches. Journal of Neuroscience, 2013, 33, 16510-16521.	1.7	44
213	Expression analysis of the speech-related genes <i>FoxP1</i> and <i>FoxP2</i> and their relation to singing behavior in two songbird species. Journal of Experimental Biology, 2013, 216, 3682-3692.	0.8	37
214	The Evolution of Speech and Language. , 2013, , 1-41.		0
216	Over-Expression of Either MECP2_e1 or MECP2_e2 in Neuronally Differentiated Cells Results in Different Patterns of Gene Expression. PLoS ONE, 2014, 9, e91742.	1.1	16
217	Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 2014, 8, 473.	1.0	36
218	The Role of Rhythm in Speech and Language Rehabilitation: The SEP Hypothesis. Frontiers in Human Neuroscience, 2014, 8, 777.	1.0	71
219	Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds. Journal of Speech, Language, and Hearing Research, 2014, 57, 96-105.	0.7	24
220	Does it talk the talk? On the role of basal ganglia in emotive speech processing. Behavioral and Brain Sciences, 2014, 37, 556-557.	0.4	2
221	The basal ganglia within a cognitive system in birds and mammals. Behavioral and Brain Sciences, 2014, 37, 568-569.	0.4	6
222	The sensorimotor and social sides of the architecture of speech. Behavioral and Brain Sciences, 2014, 37, 569-570.	0.4	33
223	Speech, vocal production learning, and the comparative method. Behavioral and Brain Sciences, 2014, 37, 566-567.	0.4	1
224	The sound of one hand clapping: Overdetermination and the pansensory nature of communication. Behavioral and Brain Sciences, 2014, 37, 546-547.	0.4	0
225	The evolution of coordinated vocalizations before language. Behavioral and Brain Sciences, 2014, 37, 549-550.	0.4	6
226	Left Brain, Right Brain: Facts and Fantasies. PLoS Biology, 2014, 12, e1001767.	2.6	172
227	Why we can talk, debate, and change our minds: Neural circuits, basal ganglia operations, and transcriptional factors. Behavioral and Brain Sciences, 2014, 37, 561-562.	0.4	2
228	Functional neuroimaging of human vocalizations and affective speech. Behavioral and Brain Sciences, 2014, 37, 554-555.	0.4	9

#	Article	IF	CITATIONS
229	Speech prosody, reward, and the corticobulbar system: An integrative perspective. Behavioral and Brain Sciences, 2014, 37, 573-574.	0.4	1
230	Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective. Behavioral and Brain Sciences, 2014, 37, 529-546.	0.4	173
231	Beyond cry and laugh: Toward a multilevel model of language production. Behavioral and Brain Sciences, 2014, 37, 548-549.	0.4	3
232	Early human communication helps in understanding language evolution. Behavioral and Brain Sciences, 2014, 37, 560-561.	0.4	3
233	Comparative analyses of speech and language converge on birds. Behavioral and Brain Sciences, 2014, 37, 547-548.	0.4	4
234	Very young infants' responses to human and nonhuman primate vocalizations. Behavioral and Brain Sciences, 2014, 37, 553-554.	0.4	1
235	Vocal learning, prosody, and basal ganglia: Don't underestimate their complexity. Behavioral and Brain Sciences, 2014, 37, 570-571.	0.4	7
236	Physical mechanisms may be as important as brain mechanisms in evolution of speech. Behavioral and Brain Sciences, 2014, 37, 552-553.	0.4	5
237	Environments organize the verbal brain. Behavioral and Brain Sciences, 2014, 37, 550-551.	0.4	1
238	Why vocal production of atypical sounds in apes and its cerebral correlates have a lot to say about the origin of language. Behavioral and Brain Sciences, 2014, 37, 565-566.	0.4	3
239	En route to disentangle the impact and neurobiological substrates of early vocalizations: Learning from Rett syndrome. Behavioral and Brain Sciences, 2014, 37, 562-563.	0.4	7
240	Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates. Behavioral and Brain Sciences, 2014, 37, 571-572.	0.4	1
241	Differences in auditory timing between human and nonhuman primates. Behavioral and Brain Sciences, 2014, 37, 557-558.	0.4	32
242	Vocal communication is multi-sensorimotor coordination within and between individuals. Behavioral and Brain Sciences, 2014, 37, 572-573.	0.4	0
243	Evolution of affective and linguistic disambiguation under social eavesdropping pressures. Behavioral and Brain Sciences, 2014, 37, 551-552.	0.4	7
244	Neanderthals did speak, but FOXP2 doesn't prove it. Behavioral and Brain Sciences, 2014, 37, 558-559.	0.4	2
245	Voluntary and involuntary processes affect the production of verbal and non-verbal signals by the human voice. Behavioral and Brain Sciences, 2014, 37, 564-565.	0.4	7
246	Contribution of the basal ganglia to spoken language: Is speech production like the other motor skills?. Behavioral and Brain Sciences, 2014, 37, 576-576.	0.4	14

