Fluctuations and stimulus-induced changes in blood flo capillaries in layers 2 through 4 of rat neocortex

Proceedings of the National Academy of Sciences of the Unite 95, 15741-15746

DOI: 10.1073/pnas.95.26.15741

Citation Report

#	Article	IF	CITATIONS
4	In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature Neuroscience, 1999, 2, 989-996.	7.1	352
5	Increased Cortical Oxidative Metabolism Due to Sensory Stimulation: Implications for Functional Brain Imaging. Science, 1999, 286, 1555-1558.	6.0	307
6	Optical Doppler tomography. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5, 1134-1142.	1.9	130
7	High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation. Biophysical Journal, 1999, 77, 3341-3349.	0.2	524
8	Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Applied Optics, 1999, 38, 7393.	2.1	93
9	Peer Reviewed: Multiphoton-Excited Fluorescence in Bioanalytical Chemistry Analytical Chemistry, 1999, 71, 598A-605A.	3.2	38
10	Functional MRI of calcium-dependent synaptic activity: Cross correlation with CBF and BOLD measurements. Magnetic Resonance in Medicine, 2000, 43, 383-392.	1.9	242
11	Dependence of Oxygen Delivery on Blood Flow in Rat Brain: A 7 Tesla Nuclear Magnetic Resonance Study. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 485-498.	2.4	92
12	Two-Photon Excitation Fluorescence Microscopy. Annual Review of Biomedical Engineering, 2000, 2, 399-429.	5.7	962
13	Influence of optical properties on two-photon fluorescence imaging in turbid samples. Applied Optics, 2000, 39, 1194.	2.1	165
14	Consistency behind trial-to-trial variation in intrinsic optical responses to single-whisker movement in the rat D1-barrel cortex. Neuroscience Research, 2000, 36, 193-207.	1.0	13
15	Spontaneous Low Frequency Oscillations of Cerebral Hemodynamics and Metabolism in Human Adults. NeuroImage, 2000, 12, 623-639.	2.1	585
16	Intravital Fluorescence Videomicroscopy to Study Tumor Angiogenesis and Microcirculation. Neoplasia, 2000, 2, 53-61.	2.3	92
17	Second-harmonic imaging microscopy of living cells. Journal of Biomedical Optics, 2001, 6, 277.	1.4	237
18	A Miniature Head-Mounted Two-Photon Microscope. Neuron, 2001, 31, 903-912.	3.8	597
20	Measurement of physiological parameters in tumors in vivo using MPLSM. , 2001, , .		2
21	Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR in Biomedicine, 2001, 14, 413-431.	1.6	188
22	In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Medicine, 2001, 7, 864-868.	15.2	600

#	Article	IF	CITATIONS
23	Two-Photon Excitation Laser Scanning Microscopy of Human, Porcine, and Rabbit Nasal Septal Cartilage. Tissue Engineering, 2001, 7, 599-606.	4.9	23
24	<title><emph type="1">In vivo </emph>microscopy of the mouse brain using multiphoton laser scanning techniques</title> . , 2002, 4620, 14-29.		5
25	<title>Application of multiphoton steady state and lifetime imaging to mapping of tumor vascular architecture <emph type="1">in vivo</emph></title> . , 2002, 4620, 85.		21
26	Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15182-15187.	3.3	244
27	Functional studies of the kidney of living animals using multicolor two-photon microscopy. American Journal of Physiology - Cell Physiology, 2002, 283, C905-C916.	2.1	287
28	Principles, Design,and Construction of a Two-Photon Laser-Scanning Microscopefor In Vitro and In Vivo Brain Imaging. Frontiers in Neuroscience, 2002, , .	0.0	24
29	Conventional and High-Speed Intravital Multiphoton Laser Scanning Microscopy of Microvasculature, Lymphatics, and Leukocyte-Endothelial Interactions. Molecular Imaging, 2002, 1, 153535002002000.	0.7	13
30	<title>Comparison of in-vivo optical imaging of brain functional activity: intrinsic signal imaging and laser speckle imaging</title> . , 2002, , .		0
31	Cortical blood flow through individual capillaries in rat vibrissa S1 cortex: stimulus-induced changes in flow are comparable to the underlying fluctuations in flow. International Congress Series, 2002, 1235, 115-122.	0.2	10
32	Near-Infrared Spectroscopy and Imaging. , 2002, , 141-158.		20
33	Dynamic Measurements of Local Cerebral Blood Flow: Examples from Rodent Whisker Barrel Cortex. , 2002, , 159-173.		2
34	Brain Activation. , 2002, , 41-62.		2
35	Ca2+ imaging in the mammalian brain in vivo. European Journal of Pharmacology, 2002, 447, 119-129.	1.7	66
36	Spatial Integration of Vascular Changes with Neural Activity in Mouse Cortex. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 353-360.	2.4	62
37	Miniaturization of Fluorescence Microscopes Using Fibre Optics. Experimental Physiology, 2002, 87, 737-745.	0.9	73
38	Dissecting tumour pathophysiology using intravital microscopy. Nature Reviews Cancer, 2002, 2, 266-276.	12.8	576
39	Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat. Brain Research, 2003, 963, 81-92.	1.1	62
40	The Hemodynamic Impulse Response to a Single Neural Event. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 546-555.	2.4	129

		EPORI	
#	Article	IF	CITATIONS
41	Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology, 2003, 21, 1369-1377.	9.4	3,524
42	Independent component analysis of nondeterministic fMRI signal sources. NeuroImage, 2003, 19, 253-260.	2.1	363
43	Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation. Applied Optics, 2003, 42, 3321.	2,1	47
44	Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al_2O_3 regenerative amplifier. Optics Letters, 2003, 28, 1022.	1.7	619
45	All-Optical Histology Using Ultrashort Laser Pulses. Neuron, 2003, 39, 27-41.	3.8	204
46	Modified laser speckle imaging method with improved spatial resolution. Journal of Biomedical Optics, 2003, 8, 559.	1.4	236
47	All-optical thrombotic stroke model for near-surface blood vessels in rat: focal illumination of exogeneous photosensitizers combined with real-time two-photon imaging. , 2003, , .		2
48	Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13081-13086.	3.3	291
49	Intravital Imaging of the Kidney Using Multiparameter Multiphoton Microscopy. Nephron Experimental Nephrology, 2003, 94, e7-e11.	2.4	49
50	The single capillary and the active brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12535-12536.	3.3	7
51	Real-time two-photon fluorescence microscopy of blood flow dynamics following photothrombotic stroke in rat neocortex. , 0, , .		0
52	Multiphoton imaging using a Ti:sapphire regenerative amplifier. , 2003, 5139, 1.		2
53	Detection of time window of cerebral blood flow response induced by sciatic nerve stimulation using temporal clustering analysis. , 2003, , .		0
54	Structural and Functional Optical Imaging of Angiogenesis in Animal Models. Methods in Enzymology, 2004, 386, 105-122.	0.4	3
55	On the fundamental imaging-depth limit in two-photon microscopy. , 2004, , .		7
56	A Model of the Dynamic Relationship between Blood Flow and Volume Changes during Brain Activation. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1382-1392.	2.4	59
57	Nonlinear microscopy: new techniques and applications. Current Opinion in Neurobiology, 2004, 14, 610-616.	2.0	115
58	Fiber optic in vivo imaging in the mammalian nervous system. Current Opinion in Neurobiology, 2004, 14, 617-628.	2.0	77

	Cı	CITATION REPORT	
#	Article	IF	CITATIONS
59	Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes. Glia, 2004, 46, 95-100.	2.5	33
60	In Vivo Multiphoton Microscopy of Deep Brain Tissue. Journal of Neurophysiology, 2004, 91, 1908-19	12. 0.9	451
61	In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy. Journal of Neurophysiology, 2004, 92, 3121-3133.	0.9	373
62	Capillary level imaging of local cerebral blood flow in bicuculline-induced epileptic foci. Neuroscience, 2004, 128, 209-216.	1.1	48
63	Coherence-gated wave-front sensing in strongly scattering samples. Optics Letters, 2004, 29, 2255.	1.7	55
64	Two-Photon Microscopy of Cells and Tissue. Circulation Research, 2004, 95, 1154-1166.	2.0	286
65	A method for measuring cerebral blood volume of mouse using multiphoton laser scanning microscopy. , 2004, 5463, 1.		3
66	Two-Photon Confocal Microscopy: A Nondestructive Method for Studying Wound Healing. Plastic and Reconstructive Surgery, 2004, 114, 121-128.	0.7	15
67	Targeted disruption of deep-lying neocortical microvessels in rat using ultrashort laser pulses. , 2004, , .		0
68	Deep tissue two-photon microscopy. Nature Methods, 2005, 2, 932-940.	9.0	3,641
69	Neurobarrier Coupling in the Brain: A Partner of Neurovascular and Neurometabolic Coupling?. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 2-16.	2.4	150
70	Cerebral Blood Flow and Brain Oxygenation in Rats Breathing Oxygen under Pressure. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1288-1300.	2.4	58
71	Separation of physiological very low frequency fluctuation from aliasing by switched sampling interval fMRI scans. Magnetic Resonance Imaging, 2005, 23, 41-46.	1.0	48
72	Applications of two-photon microscopy in the neurosciences. Frontiers in Bioscience - Landmark, 2005, 10, 2263.	3.0	12
73	Barrels XVII–proceedings. Somatosensory & Motor Research, 2005, 22, 1-23.	0.4	0
74	Separate Spatial Scales Determine Neural Activity-Dependent Changes in Tissue Oxygen within Centra Visual Pathways. Journal of Neuroscience, 2005, 25, 9046-9058.	al 1.7	45
75	Synaptic and Vascular Associations of Neurons Containing Cyclooxygenase-2 and Nitric Oxide Synthase in Rat Somatosensory Cortex. Cerebral Cortex, 2005, 15, 1250-1260.	1.6	74
76	Imaging of gene expression in living cells and tissues. Journal of Biomedical Optics, 2005, 10, 051406	. 1.4	18

#	Article	IF	CITATIONS
78	Compartment-Resolved Imaging of Activity-Dependent Dynamics of Cortical Blood Volume and Oximetry. Journal of Neuroscience, 2005, 25, 2233-2244.	1.7	121
79	Rapid Reversible Changes in Dendritic Spine Structure In Vivo Gated by the Degree of Ischemia. Journal of Neuroscience, 2005, 25, 5333-5338.	1.7	252
80	In vivo Confocal Laser Scanning Microscopy and Micropuncture in Intact Rat. Nephron Experimental Nephrology, 2005, 99, e17-e25.	2.4	19
81	Temporal dynamics of the BOLD fMRI impulse response. NeuroImage, 2005, 24, 667-677.	2.1	110
82	A three-compartment model of the hemodynamic response and oxygen delivery to brain. NeuroImage, 2005, 28, 925-939.	2.1	80
83	A multi-photon window onto neuronal–glial–vascular communication. Trends in Neurosciences, 2005, 28, 217-219.	4.2	26
84	Skeletal Muscle NAD(P)H Two-Photon Fluorescence Microscopy In Vivo: Topology and Optical Inner Filters. Biophysical Journal, 2005, 88, 2165-2176.	0.2	77
85	Functional optical imaging of brain activation: a multi-scale, multi-modality approach. , 2006, , .		4
86	Investigating neural–hemodynamic coupling and the hemodynamic response function in the awake rat. NeuroImage, 2006, 32, 33-48.	2.1	236
87	Spatial flow-volume dissociation of the cerebral microcirculatory response to mild hypercapnia. NeuroImage, 2006, 32, 520-530.	2.1	118
88	Principles of Multiphoton Microscopy. Nephron Experimental Nephrology, 2006, 103, e33-e40.	2.4	75
89	Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography. Optics Letters, 2006, 31, 3459.	1.7	54
90	On the fundamental imaging-depth limit in two-photon microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 3139.	0.8	344
91	Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 932.	0.9	67
92	Fiber-optic fluorescence correlation spectrometer. Applied Optics, 2006, 45, 7538.	2.1	20
93	Lack of relationship between cellular density and either capillary density or metabolic rate in different regions of the brain. Neuroscience Letters, 2006, 404, 20-22.	1.0	13
94	Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience. Neuron, 2006, 50, 823-839.	3.8	923
95	Sensory-Evoked Intrinsic Optical Signals in the Olfactory Bulb Are Coupled to Glutamate Release and Uptake. Neuron, 2006, 52, 335-345.	3.8	106

