Cardiac Muscle Cell Hypertrophy and Apoptosis Induce Mitogen-activated Protein Kinase Family

Journal of Biological Chemistry 273, 2161-2168 DOI: 10.1074/jbc.273.4.2161

Citation Report

#	Article	IF	CITATIONS
1	The p38 MAP Kinase Pathway and Its Biological Function. Trends in Cardiovascular Medicine, 1998, 8, 220-228.	2.3	142
2	Cellular mechanisms of cardiac hypertrophy. Journal of Molecular Medicine, 1998, 76, 725-746.	1.7	362
3	Cardiomyocytes and non-muscle cells in cardiac hypertrophy: a molecular perspective. Progress in Pediatric Cardiology, 1998, 9, 183-197.	0.2	2
4	Apoptosis. Circulation Research, 1998, 82, 1111-1129.	2.0	746
5	Stimulation of the p38 Mitogen-activated Protein Kinase Pathway in Neonatal Rat Ventricular Myocytes by the G Protein–coupled Receptor Agonists, Endothelin-1 and Phenylephrine: A Role in Cardiac Myocyte Hypertrophy?. Journal of Cell Biology, 1998, 142, 523-535.	2.3	299
6	Tyrosine Kinase and c-Jun NH ₂ -Terminal Kinase Mediate Hypertrophic Responses to Prostaglandin F _{21±} in Cultured Neonatal Rat Ventricular Myocytes. Circulation Research, 1998, 83, 167-178.	2.0	62
7	"Stress-Responsive―Mitogen-Activated Protein Kinases (c-Jun N-Terminal Kinases and p38) Tj ETQq0 0 0 rgB	T /Overloc 2.0	k 10 Tf 50 5 487
8	Mechanical Stretch Induces Hypertrophic Responses in Cardiac Myocytes of Angiotensin II Type 1a Receptor Knockout Mice. Journal of Biological Chemistry, 1998, 273, 24037-24043.	1.6	127
9	p38 Mitogen-activated Protein Kinase Mediates the Transcriptional Induction of the Atrial Natriuretic Factor Gene through a Serum Response Element. Journal of Biological Chemistry, 1998, 273, 20636-20643.	1.6	116
10	The Low Molecular Weight GTPase Rho Regulates Myofibril Formation and Organization in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 1998, 273, 7725-7730.	1.6	176
11	Cardiac Hypertrophy Induced by Mitogen-activated Protein Kinase Kinase 7, a Specific Activator for c-Jun NH2-terminal Kinase in Ventricular Muscle Cells. Journal of Biological Chemistry, 1998, 273, 5423-5426.	1.6	303
12	The Raf-MEK-ERK Cascade Represents a Common Pathway for Alteration of Intracellular Calcium by Ras and Protein Kinase C in Cardiac Myocytes. Journal of Biological Chemistry, 1998, 273, 21730-21735.	1.6	72
13	Enhanced GÂq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10140-10145.	3.3	498

14	Prostaglandin F2α (PGF2α) and the Isoprostane, 8,12-iso-Isoprostane F2α-III, Induce Cardiomyocyte Hypertrophy. Journal of Biological Chemistry, 1998, 273, 22442-22452.	1.6	115
15	Specific Inhibitors of p38 Mitogen-activated Protein Kinase Block 3T3-L1 Adipogenesis. Journal of Biological Chemistry, 1998, 273, 32111-32120.	1.6	325
16	A Ras-Dependent Pathway Regulates RNA Polymerase II Phosphorylation in Cardiac Myocytes: Implications for Cardiac Hypertrophy. Molecular and Cellular Biology, 1998, 18, 6729-6736.	1.1	68
17	Opposing Effects of Jun Kinase and p38 Mitogen-Activated Protein Kinases on Cardiomyocyte Hypertrophy. Molecular and Cellular Biology, 1998, 18, 3518-3526.	1.1	223
18	Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes. Biochemical Journal, 1998, 333, 581-589.	1.7	176

