Morphine-activated opioid receptors elude desensitizat

Proceedings of the National Academy of Sciences of the Unite 95, 9914-9919

DOI: 10.1073/pnas.95.17.9914

Citation Report

#	Article	IF	CITATIONS
1	Phosphorylation Is Not Required for Dynamin-dependent Endocytosis of a Truncated Mutant Opioid Receptor. Journal of Biological Chemistry, 1998, 273, 24987-24991.	1.6	74
2	Mutations That Induce Constitutive Activation and Mutations That Impair Signal Transduction Modulate the Basal and/or Agonist-stimulated Internalization of the Lutropin/Choriogonadotropin Receptor. Journal of Biological Chemistry, 1998, 273, 34911-34919.	1.6	44
3	Role of G Protein-Coupled Receptor Kinases on the Agonist-Induced Phosphorylation and Internalization of the Follitropin Receptor. Molecular Endocrinology, 1999, 13, 866-878.	3.7	93
4	Internalization of the TXA2 Receptor $\hat{I}\pm$ and \hat{I}^2 Isoforms. Journal of Biological Chemistry, 1999, 274, 8941-8948.	1.6	168
5	U50,488H-induced Internalization of the Human κ Opioid Receptor Involves a β-Arrestin- and Dynamin-dependent Mechanism. Journal of Biological Chemistry, 1999, 274, 12087-12094.	1.6	139
6	Dissociation of Functional Roles of Dynamin in Receptor-mediated Endocytosis and Mitogenic Signal Transduction. Journal of Biological Chemistry, 1999, 274, 24575-24578.	1.6	106
7	Stimulation of Mitogen-activated Protein Kinase by G Protein-coupled α2-Adrenergic Receptors Does Not Require Agonist-elicited Endocytosis. Journal of Biological Chemistry, 1999, 274, 24935-24940.	1.6	99
8	Gâ€protein coupled receptor kinases as modulators of Gâ€protein signalling. Journal of Physiology, 1999, 517, 5-23.	1.3	174
9	Localization and trafficking of $\hat{l}\pm 2$ -adrenergic receptor subtypes in cells and tissues. , 1999, 84, 193-205.		117
10	Mutational analysis of the structure and function of opioid receptors. , 1999, 51, 440-455.		63
11	Enhanced Morphine Analgesia in Mice Lacking -Arrestin 2 . Science, 1999, 286, 2495-2498.	6.0	953
12	Functional Dissociation of μ Opioid Receptor Signaling and Endocytosis. Neuron, 1999, 23, 737-746.	3.8	409
13	Partial agonists and G protein-coupled receptor desensitization. Trends in Pharmacological Sciences, 1999, 20, 279-286.	4.0	134
14	Structure and regulation of opioid receptors. Biopolymers, 2000, 55, 334-346.	1.2	85
15	In vivo regulation of ?-opioid receptor density and gene expression in CXBK and outbred Swiss Webster mice. Synapse, 2000, 37, 118-124.	0.6	12
16	Role of cAMP-dependent protein kinase (PKA) in opioid agonist-induced ?-opioid receptor downregulation and tolerance in mice. Synapse, 2000, 38, 322-327.	0.6	55
17	μ-Opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature, 2000, 408, 720-723.	13.7	834
18	Dihydroetorphine: physical dependence and stereotypy after continuous infusion in the rat. European Journal of Pharmacology, 2000, 387, 31-37.	1.7	7

#	Article	IF	CITATIONS
19	Molecular Mechanisms and Regulation of Opioid Receptor Signaling. Annual Review of Pharmacology and Toxicology, 2000, 40, 389-430.	4.2	588
20	Analgesics, Pain and Tolerance: The St John's Discussion. Pain Research and Management, 2000, 5, 19-22.	0.7	3
21	Receptor Density and Recycling Affect the Rate of Agonist-Induced Desensitization of μ-Opioid Receptor. Molecular Pharmacology, 2000, 58, 388-398.	1.0	100
22	Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proceedings of the United States of America, 2000, 97, 1119-1124.	3.3	159
23	Deltorphin II-induced Rapid Desensitization of δ-Opioid Receptor Requires Both Phosphorylation and Internalization of the Receptor. Journal of Biological Chemistry, 2000, 275, 32057-32065.	1.6	66
24	Recycling and Resensitization of Delta Opioid Receptors. DNA and Cell Biology, 2000, 19, 195-204.	0.9	38
25	Role of agonist-dependent receptor internalization in the regulation of $\hat{l}^{1}\!/_{4}$ opioid receptors. Neuroscience, 2000, 98, 233-241.	1.1	47
26	G-protein-independent signaling by G-protein-coupled receptors. Trends in Neurosciences, 2000, 23, 469-475.	4.2	119
27	Opioid receptor endocytosis and activation of MAP kinase pathway. Molecular Brain Research, 2000, 76, 220-228.	2.5	71
28	Olfaction and Odor Discrimination Are Mediated by the C. elegans Guanylyl Cyclase ODR-1. Neuron, 2000, 25, 575-586.	3.8	227
29	A cluster of Ser/Thr residues at the C-terminus of μ-opioid receptor is required for G protein-coupled receptor kinase 2-mediated desensitization. Neuropharmacology, 2000, 39, 353-363.	2.0	30
30	Opioid tolerance/dependence in neuroblastoma×glioma (NG108-15) hybrid cells is associated with a reduction in spontaneous stimulatory receptor activity. FEBS Letters, 2000, 485, 157-162.	1.3	7
31	Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature, 2000, 408, 723-727.	13.7	142
32	Role for the C-Terminus in Agonist-Induced μ Opioid Receptor Phosphorylation and Desensitizationâ€. Biochemistry, 2000, 39, 5492-5499.	1.2	65
33	Protein kinases modulate the cellular adaptations associated with opioid tolerance and dependence. Brain Research Reviews, 2001, 38, 1-19.	9.1	186
34	Endocytosis of the Mu Opioid Receptor Reduces Tolerance and a Cellular Hallmark of Opiate Withdrawal. Neuron, 2001, 32, 829-839.	3.8	256
35	A RAVE about Opioid Withdrawal. Neuron, 2001, 32, 761-763.	3.8	34
36	III. μ-Opioid receptors in the enteric nervous system. American Journal of Physiology - Renal Physiology, 2001, 281, G8-G15.	1.6	42