# 96	ARTICLE Video-rate two-photon microscopy of cortical hemodynamics in-vivo. , 2006, , MI1.	IF	Citations 3
97	Textbook ofin vivo Imaging in Vertebrates. , 2006, , .		4
99	In Vivo Imaging of Mammalian Cochlear Blood Flow Using Fluorescence Microendoscopy. Otology and Neurotology, 2006, 27, 144-152.	0.7	31
100	Haemodynamic and neural responses to hypercapnia in the awake rat. European Journal of Neuroscience, 2006, 24, 2601-2610.	1.2	42
101	Multi-photon excitation microscopy in intact animals. Journal of Microscopy, 2006, 222, 58-64.	0.8	60
102	Controlled capillaries. Nature, 2006, 443, 642-643.	13.7	7
103	Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nature Methods, 2006, 3, 99-108.	9.0	306
104	In vivo imaging of the diseased nervous system. Nature Reviews Neuroscience, 2006, 7, 449-463.	4.9	174
105	The Spatial Dependence of the Poststimulus Undershoot as Revealed by High-Resolution BOLD- and CBV-Weighted fMRI. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 634-644.	2.4	93
106	MPScope: A versatile software suite for multiphoton microscopy. Journal of Neuroscience Methods, 2006, 156, 351-359.	1.3	104
107	Multi-Photon Molecular Excitation in Laser-Scanning Microscopy. , 2006, , 535-549.		28
108	Spatial extent of CBF response during whisker stimulation using trial averaged laser Doppler imaging. Brain Research, 2006, 1089, 135-142.	1.1	8
109	Hemodynamic responses in cortex investigated with optical imaging methods. Implications for functional brain mapping. Journal of Physiology (Paris), 2006, 100, 201-211.	2.1	17
110	Tumor Imaging. , 0, , 277-309.		0
111	Optical Microscopy in Small Animal Research. , 0, , 183-190.		0
112	High-resolution functional optical imaging: sub-millimeter physiology of living tissue. , 2006, , MB1.		0
113	Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion. PLoS Biology, 2006, 4, e22.	2.6	329
114	Quantitative imaging of basic functions in renal (patho)physiology. American Journal of Physiology - Renal Physiology, 2006, 291, F495-F502.	1.3	144

#	Article	IF	CITATIONS
115	Two-photon Imaging of Glutathione Levels in Intact Brain Indicates Enhanced Redox Buffering in Developing Neurons and Cells at the Cerebrospinal Fluid and Blood-Brain Interface. Journal of Biological Chemistry, 2006, 281, 17420-17431.	1.6	79
116	Cerebral Blood Flow Recorded At High Sensitivity in Two Dimensions Using High Resolution Optical Imaging. , 0, , .		3
118	Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17137-17142.	3.3	326
119	The Relationship between Blood Flow and Neuronal Activity in the Rodent Olfactory Bulb. Journal of Neuroscience, 2007, 27, 6452-6460.	1.7	103
120	Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal. Journal of Neuroscience, 2007, 27, 4452-4459.	1.7	345
121	Imaging the Impact of Cortical Microcirculation on Synaptic Structure and Sensory-Evoked Hemodynamic Responses In Vivo. PLoS Biology, 2007, 5, e119.	2.6	171
122	Control of Early Events in Olfactory Processing by Adult Neurogenesis. Chemical Senses, 2007, 32, 397-409.	1.1	29
123	ESTIMATING LEUKOCYTE VELOCITIES FROM HIGH-SPEED 1D LINE SCANS ORIENTED ORTHOGONAL TO BLOOD FLOW. , 2007, , .		1
124	Two-Photon Absorption Imaging of Hemoglobin. , 2007, , .		0
125	Endotoxemia increases the clearance of mPEGylated 5000-MW quantum dots as revealed by multiphoton microvascular imaging. Journal of Biomedical Optics, 2007, 12, 064005.	1.4	11
126	In vivo imaging of elastic fibers using sulforhodamine B. Journal of Biomedical Optics, 2007, 12, 064017.	1.4	24
127	High-Resolution In Vivo Imaging of the Neurovascular Unit during Spreading Depression. Journal of Neuroscience, 2007, 27, 4036-4044.	1.7	190
128	Extensive Turnover of Dendritic Spines and Vascular Remodeling in Cortical Tissues Recovering from Stroke. Journal of Neuroscience, 2007, 27, 4101-4109.	1.7	330
129	Rapid Astrocyte Calcium Signals Correlate with Neuronal Activity and Onset of the Hemodynamic Response In Vivo. Journal of Neuroscience, 2007, 27, 6268-6272.	1.7	199
130	Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 365-370.	3.3	341
131	Validation of in vivo Leukocyte Velocity Estimates via Modeling and Simulation. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 2007, , .	0.0	0
132	Large two-photon absorptivity of hemoglobin in the infrared range of 780–880nm. Journal of Chemical Physics, 2007, 126, 025102.	1.2	38
133	New Angles on Neuronal Dendrites In Vivo. Journal of Neurophysiology, 2007, 98, 3770-3779.	0.9	86

ARTICLE IF CITATIONS # Liveâ€Animal Imaging of Renal Function by Multiphoton Microscopy. Current Protocols in Cytometry, 134 3.7 22 2007, 41, Unit12.9. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during 2.1 284 somatosensory stimulation. NeuroImage, 2007, 35, 89-104. Optical brain imaging in vivo: techniques and applications from animal to man. Journal of Biomedical 136 1.4 377 Optics, 2007, 12, 051402. Apparent diffusion time of oxygen from blood to tissue in rat cerebral cortex: implication for tissue oxygen dynamics during brain functions. Journal of Applied Physiology, 2007, 103, 1352-1358. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods, 138 9.0 346 2007, 4, 73-79. Glial regulation of the cerebral microvasculature. Nature Neuroscience, 2007, 10, 1369-1376. 7.1 1,003 A Direct Method for Measuring Mouse Capillary Cortical Blood Volume Using Multiphoton Laser 140 2.4 37 Scanning Microscopy. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1072-1081. Fine Mapping of the Spatial Relationship between Acute Ischemia and Dendritic Structure Indicates 141 Selective Vulnerability of Layer V Neuron Dendritic Tufts within Single Neuronsin Vivo. Journal of 2.4 Cerebral Blood Flow and Metabolism, 2007, 27, 1185-1200. Optimization of multiphoton excitation microscopy by total emission detection using a parabolic 142 0.8 32 light reflector. Journal of Microscopy, 2007, 228, 330-337. Novel Technique for Estimating Cerebrovascular Permeability Demonstrates Capsazepine Protection 143 1.0 Following Ischemia-Reperfusion. Microcirculation, 2007, 14, 767-778. Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an 144 1.3 52 upright microscope. Journal of Neuroscience Methods, 2008, 170, 35-44. Imaging brain vasculature with BOLD microscopy: MR detection limits determined by in vivo twoã€photon microscopy. Magnetic Resonance in Medicine, 2008, 59, 855-865. Endogenous brain fluctuations and diagnostic imaging. Human Brain Mapping, 2008, 29, 810-817. 146 1.9 47 Automated Method for Tracking Vast Numbers of FITC‣abeled RBCs in Microvessels of Rat Brain <i>In 1.0 Vivo</i> Using a Highâ€Speed Čonfocal Microscope System. Microcirculation, 2008, 15, 163-174. 148 Imaging angiogenesis and the microenvironment. Apmis, 2008, 116, 695-715. 0.9 139 Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature, 2008, 456, 745-749. 149 642 Functional Reactivity of Cerebral Capillaries. Journal of Cerebral Blood Flow and Metabolism, 2008, 150 2.4 189 28,961-972. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against 151 1.1 sepsis. Cellular Microbiology, 2008, 10, 1987-1998.

#	Article	IF	CITATIONS
152	Cardiovascular Imaging Using Two-Photon Microscopy. Microscopy and Microanalysis, 2008, 14, 492-506.	0.2	22
153	Chapter 10 In Vivo Measurements of Blood Flow and Glial Cell Function with Twoâ€Photon Laserâ€Scanning Microscopy. Methods in Enzymology, 2008, 444, 231-254.	0.4	38
154	In vivo staining of neocortical astrocytes via the cerebral microcirculation using sulforhodamine B. Journal of Biomedical Optics, 2008, 13, 064028.	1.4	20
155	Two-Photon Imaging during Prolonged Middle Cerebral Artery Occlusion in Mice Reveals Recovery of Dendritic Structure after Reperfusion. Journal of Neuroscience, 2008, 28, 11970-11979.	1.7	121
156	Calcium imaging in the living brain: prospects for molecular medicine. Trends in Molecular Medicine, 2008, 14, 389-399.	3.5	42
157	Coupling of Neural Activity to Blood Flow in Olfactory Glomeruli Is Mediated by Astrocytic Pathways. Neuron, 2008, 58, 897-910.	3.8	220
158	Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex. Optics Letters, 2008, 33, 1156.	1.7	20
159	Reduced deep-tissue image degradation in three-dimensional multiphoton microscopy with concentric two-color two-photon fluorescence excitation. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 976.	0.9	14
160	Oxygen advection and diffusion in a three-dimensional vascular anatomical network. Optics Express, 2008, 16, 17530.	1.7	105
161	Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser. Optics Express, 2008, 16, 20848.	1.7	46
162	A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy. IEEE Journal of Solid-State Circuits, 2008, 43, 2546-2557.	3.5	90
163	Source of nonlinearity of the BOLD response revealed by simultaneous fMRI and NIRS. NeuroImage, 2008, 39, 997-1013.	2.1	35
164	A vascular anatomical network model of the spatio-temporal response to brain activation. NeuroImage, 2008, 40, 1116-1129.	2.1	205
165	Long-Term, High-Resolution Imaging in the Neocortex In Vivo. Cold Spring Harbor Protocols, 2008, 2008, 2008, pdb.prot4902.	0.2	4
166	Stimulus-Induced Changes in Blood Flow and 2-Deoxyglucose Uptake Dissociate in Ipsilateral Somatosensory Cortex. Journal of Neuroscience, 2008, 28, 14347-14357.	1.7	184
167	Functional Studies in Living Animals Using Multiphoton Microscopy. ILAR Journal, 2008, 49, 66-77.	1.8	35
168	Imaging Techniques in Acute Kidney Injury. Nephron Clinical Practice, 2008, 109, c198-c204.	2.3	13
169	Albumin Therapy Improves Local Vascular Dynamics in a Rat Model of Primary Microvascular Thrombosis, Stroke, 2008, 39, 198-204,	1.0	68

#	Article	IF	CITATIONS
170	Albumin Therapy Augments the Effect of Thrombolysis on Local Vascular Dynamics in a Rat Model of Arteriolar Thrombosis. Stroke, 2008, 39, 1556-1562.	1.0	56
171	Femtosecond lasers in biology: nanoscale surgery with ultrafast optics. Contemporary Physics, 2008, 49, 391-411.	0.8	16
172	Two-Photon Imaging of Stroke Onset <i>In Vivo</i> Reveals That NMDA-Receptor Independent Ischemic Depolarization Is the Major Cause of Rapid Reversible Damage to Dendrites and Spines. Journal of Neuroscience, 2008, 28, 1756-1772.	1.7	246
173	Subtraction method for intravital two-photon microscopy: intraparenchymal imaging and quantification of extravasation in mouse brain cortex. Journal of Biomedical Optics, 2008, 13, 011002.	1.4	17
174	Label-free in vivo optical imaging of microvasculature and oxygenation level. Journal of Biomedical Optics, 2008, 13, 040503.	1.4	49
175	Coupling between neuronal activity and microcirculation: Implications for functional brain imaging. HFSP Journal, 2008, 2, 79-98.	2.5	76
176	A Method for 2-Photon Imaging of Blood Flow in the Neocortex through a Cranial Window. Journal of Visualized Experiments, 2008, , .	0.2	40
177	Label free high resolution in vivo optical imaging of microvessels. Proceedings of SPIE, 2008, , .	0.8	2
178	Cerebral blood flow and brain activation. , 0, , 34-64.		0
179	A model for transient oxygen delivery in cerebral cortex. Frontiers in Neuroenergetics, 2009, 1, 3.	5.3	27
180	Coupling of capillary RBC flow failure with neuronal depolarization. Nature Precedings, 2009, , .	0.1	1
181	<i>In vivo</i> functional chronic imaging of a small animal model using opticalâ€resolution photoacoustic microscopy. Medical Physics, 2009, 36, 2320-2323.	1.6	64
182	Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19557-19562.	3.3	211
183	Microprisms for In Vivo Multilayer Cortical Imaging. Journal of Neurophysiology, 2009, 102, 1310-1314.	0.9	80
184	Imaging myocardial angiogenesis. Nature Reviews Cardiology, 2009, 6, 648-658.	6.1	10
185	Odor-Evoked Oxygen Consumption by Action Potential and Synaptic Transmission in the Olfactory Bulb. Journal of Neuroscience, 2009, 29, 1424-1433.	1.7	69
186	Deep-tissue multiphoton fluorescence lifetime microscopy for intravital imaging of protein-protein interactions. , 2009, , .		6
187	In vivo veritas: the power of in situ manipulation of cells in a living animal. Focus on "Expression of plasmid DNA in the salivary gland epithelium: novel approaches to study dynamic cellular processes in live animals†American Journal of Physiology - Cell Physiology, 2009, 297, C1333-C1335.	2.1	2