#	Article	IF	CITATIONS
19	Role of p38 mitogen-activated protein kinase in HIV type 1 production in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7422-7426.	3.3	95
20	Calcineurin Enhances Acetylcholinesterase mRNA Stability during C2-C12 Muscle Cell Differentiation. Molecular Pharmacology, 1999, 56, 886-894.	1.0	31
21	Cell density and contraction regulate p38 MAP kinasedependent responses in neonatal rat cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H331-H341.	1.5	12
22	Regulation of Mitogen-Activated Protein Kinases by Sphingolipid Products in Oligodendrocytes. Journal of Neuroscience, 1999, 19, 7458-7467.	1.7	57
23	Gα13 stimulates gene expression and increases cell size in cultured neonatal rat ventricular myocytes. Cardiovascular Research, 1999, 42, 140-148.	1.8	17
24	Mast Cells Cause Apoptosis of Cardiomyocytes and Proliferation of Other Intramyocardial Cells In Vitro. Circulation, 1999, 100, 1443-1449.	1.6	109
25	Cell Stress and MKK6b-mediated p38 MAP Kinase Activation Inhibit Tumor Necrosis Factor-induced ll̂®B Phosphorylation and NF-l̂®B Activation. Journal of Biological Chemistry, 1999, 274, 22176-22183.	1.6	90
26	An Inhibitor of p38 Mitogen-activated Protein Kinase Protects Neonatal Cardiac Myocytes from Ischemia. Journal of Biological Chemistry, 1999, 274, 6272-6279.	1.6	278
27	Insulin-like Growth Factor I-mediated Activation of the Transcription Factor cAMP Response Element-binding Protein in PC12 Cells. Journal of Biological Chemistry, 1999, 274, 2829-2837.	1.6	111
28	p38 Mitogen-activated Protein Kinase Pathway Promotes Skeletal Muscle Differentiation. Journal of Biological Chemistry, 1999, 274, 5193-5200.	1.6	423
29	Prevention of Cardiac Hypertrophy by Calcineurin Inhibition. Circulation Research, 1999, 84, 623-632.	2.0	114
30	p38 Mitogen-activated Protein Kinase Activation Is Required for Fibroblast Growth Factor-2-stimulated Cell Proliferation but Not Differentiation. Journal of Biological Chemistry, 1999, 274, 17491-17498.	1.6	131
31	Insulin-like Growth Factor-I Induces bcl-2 Promoter through the Transcription Factor cAMP-Response Element-binding Protein. Journal of Biological Chemistry, 1999, 274, 27529-27535.	1.6	179
32	Transforming Growth Factor-β Induces Collagenase-3 Expression by Human Gingival Fibroblasts via p38 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1999, 274, 37292-37300.	1.6	191
33	Extracellular Signal-regulated Protein Kinase Activation Is Required for the Anti-hypertrophic Effect of Atrial Natriuretic Factor in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 1999, 274, 24858-24864.	1.6	84
34	Activation of p38 Mitogen-Activated Protein Kinase by Oxidized LDL in Vascular Smooth Muscle Cells. Circulation Research, 1999, 84, 831-839.	2.0	76
35	Angiotensin II Signaling in Vascular Smooth Muscle Cells Under High Glucose Conditions. Hypertension, 1999, 33, 378-384.	1.3	100
36	p38 Mitogen-activated Protein Kinase Is Involved in Fas Ligand Expression. Journal of Biological Chemistry, 1999, 274, 25769-25776.	1.6	72

#	Article	IF	CITATIONS
37	Apoptosis: a potential target for discovering novel therapies for cardiovascular diseases. Current Opinion in Chemical Biology, 1999, 3, 474-480.	2.8	36
38	Roles of Extracellular Signal-regulated Kinase 1/2 and p38 Mitogen-activated Protein Kinase in the Signal Transduction of Basic Fibroblast Growth Factor in Endothelial Cells during Angiogenesis. Japanese Journal of Cancer Research, 1999, 90, 647-654.	1.7	127
39	NDF/heregulin-induced cell cycle changes and apoptosis in breast tumour cells: role of PI3 kinase and p38 MAP kinase pathways. Oncogene, 1999, 18, 3440-3451.	2.6	89
40	Antioxidant Action of Carvedilol: A Potential Role in Treatment of Heart Failure. Heart Failure Reviews, 1999, 4, 39-52.	1.7	14
41	Mechanisms Involved in the Cardiac Protection Efficacy of Carvedilol. Heart Failure Reviews, 1999, 4, 29-38.	1.7	0
42	Changes in Gene Expression during the Transition from Compensated Hypertrophy to Heart Failure. Heart Failure Reviews, 1999, 4, 361-378.	1.7	0
43	Endothelin-1 activates p38 mitogen-activated protein kinase via endothelin-A receptor in rat myocardial cells. Molecular and Cellular Biochemistry, 1999, 199, 119-124.	1.4	9
44	Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3(Mkk3)-deficient mice. EMBO Journal, 1999, 18, 1845-1857.	3.5	342
45	Activation of protein kinase cascades in the heart by hypertrophic G protein–coupled receptor agonists. American Journal of Cardiology, 1999, 83, 64-69.	0.7	105
46	Mechanism of adrenomedullin-stimulated hyaluronic acid release in rat mesangial cells. European Journal of Pharmacology, 1999, 370, 313-318.	1.7	10
47	SB203580 reverses adrenomedullin's effect on proliferation and apoptosis in cultured mesangial cells. European Journal of Pharmacology, 1999, 371, 75-82.	1.7	20
48	MAP kinase pathways. Progress in Biophysics and Molecular Biology, 1999, 71, 479-500.	1.4	749
49	Inhibition of Stress-Activated p38 Mitogen-Activated Protein Kinase Induces Low-Density Lipoprotein Receptor Expression. Trends in Cardiovascular Medicine, 1999, 9, 201-205.	2.3	16
50	Cocaine and apoptosis in myocardial cells. , 1999, 257, 208-216.		41
51	Signaling Pathways for Cardiac Hypertrophy and Failure. New England Journal of Medicine, 1999, 341, 1276-1283.	13.9	790
52	Signaling in Myocardial Hypertrophy. Circulation Research, 1999, 84, 633-646.	2.0	186
53	Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart. Biochemistry and Cell Biology, 1999, 77, 559-567.	0.9	40
54	Cardiac hypertrophy, sorting out the circuitry. Current Opinion in Genetics and Development, 1999, 9, 267-274.	1.5	87