CI	ΓΑΤ	ION	RE	POR	т

#	Article	IF	CITATIONS
37	Cellular and Synaptic Adaptations Mediating Opioid Dependence. Physiological Reviews, 2001, 81, 299-343.	13.1	725
38	Inverse Agonist Up-Regulates the Constitutively Active D3.49(164)Q Mutant of the Rat μ-Opioid Receptor by Stabilizing the Structure and Blocking Constitutive Internalization and Down-Regulation. Molecular Pharmacology, 2001, 60, 1064-1075.	1.0	50
39	Nociceptin-induced internalization of the ORL1 receptor in human neuroblastoma cells. NeuroReport, 2001, 12, 3159-3163.	0.6	36
40	Opioids: molecular basis of action. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 166-171.	0.6	2
41	μ-Opioid Agonist Inhibition of κ-Opioid Receptor-Stimulated Extracellular Signal-Regulated Kinase Phosphorylation Is Dynamin-Dependent in C6 Glioma Cells. Journal of Neurochemistry, 2001, 74, 574-581.	2.1	47
42	G protein-coupled receptor kinase 2 mediates Âμ-opioid receptor desensitization in GABAergic neurons of the nucleus raphe magnus. Journal of Neurochemistry, 2001, 77, 435-444.	2.1	46
43	Changes in the expression of G protein-coupled receptor kinases and β-arrestin 2 in rat brain during opioid tolerance and supersensitivity. Journal of Neurochemistry, 2001, 77, 486-492.	2.1	56
44	Involvement of Mitogen-Activated Protein Kinase in Agonist-Induced Phosphorylation of the μ-Opioid Receptor in HEK 293 Cells. Journal of Neurochemistry, 2001, 74, 414-422.	2.1	87
45	Molecular determinants of opioid analgesia: Modulation of presynaptic calcium channels. Drug Development Research, 2001, 54, 118-128.	1.4	9
46	μ-Opioid receptor downregulation contributes to opioid tolerance in vivo. Pharmacology Biochemistry and Behavior, 2001, 69, 233-237.	1.3	77
47	Agonist-induced μ opioid receptor phosphorylation and functional desensitization in rat thalamus. Brain Research, 2001, 898, 204-214.	1.1	29
48	C-terminal Splice Variants of the Mouse µ-Opioid Receptor Differ in Morphine-induced Internalization and Receptor Resensitization. Journal of Biological Chemistry, 2001, 276, 31408-31414.	1.6	150
49	Heterologous Inhibition of G Protein-coupled Receptor Endocytosis Mediated by Receptor-specific Trafficking of β-Arrestins. Journal of Biological Chemistry, 2001, 276, 17442-17447.	1.6	33
50	Arrestin Specificity for G Protein-coupled Receptors in Human Airway Smooth Muscle. Journal of Biological Chemistry, 2001, 276, 32648-32656.	1.6	87
51	Proteasome Involvement in Agonist-induced Down-regulation of μ and δ Opioid Receptors. Journal of Biological Chemistry, 2001, 276, 12345-12355.	1.6	131
52	A Phosphorylation-regulated Brake Mechanism Controls the Initial Endocytosis of Opioid Receptors but Is Not Required for Post-endocytic Sorting to Lysosomes. Journal of Biological Chemistry, 2001, 276, 34331-34338.	1.6	64
53	Heterologous Activation of Protein Kinase C Stimulates Phosphorylation of δ-Opioid Receptor at Serine 344, Resulting in β-Arrestin- and Clathrin-mediated Receptor Internalization. Journal of Biological Chemistry, 2001, 276, 4709-4716.	1.6	71
54	Opioid Agonists Differentially Regulate μ-Opioid Receptors and Trafficking Proteins in Vivo. Molecular Pharmacology, 2002, 62, 1464-1470.	1.0	58

~			~	
C^{+}	ΙΤΛΤΙ	ON	Repc	DT
\sim	плп		NLFC	<u> </u>

#	Article	IF	CITATIONS
55	Regulation of Opioid Receptor Trafficking and Morphine Tolerance by Receptor Oligomerization. Cell, 2002, 108, 271-282.	13.5	308
56	Induction of G protein-coupled receptor kinases 2 and 3 contributes to the cross-talk between μ and ORL1 receptors following prolonged agonist exposure. Neuropharmacology, 2002, 43, 979-990.	2.0	35
57	Inhibition of μ and δ opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin. Regulatory Peptides, 2002, 105, 9-14.	1.9	4
58	Chronic Morphine Treatment Inhibits Opioid Receptor Desensitization and Internalization. Journal of Neuroscience, 2002, 22, 10192-10200.	1.7	69
59	μ-Opioid Receptors: Ligand-Dependent Activation of Potassium Conductance, Desensitization, and Internalization. Journal of Neuroscience, 2002, 22, 5769-5776.	1.7	154
60	Differential Mechanisms of Morphine Antinociceptive Tolerance Revealed in βArrestin-2 Knock-Out Mice. Journal of Neuroscience, 2002, 22, 10494-10500.	1.7	246
61	Chronic Morphine Induces Downregulation of Spinal Glutamate Transporters: Implications in Morphine Tolerance and Abnormal Pain Sensitivity. Journal of Neuroscience, 2002, 22, 8312-8323.	1.7	391
62	Differential Desensitization of Responses Mediated by Presynaptic and Postsynaptic A ₁ Adenosine Receptors. Journal of Neuroscience, 2002, 22, 1248-1255.	1.7	78
63	Antagonist-induced μ-opioid receptor up-regulation decreases C-protein receptor kinase-2 and dynamin-2 abundance in mouse spinal cord. European Journal of Pharmacology, 2002, 446, 37-42.	1.7	16
64	μ-Opioid receptor down-regulation and tolerance are not equally dependent upon G-protein signaling. Pharmacology Biochemistry and Behavior, 2002, 72, 273-278.	1.3	27
65	Identification of two C-terminal amino acids, Ser355 and Thr357, required for short-term homologous desensitization of μ-opioid receptors. Biochemical Pharmacology, 2002, 64, 257-266.	2.0	37
66	Constitutive Activation and Endocytosis of the Complement Factor 5a Receptor: Evidence for Multiple Activated Conformations of a G Protein-Coupled Receptor. Traffic, 2002, 3, 866-877.	1.3	50
67	Coupling Efficacy and Selectivity of the Human μ-Opioid Receptor Expressed as Receptor-Gα Fusion Proteins in Escherichia coli. Journal of Neurochemistry, 2002, 75, 1190-1199.	2.1	27
68	Regulated endocytosis of opioid receptors: cellular mechanisms and proposed roles in physiological adaptation to opiate drugs. Current Opinion in Neurobiology, 2003, 13, 348-353.	2.0	115
69	The expression of a high level of morphine antinociceptive tolerance in mice involves both PKC and PKA. Brain Research, 2003, 985, 78-88.	1.1	52
70	Chronic opioid antagonist treatment dose-dependently regulates μ-opioid receptors and trafficking proteins in vivo. Pharmacology Biochemistry and Behavior, 2003, 75, 909-913.	1.3	29
71	Phospholipase D2 modulates agonist-induced µ-opioid receptor desensitization and resensitization. Journal of Neurochemistry, 2003, 88, 680-688.	2.1	64
72	Role of Gi?2-protein in opioid tolerance and ?-opioid receptor downregulation in vivo. Synapse, 2003, 47, 109-116.	0.6	21