#	Article	IF	CITATIONS
188	The Barrel Cortex as a Model to Study Dynamic Neuroglial Interaction. Neuroscientist, 2009, 15, 351-366.	2.6	25
189	Photothrombosis ischemia stimulates a sustained astrocytic Ca ²⁺ signaling <i>in vivo</i> . Glia, 2009, 57, 767-776.	2.5	112
190	Subâ€millimeter resolution 3D optical imaging of living tissue using laminar optical tomography. Laser and Photonics Reviews, 2009, 3, 159-179.	4.4	54
191	Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathologica, 2009, 117, 497-509.	3.9	126
192	Rapid and local autoregulation of cerebrovascular blood flow: a deepâ€brain imaging study in the mouse. Journal of Physiology, 2009, 587, 745-752.	1.3	10
193	Multimodal Measurements of Blood Plasma and Red Blood Cell Volumes during Functional Brain Activation. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 19-24.	2.4	29
194	Active Dilation of Penetrating Arterioles Restores Red Blood Cell Flux to Penumbral Neocortex after Focal Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 738-751.	2.4	125
195	Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature, 2009, 461, 1105-1109.	13.7	255
196	Two-color two-photon excitation of indole using a femtosecond laser regenerative amplifier. Optics Communications, 2009, 282, 1056-1061.	1.0	4
197	Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation. Journal of Neuroscience Methods, 2009, 178, 162-173.	1.3	79
198	Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Current Opinion in Biotechnology, 2009, 20, 90-99.	3.3	81
199	Multiphoton imaging of hostâ€pathogen interactions. Biotechnology Journal, 2009, 4, 804-811.	1.8	8
200	Erythrocyte flow in choriocapillaris of normal and diabetic rats. Microvascular Research, 2009, 77, 247-255.	1.1	13
201	In vivo brain imaging using a portable 29 g two-photon microscope based on a microelectromechanical systems scanning mirror. Optics Letters, 2009, 34, 2309.	1.7	154
202	Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography. Optics Letters, 2009, 34, 3086.	1.7	49
203	Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy. Optics Express, 2009, 17, 7688.	1.7	115
204	Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express, 2009, 17, 13354.	1.7	567
205	Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. Optics Express, 2009, 17, 15670.	1.7	191

	CHATION R	EPORT	
#	Article	IF	CITATIONS
206	Advances in Light Microscopy for Neuroscience. Annual Review of Neuroscience, 2009, 32, 435-506.	5.0	269
207	Improved Model of Fluorescence Recovery Expands the Application of Multiphoton Fluorescence Recovery after Photobleaching in Vivo. Biophysical Journal, 2009, 96, 5082-5094.	0.2	14
208	A comparison of tissue penetrations between single and two-photon-excitations. Applied Physics Letters, 2009, 95, 143705.	1.5	3
209	Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Review of Scientific Instruments, 2009, 80, 081101.	0.6	142
210	Animal Models of Acute Neurological Injuries. Springer Protocols, 2009, , .	0.1	14
211	Extraction of tubular structures over an orientation domain. , 2009, , .		45
212	Ultrafast optics: Imaging and manipulating biological systems. Journal of Applied Physics, 2009, 105, 051101.	1.1	43
213	Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI. NeuroImage, 2009, 47, 1608-1619.	2.1	26
214	Multiphoton Imaging of Renal Regulatory Mechanisms. Physiology, 2009, 24, 88-96.	1.6	48
215	In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma-Mediated Ablation Principles and Hardware Realization. Frontiers in Neuroscience, 2009, , 59-115.	0.0	20
216	Two-Photon Functional Imaging of Neuronal Activity. Frontiers in Neuroscience, 2009, , 37-58.	0.0	9
217	In vivo Imaging of Deep Cortical Layers using a Microprism. Journal of Visualized Experiments, 2009, , .	0.2	9
218	Topology, dynamics, and control in cortical blood flow elucidated with optical techniques. Proceedings of SPIE, 2009, , .	0.8	0
219	Rapid determination of particle velocity from space-time images using the Radon transform. Journal of Computational Neuroscience, 2010, 29, 5-11.	0.6	129
220	A New Approach to Model Confined Suspensions Flows in Complex Networks: Application to Blood Flow. Transport in Porous Media, 2010, 83, 171-194.	1.2	22
221	ATP, glia and central respiratory control. Respiratory Physiology and Neurobiology, 2010, 173, 305-311.	0.7	54
222	Targeting Nonâ€Fluorescent Molecules by Nonlinear Optical Imaging. ChemPhysChem, 2010, 11, 1619-1622.	1.0	0
223	Comparison of α-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magnetic Resonance Imaging, 2010, 28, 995-1003.	1.0	156

#	Article	IF	CITATIONS
224	Tumor Microvasculature and Microenvironment: Novel Insights Through Intravital Imaging in Pre-Clinical Models. Microcirculation, 2010, 17, 206-225.	1.0	376
225	Limitations of Collateral Flow after Occlusion of a Single Cortical Penetrating Arteriole. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1914-1927.	2.4	106
226	Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature, 2010, 465, 478-482.	13.7	152
227	Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nature Methods, 2010, 7, 655-660.	9.0	192
228	Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods, 2010, 7, 603-614.	9.0	1,536
229	Chronic optical access through a polished and reinforced thinned skull. Nature Methods, 2010, 7, 981-984.	9.0	382
230	Oxygen maps in the brain. Nature Methods, 2010, 7, 697-699.	9.0	2
231	Functional importance of blood flow dynamics and partial oxygen pressure in the anterior pituitary. European Journal of Neuroscience, 2010, 32, 2087-2095.	1.2	20
232	Revisiting the role of neurons in neurovascular coupling. Frontiers in Neuroenergetics, 2010, 2, 9.	5.3	204
233	Multi-photon nanosurgery in live brain. Frontiers in Neuroenergetics, 2010, 2, .	5.3	41
234	Recent Advances in High-Resolution MR Application and Its Implications for Neurovascular Coupling Research. Frontiers in Neuroenergetics, 2010, 2, 130.	5.3	23
235	Vascular Origins of BOLD and CBV fMRI Signals: Statistical Mapping and Histological Sections Compared. Open Neuroimaging Journal, 2010, 4, 1-8.	0.2	25
236	Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model. Journal of Biomedical Optics, 2010, 15, 066006.	1.4	31
237	Local Hemodynamics Dictate Long-Term Dendritic Plasticity in Peri-Infarct Cortex. Journal of Neuroscience, 2010, 30, 14116-14126.	1.7	109
238	Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15246-15251.	3.3	267
239	Photoacoustic imaging and characterization of the microvasculature. Journal of Biomedical Optics, 2010, 15, 011101.	1.4	324
240	Topological basis for the robust distribution of blood to rodent neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12670-12675.	3.3	158
241	Acousto-optic laser scanning for multi-site photo-stimulation of single neurons <i>in vitro</i> . Journal of Neural Engineering, 2010, 7, 045002.	1.8	16

#	Article	IF	CITATIONS
242	In vivo deep tissue imaging with long wavelength multiphoton excitation. Proceedings of SPIE, 2010, , .	0.8	4
243	Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22290-22295.	3.3	349
244	Two-Photon Fluorescence Microscopy of Cerebral Hemodynamics. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5494.	0.2	13
245	Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E807-E814.	1.8	69
246	Automatic Identification of Fluorescently Labeled Brain Cells for Rapid Functional Imaging. Journal of Neurophysiology, 2010, 104, 1803-1811.	0.9	53
247	Multi-Layer In Vivo Imaging of Neocortex Using a Microprism. Cold Spring Harbor Protocols, 2010, 2010, 2010, pdb.prot5476.	0.2	7
248	Functional Doppler optical coherence tomography for cortical blood flow imaging. Proceedings of SPIE, 2010, , .	0.8	0
249	Optical Doppler tomography and spectral Doppler imaging of localized ischemic stroke in a mouse model. Proceedings of SPIE, 2010, , .	0.8	0
250	Multiphoton Imaging Techniques in Acute Kidney Injury. Contributions To Nephrology, 2010, 165, 46-53.	1.1	11
251	In Vivo 2-Photon Imaging of Fine Structure in the Rodent Brain. Stroke, 2010, 41, S117-23.	1.0	52
252	Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using <i>in vivo</i> two-photon mapping. Journal of Neural Engineering, 2010, 7, 046011.	1.8	157
253	Quantitative cerebral blood flow with Optical Coherence Tomography. Optics Express, 2010, 18, 2477.	1.7	239
254	Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults. Biological Psychology, 2010, 85, 79-89.	1.1	21
255	Loss of retinal capillary vasoconstrictor response to Endothelin-1 following pressure increments in living isolated rat retinas. Experimental Eye Research, 2010, 90, 33-40.	1.2	7
256	Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits. Neuron, 2010, 66, 681-694.	3.8	750
257	Derangements of post-ischemic cerebral blood flow by protein kinase C delta. Neuroscience, 2010, 171, 566-576.	1.1	20
258	Measuring arterial and tissue responses to functional challenges using arterial spin labeling. NeuroImage, 2010, 49, 478-487.	2.1	15
260	Imaging the Brain with Optical Methods. , 2010, , .		4

TION

#	Article	IF	CITATIONS
261	Two-Photon Upconversion Laser (Scanning and Wide-Field) Microscopy Using Ln ³⁺ -Doped NaYF ₄ Upconverting Nanocrystals: A Critical Evaluation of their Performance and Potential in Bioimaging. Journal of Physical Chemistry C, 2011, 115, 19054-19064.	1.5	146
262	Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5970-5975.	3.3	150
263	Functional ultrasound imaging of the brain. Nature Methods, 2011, 8, 662-664.	9.0	589
264	Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries. NeuroImage, 2011, 56, 1001-1010.	2.1	26
265	Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo. NeuroImage, 2011, 54, 1130-1139.	2.1	44
266	High-speed vascular dynamics of the hemodynamic response. NeuroImage, 2011, 54, 1021-1030.	2.1	111
267	Measuring Neuronal Population Activity Using 3D Laser Scanning. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot066597.	0.2	6
268	Two-photon excited hemoglobin fluorescence. Biomedical Optics Express, 2011, 2, 71.	1.5	68
269	Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope. Biomedical Optics Express, 2011, 2, 781.	1.5	83
270	Numerical evaluation of temporal focusing characteristics in transparent and scattering media. Optics Express, 2011, 19, 4937.	1.7	56
271	Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue. Optics Express, 2011, 19, 22755.	1.7	52
272	Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo. Optics Letters, 2011, 36, 834.	1.7	24
273	Role of Astrocytes in Neurovascular Coupling. Neuron, 2011, 71, 782-797.	3.8	347
274	Depth-resolved optical imaging of hemodynamic response in mouse brain with microcirculatory beds. , 2011, , .		1
275	Imaging calcium signals <i>in vivo</i> : a powerful tool in physiology and pharmacology. British Journal of Pharmacology, 2011, 163, 1605-1625.	2.7	111
276	Similarities and Differences in Arterial Responses to Hypercapnia and Visual Stimulation. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 560-571.	2.4	29
277	Two-Photon Fluorescence Microscopy Study of Cerebrovascular Dynamics in Ultrasound-Induced Blood—Brain Barrier Opening. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1852-1862.	2.4	116
278	Bidirectional control of arteriole diameter by astrocytes. Experimental Physiology, 2011, 96, 393-399.	0.9	82