#	Article	IF	Citations
55	Calcineurin inhibitors and cardiac hypertrophy. Lancet, The, 1999, 353, 1290-1292.	6.3	24
56	Loss of a gp130 Cardiac Muscle Cell Survival Pathway Is a Critical Event in the Onset of Heart Failure during Biomechanical Stress. Cell, 1999, 97, 189-198.	13.5	629
57	Chronic Phospholamban–Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy. Cell, 1999, 99, 313-322.	13.5	482
58	Pro-inflammatory Cytokines Stimulate Mitogen-activated Protein Kinase Subfamilies, Increase Phosphorylation of c-Jun and ATF2 and Upregulate c-Jun Protein in Neonatal Rat Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1999, 31, 2087-2099.	0.9	71
59	Cardiac Fatty Acid Metabolism and the Induction of Apoptosis. American Journal of the Medical Sciences, 1999, 318, 15-21.	0.4	20
60	Transmembrane signalling mechanisms regulating expression of cationic amino acid transporters and inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochemical Journal, 1999, 344, 265-272.	1.7	44
61	Regulation of the MEF2 Family of Transcription Factors by p38. Molecular and Cellular Biology, 1999, 19, 21-30.	1.1	402
62	A Low-Affinity Serum Response Element Allows Other Transcription Factors To Activate Inducible Gene Expression in Cardiac Myocytes. Molecular and Cellular Biology, 1999, 19, 1841-1852.	1.1	27
63	Activation of extracellular signal-regulated protein kinase1,2 results in down-regulation of decorin expression in fibroblasts. Biochemical Journal, 2000, 349, 19.	1.7	13
64	Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes. Biochemical Journal, 2000, 350, 891-899.	1.7	73
65	Advances in the molecular mechanisms of heart failure. Current Opinion in Cardiology, 2000, 15, 128-135.	0.8	25
66	Prospects for Gene Therapy for Heart Failure. Circulation Research, 2000, 86, 616-621.	2.0	151
67	Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovascular Research, 2000, 45, 538-548.	1.8	108
68	Activation of p38 Kinase Links Tau Phosphorylation, Oxidative Stress, and Cell Cycle-Related Events in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2000, 59, 880-888.	0.9	328
69	Angiotensin II-induced cardiac hypertrophy is associated with associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice. Journal of Hypertension, 2000, 18, 1307-1317.	0.3	45
70	Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nature Medicine, 2000, 6, 183-188.	15.2	135
71	TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nature Medicine, 2000, 6, 556-563.	15.2	324
72	Phenylephrine protects neonatal rat cardiomyocytes from hypoxia and serum deprivation-induced apoptosis. Cell Death and Differentiation, 2000, 7, 773-784.	5.0	42

#	Article	IF	CITATIONS
73	Marathon running transiently increases câ€Jun NH 2 â€ŧerminal kinase and p38γ activities in human skeletal muscle. Journal of Physiology, 2000, 526, 663-669.	1.3	93
74	Adenovirus technology for gene manipulation and functional studies. Drug Discovery Today, 2000, 5, 10-16.	3.2	46
75	The p38 signal transduction pathway Activation and function. Cellular Signalling, 2000, 12, 1-13.	1.7	1,462
76	p38 MAP kinases: beyond the stress response. Trends in Biochemical Sciences, 2000, 25, 257-260.	3.7	526
77	Regulation of MEF2 by p38 MAPK and Its Implication in Cardiomyocyte Biology. Trends in Cardiovascular Medicine, 2000, 10, 19-22.	2.3	101
78	α1-Adrenergic receptor regulation: basic science and clinical implications. , 2000, 88, 281-309.		211
79	Alterations in adrenergic receptor signaling in heart failure. , 2000, 5, 7-16.		42
80	Cardiac signal transduction. Journal of Nuclear Cardiology, 2000, 7, 63-71.	1.4	3
81	Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. EMBO Journal, 2000, 19, 4026-4035.	3.5	124
82	Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO Journal, 2000, 19, 1301-1311.	3.5	198
83	The effects of neurohormonal antagonism on pathologic left ventricular remodeling in heart failure. Current Cardiology Reports, 2000, 2, 90-98.	1.3	3
84	The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical. Basic Research in Cardiology, 2000, 95, 472-478.	2.5	96
85	Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1111-H1119.	1.5	66
86	MAP kinase pathways activated by stress: The p38 MAPK pathway. Critical Care Medicine, 2000, 28, N67-N77.	0.4	293
87	Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a possible role of p38α. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L733-L742.	1.3	28
88	Nitric oxide modulates mechanical strain-induced activation of p38 MAPK in mesangial cells. American Journal of Physiology - Renal Physiology, 2000, 279, F243-F251.	1.3	18
89	Molecular Mechanism of Mechanical Stress-induced Cardiac Hypertrophy International Heart Journal, 2000, 41, 117-129.	0.6	24
90	The Akt-Glycogen Synthase Kinase 3β Pathway Regulates Transcription of Atrial Natriuretic Factor Induced by β-Adrenergic Receptor Stimulation in Cardiac Myocytes. Journal of Biological Chemistry, 2000, 275, 14466-14475.	1.6	234