#	Article	IF	CITATIONS
73	Chronic opioid antagonist treatment selectively regulates trafficking and signaling proteins in mouse spinal cord. Synapse, 2003, 50, 67-76.	0.6	12
74	Up-regulation of murine double minute clone 2 (MDM2) gene expression in rat brain after morphine, heroin, and cocaine administrations. Neuroscience Letters, 2003, , .	1.0	1
75	Opioid Agonists Have Different Efficacy Profiles for G Protein Activation, Rapid Desensitization, and Endocytosis of Mu-opioid Receptors. Journal of Biological Chemistry, 2003, 278, 18776-18784.	1.6	142
76	Purification and mass spectrometric analysis of the μ opioid receptor. Molecular Brain Research, 2003, 118, 119-131.	2.5	23
77	Up-regulation of murine double minute clone 2 (MDM2) gene expression in rat brain after morphine, heroin, and cocaine administrations. Neuroscience Letters, 2003, 352, 216-220.	1.0	29
78	Internalization and recycling of human \hat{l} opioid receptors expressed in Sf9 insect cells. Life Sciences, 2003, 73, 115-128.	2.0	13
79	Opioid receptor interactions: Local and nonlocal, symmetric and asymmetric, physical and functional. Life Sciences, 2003, 73, 1873-1893.	2.0	31
80	Differential regulation of β-arrestin 1 and β-arrestin 2 gene expression in rat brain by morphine. Neuroscience, 2003, 117, 383-389.	1.1	63
81	Ligand-induced $\hat{1}_{4}$ opioid receptor endocytosis and recycling in enteric neurons. Neuroscience, 2003, 119, 33-42.	1.1	60
82	Two distinct forms of desensitization of G- protein coupled inwardly rectifying potassium currents evoked by alkaloid and peptide l1⁄4-opioid receptor agonists. Molecular and Cellular Neurosciences, 2003, 24, 517-523.	1.0	32
83	A Novel Endocytic Recycling Signal That Distinguishes the Membrane Trafficking of Naturally Occurring Opioid Receptors. Journal of Biological Chemistry, 2003, 278, 45978-45986.	1.6	171
84	The Intracellular Trafficking of Opioid Receptors Directed by Carboxyl Tail and a Di-leucine Motif in Neuro2A Cells. Journal of Biological Chemistry, 2003, 278, 36848-36858.	1.6	42
85	Essential role for RGS9 in opiate action. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13656-13661.	3.3	229
86	Â-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11406-11411.	3.3	482
87	Identification of Drosophila Neuropeptide Receptors by G Protein-coupled Receptors-Î ² -Arrestin2 Interactions. Journal of Biological Chemistry, 2003, 278, 52172-52178.	1.6	117
88	The Carboxyl Terminus of Human Cytomegalovirus-encoded 7 Transmembrane Receptor US28 Camouflages Agonism by Mediating Constitutive Endocytosis. Journal of Biological Chemistry, 2003, 278, 19473-19482.	1.6	104
89	Opioid-induced hyperalgesia: abnormal or normal pain?. NeuroReport, 2003, 14, 1-7.	0.6	325
90	Enhanced Rewarding Properties of Morphine, but not Cocaine, in βarrestin-2 Knock-Out Mice. Journal of Neuroscience, 2003, 23, 10265-10273.	1.7	203

ARTICLE IF CITATIONS # Morphine Acutely Regulates Opioid Receptor Trafficking Selectively in Dendrites of Nucleus 1.7 130 91 Accumbens Neurons. Journal of Neuroscience, 2003, 23, 4324-4332. Post-transcriptional regulation of opioid receptors in the nervous system. Frontiers in Bioscience -38 Landmark, 2004, 9, 1665. Opioids As Modulators of Cell Death and Survivalâ€"Unraveling Mechanisms and Revealing New 93 7.1 195 Indications. Pharmacological Reviews, 2004, 56, 351-369. Chronic Morphine Treatment Reduces Recovery from Opioid Desensitization. Journal of Neuroscience, 94 2004, 24, 7699-7706. Relative Opioid Efficacy Is Determined by the Complements of the G Protein-Coupled Receptor 95 1.0 152 Desensitization Machinery. Molecular Pharmacology, 2004, 66, 106-112. Differential Desensitization, Receptor Phosphorylation, Î²-Arrestin Recruitment, and ERK1/2 Activation by the Two Endogenous Ligands for the CC Chemokine Receptor 7. Journal of Biological Chemistry, 1.6 291 2004, 279, 23214-23222. Distinct Domains of the μ-Opioid Receptor Control Uncoupling and Internalization. Molecular 97 1.0 97 Pharmacology, 2004, 65, 528-537. DESENSITIZATION OF G PROTEINâ€"COUPLED RECEPTORS AND NEURONAL FUNCTIONS. Annual Review of 5.0 755 Neuroscience, 2004, 27, 107-144. Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinases Block Internalization of 99 1.3 30 Î-Opioid Receptors. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 776-785. Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. Journal of Neurochemistry, 2.1 263 2004, 89, 553-560. \hat{l}_{4} -Opioid receptor desensitization: Is morphine different?. British Journal of Pharmacology, 2004, 143, 101 2.7 99 685-696. G Protein-Coupled Receptor Kinase/l2-Arrestin Systems and Drugs of Abuse: Psychostimulant and Opiate 1.8 Studies in Knockout Mice. NeuroMolecular Medicine, 2004, 5, 041-050. Opioid Receptor Regulation. NeuroMolecular Medicine, 2004, 5, 051-058. 103 1.8 14 Inverse agonism: more than reverting constitutively active receptor signaling. Biochemistry and Cell 104 Biology, 2004, 82, 676-680. A cell biologist's perspective on physiological adaptation to opiate drugs. Neuropharmacology, 2004, 105 2.0 47 47, 286-292. Secrets of the opium poppy revealed. Neuropharmacology, 2004, 47, 293-299. 43 Opioid Receptors. Annual Review of Biochemistry, 2004, 73, 953-990. 107 5.0687 The Role of Opioid Receptor Internalization and ??-Arrestins in the Development of Opioid Tolerance. 1.1 Anesthesia and Analgesia, 2005, 101, 728-734.

	CHATION I	LEPORT	
#	Article	IF	Citations
109	Mu opioid receptor regulation and opiate responsiveness. AAPS Journal, 2005, 7, E587-E591.	2.2	70
110	Phosphorylation of EEA1 by p38 MAP kinase regulates μ opioid receptor endocytosis. EMBO Journal, 2005, 24, 3235-3246.	3.5	129
111	Morphine-6-glucuronide: Actions and mechanisms. Medicinal Research Reviews, 2005, 25, 521-544.	5.0	126
112	Look before leaping: combined opioids may not be the rave. Supportive Care in Cancer, 2005, 13, 769-774.	1.0	16
113	Continuous opioid agonist treatment dose-dependently regulates ?-opioid receptors and dynamin-2 in mouse spinal cord. Synapse, 2005, 56, 123-128.	0.6	11
114	Â-Arrestin2, interacting with phosphodiesterase 4, regulates synaptic release probability and presynaptic inhibition by opioids. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3034-3039.	3.3	36
115	Receptor Endocytosis Counteracts the Development of Opioid Tolerance. Molecular Pharmacology, 2005, 67, 280-287.	1.0	153
116	The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience, 2005, , .	0.3	5
117	Chemical Genetic Engineering of G Protein-coupled Receptor Kinase 2. Journal of Biological Chemistry, 2005, 280, 35051-35061.	1.6	26
118	Morphine Promotes Rapid, Arrestin-Dependent Endocytosis of Â-Opioid Receptors in Striatal Neurons. Journal of Neuroscience, 2005, 25, 7847-7857.	1.7	134
119	Morphine-Induced μ-Opioid Receptor Desensitization. Molecular Pharmacology, 2005, 68, 1127-1132.	1.0	51
120	Distinct Conformations of the Corticotropin Releasing Factor Type 1 Receptor Adopted following Agonist and Antagonist Binding Are Differentially Regulated. Journal of Biological Chemistry, 2005, 280, 11560-11568.	1.6	59
121	Heterodimerization of μ- and Î-Opioid Receptors Occurs at the Cell Surface Only and Requires Receptor-G Protein Interactions. Journal of Biological Chemistry, 2005, 280, 11152-11164.	1.6	101
122	Is Paradoxical Pain Induced by Sustained Opioid Exposure an Underlying Mechanism of Opioid Antinociceptive Tolerance?. NeuroSignals, 2005, 14, 194-205.	0.5	170
123	A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9050-9055.	3.3	332
124	Receptor Oligomerization and Trafficking. Contemporary Clinical Neuroscience, 2005, , 309-322.	0.3	0
125	Purification and mass spectrometric analysis of the δopioid receptor. Molecular Brain Research, 2005, 136, 54-64.	2.5	19
126	cAMP and protein kinase A contribute to the downregulation of spinal glutamate transporters after chronic morphine. Neuroscience Letters, 2005, 376, 9-13.	1.0	33