#	Article	IF	CITATIONS
247	Phonation takes precedence over articulation in development as well as evolution of language. Behavioral and Brain Sciences, 2014, 37, 567-568.	0.4	3
248	Functions of the cortico-basal ganglia circuits for spoken language may extend beyond emotional-affective modulation in adults. Behavioral and Brain Sciences, 2014, 37, 555-556.	0.4	1
249	Modification of spectral features by nonhuman primates. Behavioral and Brain Sciences, 2014, 37, 574-576.	0.4	5
250	FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Frontiers in Cellular Neuroscience, 2014, 8, 305.	1.8	31
251	Phylogenetic reorganization of the basal ganglia: A necessary, but not the only, bridge over a primate Rubicon of acoustic communication. Behavioral and Brain Sciences, 2014, 37, 577-604.	0.4	18
252	Speech as a breakthrough signaling resource in the cognitive evolution of biological complex adaptive systems. Behavioral and Brain Sciences, 2014, 37, 563-564.	0.4	2
253	Cortical Surface Area and Cortical Thickness Demonstrate Differential Structural Asymmetry in Auditory-Related Areas of the Human Cortex. Cerebral Cortex, 2014, 24, 2541-2552.	1.6	86
254	The forgotten role of consonant-like calls in theories of speech evolution. Behavioral and Brain Sciences, 2014, 37, 559-560.	0.4	12
255	Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews, 2014, 11, 329-364.	1.5	147
256	Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14253-14258.	3.3	156
257	Neural Correlates of Developmental Speech and Language Disorders: Evidence from Neuroimaging. Current Developmental Disorders Reports, 2014, 1, 215-227.	0.9	41
258	Shining a light on CNTNAP2: complex functions to complex disorders. European Journal of Human Genetics, 2014, 22, 171-178.	1.4	219
259	Domain-general sequence learning deficit in specific language impairment Neuropsychology, 2014, 28, 472-483.	1.0	43
260	Investigating the Influences of Language Delay and/or Familial Risk for Dyslexia on Brain Structure in 5-Year-Olds. Cerebral Cortex, 2015, 27, bhv267.	1.6	19
261	The "medical―investigation of specific learning disorders. Journal of Pediatric Neurology, 2015, 02, 003-008.	0.0	1
262	Neuropsychology of Art. , 0, , .		10
264	Neural correlates of childhood language disorder: a systematic review. Developmental Medicine and Child Neurology, 2015, 57, 706-717.	1.1	62
265	Singing abilities in children with Specific Language Impairment (SLI). Frontiers in Psychology, 2015, 6, 420.	1.1	19