#	Article	IF	CITATIONS
91	αB-crystallin Gene Induction and Phosphorylation by MKK6-activated p38. Journal of Biological Chemistry, 2000, 275, 23825-23833.	1.6	138
92	A Role for Focal Adhesion Kinase in Phenylephrine-induced Hypertrophy of Rat Ventricular Cardiomyocytes. Journal of Biological Chemistry, 2000, 275, 19250-19257.	1.6	123
93	Calcineurin Promotes Protein Kinase C and c-Jun NH2-terminal Kinase Activation in the Heart. Journal of Biological Chemistry, 2000, 275, 13571-13579.	1.6	205
94	Activation of Extracellular Signal-regulated Kinase 1/2 Inhibits Type I Collagen Expression by Human Skin Fibroblasts. Journal of Biological Chemistry, 2000, 275, 34634-34639.	1.6	55
95	Toward Antiapoptosis as a New Treatment Modality. Circulation Research, 2000, 86, 371-376.	2.0	77
96	Role of Mitogen-Activated Protein Kinases in Ischemia and Reperfusion Injury. Circulation Research, 2000, 86, 607-609.	2.0	109
97	Integrin Activation and Focal Complex Formation in Cardiac Hypertrophy. Journal of Biological Chemistry, 2000, 275, 35624-35630.	1.6	118
98	The effect of angiotensin II on mitogen-activated protein kinase in human cardiomyocytes. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2000, 1, 379-384.	1.0	13
99	Calcineurin Expression, Activation, and Function in Cardiac Pressure-Overload Hypertrophy. Circulation, 2000, 101, 2431-2437.	1.6	143
100	Apoptosis-related genes expressed in cardiovascular development and disease: an EST approach. Cardiovascular Research, 2000, 45, 621-629.	1.8	17
101	p38 Mitogen-Activated Protein Kinase Mediates Tumor Necrosis Factor-α-Induced Apoptosis in Rat Fetal Brown Adipocytes*. Endocrinology, 2000, 141, 4383-4395.	1.4	59
102	Signalling via stress-activated mitogen-activated protein kinases in the cardiovascular system. Cardiovascular Research, 2000, 45, 826-842.	1.8	90
103	Mammalian G-protein function in vivo: New insights through altered gene expression. , 2000, 140, 63-133.		19
104	Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovascular Research, 2000, 47, 23-37.	1.8	429
105	Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1196-1201.	3.3	282
106	Calcineurin and Beyond. Circulation Research, 2000, 87, 731-738.	2.0	217
107	β2-Adrenergic Receptor-induced p38 MAPK Activation Is Mediated by Protein Kinase A Rather than by Gi or Gβγ in Adult Mouse Cardiomyocytes. Journal of Biological Chemistry, 2000, 275, 40635-40640.	1.6	113
108	Gene 33/Mig-6, a Transcriptionally Inducible Adapter Protein That Binds GTP-Cdc42 and Activates SAPK/JNK. Journal of Biological Chemistry, 2000, 275, 17838-17847.	1.6	123

#	Article	IF	CITATIONS
109	Involvement of p38 Mitogen-Activated Protein Kinase Activation in Bromocriptine-Induced Apoptosis in Rat Pituitary GH3 Cells1. Biology of Reproduction, 2000, 62, 1486-1494.	1.2	55
110	Calcineurin-Mediated Hypertrophy Protects Cardiomyocytes From Apoptosis In Vitro and In Vivo. Circulation Research, 2000, 86, 255-263.	2.0	203
111	Deficiency of the Stress Kinase P38α Results in Embryonic Lethality. Journal of Experimental Medicine, 2000, 191, 859-870.	4.2	271
112	The role of differential activation of p38â€mitogenâ€activated protein kinase in preconditioned ventricular myocytes. FASEB Journal, 2000, 14, 2237-2246.	0.2	152
113	Gβγ-dependent Phosphoinositide 3-Kinase Activation in Hearts with in Vivo Pressure Overload Hypertrophy. Journal of Biological Chemistry, 2000, 275, 4693-4698.	1.6	183
114	High-Efficiency, Long-Term Cardiac Expression of Foreign Genes in Living Mouse Embryos and Neonates. Circulation, 2000, 101, 178-184.	1.6	58
115	Adrenergic regulation of myocardial apoptosis. Cardiovascular Research, 2000, 45, 713-719.	1.8	128
116	Regulation of TNF Expression by Multiple Mitogen-Activated Protein Kinase Pathways. Journal of Immunology, 2000, 164, 6349-6358.	0.4	114
117	Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Cardiovascular Research, 2000, 45, 560-569.	1.8	142
118	p38 Mitogen-activated Protein Kinase Pathway Protects Adult Rat Ventricular Myocytes against β-Adrenergic Receptor-stimulated Apoptosis. Journal of Biological Chemistry, 2000, 275, 19395-19400.	1.6	143
119	Suppression by Metallothionein of Doxorubicin-induced Cardiomyocyte Apoptosis through Inhibition of p38 Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 2000, 275, 13690-13698.	1.6	190
120	Hsp25 and the p38 MAPK Pathway Are Involved in Differentiation of Cardiomyocytes. Developmental Biology, 2000, 218, 146-160.	0.9	103
121	Activation of Mitogen-Activated Protein Kinases Is Required for α1-Adrenergic Agonist-Induced Cell Scattering in Transfected HepG2 Cells. Experimental Cell Research, 2000, 258, 109-120.	1.2	19
122	Independent Role of p38 and ERK1/2 Mitogen-Activated Kinases in the Upregulation of Matrix Metalloproteinase-1. Experimental Cell Research, 2000, 258, 135-144.	1.2	87
123	Epidermal Growth Factor Induces Hypertrophic Responses and Stat5 Activation in Rat Ventricular Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2000, 32, 599-610.	0.9	20
124	Differential Translocation or Phosphorylation of Alpha B Crystallin Cannot be Detected in Ischemically Preconditioned Rabbit Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2000, 32, 1301-1314.	0.9	24
125	Involvement of a p38 Mitogen-activated Protein Kinase Phosphatase in Protecting Neonatal Rat Cardiac Myocytes from Ischemia. Journal of Molecular and Cellular Cardiology, 2000, 32, 1585-1588.	0.9	49
126	Many Pathways to Cardiac Hypertrophy. Journal of Molecular and Cellular Cardiology, 2000, 32, 1381-1384.	0.9	18