ARTICLE IF CITATIONS 127 The Serotonin Receptors. Receptors, 2006, , . 0.2 27 Development of functionally selective agonists as novel therapeutic agents. Drug Discovery Today: 129 Therapeutic Strategies, 2006, 3, 421-428. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in 130 2.0 133 morphine-tolerant rats. Pain, 2006, 124, 77-86. Loss of TRPV1-Expressing Sensory Neurons Reduces Spinal μ Opioid Receptors But Paradoxically 0.9 Potentiates Opioid Analgesia. Journal of Neurophysiology, 2006, 95, 3086-3096. Identification of G-Protein Coupled Receptor Kinase 2 in Paired Helical Filaments and Neurofibrillary 132 0.9 19 Tangles. Journal of Neuropathology and Experimental Neurology, 2006, 65, 1157-1169. Enhancement of Morphine Analgesic Effect with Induction of μ-Opioid Receptor Endocytosis in Rats. Anesthesiology, 2006, 105, 574-580. 1.3 Opioids in the Treatment of Headache: Scientific Abstract and Commentary. Headache Currents: A 134 0.7 0 Journal for Recent Advances in Headache and Facial Pain, 2006, 3, 63-66. A potential novel strategy to separate therapeutic- and side-effects that are mediated via the same receptor: beta-arrestin2]G-protein coupling antagonists. Journal of Clinical Pharmacy and 19 Therapeutics, 2006, 31, 119-128. Distinct modes of regulated receptor insertion to the somatodendritic plasma membrane. Nature 136 7.1 76 Neuroscience, 2006, 9, 622-627. Differential activation of G-proteins by $\hat{1}_{4}$ -opioid receptor agonists. British Journal of Pharmacology, 2.7 64 2006, 147, 671-680. Two C-terminal amino acids, Ser334 and Ser335, are required for homologous desensitization and agonist-induced phosphorylation of opioid receptor-like 1 receptors. Cellular Signalling, 2006, 18, 138 4 1.7 670-678. Tracking the opioid receptors on the way of desensitization. Cellular Signalling, 2006, 18, 1815-1833. 1.7 High-purity selection and maintenance of gene expression in human neuroblastoma cells stably 140 1.1 6 over-expressing GFP fusion protein. Brain Research, 2006, 1114, 11-18. Transmembrane Signaling by G Protein-Coupled Receptors., 2006, 332, 1-50. 141 Collateral efficacy as a pharmacological problem applied to new drug discovery. Expert Opinion on 142 2.523 Drug Discovery, 2006, 1, 635-652. Integrative Functional Assays, Chemical Genomics and High Throughput Screening: Harnessing Signal 143 29 Transduction Pathways to a Common HTS Readout. Current Pharmaceutical Design, 2006, 12, 1717-1729. Agonist-Selective Mechanisms of μ-Opioid Receptor Desensitization in Human Embryonic Kidney 293 144 1.0 140 Cells. Molecular Pharmacology, 2006, 70, 676-685. Adenylyl Cyclase Superactivation Induced by Long-Term Treatment with Opioid Agonist Is Dependent on 145 Receptor Localized within Lipid Rafts and Is Independent of Receptor Internalization. Molecular

CITATION REPORT

Pharmacology, 2006, 69, 1421-1432.

#	Article	IF	CITATIONS
147	Physiological Roles of G Protein–Coupled Receptor Kinases and Arrestins. Annual Review of Physiology, 2007, 69, 511-534.	5.6	436
148	Anti-β1-adrenergic receptor autoantibodies are potent stimulators of the ERK1/2 pathway in cardiac cells. Cardiovascular Research, 2007, 76, 51-60.	1.8	46
149	The Biochemical Analysis of Methadone Modulation on Morphine-Induced Tolerance and Dependence in the Rat Brain. Pharmacology, 2007, 79, 193-202.	0.9	12
150	An Opioid Agonist that Does Not Induce μ-Opioid Receptor—Arrestin Interactions or Receptor Internalization. Molecular Pharmacology, 2007, 71, 549-557.	1.0	218
151	Â-Arrestin2 and c-Src Regulate the Constitutive Activity and Recycling of Opioid Receptors in Dorsal Root Ganglion Neurons. Journal of Neuroscience, 2007, 27, 5092-5104.	1.7	90
152	μ-Opioid Receptor Up-Regulation and Functional Supersensitivity Are Independent of Antagonist Efficacy. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 701-707.	1.3	25
153	The evasive nature of drug efficacy: implications for drug discovery. Trends in Pharmacological Sciences, 2007, 28, 423-430.	4.0	324
154	β-Arrestin-biased ligands at seven-transmembrane receptors. Trends in Pharmacological Sciences, 2007, 28, 416-422.	4.0	562
155	Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience, 2007, 145, 676-685.	1.1	44
156	Functional Selectivity and Classical Concepts of Quantitative Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1-13.	1.3	997
157	Distinct effects of individual opioids on the morphology of spines depend upon the internalization of mu opioid receptors. Molecular and Cellular Neurosciences, 2007, 35, 456-469.	1.0	53
158	Morphine Induces Endocytosis of Neuronal μ-opioid Receptors Through the Sustained Transfer of Gα Subunits to RGSZ2 Proteins. Molecular Pain, 2007, 3, 1744-8069-3-19.	1.0	40
159	Agonist-Dependent Postsynaptic Effects of Opioids on Miniature Excitatory Postsynaptic Currents in Cultured Hippocampal Neurons. Journal of Neurophysiology, 2007, 97, 1485-1494.	0.9	21
160	A comparison of noninternalizing (herkinorin) and internalizing (DAMGO) μ-opioid agonists on cellular markers related to opioid tolerance and dependence. Synapse, 2007, 61, 166-175.	0.6	57
161	Ligand-specific receptor states: Implications for opiate receptor signalling and regulation. Cellular Signalling, 2007, 19, 8-19.	1.7	50
162	RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Cellular Signalling, 2007, 19, 2558-2571.	1.7	33
163	The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Current Opinion in Neurobiology, 2007, 17, 556-564.	2.0	209
164	The impact of the opioids fentanyl and morphine on nociception and bone destruction in a murine model of bone cancer pain. Pharmacology Biochemistry and Behavior, 2007, 87, 30-40.	1.3	24