#	Article	IF	CITATIONS
279	A New Variational Method for Erythrocyte Velocity Estimation in Wide-Field ImagingIn Vivo. IEEE Transactions on Medical Imaging, 2011, 30, 1527-1545.	5.4	7
280	Conjugates of folic acids with BSA-coated quantum dots for cancer cell targeting and imaging by single-photon and two-photon excitation. Journal of Biological Inorganic Chemistry, 2011, 16, 117-123.	1.1	40
281	Visualizing odor representation in the brain: a review of imaging techniques for the mapping of sensory activity in the olfactory glomeruli. Cellular and Molecular Life Sciences, 2011, 68, 2689-2709.	2.4	105
282	Subâ€surface, micrometerâ€scale incisions produced in rodent cortex using tightlyâ€focused femtosecond laser pulses. Lasers in Surgery and Medicine, 2011, 43, 382-391.	1.1	14
283	Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia, 2011, 59, 1744-1753.	2.5	86
284	<i>In vivo</i> optical imaging and dynamic contrast methods for biomedical research. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 4620-4643.	1.6	98
285	Cortical blood flow imaging with a portable MEMS based 2-photon fluorescence microendoscope. , 2011, , .		1
286	Cortical blood flow imaging with a portable MEMS based 2-photon fluorescence microendoscope. , 2011, , .		0
287	Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8473-8478.	3.3	257
288	Optical detection of brain function: simultaneous imaging of cerebral vascular response, tissue metabolism, and cellular activity in vivo. Reviews in the Neurosciences, 2011, 22, 695-709.	1.4	12
289	Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response. Journal of Biomedical Optics, 2011, 16, 106003.	1.4	21
290	Bevacizumab Has Differential and Dose-Dependent Effects on Glioma Blood Vessels and Tumor Cells. Clinical Cancer Research, 2011, 17, 6192-6205.	3.2	148
291	Automatic tracking and measurement of the motion of blood cells in microvessels based on analysis of multiple spatiotemporal images. Measurement Science and Technology, 2011, 22, 045803.	1.4	11
292	Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy. Journal of Biomedical Optics, 2011, 16, 1.	1.4	48
293	Monitoring of drug and stimulation induced cerebral blood flow velocity changes in rat sensory cortex using spectral domain Doppler optical coherence tomography. Journal of Biomedical Optics, 2011, 16, 046001.	1.4	8
294	Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nature Medicine, 2011, 17, 893-898.	15.2	236
295	High Intracranial Pressure Effects on Cerebral Cortical Microvascular Flow in Rats. Journal of Neurotrauma, 2011, 28, 775-785.	1.7	50
296	Label-free optical activation of astrocyte in vivo. Journal of Biomedical Optics, 2011, 16, 075003.	1.4	21

ARTICLE IF CITATIONS Neocortical Capillary Flow Pulsatility is Not Elevated in Experimental Communicating Hydrocephalus. 297 2.4 17 Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 318-329. In vivo dynamics of innate immune sentinels in the CNS. Intravital, 2012, 1, 95-106. 298 299 Multifocal multiphoton endoscope. Optics Letters, 2012, 37, 1349. 1.7 40 OCT methods for capillary velocimetry. Biomedical Optics Express, 2012, 3, 612. 300 143 Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik 301 1.526 interferometer. Biomedical Optics Express, 2012, 3, 2510. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores. Optics Express, 2012, 20, 18525. 1.7 24 In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice. American Journal of Physiology - Heart and 303 1.5129 Circulatory Physiology, 2012, 302, H1367-H1377. Anesthesia and the Quantitative Evaluation of Neurovascular Coupling. Journal of Cerebral Blood 304 2.4 Flow and Metabolism, 2012, 32, 1233-1247. The Roles of Cerebral Blood Flow, Capillary Transit Time Heterogeneity, and Oxygen Tension in Brain 305 2.4 394 Oxygenation and Metabolism. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 264-277. Cerebral Blood Volume Changes during Brain Activation. Journal of Cerebral Blood Flow and 2.4 Metabolism, 2012, 32, 1618-1631. Liveâ€Animal Imaging of Renal Function by Multiphoton Microscopy. Current Protocols in Cytometry, 307 31 3.7 2012, 62, Unit12.9. In Vivo Imaging of the Diseased Nervous System: An Update. Current Pharmaceutical Design, 2012, 18, 308 4465-4470 Detection of Microregional Hypoxia in Mouse Cerebral Cortex by Two-photon Imaging of Endogenous 309 0.2 7 NADH Fluorescence. Journal of Visualized Experiments, 2012, , . Quantitative imaging of red blood cell velocity invivo using optical coherence Doppler tomography. Applied Physics Letters, 2012, 100, 233702. 1.5 The use of two-photon microscopy to study the biological effects of focused ultrasound on the 311 0.8 6 brain. Proceedings of SPIE, 2012, , . Arteries dominate volume changes during brief functional hyperemia: Evidence from mathematical 19 modelling. NeuroImage, 2012, 62, 482-492. Imaging Mouse Embryonic Cardiovascular Development. Cold Spring Harbor Protocols, 2012, 2012, 313 0.2 17 pdb.top071498. Repeated longitudinal in vivo imaging of neuro-glio-vascular unit at the peripheral boundary of 314 1.1 ischemia in mouse cerebral cortex. Neuroscience, 2012, 212, 190-200.

#	Αρτιςι ε	IF	CITATIONS
π 915	Laser Speckle Flowmetry Method for Measuring Spatial and Temporal Hemodynamic Alterations	1.0	10
313	Throughout Large Microvascular Networks. Microcirculation, 2012, 19, 619-631.	1.0	19
316	Frontiers in Optical Imaging of Cerebral Blood Flow and Metabolism. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1259-1276.	2.4	137
317	A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data. NeuroImage, 2012, 59, 2569-2588.	2.1	11
318	The intravascular susceptibility effect and the underlying physiology of fMRI. NeuroImage, 2012, 62, 995-999.	2.1	8
319	Quantitative estimates of stimulation-induced perfusion response using two-photon fluorescence microscopy of cortical microvascular networks. NeuroImage, 2012, 61, 517-524.	2.1	15
320	Image-based vessel-by-vessel analysis for red blood cell and plasma dynamics with automatic segmentation. Microvascular Research, 2012, 84, 178-187.	1.1	10
321	Two-Photon Microscopy as a Tool to Study Blood Flow and Neurovascular Coupling in the Rodent Brain. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1277-1309.	2.4	405
322	Multiphoton Microscopy Applied for Real-Time Intravital Imaging of Bacterial Infections In Vivo. Methods in Enzymology, 2012, 506, 35-61.	0.4	17
323	The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications. , 2012, , .		4
324	Visualization Techniques. Neuromethods, 2012, , .	0.2	1
325	Dendritic Spines and Pre-Synaptic Boutons Are Stable Despite Local Deep Hypothermic Challenge and Re-Warming In Vivo. PLoS ONE, 2012, 7, e36305.	1.1	6
326	Functional Near-Infrared Spectroscopy (fNIRS): Principles and Neuroscientific Applications. , 0, , .		48
327	Focal Modulation Microscopy: Principle and Techniques. , 0, , .		0
328	Imaging cortical vasculature with stimulated Raman scattering and twoâ€photon photothermal lensing microscopy. Journal of Raman Spectroscopy, 2012, 43, 668-674.	1.2	33
329	Simultaneous measurement of cerebral blood flow and transit time with turbo dynamic arterial spin labeling (Turboâ€ÐASL): Application to functional studies. Magnetic Resonance in Medicine, 2012, 68, 762-771.	1.9	9
330	In Vivo Imaging of the Developing Mouse Embryonic Vasculature. Methods in Molecular Biology, 2012, 872, 205-215.	0.4	2
331	Prospect for feedback guided surgery with ultra-short pulsed laser light. Current Opinion in Neurobiology, 2012, 22, 24-33.	2.0	42
332	A constrained independent component analysis technique for artery–vein separation of two-photon laser scanning microscopy images of the cerebral microvasculature. Medical Image Analysis, 2012, 16, 239-251.	7.0	13

#	ARTICLE	IF	Citations
333	Real-Time Imaging of Perivascular Transport of Nanoparticles During Convection-Enhanced Delivery in the Rat Cortex. Annals of Biomedical Engineering, 2012, 40, 292-303.	1.3	42
334	<i>In vivo</i> Stimulus-Induced Vasodilation Occurs without IP ₃ Receptor Activation and May Precede Astrocytic Calcium Increase. Journal of Neuroscience, 2013, 33, 8411-8422.	1.7	191
335	Neurovascular coupling: in vivo optical techniques for functional brain imaging. BioMedical Engineering OnLine, 2013, 12, 38.	1.3	95
336	Recent advances of optical imaging in animal stroke model. Frontiers of Optoelectronics, 2013, 6, 134-145.	1.9	3
337	Two-photon microscopy with double-circle trajectories for in vivo cerebral blood flow measurements. Experiments in Fluids, 2013, 54, 1.	1.1	7
338	Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer's disease mouse models. Acta Neuropathologica, 2013, 126, 353-364.	3.9	204
339	Quantitative Mapping of Hemodynamics in the Lung, Brain, and Dorsal Window Chamberâ€Grown Tumors Using a Novel, Automated Algorithm. Microcirculation, 2013, 20, 724-735.	1.0	21
340	The human brain pacemaker: Synchronized infra-slow neurovascular coupling in patients undergoing non-pulsatile cardiopulmonary bypass. NeuroImage, 2013, 72, 10-19.	2.1	12
341	The Role of the Microcirculation in Delayed Cerebral Ischemia and Chronic Degenerative Changes after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1825-1837.	2.4	140
343	Evolution of neuronal and astroglial disruption in the peri-contusional cortex of mice revealed by in vivo two-photon imaging. Brain, 2013, 136, 1446-1461.	3.7	70
344	Cerebral microvascular network geometry changes in response to functional stimulation. NeuroImage, 2013, 71, 248-259.	2.1	45
345	Effect of Cerebral Perfusion Pressure on Cerebral Cortical Microvascular Shunting at High Intracranial Pressure in Rats. Stroke, 2013, 44, 177-181.	1.0	35
346	The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nature Neuroscience, 2013, 16, 55-63.	7.1	284
347	In Vivo Two-photon Imaging Of Experience-dependent Molecular Changes In Cortical Neurons. Journal of Visualized Experiments, 2013, , .	0.2	16
348	The capillary dysfunction hypothesis of Alzheimer's disease. Neurobiology of Aging, 2013, 34, 1018-1031.	1.5	165
349	A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices. Journal of Neuroscience Methods, 2013, 218, 121-130.	1.3	62
350	Technical advances in the characterization of the complexity of sleep and sleep disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 45, 277-286.	2.5	23
351	In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 2013, 7, 205-209.	15.6	1,225