#	Article	IF	CITATIONS
127	The Stress-responsive MAP Kinase p38 is Activated by Low-flow Ischemia in the in situ Porcine Heart. Journal of Molecular and Cellular Cardiology, 2000, 32, 1787-1794.	0.9	22
128	Induction of VEGF Gene Transcription by IL-1 β is Mediated Through Stress-activated MAP Kinases and Sp1 Sites in Cardiac Myocytes. Journal of Molecular and Cellular Cardiology, 2000, 32, 1955-1967.	0.9	108
129	Effects of Active and Negative Mutants of Ras on Rat Arterial Neointima Formation. Journal of Surgical Research, 2000, 94, 124-132.	0.8	27
130	p38 MAPK and NF-κB Collaborate to Induce Interleukin-6 Gene Expression and Release. Journal of Biological Chemistry, 2000, 275, 23814-23824.	1.6	311
131	Cyclic GMP-dependent and -independent regulation of MAP kinases by sodium nitroprusside in isolated cardiomyocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1496, 277-284.	1.9	37
132	Essential Role of p38α MAP Kinase in Placental but Not Embryonic Cardiovascular Development. Molecular Cell, 2000, 6, 109-116.	4.5	468
133	A Raf-induced, MEK-independent signaling pathway regulates atrial natriuretic factor gene expression in cardiac muscle cells. FEBS Letters, 2000, 467, 1-6.	1.3	14
134	Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis. Journal of Experimental Medicine, 2000, 192, 1015-1026.	4.2	910
135	Genetic Dissection of Cardiac Growth Control Pathways. Annual Review of Physiology, 2000, 62, 289-320.	5.6	281
136	Molecular and Cellular Stress Pathways In Ischemic Heart Disease: Targets for Regulated Gene Therapy. Cell and Molecular Response To Stress, 2000, 1, 99-112.	0.4	1
137	Inhibition of Extracellular Signal–Regulated Kinase Enhances Ischemia/Reoxygenation–Induced Apoptosis in Cultured Cardiac Myocytes and Exaggerates Reperfusion Injury in Isolated Perfused Heart. Circulation Research, 2000, 86, 692-699.	2.0	382
138	FROM THESARCOMERE TO THENUCLEUS: Role of Genetics and Signaling in Structural Heart Disease. Annual Review of Genomics and Human Genetics, 2000, 1, 179-223.	2.5	67
139	Future perspectives and potential implications of cardiac myocyte apoptosis. Cardiovascular Research, 2000, 45, 795-801.	1.8	38
140	Cytoplasmic Signaling Pathways That Regulate Cardiac Hypertrophy. Annual Review of Physiology, 2001, 63, 391-426.	5.6	616
141	MAP Kinases. Chemical Reviews, 2001, 101, 2449-2476.	23.0	812
142	Alterations of Load-Induced p38 MAP Kinase Activation in Failing Rat Hearts. Biochemical and Biophysical Research Communications, 2001, 285, 503-507.	1.0	7
143	Role of G Proteins and Modulation of p38 MAPK Activation in the Protection by Nitric Oxide against Ischemia–Reoxygenation Injury. Biochemical and Biophysical Research Communications, 2001, 286, 995-1002.	1.0	27
144	Reactive Oxygen Species in Mechanical Stress-Induced Cardiac Hypertrophy. Biochemical and Biophysical Research Communications, 2001, 289, 901-907.	1.0	118