#	Article	IF	CITATIONS
165	Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Molecular Biotechnology, 2008, 39, 239-264.	1.3	124
166	Internalisation of the μ-opioid receptor by endomorphin-1 and leu-enkephalin is dependant on aromatic amino acid residues. Bioorganic and Medicinal Chemistry, 2008, 16, 4341-4346.	1.4	4
167	Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. British Journal of Pharmacology, 2008, 154, 384-396.	2.7	370
168	Morphine-induced μ-opioid receptor rapid desensitization is independent of receptor phosphorylation and β-arrestins. Cellular Signalling, 2008, 20, 1616-1624.	1.7	49
169	Antipsychotics differ in their ability to internalise human dopamine D2S and human serotonin 5-HT1A receptors in HEK293 cells. European Journal of Pharmacology, 2008, 581, 37-46.	1.7	26
170	The analgesic efficacy of fentanyl: Relationship to tolerance and μ-opioid receptor regulation. Pharmacology Biochemistry and Behavior, 2008, 91, 115-120.	1.3	32
171	Role of receptor internalization in opioid tolerance and dependence. , 2008, 117, 199-206.		163
172	Multiple Actions of Spinophilin Regulate Mu Opioid Receptor Function. Neuron, 2008, 58, 238-247.	3.8	65
173	Changes in morphine analgesia and side effects during daily subcutaneous administration in healthy volunteers. Pain, 2008, 137, 395-404.	2.0	18
174	Differential effects of opioid agonists on G protein expression in CHO cells expressing cloned human opioid receptors. Brain Research Bulletin, 2008, 77, 49-54.	1.4	18
175	Brain region-specific N-glycosylation and lipid rafts association of the rat mu opioid receptor. Biochemical and Biophysical Research Communications, 2008, 365, 82-88.	1.0	34
176	β-Arrestin-Dependent μ-Opioid Receptor-Activated Extracellular Signal-Regulated Kinases (ERKs) Translocate to Nucleus in Contrast to G Protein-Dependent ERK Activation. Molecular Pharmacology, 2008, 73, 178-190.	1.0	145
177	Agonist-Specific Regulation of μ-Opioid Receptor Desensitization and Recovery from Desensitization. Molecular Pharmacology, 2008, 73, 1301-1308.	1.0	47
178	Post-activation-mediated Changes in Opioid Receptors Detected by N-terminal Antibodies. Journal of Biological Chemistry, 2008, 283, 10735-10744.	1.6	20
179	Alternative Splicing Determines the Post-endocytic Sorting Fate of G-protein-coupled Receptors. Journal of Biological Chemistry, 2008, 283, 35614-35621.	1.6	56
180	Morphine Induces Ubiquitin-Proteasome Activity and Glutamate Transporter Degradation. Journal of Biological Chemistry, 2008, 283, 21703-21713.	1.6	47
181	Phosphorylation State of μ-Opioid Receptor Determines the Alternative Recycling of Receptor via Rab4 or Rab11 Pathway. Molecular Endocrinology, 2008, 22, 1881-1892.	3.7	26
182	β-Arrestins: Multifunctional Cellular Mediators. Physiology, 2008, 23, 17-22.	1.6	43

#	Article	IF	CITATIONS
184	High-Affinity Naloxone Binding to Filamin A Prevents Mu Opioid Receptor–Gs Coupling Underlying Opioid Tolerance and Dependence. PLoS ONE, 2008, 3, e1554.	1.1	70
185	Molecular Basis and Clinical Implications of Opioid Tolerance and Opioid-Induced Hyperalgesia. , 2009, , 114-144.		6
186	Neurokinin 1 Receptors Regulate Morphine-Induced Endocytosis and Desensitization of μ-Opioid Receptors in CNS Neurons. Journal of Neuroscience, 2009, 29, 222-233.	1.7	60
187	p38 MAPK and β-Arrestin 2 Mediate Functional Interactions between Endogenous μ-Opioid and α2A-Adrenergic Receptors in Neurons. Journal of Biological Chemistry, 2009, 284, 6270-6281.	1.6	47
188	Epitope-tagged Receptor Knock-in Mice Reveal That Differential Desensitization of α2-Adrenergic Responses Is because of Ligand-selective Internalization. Journal of Biological Chemistry, 2009, 284, 13233-13243.	1.6	33
189	Bidirectional Effects of Fentanyl on Dendritic Spines and AMPA Receptors Depend Upon the Internalization of Mu Opioid Receptors. Neuropsychopharmacology, 2009, 34, 2097-2111.	2.8	18
190	Functional characterization of human variants of the mu-opioid receptor gene. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10811-10816.	3.3	64
191	Functional Selectivity of G Protein-Coupled Receptor Ligands. , 2009, , .		9
192	Continuous morphine produces more tolerance than intermittent or acute treatment. Pharmacology Biochemistry and Behavior, 2009, 92, 537-542.	1.3	24
193	Physiological and pharmacological implications of beta-arrestin regulation. , 2009, 121, 285-293.		90
194	Tolerance to the antinociceptive effects of peripherally administered opioids. Brain Research, 2009, 1248, 31-39.	1.1	19
195	Diversity in arrestin function. Cellular and Molecular Life Sciences, 2009, 66, 2953-2973.	2.4	55
196	Nicotine sensitization and analysis of brainâ€derived neurotrophic factor in adolescent ßâ€arrestinâ€2 knockout mice. Synapse, 2009, 63, 510-519.	0.6	21
197	Role of Src in ligandâ€specific regulation of δâ€opioid receptor desensitization and internalization. Journal of Neurochemistry, 2009, 108, 102-114.	2.1	33
198	Receptor trafficking induced by μ-opioid-receptor phosphorylation. Neuroscience and Biobehavioral Reviews, 2009, 33, 1192-1197.	2.9	15
199	Morphine-induced physiological and behavioral responses in mice lacking G protein-coupled receptor kinase 6. Drug and Alcohol Dependence, 2009, 104, 187-196.	1.6	36
200	Regulation of mu opioid receptor internalization by the scaffold protein RanBPM. Neuroscience Letters, 2009, 466, 154-158.	1.0	18
201	Agonist-dependent Î1⁄4-opioid receptor signaling can lead to heterologous desensitization. Cellular Signalling, 2010, 22, 684-696.	1.7	51