#	Article	IF	CITATIONS
353	Laser Speckle Imaging of Cerebral Blood Flow. , 2013, , 167-211.		3
354	Chronic Imaging of Cortical Blood Flow using Multi-Exposure Speckle Imaging. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 798-808.	2.4	80
355	Multiple-Capillary Measurement of RBC Speed, Flux, and Density with Optical Coherence Tomography. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1707-1710.	2.4	57
356	Multimodal Imaging in Rats Reveals Impaired Neurovascular Coupling in Sustained Hypertension. Stroke, 2013, 44, 1957-1964.	1.0	50
357	All-optical osteotomy to create windows for transcranial imaging in mice. Optics Express, 2013, 21, 23160.	1.7	20
358	Two-Photon Imaging of Blood Flow in the Rat Cortex. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot076513.	0.2	18
359	Hypothermia-Induced Neuroprotection is Associated with Reduced Mitochondrial Membrane Permeability in a Swine Model of Cardiac Arrest. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 928-934.	2.4	70
360	Extra Permeability is Required to Model Dynamic Oxygen Measurements: Evidence for Functional Recruitment?. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1402-1411.	2.4	9
361	Encoded multisite two-photon microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13138-13143.	3.3	60
362	Optical Coherence Tomography for Brain Imaging. , 2013, , 157-172.		7
363	Fast Measurement of Sarcomere Length and Cell Orientation in Langendorff-Perfused Hearts Using Remote Focusing Microscopy. Circulation Research, 2013, 113, 863-870.	2.0	30
364	350- <i>μ<</i> m side-view optical probe for imaging the murine brain <i>in vivo</i> from the cortex to the hypothalamus. Journal of Biomedical Optics, 2013, 18, 050502.	1.4	18
365	Optically Induced Occlusion of Single Blood Vessels in Rodent Neocortex. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot079509.	0.2	12
366	Quantitative Imaging of Cerebral Blood Flow Velocity and Intracellular Motility using Dynamic Light Scattering–Optical Coherence Tomography. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 819-825.	2.4	51
367	The Role of the Cerebral Capillaries in Acute Ischemic Stroke: The Extended Penumbra Model. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 635-648.	2.4	115
368	Multiphoton microscopy as a tool to study ovarian vasculature in vivo. Intravital, 2013, 2, e24334.	2.0	2
370	Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy. , 2013, , .		2
371	Two-Photon Microscopy Imaging of thy1GFP-M Transgenic Mice: A Novel Animal Model to Investigate Brain Dendritic Cell Subsets In Vivo. PLoS ONE, 2013, 8, e56144.	1.1	23

#	Article	IF	CITATIONS
372	Cerebral Blood Flow Modulation by Basal Forebrain or Whisker Stimulation Can Occur Independently of Large Cytosolic Ca2+ Signaling in Astrocytes. PLoS ONE, 2013, 8, e66525.	1.1	85
373	Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke. PLoS ONE, 2013, 8, e71478.	1.1	73
374	Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy. Frontiers in Cellular Neuroscience, 2013, 7, 51.	1.8	23
375	Improved blood velocity measurements with a hybrid image filtering and iterative Radon transform algorithm. Frontiers in Neuroscience, 2013, 7, 106.	1.4	30
376	Label-Free Determination of Hemodynamic Parameters in the Microcirculaton with Third Harmonic Generation Microscopy. PLoS ONE, 2014, 9, e99615.	1.1	34
377	The contribution of astrocytes to the regulation of cerebral blood flow. Frontiers in Neuroscience, 2014, 8, 103.	1.4	140
379	Microscopic imaging of cerebral blood flow with optical coherence tomography. , 2014, , .		0
380	In Vivo Imaging of Axonal and Dendritic Structures in Neonatal Mouse Cortex. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080150.	0.2	12
381	Spectral Methods for Functional Brain Imaging. Cold Spring Harbor Protocols, 2014, 2014, pdb.top081075.	0.2	14
382	Reliable Estimation of Capillary Transit Time Distributions Using DSC-MRI. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1511-1521.	2.4	87
383	Vascular development and hemodynamic force in the mouse yolk sac. Frontiers in Physiology, 2014, 5, 308.	1.3	53
384	Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation. NeuroImage, 2014, 102, 393-406.	2.1	34
385	InÂVivo Tissue-wide Synchronization of Mitochondrial Metabolic Oscillations. Cell Reports, 2014, 9, 514-521.	2.9	38
386	Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux. Biomedical Optics Express, 2014, 5, 1160.	1.5	45
387	Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magnetic Resonance in Medicine, 2014, 72, 137-148.	1.9	107
388	<i>In Vivo</i> Twoâ€photon Fluorescence Microscopy Reveals Disturbed Cerebral Capillary Blood Flow and Increased Susceptibility to Ischemic Insults in Diabetic Mice. CNS Neuroscience and Therapeutics, 2014, 20, 816-822.	1.9	38
389	Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies. Physics in Medicine and Biology, 2014, 59, 6693-6708.	1.6	16
390	Critical Cerebral Perfusion Pressure at High Intracranial Pressure Measured by Induced Cerebrovascular and Intracranial Pressure Reactivity. Critical Care Medicine, 2014, 42, 2582-2590.	0.4	12

#	Article	IF	CITATIONS
391	Multiphoton fluorescence microscopy of the live kidney in health and disease. Journal of Biomedical Optics, 2014, 19, 020901.	1.4	39
392	Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex. NeuroImage, 2014, 95, 176-184.	2.1	112
393	Aging-related differences in cerebral capillary blood flow in anesthetized rats. Neurobiology of Aging, 2014, 35, 1947-1955.	1.5	54
394	Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 2014, 508, 55-60.	13.7	1,466
395	Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 50-60.	1.9	70
396	Maximum Likelihood Doppler Frequency Estimation Under Decorrelation Noise for Quantifying Flow in Optical Coherence Tomography. IEEE Transactions on Medical Imaging, 2014, 33, 1313-1323.	5.4	9
397	Optical Imaging of Neocortical Dynamics. Neuromethods, 2014, , .	0.2	8
398	Quantitative cerebral blood flow imaging with extended-focus optical coherence microscopy. Optics Letters, 2014, 39, 37.	1.7	25
399	Astroglial cradle in the life of the synapse. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130595.	1.8	214
400	Through-skull fluorescence imaging of the brain in a new near-infrared window. Nature Photonics, 2014, 8, 723-730.	15.6	829
401	Stalled cerebral capillary blood flow in mouse models of essential thrombocythemia and polycythemia vera revealed by in vivo twoâ€photon imaging. Journal of Thrombosis and Haemostasis, 2014, 12, 2120-2130.	1.9	46
402	Optical Neural Interfaces. Annual Review of Biomedical Engineering, 2014, 16, 103-129.	5.7	170
403	Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nature Protocols, 2014, 9, 323-336.	5.5	98
404	Lifetime-Based Imaging. , 2014, , 376-419.		3
405	Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime. Scientific Reports, 2015, 5, 12621.	1.6	37
406	Intrinsic Brain Activity and Resting State Networks. , 2015, , 1-52.		3
407	Cerebral oxygenation and optimal vascular brain organization. Journal of the Royal Society Interface, 2015, 12, 20150245.	1.5	24
408	Robust and Fragile Aspects of Cortical Blood Flow in Relation to the Underlying Angioarchitecture. Microcirculation, 2015, 22, 204-218.	1.0	78

#	Article	IF	CITATIONS
409	Study of capillary transit time distribution in coherent hemodynamics spectroscopy. Journal of Innovative Optical Health Sciences, 2015, 08, 1550025.	0.5	1
410	Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells. ENeuro, 2015, 2, ENEURO.0005-15.2015.	0.9	33
411	Review of photoacoustic flow imaging: its current state and its promises. Photoacoustics, 2015, 3, 89-99.	4.4	64
412	Acute two-photon imaging of the neurovascular unit in the cortex of active mice. Frontiers in Cellular Neuroscience, 2015, 9, 11.	1.8	30
413	Two-Photon Microscopy Allows Imaging and Characterization of Cochlear Microvasculature In Vivo. BioMed Research International, 2015, 2015, 1-8.	0.9	8
414	Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1076-1084.	2.4	83
415	Effects of anesthesia on the cerebral capillary blood flow in young and old mice. Proceedings of SPIE, 2015, , .	0.8	4
416	Highly accurate thermal flow microsensor for continuous and quantitative measurement of cerebral blood flow. Biomedical Microdevices, 2015, 17, 87.	1.4	4
417	Hyperspectral optical tomography of intrinsic signals in the rat cortex. Neurophotonics, 2015, 2, 045003.	1.7	14
418	Functional Mapping of the Human Visual Cortex with Intravoxel Incoherent Motion MRI. PLoS ONE, 2015, 10, e0117706.	1.1	21
419	Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and Doppler optical coherence tomography. Neurophotonics, 2015, 2, 015008.	1.7	28
420	Calcium dynamics in astrocyte processes during neurovascular coupling. Nature Neuroscience, 2015, 18, 210-218.	7.1	235
421	The Effects of Capillary Transit Time Heterogeneity (<i>CTH</i>) on Brain Oxygenation. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 806-817.	2.4	78
422	Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron, 2015, 85, 462-483.	3.8	215
423	Astrocyte and Microvascular Imaging in Awake Animals Using Twoâ€Photon Microscopy. Microcirculation, 2015, 22, 219-227.	1.0	24
424	Chronic Monitoring of Vascular Progression after Ischemic Stroke Using Multiexposure Speckle Imaging and Two-Photon Fluorescence Microscopy. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 933-942.	2.4	53
425	Quantitative separation of arterial and venous cerebral blood volume increases during voluntary locomotion. Neurolmage, 2015, 105, 369-379.	2.1	56
426	The Effects of Transit Time Heterogeneity on Brain Oxygenation during Rest and Functional Activation. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 432-442.	2.4	56

#	Article	IF	Citations
427	Characterization of Blood Flow in the Mouse Dorsal Spinal Venous System before and after Dorsal Spinal Vein Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 667-675.	2.4	16
428	Two-Photon Excitation Microscopy and Its Applications in Neuroscience. Methods in Molecular Biology, 2015, 1251, 25-42.	0.4	28
429	High-resolution in vivo optical imaging of stroke injury and repair. Brain Research, 2015, 1623, 174-192.	1.1	36
430	Optical Microangiography Based on Optical Coherence Tomography. , 2015, , 1373-1397.		1
431	Characterization of the angular memory effect of scattered light in biological tissues. Optics Express, 2015, 23, 13505.	1.7	128
432	Ultra-large field-of-view two-photon microscopy. Optics Express, 2015, 23, 13833.	1.7	111
433	Capillary Dysfunction: Its Detection and Causative Role in Dementias and Stroke. Current Neurology and Neuroscience Reports, 2015, 15, 37.	2.0	68
434	Statistical analysis of motion contrast in optical coherence tomography angiography. Journal of Biomedical Optics, 2015, 20, 116004.	1.4	35
435	A Murine Toolbox for Imaging the Neurovascular Unit. Microcirculation, 2015, 22, 168-182.	1.0	39
437	Micro-Heterogeneity of Flow in a Mouse Model of Chronic Cerebral Hypoperfusion Revealed by Longitudinal Doppler Optical Coherence Tomography and Angiography. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1552-1560.	2.4	28
438	Noninvasive flow cytometry by heterodyne self-mixing interferometry. , 2015, , .		0
439	In Vivo Inhibition of miR-155 Promotes Recovery after Experimental Mouse Stroke. Journal of Neuroscience, 2015, 35, 12446-12464.	1.7	153
440	Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain. Journal of Neurosurgery, 2015, 122, 1239-1247.	0.9	51
441	Vascular Morphogenesis. Methods in Molecular Biology, 2015, , .	0.4	11
442	In Vivo Flow Mapping in Complex Vessel Networks by Single Image Correlation. Scientific Reports, 2014, 4, 7341.	1.6	21
443	fMRI at High Spatial Resolution: Implications for BOLD-Models. Frontiers in Computational Neuroscience, 2016, 10, 66.	1.2	104
444	Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation. Frontiers in Computational Neuroscience, 2016, 10, 82.	1.2	60
445	Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye. Biomedical Optics Express, 2016, 7, 4228.	1.5	60

#	Article	IF	CITATIONS
446	Cerebral capillary velocimetry based on temporal OCT speckle contrast. Biomedical Optics Express, 2016, 7, 4859.	1.5	34
447	Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice. Microcirculation, 2016, 23, 416-425.	1.0	9
448	Leukocyte plugging and cortical capillary flow after subarachnoid hemorrhage. Acta Neurochirurgica, 2016, 158, 1057-1067.	0.9	15
449	Neural correlates of single-vessel haemodynamic responses in vivo. Nature, 2016, 534, 378-382.	13.7	162
450	Acute insertion effects of penetrating cortical microelectrodes imaged with quantitative optical coherence angiography. Neurophotonics, 2016, 3, 1.	1.7	7
451	Involvement of astrocytes in neurovascular communication. Progress in Brain Research, 2016, 225, 41-62.	0.9	28
452	Contribution of low- and high-flux capillaries to slow hemodynamic fluctuations in the cerebral cortex of mice. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1351-1356.	2.4	19
453	Fluorescent Sensors for Imaging Zinc Dynamics in Biological Fluids. , 2016, , 314-339.		1
454	Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation. Neuron, 2016, 91, 851-862.	3.8	129
455	Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150350.	1.8	91
456	Red blood cell phase separation in symmetric and asymmetric microchannel networks: effect of capillary dilation and inflow velocity. Scientific Reports, 2016, 6, 36763.	1.6	34
457	Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets. Journal of Neuroscience Methods, 2016, 271, 55-64.	1.3	38
458	Quantification of Cerebral Vascular Architecture using Two-photon Microscopy in a Mouse Model of HIV-induced Neuroinflammation. Journal of Visualized Experiments, 2016, , e53582.	0.2	3
459	Early capillary flux homogenization in response to neural activation. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 375-380.	2.4	30
460	Bridging macroscopic and microscopic methods for the measurements of cerebral blood flow. Progress in Brain Research, 2016, 225, 77-97.	0.9	3
461	Submillimeter-resolution fMRI. Progress in Brain Research, 2016, 225, 123-152.	0.9	13
462	Signaled drug delivery and transport across the blood–brain barrier. Journal of Liposome Research, 2016, 26, 233-245.	1.5	4
463	Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 302-325.	2.4	211