#	Article	IF	CITATIONS
145	Pericardial Fluid from Patients with Ischemic Heart Disease Induces Myocardial Cell Apoptotis via an Oxidant Stress-sensitive p38 Mitogen-activated Protein Kinase Pathway. Journal of Molecular and Cellular Cardiology, 2001, 33, 419-430.	0.9	14
146	p38 MAPK Activity is Not Increased Early During Sustained Coronary Artery Occlusion in Preconditioned Versus Control Rabbit Heart. Journal of Molecular and Cellular Cardiology, 2001, 33, 681-690.	0.9	33
147	Stage-specific Differential Activation of Mitogen-activated Protein Kinases in Hypertrophied and Failing Rat Hearts. Journal of Molecular and Cellular Cardiology, 2001, 33, 733-744.	0.9	42
148	Activation of p38 MAPK Induced by a Multi-cycle Ischaemic Preconditioning Protocol is Associated with Attenuated p38 MAPK Activity During Sustained Ischaemia and Reperfusion. Journal of Molecular and Cellular Cardiology, 2001, 33, 769-778.	0.9	92
149	Decreased p38 MAPK Activity in End-Stage Failing Human Myocardium: p38 MAPK α is the Predominant Isoform Expressed in Human Heart. Journal of Molecular and Cellular Cardiology, 2001, 33, 1527-1540.	0.9	84
150	Tissue Distribution and Functional Expression of a cDNA Encoding a Novel Mixed Lineage Kinase. Journal of Molecular and Cellular Cardiology, 2001, 33, 1739-1750.	0.9	31
151	Src Family Kinase and Adenosine Differentially Regulate Multiple MAP Kinases in Ischemic Myocardium: Modulation of MAP Kinases Activation by Ischemic Preconditioning. Journal of Molecular and Cellular Cardiology, 2001, 33, 1989-2005.	0.9	47
152	p38 MAPK Activation Triggers Pharmacologically-induced \hat{l}^2 -adrenergic Preconditioning, but Not Ischaemic Preconditioning. Journal of Molecular and Cellular Cardiology, 2001, 33, 2157-2177.	0.9	26
153	New and emerging pharmacological strategies in the management of chronic heart failure. Current Opinion in Pharmacology, 2001, 1, 126-133.	1.7	7
154	Signal transduction in cardiac hypertrophy — dissecting compensatory versus pathological pathways utilizing a transgenic approach. Current Opinion in Pharmacology, 2001, 1, 134-140.	1.7	36
155	Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions*. Endocrine Reviews, 2001, 22, 153-183.	8.9	3,352
156	Role of p38 mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokine TNF-α. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1970-H1981.	1.5	54
157	Molecular and cellular mechanisms of cardiotoxicity Environmental Health Perspectives, 2001, 109, 27-34.	2.8	78
158	Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload. Journal of Applied Physiology, 2001, 91, 2079-2087.	1.2	47
159	Influence of the Angiotensin II AT1 Receptor Antagonist on Reperfusion Injury in Rat Myocardial Ischemia Model. Sunhwan'gi, 2001, 31, 1150.	0.3	1
160	Mammalian Mitogen-Activated Protein Kinase Signal Transduction Pathways Activated by Stress and Inflammation. Physiological Reviews, 2001, 81, 807-869.	13.1	3,019
161	Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1184-H1192.	1.5	84
162	p38 MAP kinase negatively regulates cyclin D1 expression in airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L955-L964.	1.3	40

#	Article	IF	CITATIONS
163	Menadione mimics the infarct-limiting effect of preconditioning in isolated rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H590-H595.	1.5	36
165	Proinflammatory Cytokine Inhibitor Prolongs the Survival of Rats With Heart Failure Induced by Pressure Overload. Japanese Circulation Journal, 2001, 65, 584-585.	1.0	5
166	1 p38 MAP Kinase: Molecular Target for the Inhibition of Pro-inflammatory Cytokines. Progress in Medicinal Chemistry, 2001, 38, 1-60.	4.1	146
167	c-Jun N-terminal kinase-interacting protein 1 inhibits gene expression in response to hypertrophic agonists in neonatal rat ventricular myocytes. Biochemical Journal, 2001, 358, 489.	1.7	14
168	Heme Oxygenase-1 Protects Pancreatic β Cells from Apoptosis Caused by Various Stimuli. Journal of Investigative Medicine, 2001, 49, 566-571.	0.7	86
169	Differential Activation of Mitogen-Activated Protein Kinase Cascades and Apoptosis by Protein Kinase C ε and δ in Neonatal Rat Ventricular Myocytes. Circulation Research, 2001, 89, 882-890.	2.0	151
170	Protein kinases and kinase-modulated effectors in the late phase of ischemic preconditioning. Basic Research in Cardiology, 2001, 96, 207-218.	2.5	48
171	Cardiac hypertrophy and failure: lessons learned from genetically engineered mice. Acta Physiologica Scandinavica, 2001, 173, 103-111.	2.3	26
172	p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney International, 2001, 60, 543-552.	2.6	92
173	p38? MAP kinase protects rat mesangial cells from TNF-?-induced apoptosis. Journal of Cellular Biochemistry, 2001, 82, 556-565.	1.2	34
174	ERK 1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. Journal of Cellular Biochemistry, 2001, 83, 92-98.	1.2	52
175	Adrenergic regulation of cardiac myocyte apoptosis. Journal of Cellular Physiology, 2001, 189, 257-265.	2.0	203
176	Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Medicinal Research Reviews, 2001, 21, 129-145.	5.0	252
177	Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes, 2001, 50, S154-S159.	0.3	387
178	Growth hormone signalling and apoptosis in neonatal rat cardiomyocytes. Molecular and Cellular Biochemistry, 2001, 223, 35-46.	1.4	44
179	Activation of multiple MAPK pathways (ERKs, JNKs, p38-MAPK) by diverse stimuli in the amphibian heart. Molecular and Cellular Biochemistry, 2001, 221, 63-69.	1.4	29
180	Molecular Mechanisms of Cardiac Hypertrophy Induced by Toxicants. Cardiovascular Toxicology, 2001, 1, 267-284.	1.1	37
181	Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO Journal, 2001, 20, 2757-2767.	3.5	252