#	Article	IF	CITATIONS
202	How to design an opioid drug that causes reduced tolerance and dependence. Annals of Neurology, 2010, 67, 559-569.	2.8	52
203	7TM receptor functional selectivity. , 0, , 270-286.		0
204	Differential Signaling of the Endogenous Agonists at the β2-Adrenergic Receptor. Journal of Biological Chemistry, 2010, 285, 36188-36198.	1.6	101
205	Morphine-like Opiates Selectively Antagonize Receptor-Arrestin Interactions. Journal of Biological Chemistry, 2010, 285, 12522-12535.	1.6	93
206	Differential Effects of Allosteric M ₁ Muscarinic Acetylcholine Receptor Agonists on Receptor Activation, Arrestin 3 Recruitment, and Receptor Downregulation. ACS Chemical Neuroscience, 2010, 1, 542-551.	1.7	22
207	Monomeric Rhodopsin Is the Minimal Functional Unit Required for Arrestin Binding. Journal of Molecular Biology, 2010, 399, 501-511.	2.0	83
208	Regulation of opioid receptors by endocytic membrane traffic: Mechanisms and translational implications. Drug and Alcohol Dependence, 2010, 108, 166-171.	1.6	30
209	Effect of KEPI (Ppp1r14c) deletion on morphine analgesia and tolerance in mice of different genetic backgrounds: when a knockout is near a relevant quantitative trait locus. Neuroscience, 2010, 165, 882-895.	1.1	18
210	Morphine Induces μ Opioid Receptor Endocytosis in Guinea Pig Enteric Neurons Following Prolonged Receptor Activation. Gastroenterology, 2011, 140, 618-626.	0.6	37
212	Methods for the Discovery and Characterization of G Protein-Coupled Receptors. Neuromethods, 2011,	0.2	0
213	Up-regulation of adenylylcyclases I and II induced by long-term adaptation of rats to morphine fades away 20days after morphine withdrawal. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1220-1229.	1.1	13
214	Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends in Molecular Medicine, 2011, 17, 126-139.	3.5	469
215	Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opinion on Drug Discovery, 2011, 6, 811-825.	2.5	64
216	The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology, 2011, 60, 58-65.	2.0	159
217	Opioid receptor subtypes: fact or artifact?. British Journal of Anaesthesia, 2011, 107, 8-18.	1.5	127
218	Functional Selectivity at the μ-Opioid Receptor: Implications for Understanding Opioid Analgesia and Tolerance. Pharmacological Reviews, 2011, 63, 1001-1019.	7.1	227
219	Heteromerization of the μ- and Î-Opioid Receptors Produces Ligand-Biased Antagonism and Alters μ-Receptor Trafficking. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 868-875.	1.3	48
220	Morphineâ€induced mu opioid receptor trafficking enhances reward yet prevents compulsive drug use. EMBO Molecular Medicine, 2011, 3, 385-397.	3.3	27

#	Article	IF	CITATIONS
221	Refining Efficacy: Exploiting Functional Selectivity for Drug Discovery. Advances in Pharmacology, 2011, 62, 79-107.	1.2	25
222	Ketamine: new uses for an old drug?. British Journal of Anaesthesia, 2011, 107, 123-126.	1.5	118
223	Understanding the Effect of Different Assay Formats on Agonist Parameters: A Study Using the µ-Opioid Receptor. Journal of Biomolecular Screening, 2011, 16, 706-716.	2.6	36
224	A Unique Role of RGS9-2 in the Striatum as a Positive or Negative Regulator of Opiate Analgesia. Journal of Neuroscience, 2011, 31, 5617-5624.	1.7	59
225	Agonist-directed Interactions with Specific β-Arrestins Determine μ-Opioid Receptor Trafficking, Ubiquitination, and Dephosphorylation. Journal of Biological Chemistry, 2011, 286, 31731-31741.	1.6	109
226	Cholesterol Regulates μ-Opioid Receptor-Induced β-Arrestin 2 Translocation to Membrane Lipid Rafts. Molecular Pharmacology, 2011, 80, 210-218.	1.0	44
227	Antinociceptive potentiation and attenuation of tolerance by intrathecal β-arrestin 2 small interfering RNA in rats. British Journal of Anaesthesia, 2011, 107, 774-781.	1.5	58
228	Quantitative Encoding of the Effect of a Partial Agonist on Individual Opioid Receptors by Multisite Phosphorylation and Threshold Detection. Science Signaling, 2011, 4, ra52.	1.6	98
229	Opioid Receptor Signal Transduction Mechanisms. , 2011, , 195-238.		17
230	Stimulus Bias Provides Evidence for Conformational Constraints in the Structure of a G Protein-coupled Receptor. Journal of Biological Chemistry, 2012, 287, 37066-37077.	1.6	28
231	Chronic Methadone Treatment Shows a Better Cost/Benefit Ratio than Chronic Morphine in Mice. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 386-392.	1.3	17
232	The Other Side of Opioid Receptor Signalling: Regulation by Protein-Protein Interaction. Current Drug Targets, 2012, 13, 80-102.	1.0	36
234	Evidence from basic research for opioid combinations. Expert Opinion on Drug Discovery, 2012, 7, 165-178.	2.5	12
235	The role of cyclo-oxygenase inhibitors in attenuating opioid-induced tolerance, hyperalgesia, and dependence. Medical Hypotheses, 2012, 78, 102-106.	0.8	7
236	Antinociceptive effects of herkinorin, a MOP receptor agonist derived from salvinorin A in the formalin test in rats: New concepts in mu opioid receptor pharmacology: From a symposium on new concepts in mu-opioid pharmacology. Drug and Alcohol Dependence, 2012, 121, 181-188.	1.6	53
237	Examining the role of mu opioid receptor endocytosis in the beneficial and side-effects of prolonged opioid use: From a symposium on new concepts in mu-opioid pharmacology. Drug and Alcohol Dependence, 2012, 121, 189-204.	1.6	35
238	Somatosensory scaffolding structures. Frontiers in Molecular Neuroscience, 2012, 5, 2.	1.4	8
239	Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. British Journal of Pharmacology, 2012, 165, 1704-1716.	2.7	138