#	Article	IF	CITATIONS
464	Effect of electrical forepaw stimulation on capillary transit-time heterogeneity (CTH). Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2072-2086.	2.4	64
465	Review of optical coherence tomography based angiography in neuroscience. Neurophotonics, 2016, 3, 010902.	1.7	80
466	Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. Journal of Controlled Release, 2016, 240, 312-322.	4.8	182
467	Optical Coherence Tomography for Brain Imaging and Developmental Biology. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 1-13.	1.9	48
468	Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography. NeuroImage, 2016, 125, 350-362.	2.1	35
469	Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy. Scientific Reports, 2017, 7, 43276.	1.6	40
470	Flexible polygonâ€mirror based laser scanning microscope platform for multiphoton <i>inâ€vivo</i> imaging. Journal of Biophotonics, 2017, 10, 1526-1537.	1.1	14
471	Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Science Advances, 2017, 3, e1601966.	4.7	436
472	Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3725-3743.	2.4	44
473	Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice. Journal of Neuroscience, 2017, 37, 333-348.	1.7	50
474	Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Progress in Neurobiology, 2017, 156, 107-148.	2.8	95
475	The mouse cortical meninges are the site of immune responses to many different pathogens, and are accessible to intravital imaging. Methods, 2017, 127, 53-61.	1.9	36
476	Entrainment of Arteriole Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent "Resting-State―Connectivity. Neuron, 2017, 96, 936-948.e3.	3.8	233
477	Hybrid photoacoustic and electrophysiological recording of neurovascular communications in freely-moving rats. NeuroImage, 2017, 161, 232-240.	2.1	15
478	Addressing the autofluorescence issue in deep tissue imaging by two-photon microscopy: the significance of far-red emitting dyes. Chemical Science, 2017, 8, 7696-7704.	3.7	132
479	Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Advanced Drug Delivery Reviews, 2017, 119, 73-100.	6.6	42
480	Impact of temporal resolution on estimating capillary RBC-flux with optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 016014.	1.4	8
481	A proof-of-concept study for developing integrated two-photon microscopic and magnetic resonance imaging modality at ultrahigh field of 16.4 tesla. Scientific Reports, 2017, 7, 2733.	1.6	18

ARTICLE IF CITATIONS # Transient global cerebral ischemia induces rapid and sustained reorganization of synaptic structures. 482 2.4 36 Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2756-2767. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. Journal of 483 2.4 186 Cerebral Blood Flow and Metabolism, 2017, 37, 52-68. Increased cortical capillary transit time heterogeneity in Alzheimer's disease: a DSC-MRI perfusion 484 1.5 61 study. Neurobiology of Aging, 2017, 50, 107-118. Microfluidic blood–brain barrier model provides in vivoâ€like barrier properties for drug permeability 405 screening. Biotechnology and Bioengineering, 2017, 114, 184-194. Blood-Brain Barrier and Cognitive Function. Springer Series in Cognitive and Neural Systems, 2017, , 486 0.1 0 713-740. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks. Biophysical Journal, 2017, 113, 2815-2826. 0.2 Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse 489 cortex obtained with extended-focus optical coherence microscopy. Biomedical Optics Express, 2017, 1.56 8, 1. Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal. Biomedical 1.5 19 Optics Express, 2017, 8, 2781. Multiphoton in vivo imaging with a femtosecond semiconductor disk laser. Biomedical Optics Express, 491 1.5 45 2017, 8, 3213. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool?. Applied Sciences 1.3 (Switzerland), 2017, 7, 687. Automatic Determination of Blood Flow Velocity in Brain Microvessels in a Cerebral Infarction Model 493 0.4 1 Mouse Using a Small Implantable CMOS Imaging Device. Advanced Biomedical Engineering, 2017, 6, 68-75. Experimental Methods for Measuring Blood Flow in Brain Capillaries., 2017, , 339-343. 494 Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation 495 3.8 113 with Neuronal Intracellular Calcium Signals. Neuron, 2018, 97, 925-939.e5. Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue. Cell, 2018, 172, 1108-1121.e15. 13.5 Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic 497 7.0 101 brain injury. Nature Immunology, 2018, 19, 442-452. Monitoring of blood oxygenation in brain by resonance Raman spectroscopy. Journal of Biophotonics, 2018, 11, e201700311. 498 1.1 Investigating the effects of a penetrating vessel occlusion with a multi-scale microvasculature model 499 2.1 34 of the human cerebral cortex. NeuroImage, 2018, 172, 94-106. Liveâ€Animal Imaging of Renal Function by Multiphoton Microscopy. Current Protocols in Cytometry, 500 2018, 83, 12.9.1-12.9.25.

#	Article	IF	CITATIONS
501	Quantitative imaging mass spectroscopy reveals roles of heme oxygenase-2 for protecting against transhemispheric diaschisis in the brain ischemia. Journal of Clinical Biochemistry and Nutrition, 2018, 63, 70-79.	0.6	6
502	Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry. Scientific Reports, 2018, 8, 4107.	1.6	32
503	The effects of hypercapnia on cortical capillary transit time heterogeneity (CTH) in anesthetized mice. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 290-303.	2.4	19
504	Disturbances in the control of capillary flow in an aged APPswe/PS1î"E9 model of Alzheimer's disease. Neurobiology of Aging, 2018, 62, 82-94.	1.5	30
505	Experimentally constrained circuit model of cortical arteriole networks for understanding flow redistribution due to occlusion and neural activation. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 38-44.	2.4	8
506	Important Issues in Coma and Neuromonitoring. , 2018, , .		1
507	Protective vascular coagulation in response to bacterial infection of the kidney is regulated by bacterial lipid A and host CD147. Pathogens and Disease, 2018, 76, .	0.8	17
508	Benchmarking in vitro tissue-engineered blood–brain barrier models. Fluids and Barriers of the CNS, 2018, 15, 32.	2.4	105
509	Protective vascular coagulation in response to bacterial infection of the kidney is regulated by bacterial lipid A and host CD147. Pathogens and Disease, 2018, , .	0.8	16
510	The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 2: Capillary Networks. Frontiers in Physiology, 2018, 9, 1296.	1.3	19
511	Unveiling the Extracellular Space of the Brain: From Super-resolved Microstructure to <i>In Vivo</i> Function. Journal of Neuroscience, 2018, 38, 9355-9363.	1.7	79
512	Optical imaging and modulation of neurovascular responses. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2057-2072.	2.4	17
513	Targeted alpha therapy with 212Pb or 225Ac: Change in RBE from daughter migration. Physica Medica, 2018, 51, 91-98.	0.4	12
514	VEGF signaling regulates the fate of obstructed capillaries in mouse cortex. ELife, 2018, 7, .	2.8	55
515	Double-pulse laser illumination method for measuring fast cerebral blood flow velocities in the deep brain using a fiber-bundle-based endomicroscopy system. Biomedical Optics Express, 2018, 9, 2699.	1.5	6
516	Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain. Biomedical Optics Express, 2018, 9, 3534.	1.5	80
517	Optical alignment device for two-photon microscopy. Biomedical Optics Express, 2018, 9, 3624.	1.5	12
518	Microvascular permeability of skeletal muscle after eccentric contraction-induced muscle injury: in vivo imaging using two-photon laser scanning microscopy. Journal of Applied Physiology, 2018, 125, 369-380.	1.2	11

#	Article	IF	CITATIONS
519	In Vivo Calcium Imaging of Cardiomyocytes in the Beating Mouse Heart With Multiphoton Microscopy. Frontiers in Physiology, 2018, 9, 969.	1.3	30
520	Low on energy? An energy supply-demand perspective on stress and depression. Neuroscience and Biobehavioral Reviews, 2018, 94, 248-270.	2.9	33
521	The association between hypertensive arteriopathy and cerebral amyloid angiopathy in spontaneously hypertensive strokeâ€prone rats. Brain Pathology, 2018, 28, 844-859.	2.1	31
522	Automated quantification of microvascular perfusion. Microcirculation, 2018, 25, e12482.	1.0	8
523	Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1983-1994.	2.4	21
524	Dynamic Contrast Optical Coherence Tomography reveals laminar microvascular hemodynamics in the mouse neocortex in vivo. NeuroImage, 2019, 202, 116067.	2.1	8
525	The selective sphingosine 1â€phosphate receptor 1 modulator RP101075 improves microvascular circulation after cerebrovascular thrombosis. FASEB Journal, 2019, 33, 10935-10941.	0.2	10
526	Unbiased Analysis Method for Measurement of Red Blood Cell Size and Velocity With Laser Scanning Microscopy. Frontiers in Neuroscience, 2019, 13, 644.	1.4	17
527	Brain PET Poster Sessions PP01-M01 to PP02-N07. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 524-608.	2.4	1
528	Neurovascular Coupling in the Dentate Gyrus Regulates Adult Hippocampal Neurogenesis. Neuron, 2019, 103, 878-890.e3.	3.8	47
529	In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots. Nano Letters, 2019, 19, 5260-5265.	4.5	68
530	Aggregationâ€Induced Nonlinear Optical Effects of AlEgen Nanocrystals for Ultradeep In Vivo Bioimaging. Advanced Materials, 2019, 31, e1904799.	11.1	126
531	Atherosclerosis is associated with a decrease in cerebral microvascular blood flow and tissue oxygenation. PLoS ONE, 2019, 14, e0221547.	1.1	12
532	Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection. Frontiers in Neurology, 2019, 10, 889.	1.1	42
533	Red blood cells stabilize flow in brain microvascular networks. PLoS Computational Biology, 2019, 15, e1007231.	1.5	41
534	Can One Concurrently Record Electrical Spikes from Every Neuron in a Mammalian Brain?. Neuron, 2019, 103, 1005-1015.	3.8	46
535	Blood-brain barrier at the interface of air pollution-associated neurotoxicity and neuroinflammation. Advances in Neurotoxicology, 2019, , 295-337.	0.7	3
536	Second and third harmonic generation microscopy visualizes key structural components in fresh unprocessed healthy human breast tissue. Journal of Biophotonics, 2019, 12, e201800297.	1.1	18