#	Article	IF	CITATIONS
266	Assessment of Nonverbal and Verbal Apraxia in Patients with Parkinson's Disease. Parkinson's Disease, 2015, 2015, 1-8.	0.6	3
267	Insights into the Genetic Foundations of Human Communication. Neuropsychology Review, 2015, 25, 3-26.	2.5	33
268	Behavior-Linked FoxP2 Regulation Enables Zebra Finch Vocal Learning. Journal of Neuroscience, 2015, 35, 2885-2894.	1.7	52
269	Functional MRI evidence for fine motor praxis dysfunction in children with persistent speech disorders. Brain Research, 2015, 1597, 47-56.	1.1	27
270	Differential <i>FoxP2</i> and <i>FoxP1</i> expression in a vocal learning nucleus of the developing budgerigar. Developmental Neurobiology, 2015, 75, 778-790.	1.5	14
271	Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (<i>Taeniopygia guttata</i>) song system. Journal of Comparative Neurology, 2015, 523, 1318-1340.	0.9	36
272	Monogenic and chromosomal causes of isolated speech and language impairment. Journal of Medical Genetics, 2015, 52, 719-729.	1.5	17
273	New Genes for Focal Epilepsies with Speech and Language Disorders. Current Neurology and Neuroscience Reports, 2015, 15, 35.	2.0	56
274	Human mutant huntingtin disrupts vocal learning in transgenic songbirds. Nature Neuroscience, 2015, 18, 1617-1622.	7.1	32
275	Monoallelic expression of the human <i>FOXP2</i> speech gene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6848-6854.	3.3	36
276	A Molecular Genetic Perspective on Speech and Language. , 2016, , 13-24.		5
277	Darwinian Biolinguistics. Perspectives in Pragmatics, Philosophy and Psychology, 2016, , .	0.2	6
278	Early neuroimaging markers of FOXP2 intragenic deletion. Scientific Reports, 2016, 6, 35192.	1.6	23
279	The functional overlap of executive control and language processing in bilinguals. Bilingualism, 2016, 19, 471-488.	1.0	66
280	FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing. Molecular and Cellular Neurosciences, 2016, 74, 96-105.	1.0	15
281	Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nature Neuroscience, 2016, 19, 1513-1522.	7.1	99
283	Cognitive, Linguistic, and Motor Abilities in a Multigenerational Family with Childhood Apraxia of Speech. Archives of Clinical Neuropsychology, 2016, 31, 1006-1025.	0.3	15
284	Structural brain abnormalities in a single gene disorder associated with epilepsy, language impairment and intellectual disability. NeuroImage: Clinical, 2016, 12, 655-665.	1.4	22

Article

285

Speech and Language Disorders. , 2016, , 503-531.

1

286	Visible movements of the orofacial area. Gesture, 2016, 15, 250-282.	0.5	12
287	Humanâ€specific increase of dopaminergic innervation in a striatal region associated with speech and language: A comparative analysis of the primate basal ganglia. Journal of Comparative Neurology, 2016, 524, 2117-2129.	0.9	32
288	The origins and diversity of bat songs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 535-554.	0.7	53
289	The sensitivity of children with SLI to phonotactic probabilities during lexical access. Journal of Communication Disorders, 2016, 61, 48-59.	0.8	9
290	Animal Models of Speech and Vocal Communication Deficits Associated With Psychiatric Disorders. Biological Psychiatry, 2016, 79, 53-61.	0.7	41
291	Human brain evolution. Current Opinion in Behavioral Sciences, 2017, 16, 41-45.	2.0	34
292	Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Translational Psychiatry, 2017, 7, e987-e987.	2.4	91
293	Equivalent missense variant in the <i>FOXP2</i> and <i>FOXP1</i> transcription factors causes distinct neurodevelopmental disorders. Human Mutation, 2017, 38, 1542-1554.	1.1	28
295	Constraint-Induced Movement Therapy. , 2017, , 143-155.		7
296	Evolutionary Specializations of Human Brain Microstructure. , 2017, , 121-139.		2
297	A neurochemical hypothesis for the origin of hominids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1108-E1116.	3.3	57
298	Early hominids may have been weed species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1244-1249.	3.3	15
299	Origins of Language. Perspectives in Cultural-historical Research, 2018, , 9-41.	0.1	1
300	Phonological working memory and FOXP2. Neuropsychologia, 2018, 108, 147-152.	0.7	20
301	The Association Between Genetic Variation in FOXP2 and Sensorimotor Control of Speech Production. Frontiers in Neuroscience, 2018, 12, 666.	1.4	5
302	Aetiology of childhood apraxia of speech: A clinical practice update for paediatricians. Journal of Paediatrics and Child Health, 2018, 54, 1090-1095.	0.4	29
303	Mapping of Human FOXP2 Enhancers Reveals Complex Regulation. Frontiers in Molecular Neuroscience, 2018, 11, 47.	1.4	19