#	Article	IF	CITATIONS
240	ßarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands. Cellular Signalling, 2012, 24, 699-707.	1.7	17
241	Differences in the characteristics of tolerance to μ-opioid receptor agonists in the colon from wild type and β-arrestin2 knockout mice. European Journal of Pharmacology, 2012, 685, 133-140.	1.7	36
242	[35S]GTPÎ ³ S binding and opioid tolerance and efficacy in mouse spinal cord. Pharmacology Biochemistry and Behavior, 2012, 101, 155-165.	1.3	20
243	Opioid Receptor Trafficking and Signaling: What Happens After Opioid Receptor Activation?. Cellular and Molecular Neurobiology, 2012, 32, 167-184.	1.7	20
244	Possible involvement of prolonging spinal Âμ-opioid receptor desensitization in the development of antihyperalgesic tolerance to Âμ-opioids under a neuropathic pain-like state. Addiction Biology, 2013, 18, 614-622.	1.4	22
245	A G Protein-Biased Ligand at the <i>μ</i> -Opioid Receptor Is Potently Analgesic with Reduced Gastrointestinal and Respiratory Dysfunction Compared with Morphine. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 708-717.	1.3	512
246	The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts. Journal of Biological Chemistry, 2013, 288, 22942-22960.	1.6	78
247	Regulation of <i>µ</i> -Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacological Reviews, 2013, 65, 223-254.	7.1	673
248	β-Arrestins in the Central Nervous System. Progress in Molecular Biology and Translational Science, 2013, 118, 267-295.	0.9	14
249	Ligandâ€induced μ opioid receptor internalization in enteric neurons following chronic treatment with the opiate fentanyl. Journal of Neuroscience Research, 2013, 91, 854-860.	1.3	11
250	Ubiquitin-dependent regulation of G protein-coupled receptor trafficking and signaling. Cellular Signalling, 2013, 25, 707-716.	1.7	71
251	Ligand-Specific Regulation of the Endogenous Mu-Opioid Receptor by Chronic Treatment with Mu-Opioid Peptide Agonists. BioMed Research International, 2013, 2013, 1-9.	0.9	6
253	Co-Expression of GRK2 Reveals a Novel Conformational State of the µ-Opioid Receptor. PLoS ONE, 2013, 8, e83691.	1.1	17
254	Activation of Mu Opioid Receptors Sensitizes Transient Receptor Potential Vanilloid Type 1 (TRPV1) via β-Arrestin-2-Mediated Cross-Talk. PLoS ONE, 2014, 9, e93688.	1.1	39
255	Preimplantation Mouse Embryo Is a Target for Opioid Ligand-Receptor Signaling1. Biology of Reproduction, 2014, 91, 4.	1.2	16
256	Promises of Biased Signaling in the Development of Improved Therapeutics. , 2014, , 251-292.		0
257	Opioid receptor desensitization: mechanisms and its link to tolerance. Frontiers in Pharmacology, 2014, 5, 280.	1.6	119
258	β-Arrestins: Regulatory Role and Therapeutic Potential in Opioid and Cannabinoid Receptor-Mediated Analgesia. Handbook of Experimental Pharmacology, 2014, 219, 427-443.	0.9	69

		CITATION REPORT	
#	Article	IF	CITATIONS
259	Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, 2014, , .	0.9	12
260	Identification of Selective Agonists and Positive Allosteric Modulators for µ- and δ-Opioid Receptors from a Single High-Throughput Screen. Journal of Biomolecular Screening, 2014, 19, 1255-1265.	2.6	27
261	Morphine-induced trafficking of a mu-opioid receptor interacting protein in rat locus coeruleus neurons. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 50, 53-65.	2.5	16
262	Differential Regulation of 6- and 7-Transmembrane Helix Variants of μ-Opioid Receptor in Response to Morphine Stimulation. PLoS ONE, 2015, 10, e0142826.	1.1	14
263	Change in functional selectivity of morphine with the development of antinociceptive tolerance. British Journal of Pharmacology, 2015, 172, 549-561.	2.7	21
264	Morphineâ€induced internalization of the <scp>L</scp> 83 <scp>I</scp> mutant of the rat μâ€opioid receptor. British Journal of Pharmacology, 2015, 172, 593-605.	2.7	7
265	Anomalous Ohmic Loss in Solid Oxide Fuel Cells with Doped Ceria Interlayers. ECS Transactions, 2015, 68, 2453-2461.	0.3	1
266	The emerging roles of β-arrestins in fibrotic diseases. Acta Pharmacologica Sinica, 2015, 36, 1277-1287.	2.8	37
267	Functional selectivity and timeâ€dependence of μâ€opioid receptor desensitization at nerve terminals in the mouse ventral tegmental area. British Journal of Pharmacology, 2015, 172, 469-481.	2.7	26
268	Biased Agonism of Endogenous Opioid Peptides at the <i>μ</i> -Opioid Receptor. Molecular Pharmacology, 2015, 88, 335-346.	1.0	93
269	Distribution and trafficking of the μ-opioid receptor in enteric neurons of the guinea pig. American Journal of Physiology - Renal Physiology, 2016, 311, G252-G266.	1.6	21
270	Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family. Journal of Bioenergetics and Biomembranes, 2016, 48, 375-396.	1.0	13
271	Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Science Signaling, 2016, 9, ra16.	1.6	61
272	EphB2 reverse signaling regulates learned opiate tolerance via hippocampal function. Behavioural Brain Research, 2016, 300, 85-96.	1.2	5
273	Sequence-Specific Regulation of Endocytic Lifetimes Modulates Arrestin-Mediated Signaling at the <i>µ</i> Opioid Receptor. Molecular Pharmacology, 2017, 91, 416-427.	1.0	20
274	Spinal or supraspinal phosphorylation deficiency at the MOR C-terminus does not affect morphine tolerance in vivo. Pharmacological Research, 2017, 119, 153-168.	3.1	9
275	M3 muscarinic acetylcholine receptor facilitates the endocytosis of mu opioid receptor mediated by morphine independently of the formation of heteromeric complexes. Cellular Signalling, 2017, 35, 208-222.	1.7	4
276	Enhancement of μ-opioid receptor desensitization by orexin-A in rat locus coeruleus neurons. Neuropeptides, 2017, 63, 28-36.	0.9	21

#	Article	IF	CITATIONS
277	Arresting the Development of Addiction: The Role of <i>β</i> -Arrestin 2 in Drug Abuse. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 341-348.	1.3	37
278	Discovery of new GPCR ligands to illuminate new biology. Nature Chemical Biology, 2017, 13, 1143-1151.	3.9	80
279	Role of orexin type-1 receptors in paragiganto-coerulear modulation of opioid withdrawal and tolerance: A site specific focus. Neuropharmacology, 2017, 126, 25-37.	2.0	52
280	Identification of the First Marine-Derived Opioid Receptor "Balanced―Agonist with a Signaling Profile That Resembles the Endorphins. ACS Chemical Neuroscience, 2017, 8, 473-485.	1.7	34
281	Hijacking the Progress of Addiction: Looking at β-Arrestin 1 and β-Arrestin 2 to Cognize Drugs of Abuse. Journal of Psychiatry, 2017, 21, .	0.1	0
282	Clinical opioids differentially induce co-internalization of μ- and δ-opioid receptors. Molecular Pain, 2018, 14, 174480691876949.	1.0	7
283	<i>In vitro</i> and <i>in vivo</i> characterization of the bifunctional μ and δ opioid receptor ligand UFPâ€505. British Journal of Pharmacology, 2018, 175, 2881-2896.	2.7	16
284	DARK Classics in Chemical Neuroscience: Fentanyl. ACS Chemical Neuroscience, 2018, 9, 2428-2437.	1.7	56
285	Heterodimerization of Mu Opioid Receptor Protomer with Dopamine D2 Receptor Modulates Agonist-Induced Internalization of Mu Opioid Receptor. Biomolecules, 2019, 9, 368.	1.8	13
286	Countering opioid side effects. Science, 2019, 365, 1246-1247.	6.0	1
287	A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists. Frontiers in Pharmacology, 2019, 10, 407.	1.6	76
288	The role of IRAS/Nischarin involved in the development of morphine tolerance and physical dependence. Biochemical and Biophysical Research Communications, 2019, 512, 460-466.	1.0	7
289	GRK Mediates μ-Opioid Receptor Plasma Membrane Reorganization. Frontiers in Molecular Neuroscience, 2019, 12, 104.	1.4	15
290	Dynamic Opioid Receptor Regulation in the Periphery. Molecular Pharmacology, 2019, 95, 463-467.	1.0	15
291	Molecular Biology of Opioid Analgesia and Its Clinical Considerations. Clinical Journal of Pain, 2019, 35, 473-480.	0.8	4
292	Toward Directing Opioid Receptor Signaling to Refine Opioid Therapeutics. Biological Psychiatry, 2020, 87, 15-21.	0.7	67
293	A Discrete Presynaptic Vesicle Cycle for Neuromodulator Receptors. Neuron, 2020, 105, 663-677.e8.	3.8	42
294	β-Arrestin-dependent signaling in GnRH control of hormone secretion from goldfish gonadotrophs and somatotrophs. General and Comparative Endocrinology, 2020, 287, 113340.	0.8	8