#	Article	IF	CITATIONS
537	In vivo neurovascular response to focused photoactivation of Channelrhodopsin-2. NeuroImage, 2019, 192, 135-144.	2.1	6
538	Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nature Methods, 2019, 16, 615-618.	9.0	71
540	Cellular Control of Brain Capillary Blood Flow: In Vivo Imaging Veritas. Trends in Neurosciences, 2019, 42, 528-536.	4.2	48
541	Causality as a New Paradigm in Brain Science. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 506-507.	1.1	Ο
542	Spatiotemporal dynamics of red blood cells in capillaries in layer I of the cerebral cortex and changes in arterial diameter during cortical spreading depression and response to hypercapnia in anesthetized mice. Microcirculation, 2019, 26, e12552.	1.0	2
543	Dependence of resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to the direction of BO and anatomical axes. NeuroImage, 2019, 196, 337-350.	2.1	29
544	Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates. Nature Communications, 2019, 10, 1400.	5.8	90
545	A Pilot Study Investigating Changes in Capillary Hemodynamics and Its Modulation by Exercise in the APP-PS1 Alzheimer Mouse Model. Frontiers in Neuroscience, 2019, 13, 1261.	1.4	11
546	Kilohertz two-photon brain imaging in awake mice. Nature Methods, 2019, 16, 1119-1122.	9.0	74
547	Spatial Temporal Analysis of Fieldwise Flow in Microvasculature. Journal of Visualized Experiments, 2019, , .	0.2	6
548	Estimating hemodynamic shear stress in murine peripheral collateral arteries by two-photon line scanning. Molecular and Cellular Biochemistry, 2019, 453, 41-51.	1.4	15
549	Capillary flow disturbances after experimental subarachnoid hemorrhage: A contributor to delayed cerebral ischemia?. Microcirculation, 2019, 26, e12516.	1.0	30
550	A simple automated method for continuous fieldwise measurement of microvascular hemodynamics. Microvascular Research, 2019, 123, 7-13.	1.1	10
551	Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation. IEEE Transactions on Medical Imaging, 2019, 38, 1295-1303.	5.4	8
552	Dual-calibrated fMRI measurement of absolute cerebral metabolic rate of oxygen consumption and effective oxygen diffusivity. NeuroImage, 2019, 184, 717-728.	2.1	34
553	Vascular density and distribution in neocortex. NeuroImage, 2019, 197, 792-805.	2.1	86
554	Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 886-900.	2.4	61
555	Longitudinal <i>inÂvivo</i> intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1381-1393.	2.4	35

#	Article	IF	CITATIONS
556	Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 501-512.	2.4	38
557	<i>In vitro</i> investigations of red blood cell phase separation in a complex microchannel network. Biomicrofluidics, 2020, 14, 014101.	1.2	32
558	Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation, and blood flow in sub-microseconds. Photoacoustics, 2020, 17, 100156.	4.4	56
559	Three-dimensional imaging of spatio-temporal dynamics of small blood capillary network in the cortex based on optical coherence tomography: A review. Journal of Innovative Optical Health Sciences, 2020, 13, .	0.5	7
560	Local vs. Global Blood Flow Modulation in Artificial Microvascular Networks: Effects on Red Blood Cell Distribution and Partitioning. Frontiers in Physiology, 2020, 11, 566273.	1.3	12
561	Contractile pericytes determine the direction of blood flow at capillary junctions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27022-27033.	3.3	127
562	High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics. Nature Communications, 2020, 11, 6020.	5.8	61
563	Ultra-slow Oscillations in fMRI and Resting-State Connectivity: Neuronal and Vascular Contributions and Technical Confounds. Neuron, 2020, 107, 782-804.	3.8	105
564	Improvement of Decorrelation-Based OCT Angiography by an Adaptive Spatial-Temporal Kernel in Monitoring Stimulus-Evoked Hemodynamic Responses. IEEE Transactions on Medical Imaging, 2020, 39, 4286-4296.	5.4	12
565	Full-field flicker evoked changes in parafoveal retinal blood flow. Scientific Reports, 2020, 10, 16051.	1.6	10
566	Sural Nerve Perfusion in Mice. Frontiers in Neuroscience, 2020, 14, 579373.	1.4	0
567	Spontaneous Oscillation Signal become Regular under Deeper Anesthesia. , 2020, , .		0
568	Regeneration of the neurogliovascular unit visualized in vivo by transcranial live-cell imaging. Journal of Neuroscience Methods, 2020, 343, 108808.	1.3	3
569	Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. Science Advances, 2020, 6, eaay7243.	4.7	53
570	Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. Pathology International, 2020, 70, 379-390.	0.6	5
571	Rude mechanicals in brain haemodynamics: non-neural actors that influence blood flow. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190635.	1.8	39
572	Transcranial chronic optical access to longitudinally measure cerebral blood flow. Journal of Neuroscience Methods, 2021, 350, 109044.	1.3	3
573	Modeling of vascular space occupancy and BOLD functional MRI from first principles using real microvascular angiograms. Magnetic Resonance in Medicine, 2021, 85, 456-468.	1.9	3

#	Article	IF	CITATIONS
574	Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics. Cerebral Cortex, 2021, 31, 826-844.	1.6	9
575	Imaging Pericytes and the Regulation of Cerebral Blood Flow. Methods in Molecular Biology, 2021, 2235, 89-117.	0.4	4
576	In Vivo Optical Imaging and Manipulation of Brain Pericytes. Pancreatic Islet Biology, 2021, , 1-37.	0.1	1
577	Microvascular Alterations in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2020, 14, 618986.	1.8	41
578	Optical coherence tomography of arteriolar diameter and capillary perfusion during spreading depolarizations. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2256-2263.	2.4	4
579	Multi-scale optoacoustic molecular imaging of brain diseases. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4152-4170.	3.3	50
581	High-pulse-energy multiphoton imaging of neurons and oligodendrocytes in deep murine brain with a fiber laser. Scientific Reports, 2021, 11, 7950.	1.6	10
583	Dissecting the microvascular contributions to diffuse correlation spectroscopy measurements of cerebral hemodynamics using optical coherence tomography angiography. Neurophotonics, 2021, 8, 025006.	1.7	0
584	Brain microvasculature has a common topology with local differences in geometry that match metabolic load. Neuron, 2021, 109, 1168-1187.e13.	3.8	57
585	Threeâ€dimensional microvascular network reconstruction from <i>in vivo</i> images with adaptation of the regional inhomogeneity in the signalâ€toâ€noise ratio. Microcirculation, 2021, 28, e12697.	1.0	3
586	The severity of microstrokes depends on local vascular topology and baseline perfusion. ELife, 2021, 10, .	2.8	20
587	Self-Reset Image Sensor With a Signal-to-Noise Ratio Over 70 dB and Its Application to Brain Surface Imaging. Frontiers in Neuroscience, 2021, 15, 667932.	1.4	5
588	NIRâ€II Fluorescence imaging for cerebrovascular diseases. View, 2021, 2, 20200128.	2.7	21
589	Microvascular basis of cognitive impairment in type 1 diabetes. , 2022, 229, 107929.		8
590	Intercellular Communication in the Islet of Langerhans in Health and Disease. , 2021, 11, 2191-2225.		15
591	Diversity of neurovascular coupling dynamics along vascular arbors in layer II/III somatosensory cortex. Communications Biology, 2021, 4, 855.	2.0	23
592	Origins of 1/f-like tissue oxygenation fluctuations in the murine cortex. PLoS Biology, 2021, 19, e3001298.	2.6	15
593	Validating layer-specific VASO across species. NeuroImage, 2021, 237, 118195.	2.1	11

#	Article	IF	CITATIONS
594	Long-term in vivo two-photon imaging of the neuroinflammatory response to intracortical implants and micro-vessel disruptions in awake mice. Biomaterials, 2021, 276, 121060.	5.7	13
595	Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. PLoS Biology, 2021, 19, e3000923.	2.6	9
596	Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Progress in Neurobiology, 2021, 207, 102174.	2.8	49
597	Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near Infrared Spectroscopy (fNIRS). Journal of Biomedical Physics and Engineering, 2021, 11, 583-594.	0.5	4
598	Cerebral hemodynamics and capillary dysfunction in late-onset major depressive disorder. Psychiatry Research - Neuroimaging, 2021, 317, 111383.	0.9	8
599	Micro-endoscopy for Live Small Animal Fluorescent Imaging. Advances in Experimental Medicine and Biology, 2021, 1310, 153-186.	0.8	2
600	Laser Speckle Imaging of Cerebral Blood Flow. , 2004, , 165-195.		3
601	Spatial and Temporal Analysis for Optical Imaging Data Using CWT and tICA. Lecture Notes in Computer Science, 2005, , 508-516.	1.0	2
602	Intracortical Microcirculatory Change Induced by Anesthesia in Rat Somatosensory Cortex. Advances in Experimental Medicine and Biology, 2010, 662, 57-61.	0.8	16
604	Dynamic Two-Photon Imaging of Cerebral Microcirculation Using Fluorescently Labeled Red Blood Cells and Plasma. Advances in Experimental Medicine and Biology, 2013, 765, 163-168.	0.8	3
605	Two-Photon Microscopy in Highly Scattering Tissue. , 2001, , 180-199.		10
606	Basic Principles of Multiphoton Excitation Microscopy. , 2001, , 147-161.		4
607	Dominant Events That Modulate Mass Transfer Coefficient of Oxygen in Cerebral Cortex. Advances in Experimental Medicine and Biology, 2003, 530, 401-411.	0.8	1
608	Neurovascular Coupling. Biological Magnetic Resonance, 2015, , 67-104.	0.4	5
609	Imaging Vasodynamics in the Awake Mouse Brain with Two-Photon Microscopy. Neuromethods, 2014, , 55-73.	0.2	8
610	High-Resolution Wide-Field Optical Imaging of Microvascular Characteristics: From the Neocortex to the Eye. Neuromethods, 2014, , 123-159.	0.2	2
611	Live Confocal Microscopy of the Developing Mouse Embryonic Yolk Sac Vasculature. Methods in Molecular Biology, 2015, 1214, 163-172.	0.4	11
612	Intravital Multiphoton Imaging of the Kidney: Tubular Structure and Metabolism. Methods in Molecular Biology, 2016, 1397, 155-172.	0.4	10

#	Article	IF	Citations
613	Intrinsic Brain Activity and Resting State Networks. , 2016, , 1625-1676.		4
614	Fluorescent Imaging and Microscopy for Dynamic Processes in Rats. Methods in Molecular Biology, 2019, 2018, 151-175.	0.4	8
615	Two-Photon Imaging of Capillary Blood Flow in Olfactory Bulb Glomeruli. Methods in Molecular Biology, 2009, 489, 81-91.	0.4	19
616	Transparent Window Models and Intravital Microscopy: Imaging Gene Expression, Physiological Function and Therapeutic Effects in Tumors. , 2011, , 641-679.		7
617	Assessment of Neurovascular Coupling. Springer Protocols, 2012, , 353-372.	0.1	1
618	Functional Imaging Using Two-Photon Microscopy in Living Tissue. Neuromethods, 2012, , 129-164.	0.2	1
619	Two-Photon Microscopy to Measure Blood Flow and Concurrent Brain Cell Activity. Neuromethods, 2014, , 273-290.	0.2	1
620	OCT and Coherence Imaging for the Neurosciences. , 2015, , 2025-2050.		1
621	Targeting Pericytes and the Microcirculation for Ischemic Stroke Therapy. Springer Series in Translational Stroke Research, 2017, , 537-556.	0.1	3
622	Intravital Multiphoton Endoscopy. , 2014, , 305-370.		2
623	Two-Photon Imaging of Cerebral Vasodynamics in Awake Mice During Health and Disease. , 2014, , 25-43.		3
624	A Model of the Dynamic Relationship between Blood Flow and Volume Changes during Brain Activation. , 0, .		9
629	Alterations in neurovascular coupling following acute traumatic brain injury. Neurophotonics, 2017, 4, 1.	1.7	22
630	Conventional and High-Speed Intravital Multiphoton Laser Scanning Microscopy of Microvasculature, Lymphatics, and Leukocyte–Endothelial Interactions. Molecular Imaging, 2002, 1, 9-15.	0.7	81
631	Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. Journal of Clinical Investigation, 2008, 118, 3790-3797.	3.9	148
633	Optical coherence tomography imaging of capillary reperfusion after ischemic stroke. Applied Optics, 2016, 55, 9526.	2.1	18
634	Two-photon Excited Blood Autofluorescence for in vivo Imaging and Flow Cytometry. , 2012, , .		1
635	Polymer dots enable deep in vivo multiphoton fluorescence imaging of microvasculature. Biomedical Optics Express, 2019, 10, 584.	1.5	15