#	Article	IF	CITATIONS
304	SLT-Game: Support System for Therapies of Children with Communication Disorders. Lecture Notes in Computer Science, 2018, , 165-175.	1.0	0
305	FOXP2 exhibits projection neuron class specific expression, but is not required for multiple aspects of cortical histogenesis. ELife, 2019, 8, .	2.8	26
306	Estimates of the prevalence of speech and motor speech disorders in persons with complex neurodevelopmental disorders. Clinical Linguistics and Phonetics, 2019, 33, 707-736.	0.5	43
307	Neuroimaging genetics studies of specific reading disability and developmental language disorder: A review. Language and Linguistics Compass, 2019, 13, e12349.	1.3	14
308	Looking to the Future: Speech, Language, and Academic Outcomes in an Adolescent with Childhood Apraxia of Speech. Folia Phoniatrica Et Logopaedica, 2019, 71, 203-215.	0.5	3
309	Mice carrying a humanized Foxp2 knock-in allele show region-specific shifts of striatal Foxp2 expression levels. Cortex, 2019, 118, 212-222.	1.1	6
310	Chromatin Decondensation by FOXP2 Promotes Human Neuron Maturation and Expression of Neurodevelopmental Disease Genes. Cell Reports, 2019, 27, 1699-1711.e9.	2.9	40
311	Dissecting FOXP2 Oligomerization and DNA Binding. Angewandte Chemie - International Edition, 2019, 58, 7662-7667.	7.2	26
312	Dissecting FOXP2 Oligomerization and DNA Binding. Angewandte Chemie, 2019, 131, 7744-7749.	1.6	6
313	Neocerebellar Crus I Abnormalities Associated with a Speech and Language Disorder Due to a Mutation in FOXP2. Cerebellum, 2019, 18, 309-319.	1.4	12
314	Altered social behavior in mice carrying a cortical <i>Foxp2</i> deletion. Human Molecular Genetics, 2019, 28, 701-717.	1.4	31
315	Common Terminology and Acoustic Measures for Human Voice and Birdsong. Journal of Speech, Language, and Hearing Research, 2019, 62, 60-69.	0.7	3
316	Dynamic FoxP2 levels in male zebra finches are linked to morphology of adult-born Area X medium spiny neurons. Scientific Reports, 2020, 10, 4787.	1.6	6
317	Decreased density of cholinergic interneurons in striatal territories in Williams syndrome. Brain Structure and Function, 2020, 225, 1019-1032.	1.2	3
318	ZEBrA: Zebra finch Expression Brain Atlas—A resource for comparative molecular neuroanatomy and brain evolution studies. Journal of Comparative Neurology, 2020, 528, 2099-2131.	0.9	30
319	FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e375.	5.9	60
320	The Neuroethology of Birdsong. Springer Handbook of Auditory Research, 2020, , .	0.3	13
321	Developmental Dynamic Dysphasia: Are Bilateral Brain Abnormalities a Signature of Inefficient Neural Plasticity?. Frontiers in Human Neuroscience, 2020, 14, 73.	1.0	4