		CITATION REPORT	
#	Article	IF	CITATIONS
295	Opioid Pharmacology under the Microscope. Molecular Pharmacology, 2020, 98, 425-43	2. 1.0	14
296	Recent Progress in Opioid Research from an Electrophysiological Perspective. Molecular Pharmacology, 2020, 98, 401-409.	1.0	13
297	Evidence for the emergence of an opioidâ€resistant respiratory rhythm following fentany Respiratory Physiology and Neurobiology, 2020, 277, 103428.	l overdose. 0.7	9
298	Melatonin and morphine: potential beneficial effects of coâ€use. Fundamental and Clinic Pharmacology, 2021, 35, 25-39.	al 1.0	27
299	Recent advances in basic science methodology to evaluate opioid safety profiles and to u opioid activities. Faculty Reviews, 2021, 10, 15.	inderstand 1.7	1
300	Respiratory effects of low and high doses of fentanyl in control and \hat{l}^2 -arrestin 2-deficient Journal of Neurophysiology, 2021, 125, 1396-1407.	mice. 0.9	9
301	Structural Insights Accelerate the Discovery of Opioid Alternatives. Annual Review of Biod 2021, 90, 739-761.	chemistry, 5.0	33
302	Pharmacological and genetic manipulations at the µ-opioid receptor reveal arrestin-3 en limits analgesic tolerance and does not exacerbate respiratory depression in mice. Neuropsychopharmacology, 2021, 46, 2241-2249.	gagement 2.8	40
303	Morphineâ€induced kinase activation and localization in the periaqueductal gray of male mice. Journal of Neurochemistry, 2021, 159, 590-602.	and female 2.1	6
304	Opioid Receptor Signaling and Regulation. , 2006, , 357-389.		1
305	Modulation of High Voltage-Activated Calcium Channels by G Protein-Coupled Receptors 331-367.	.,2004,,	2
306	Selectivity for G Protein or Arrestin-Mediated Signaling. , 2009, , 71-85.		8
307	Functional Selectivity at Serotonin Receptors. , 2009, , 155-176.		5
308	Opioid Receptor Trafficking. , 2011, , 389-405.		1
309	Delta Opioid Receptor Signaling and Trafficking. , 2003, , .		1
310	Chronic Ethanol Consumption in Rats Produces Opioid Antinociceptive Tolerance throug of Mu Opioid Receptor Endocytosis. PLoS ONE, 2011, 6, e19372.	h Inhibition 1.1	20
311	Chronic Morphine Treatment Attenuates Cell Growth of Human BT474 Breast Cancer Ce Rearrangement of the ErbB Signalling Network. PLoS ONE, 2013, 8, e53510.	lls by 1.1	16
312	Opioid-Induced Mitogen-Activated Protein Kinase Signaling in Rat Enteric Neurons follow Morphine Treatment. PLoS ONE, 2014, 9, e110230.	ing Chronic 1.1	25

#	Article	IF	CITATIONS
313	Opioid Receptor Interacting Proteins and the Control of Opioid Signaling. Current Pharmaceutical Design, 2014, 19, 7333-7347.	0.9	26
314	Opioids Resistance in Chronic Pain Management. Current Neuropharmacology, 2017, 15, 444-456.	1.4	44
315	Opioid Regulation of Mu Receptor Internalisation: Relevance to the Development of Tolerance and Dependence. CNS and Neurological Disorders - Drug Targets, 2010, 9, 616-626.	0.8	11
316	Modulation of opioid receptor function by protein-protein interactions. Frontiers in Bioscience - Landmark, 2009, Volume, 3594.	3.0	25
317	Opioid-Receptor (OR) Signaling Cascades in Rat Cerebral Cortex and Model Cell Lines: the Role of Plasma Membrane Structure. Physiological Research, 2014, 63, S165-S176.	0.4	9
318	Biased agonism. F1000 Biology Reports, 2009, 1, 87.	4.0	31
319	Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells. ELife, 2020, 9, .	2.8	42
320	G protein-regulated endocytic trafficking of adenylyl cyclase type 9. ELife, 2020, 9, .	2.8	35
321	Mu Opioid Receptor Regulation and Opiate Responsiveness. , 2008, , 617-624.		0
322	Opioidergic Transmission in the Dorsal Horn. , 2009, , 139-173.		1
323	Functional Selectivity at Opioid Receptors. , 2009, , 243-265.		0
324	Ligand-Selective Receptor Desensitization and Endocytosis. , 2009, , 55-69.		0
326	Elucidating Agonist-Selective Mechanisms of G Protein-Coupled Receptor Desensitization. Neuromethods, 2011, , 323-346.	0.2	0
327	Molecular Mechanism of Clathrin-dependent Endocytosis as the Cellular Information Process Seibutsu Butsuri, 1999, 39, 217-222.	0.0	0
331	Agonist-Directed Trafficking of 5-HT Receptor-Mediated Signal Transduction. , 2006, , 207-235.		3
332	Ubiquitin-mediated receptor degradation contributes to development of tolerance to MrgC agonist–induced pain inhibition in neuropathic rats. Pain, 2021, 162, 1082-1094.	2.0	3
336	Orthosteric- and allosteric-induced ligand-directed trafficking at GPCRs. Current Opinion in Drug Discovery & Development, 2010, 13, 587-94.	1.9	16
337	Molecular mechanism and candidate biomarkers of morphine for analgesia and addiction effects. Annals of Translational Medicine, 2022, 10, 89-89.	0.7	2

#	Article	IF	CITATIONS
338	Disrupted circadian expression of βâ€arrestin 2 affects rewardâ€related µâ€opioid receptor function in alcohol dependence. Journal of Neurochemistry, 2022, 160, 454-468.	2.1	5
339	Class A and C GPCR dimers in neurodegenerative diseases. Current Neuropharmacology, 2022, 20, .	1.4	2
340	Spoken and Unspoken Matters Regarding the Use of Opioids in Cancer. Journal of Pain Research, 2022, Volume 15, 909-924.	0.8	0
341	In vitro functional assays as a tool to study new synthetic opioids at the μ-opioid receptor: Potential, pitfalls and progress. , 2022, 235, 108161.		8
343	Cellular Tolerance Induced by Chronic Opioids in the Central Nervous System. Frontiers in Systems Neuroscience, 0, 16, .	1.2	7
344	Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Frontiers in Systems Neuroscience, 0, 16, .	1.2	8
345	Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology, 2023, 226, 109408.	2.0	4