#	Article	IF	CITATIONS
636	Label-free assessment of hemodynamics in individual cortical brain vessels using third harmonic generation microscopy. Biomedical Optics Express, 2020, 11, 2665.	1.5	11
637	In vivo deep-brain blood flow speed measurement through third-harmonic generation imaging excited at the 1700-nm window. Biomedical Optics Express, 2020, 11, 2738.	1.5	12
638	Improving collection efficiency in two-photon endoscopy with reflective waveguiding. Optics Express, 2018, 26, 32365.	1.7	3
639	Efficient non-degenerate two-photon excitation for fluorescence microscopy. Optics Express, 2019, 27, 28022.	1.7	16
640	Contrast gain through simple illumination control for wide-field fluorescence imaging of scattering samples. Optics Express, 2020, 28, 2326.	1.7	1
641	Capillary red blood cell velocimetry by phase-resolved optical coherence tomography. Optics Letters, 2017, 42, 3976.	1.7	27
642	Depth-dependent flow and pressure characteristics in cortical microvascular networks. PLoS Computational Biology, 2017, 13, e1005392.	1.5	99
643	Optimal occlusion uniformly partitions red blood cells fluxes within a microvascular network. PLoS Computational Biology, 2017, 13, e1005892.	1.5	25
644	Spatial Frequency-Based Analysis of Mean Red Blood Cell Speed in Single Microvessels: Investigation of Microvascular Perfusion in Rat Cerebral Cortex. PLoS ONE, 2011, 6, e24056.	1.1	22
645	Line-Scanning Particle Image Velocimetry: An Optical Approach for Quantifying a Wide Range of Blood Flow Speeds in Live Animals. PLoS ONE, 2012, 7, e38590.	1.1	83
646	Separation of fNIRS Signals into Functional and Systemic Components Based on Differences in Hemodynamic Modalities. PLoS ONE, 2012, 7, e50271.	1.1	146
647	Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography. PLoS ONE, 2014, 9, e113658.	1.1	51
648	Sampling rate-dependent RBC velocity in intraparenchymal single capilaries of rat cerebral cortex. Microvascular Reviews and Communications, 2007, 1, 12-15.	0.0	2
649	Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice. Journal of Neuroscience, 2017, 37, 333-348.	1.7	9
650	The impact of endothelial cell death in the brain and its role after stroke: A systematic review. Cell Stress, 2019, 3, 330-347.	1.4	48
651	Measurements and Modeling of Transient Blood Flow Perturbations Induced by Brief Somatosensory Stimulation. Open Neuroimaging Journal, 2011, 5, 96-104.	0.2	6
653	More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. ELife, 2019, 8, .	2.8	68
654	Imaging single-cell blood flow in the smallest to largest vessels in the living retina. ELife, 2019, 8, .	2.8	56

ARTICLE IF CITATIONS # nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in 655 2.8 45 somatosensory cortex of mice. ELife, 2020, 9, . Two-photon fluorescence microscopy., 2002,,. Two-photon fluorescence microscopy of collateral blood flow following photothrombotic stroke 657 0 in rat neocortex., 2003,,. Multi-photon Excitation Fluorescence Microscopy., 2003, , 529-544. 658 659 Two-Photon Fluorescence Microscopy., 2003,,. 0 Two-photon Microscopy Of Tissues., 2003, , . Two-Photon Imaging of Cortical Microvascular Blood Flow in Response to Single Vessel Occlusion., 661 0 2005,,. Applying optical imaging to study neurovascular coupling in cerebral cortex: from populational scale to single-cell single-vessel measurements., 2006,,. Monte Carlo Simulation of Image Depth Improvement by Two-color Two-photon Fluorescence 663 0.0 0 Microscopy. The Review of Laser Engineering, 2008, 36, 1343-1346. 664 Multidimensional functional optical imaging of the brain., 2008, , . Multidimensional functional optical imaging of the brain., 2008,,. 665 0 Two-Photon Laser Scanning Microscopy as a Tool to Study Cortical Vasodynamics Under Normal and Ischemic Conditions. , 2009, , 245-261 Targeted Occlusion to Surface and Deep Vessels in Neocortex via Linear and Nonlinear Optical 667 0.1 3 Absorption. Springer Protocols, 2009, , 169-185. Nonlinear Optical Tools for Studying Small-Stroke at Microscopic Scales., 2010, , . 670 In-Vivo Imaging of Beating Mouse Heart with Multiphoton Microscopy., 2012, , . 0 Laser Scanning Methodologies for Measuring RBC Velocity, Flux, Hematocrit and Shear Rate in Vascular Networks. , 2012, , 417-431. In Vivo Imaging of Neurovascular Coupling with Two-Photon Excitation Laser Scanning Microscopy. 672 0.0 0 The Review of Laser Engineering, 2012, 40, 230. High-Dose Albumin for Neuroprotection in Acute Ischemic Stroke: From Basic Investigations to 673 Multicenter Clinical Trial., 2012, 691-719.

ARTICLE IF CITATIONS Astrocyte Regulation of Neurovascular Control., 2013,,. 0 677 Microscopic Dynamics of Cerebral Capillary Blood Flow in Aged Anesthetized Rats., 2014, , . 678 Intravital Two-Photon Excitation Microscopy in Neuroscience: General Concepts and Applications., 679 0 2014, , 1-23. <i>In vivo</i> optical imaging of structural and functional plasticity of neurovascular unit. 680 No Junkan Taisha = Cerebral Blood Flow and Metabolism, 2015, 26, 99-105. Taking the "initial dip―into cellular mechanisms of neurovascular coupling. Journal of Systems and 681 0.6 0 Integrative Neuroscience, 2016, 2, 127-134. Two-Photon Imaging Reveals Capillary Occlusions are Responsible for Reduced Brain Blood Flow and Cognitive Decline in Alzheimer's Disease Mouse Models. , 2017, , . Anodal Transcranial Direct Current Stimulation Increases Cerebral Blood Flow, Tissue Oxygenation and Improves Neurological Functions in Intact Mice and in the Late Posttraumatic Period of Traumatic 684 0.0 1 Brain Injury. Izvestiya of Saratov University New Series Series: Chemistry Biology Ecology, 2018, 18, 354-360. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography., 2018, , . Polymer dots enable deep in vivo multiphoton fluorescence imaging of cerebrovascular architecture. 686 0 ,2Ó18,,. Wide-field speckle imaging and two-photon microscopy for the investigation of cerebral blood flow in vivo in mice models of obesity., 2018, , . Mapping Optogenetically Driven Single-Vessel fMRI with Concurrent Neuronal Calcium Recordings in 692 0 0.4 the Rat Hippocampus. SSRN Electronic Journal, O, , . Targeted Occlusion to Surface and Deep Vessels in Neocortex Via Linear and Nonlinear Optical 0.1 Absorption. Springer Series in Translational Stroke Research, 2019, , 145-162. Oxygen advection and diffusion in a three- dimensional vascular anatomical network. Optics Express, 701 1.7 45 2008, 16, 17530-41. High-speed optical coherence tomography angiography for the measurement of stimulus-induced 1.7 retrograde vasodilation of cerebral pial arteries in awake mice. Neurophotonics, 2020, 7, 030502. Neurovascular Reactivity in the Aging Mouse Brain Assessed by Laser Speckle Contrast Imaging and 704 2-Photon Microscopy: Quantification by an Investigator-Independent Analysis Tool. Frontiers in 1.1 5 Neurology, 2021, 12, 745770. Measuring Temporal and Spatial Variability of Red Blood Cell Velocity in Human Retinal Vessels., 2021, High-speed optical coherence tomography angiography for the measurement of stimulus-induced 706 1.7 3 retrograde vasodilation of cerebral pial arteries in awake mice. Neurophotonics, 2020, 7, 030502. Coupling between cerebrovascular oscillations and CSF flow fluctuations during wakefulness: An 2.4 fMRI study. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1091-1103.

#	Article	IF	CITATIONS
708	Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. Neurophotonics, 2022, 9, .	1.7	7
709	Chronic co-implantation of ultraflexible neural electrodes and a cranial window. Neurophotonics, 2022, 9, 032204.	1.7	7
710	In Vivo Capillary Structure and Blood Cell Flux in the Normal and Diabetic Mouse Eye. , 2022, 63, 18.		7
711	Increased capillary stalling is associated with endothelial glycocalyx loss in subcortical vascular dementia. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1383-1397.	2.4	12
712	Cortical layer-specific differences in stimulus selectivity revealed with high-field fMRI and single-vessel resolution optical imaging of the primary visual cortex. NeuroImage, 2022, 251, 118978.	2.1	9
713	Deep Learning and Simulation for the Estimation of Red Blood Cell Flux With Optical Coherence Tomography. Frontiers in Neuroscience, 2022, 16, 835773.	1.4	0
715	Pericyte Loss Leads to Capillary Stalling Through Increased Leukocyte-Endothelial Cell Interaction in the Brain. Frontiers in Cellular Neuroscience, 2022, 16, 848764.	1.8	15
716	Is the Human Touch Always Therapeutic? Patient Stimulation and Spreading Depolarization after Acute Neurological Injuries. Translational Stroke Research, 2023, 14, 160-173.	2.3	4
717	Measurement of Blood Velocity With Laser Scanning Microscopy: Modeling and Comparison of Line-Scan Image-Processing Algorithms. Frontiers in Physiology, 2022, 13, 848002.	1.3	0
718	Toward an integrative neurovascular framework for studying brain networks. Neurophotonics, 2022, 9, 032211.	1.7	3
719	High contrast 3-D optical bioimaging using molecular and nanoprobes optically responsive to IR light. Physics Reports, 2022, 962, 1-107.	10.3	8
720	Quantitative Hemodynamic Measurements in Cortical Vessels Using Functional Ultrasound Imaging. Frontiers in Neuroscience, 2022, 16, 831650.	1.4	11
722	Resting-state BOLD functional connectivity depends on the heterogeneity of capillary transit times in the human brain A combined lesion and simulation study about the influence of blood flow response timing. NeuroImage, 2022, 255, 119208.	2.1	3
733	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	1.7	17
734	Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
735	A FACED lift for cerebral blood flow imaging. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
736	In Vivo 3â€Photon Fluorescence Imaging of Mouse Subcortical Vasculature Labeled by AIEgen Before and After Craniotomy. Advanced Functional Materials, 2022, 32, .	7.8	13
737	Neurovascular coupling: motive unknown. Trends in Neurosciences, 2022, 45, 809-819.	4.2	44

#	Article	IF	CITATIONS
739	Liver-secreted fluorescent blood plasma markers enable chronic imaging of the microcirculation. Cell Reports Methods, 2022, 2, 100302.	1.4	5
741	Spatiotemporal analysis of blood plasma and blood cell flow fluctuations of cerebral microcirculation in anesthetized rats. Journal of Cerebral Blood Flow and Metabolism, 2023, 43, 138-152.	2.4	1
742	Multiscale imaging informs translational mouse modeling of neurological disease. Neuron, 2022, 110, 3688-3710.	3.8	3
743	Intrinsic Brain Activity and Resting State Networks. , 2022, , 1939-1990.		0
744	Vascular smooth muscle cell dysfunction in neurodegeneration. Frontiers in Neuroscience, 0, 16, .	1.4	14
745	Longitudinal neural and vascular recovery following ultraflexible neural electrode implantation in aged mice. Biomaterials, 2022, 291, 121905.	5.7	7
746	Depthâ€Resolved Localization Microangiography in the NIRâ€II Window. Advanced Science, 2023, 10, .	5.6	4
748	Measuring capillary flow dynamics using interlaced two-photon volumetric scanning. Journal of Cerebral Blood Flow and Metabolism, 2023, 43, 595-609.	2.4	5
749	Hematocrit skewness along sequential bifurcations within a microfluidic network induces significant changes in downstream red blood cell partitioning. Biomicrofluidics, 2022, 16, .	1.2	2
750	Label-free imaging of red blood cells and oxygenation with color third-order sum-frequency generation microscopy. Light: Science and Applications, 2023, 12, .	7.7	2
751	110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nature Communications, 2023, 14, .	5.8	14
752	In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700Ânm window. Analytica Chimica Acta, 2023, 1255, 341118.	2.6	1
753	The postâ€arteriole transitional zone: a specialized capillary region that regulates blood flow within the CNS microvasculature. Journal of Physiology, 2023, 601, 889-901.	1.3	6
754	From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy. Neural Regeneration Research, 2023, 18, 2093.	1.6	3
755	Two-Photon Microscopy based Tissue Biopsy. , 1999, , .		0
756	The impact of vasomotion on analysis of rodent fMRI data. Frontiers in Neuroscience, 0, 17, .	1.4	4
757	Seizure-induced neutrophil adhesion in brain capillaries leads to a decrease in postictal cerebral blood flow. IScience, 2023, 26, 106655.	1.9	3
773	Theranostic Applications of Functional Nanomaterials Using Microscopic and Spectroscopic Techniques. , 2024, , 87-118.		0

ARTICLE

IF CITATIONS