#	Article	IF	CITATIONS
323	Learning With and Without Feedback in Children With Developmental Language Disorder. Journal of Speech, Language, and Hearing Research, 2021, 64, 1696-1711.	0.7	6
324	Reduced brain activation during spoken language processing in children with developmental language disorder and children with 22q11.2 deletion syndrome. Neuropsychologia, 2021, 158, 107907.	0.7	5
325	Molecular networks of the FOXP2 transcription factor in the brain. EMBO Reports, 2021, 22, e52803.	2.0	21
326	Sex-Specific Social Behavior and Amygdala Proteomic Deficits in Foxp2+/â^' Mutant Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 706079.	1.0	6
328	Evolutionary epistemology and the origin and evolution of language: Taking symbiogenesis seriously. , 2006, , 195-226.		22
329	Towards an Understanding of Language Origins. Biosemiotics Bookseries, 2008, , 287-317.	0.3	3
330	Functional Genomic Dissection of Speech and Language Disorders. Advances in Neurobiology, 2011, , 253-278.	1.3	1
331	Genetic Pathways Implicated in Speech and Language. , 2013, , 13-40.		4
332	Neurology of Human Facial Expression. , 2003, , 63-96.		1
333	In silico Evolutionary Developmental Neurobiology and the Origin of Natural Language. , 2007, , 151-187.		7
334	Language Learning. , 2008, , 557-577.		1
335	The evolution of consciousness. , 2007, , .		8
337	Relation between visual perceptual impairment and neonatal ultrasound diagnosis of haemorrhagic–ischaemic brain lesions in 5-year-old children. Developmental Medicine and Child Neurology, 2000, 42, 376-386.	1.1	44
339	A neurodevelopmental framework for research in childhood apraxia of speech. , 2010, , 259-270.		14
340	Molecular and Comparative Genetics of Mental Retardation. Genetics, 2004, 166, 835-881.	1.2	44
341	Hippocampal Volume and Everyday Memory in Children of Very Low Birth Weight. Pediatric Research, 2000, 47, 713-720.	1.1	289
342	Common Genetic Variants in FOXP2 Are Not Associated with Individual Differences in Language Development. PLoS ONE, 2016, 11, e0152576.	1.1	18
343	Fractionating nonword repetition: The contributions of short-term memory and oromotor praxis are different. PLoS ONE, 2017, 12, e0178356.	1.1	16

ARTICLE IF CITATIONS # Don't speak too fast! Processing of fast rate speech in children with specific language impairment. 344 1.1 13 PLoS ONE, 2018, 13, e0191808. The evolution of language and thought. Journal of Anthropological Sciences, 2016, 94, 127-46. 346 0.4 23 An Exploratory Study of EmergentLiteracy Intervention for Preschool Childrenwith Language 347 0.3 3 Impairments. Exceptionality Education International, 2008, 18, . FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra 349 finch. ELife, 2018, 7, . Genetics and the human lineage., 2007, , 3-23. 353 0 354 Size Matters., 2007,, 167-184. 355 Who Were the Neanderthals?., 2007, , 103-116. 0 Balancing Selection and Disease., 2007, , 71-83. 357 What Are the Genetic Differences That Made Us Human?., 2007, , 129-142. 0 Why Intelligent Design Is Not Science., 2007, , 17-37. Who Let the Dogs in?. , 2007, , 153-166. 359 0 Negative Selection and the Neutral Theory of Molecular Evolution., 2007, , 43-56. Clicks, Genes, and Languages., 2007, , 143-152. 361 0 Are We the Third Chimpanzee?., 2007, , 117-128. 363 Finding Our Roots. , 2007, , 89-102. 0 The Baby with the Baboon Heart., 2007, , 3-16. 364 Detecting Positive Selection., 2007, , 57-70. 365 1 Conclusion. Demain... les neurosciences. Neurosciences & Cognition Série LMD, 2008, , 589-615.