#	Article	IF	CITATIONS
182	Regulation of MAP kinases by docking domains. Biology of the Cell, 2001, 93, 5-14.	0.7	115
183	Inhibitors of p38 MAP kinase increase the survival of transplanted dopamine neurons. Brain Research, 2001, 891, 185-196.	1.1	38
184	Peroxynitrite induces GADD34, 45, and 153 VIA p38 MAPK in human neuroblastoma SH-SY5Y cells. Free Radical Biology and Medicine, 2001, 30, 213-221.	1.3	116
185	Gene therapy in heart failure. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2001, 15, 301-312.	1.7	1
186	Ras Regulates NFAT3 Activity in Cardiac Myocytes. Journal of Biological Chemistry, 2001, 276, 3524-3530.	1.6	83
187	Oxidative Preconditioning and Apoptosis in L-cells. Journal of Biological Chemistry, 2001, 276, 26357-26364.	1.6	77
188	MEK7-dependent Activation of p38 MAP Kinase in Keratinocytes. Journal of Biological Chemistry, 2001, 276, 8059-8063.	1.6	51
189	Activation of Cardiac c-Jun NH 2 -Terminal Kinases and p38-Mitogen–Activated Protein Kinases With Abrupt Changes in Hemodynamic Load. Hypertension, 2001, 37, 1222-1228.	1.3	56
190	p38 Mitogen-activated Protein Kinase Activates Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 2001, 276, 44495-44501.	1.6	243
191	Antiischemic Effects of SB203580 Are Mediated Through the Inhibition of p38α Mitogen-Activated Protein Kinase. Circulation Research, 2001, 89, 750-752.	2.0	64
192	p38 MAPK Regulates Group IIa Phospholipase A2Expression in Interleukin-1β-stimulated Rat Neonatal Cardiomyocytes. Journal of Biological Chemistry, 2001, 276, 43842-43849.	1.6	18
193	Hypoxia-induced Proliferative Response of Vascular Adventitial Fibroblasts Is Dependent on G Protein-mediated Activation of Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 2001, 276, 15631-15640.	1.6	105
194	Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes and Development, 2001, 15, 2702-2719.	2.7	206
195	The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12283-12288.	3.3	309
196	Regulation of Cardiomyocyte Mechanotransduction by the Cardiac Cycle. Circulation, 2001, 103, 1459-1464.	1.6	58
197	Activation of NF-ÂB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6668-6673.	3.3	299
198	p38 MAP Kinase Regulates Vascular Smooth Muscle Cell Collagen Synthesis by Angiotensin II in SHR But Not in WKY. Hypertension, 2001, 37, 574-580.	1.3	81
199	Analyzing JNK and p38 mitogen-activated protein kinase activity. Methods in Enzymology, 2001, 332, 319-336.	0.4	43