#	ARTICLE Behavior-Genetic and Molecular Studies of Disorders of Speech and Language: An Overview. , 2009, ,	IF	CITATIONS
370	125-135. Differential expression of Forkhead box protein 2 between genders in chickens. African Journal of Biotechnology, 2012, 11, .	0.3	1
371	The Evolution of Speech and Language. , 2015, , 873-920.		2
372	Organicitatea științei. Diacronìa, 2015, , .	0.1	0
373	The organicity of science. Diacronìa, 2015, , .	0.1	0
374	Considerations on the theory of the basis of articulation (I). Diacron $ ilde{A}_{\neg}$ a, 2016, , .	0.1	0
375	Considerații asupra teoriei bazei de articulație (I). Diacronìa, 2016, , .	0.1	0
377	Talking Heads. , 2017, , 375-423.		0
379	Linking Features of Genomic Function to Fundamental Features of Learned Vocal Communication. Springer Handbook of Auditory Research, 2020, , 211-244.	0.3	1
380	Development of Human Language Ability in the Process of Anthroposociogenesis. Manuskript, 2020, , 124-127.	0.0	0
381	1. L'acquisition du langage dans les pathologies du développement. , 2009, , 449-475.		1
382	Integrating the Genome and Epigenome in Human Disease. , 2009, , 343-368.		0
383	How Can Studies of Animals Help to Uncover the Roles of Genes Implicated in Human Speech and Language Disorders?. Contemporary Clinical Neuroscience, 2006, , 127-149.	0.3	0
384	Impaired Cortical Cytoarchitecture and Reduced Excitability of Deep-Layer Neurons in the Offspring of Diabetic Rats. Frontiers in Cell and Developmental Biology, 2020, 8, 564561.	1.8	7
386	Neurolinguistics and Neuroimaging: Forward to the Future, or Is It Back?. Psychological Science, 2002, 13, 388-393.	1.8	3
396	Feedback Processing During Probabilistic Learning in Children With Developmental Language Disorder: An Event-Related Potential Study. Journal of Speech, Language, and Hearing Research, 2022, 65, 2272-2287.	0.7	4
397	Syntax Acquisition in Healthy Adults and Post-Stroke Individuals: The Intriguing Role of Grammatical Preference, Statistical Learning, and Education. Brain Sciences, 2022, 12, 616.	1.1	0
398	Knots, Language, and Computation: A Bizarre Love Triangle? Replies to Objections. Biolinguistics, 2012, 6, 079-111.	0.6	10

#	Article	IF	CITATIONS
399	Language: From Sensory Mapping to Cognitive Construct. Biolinguistics, 2012, 6, 247-258.	0.6	2
400	What Would Lenneberg Think? Biolinguistics in the Third Millennium. Biolinguistics, 0, 11, 445-462.	0.6	2
401	The importance of deep speech phenotyping for neurodevelopmental and genetic disorders: a conceptual review. Journal of Neurodevelopmental Disorders, 2022, 14, .	1.5	9
406	The pale spearâ€nosed bat: A neuromolecular and transgenic model for vocal learning. Annals of the New York Academy of Sciences, 2022, 1517, 125-142.	1.8	6
407	Gsx2, but not Gsx1, is necessary for early forebrain patterning and longâ€ŧerm survival in zebrafish. Developmental Dynamics, 0, , .	0.8	1
409	The emotional component of inner speech: A pilot exploratory fMRI study. Brain and Cognition, 2023, 165, 105939.	0.8	0
410	Three Clocks of the Brain. Neuroscience and Behavioral Physiology, 0, , .	0.2	0
411	Bayesian semiparametric Markov renewal mixed models for vocalization syntax. Biostatistics, 0, , .	0.9	0
412	The contribution of theta and delta to feedback processing in children with developmental language disorder. Journal of Neurodevelopmental Disorders, 2023, 15, .	1.5	3