#	Article	IF	CITATIONS
200	Overexpression of 12-Lipoxygenase Causes Cardiac Fibroblast Cell Growth. Circulation Research, 2001, 88, 70-76.	2.0	40
201	Early growth retardation induced by excessive exposure to glucocorticoids in utero selectively increases cardiac GLUT1 protein expression and Akt/protein kinase B activity in adulthood. Journal of Endocrinology, 2001, 169, 11-22.	1.2	47
202	Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. Journal of Cell Biology, 2001, 154, 123-136.	2.3	256
203	Cardiac Overexpression of a G _q Inhibitor Blocks Induction of Extracellular Signal–Regulated Kinase and c-Jun NH ₂ -Terminal Kinase Activity in In Vivo Pressure Overload. Circulation, 2001, 103, 1453-1458.	1.6	130
204	Roads to Survival. Circulation Research, 2001, 88, 552-554.	2.0	30
205	Integrin β1 Signaling Is Necessary for Transforming Growth Factor-β Activation of p38MAPK and Epithelial Plasticity. Journal of Biological Chemistry, 2001, 276, 46707-46713.	1.6	354
206	The Dual-Specificity Phosphatase MKP-1 Limits the Cardiac Hypertrophic Response In Vitro and In Vivo. Circulation Research, 2001, 88, 88-96.	2.0	149
207	Endothelin-1 Induces Serine Phosphorylation of the Adaptor Protein p66Shc and Its Association with 14-3-3 Protein in Glomerular Mesangial Cells. Journal of Biological Chemistry, 2001, 276, 26640-26647.	1.6	41
208	Nuclear Factor κB-inducing Kinase and IκB Kinase-α Signal Skeletal Muscle Cell Differentiation. Journal of Biological Chemistry, 2001, 276, 20228-20233.	1.6	38
209	MEK6 Regulates Human Involucrin Gene Expression via a p38î±- and p38î-dependent Mechanism. Journal of Biological Chemistry, 2001, 276, 27214-27220.	1.6	45
210	Activation of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Induces Apoptosis in Cultured Neonatal Rat Cardiac Myocytes. Circulation, 2001, 104, 2948-2954.	1.6	74
211	p38 Mitogen-Activated Protein Kinase-Dependent Activation of Protein Phosphatases 1 and 2A Inhibits MEK1 and MEK2 Activity and Collagenase 1 (MMP-1) Gene Expression. Molecular and Cellular Biology, 2001, 21, 2373-2383.	1.1	183
212	Reperfusion-Activated Akt Kinase Prevents Apoptosis in Transgenic Mouse Hearts Overexpressing Insulin-Like Growth Factor-1. Circulation Research, 2001, 88, 609-614.	2.0	144
213	Hemodynamic Overload–Induced Activation of Myocardial Mitogen-Activated Protein Kinases In Vivo. Hypertension, 2001, 37, 52-57.	1.3	14
214	Calcineurin Enhances MAPK Phosphatase-1 Expression and p38 MAPK Inactivation in Cardiac Myocytes. Journal of Biological Chemistry, 2001, 276, 15913-15919.	1.6	79
215	Differential Regulation of Mitogen-Activated Protein Kinases in the Failing Human Heart in Response to Mechanical Unloading. Circulation, 2001, 104, 2273-2276.	1.6	87
216	Signal transduction of ischemic preconditioning. Cardiovascular Research, 2001, 52, 181-198.	1.8	280
217	Requirement of Nuclear Factor of Activated T-cells in Calcineurin-mediated Cardiomyocyte Hypertrophy. Journal of Biological Chemistry, 2002, 277, 48617-48626.	1.6	114

#	Article	IF	CITATIONS
218	Green Tea Polyphenol Stimulates a Ras, MEKK1, MEK3, and p38 Cascade to Increase Activator Protein 1 Factor-dependent Involucrin Gene Expression in Normal Human Keratinocytes. Journal of Biological Chemistry, 2002, 277, 1828-1836.	1.6	127
219	Smad3 Mediates Transforming Growth Factor-β-induced Collagenase-3 (Matrix Metalloproteinase-13) Expression in Human Gingival Fibroblasts. Journal of Biological Chemistry, 2002, 277, 46338-46346.	1.6	93
220	Osmoregulation of Natriuretic Peptide Receptor Signaling in Inner Medullary Collecting Duct. Journal of Biological Chemistry, 2002, 277, 6037-6043.	1.6	31
221	Guanine Nucleotide Exchange Factor-like Factor (Rlf) Induces Gene Expression and Potentiates α1-Adrenergic Receptor-induced Transcriptional Responses in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 2002, 277, 15286-15292.	1.6	10
222	IL-4 Up-Regulates the Expression of Tissue Inhibitor of Metalloproteinase-2 in Dermal Fibroblasts Via the p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Journal of Immunology, 2002, 168, 1895-1902.	0.4	82
223	In the Cellular Garden of Forking Paths: How p38 MAPKs Signal for Downstream Assistance. Biological Chemistry, 2002, 383, 1519-36.	1.2	146
224	Activation of p38α MAPK Enhances Collagenase-1 (Matrix Metalloproteinase (MMP)-1) and Stromelysin-1 (MMP-3) Expression by mRNA Stabilization. Journal of Biological Chemistry, 2002, 277, 32360-32368.	1.6	195
225	Novel Protein Kinase C Isoforms Regulate Human Keratinocyte Differentiation by Activating a p38δ Mitogen-activated Protein Kinase Cascade That Targets CCAAT/Enhancer-binding Protein α. Journal of Biological Chemistry, 2002, 277, 31753-31760.	1.6	85
226	p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovascular Research, 2002, 55, 690-700.	1.8	74
227	Activation of NADPH Oxidase During Progression of Cardiac Hypertrophy to Failure. Hypertension, 2002, 40, 477-484.	1.3	471
228	Differential Activation of the c-Jun N-Terminal Kinase Pathway in Arsenite-Induced Apoptosis and Sensitization of Chemically Resistant Compared to Susceptible B-Lymphoma Cell Lines. Toxicological Sciences, 2002, 68, 82-92.	1.4	21
229	p38 Mitogen-Activated Protein Kinase Mediates a Negative Inotropic Effect in Cardiac Myocytes. Circulation Research, 2002, 90, 190-196.	2.0	164
230	A Dominant-negative p38 MAPK Mutant and Novel Selective Inhibitors of p38 MAPK Reduce Insulin-stimulated Glucose Uptake in 3T3-L1 Adipocytes without Affecting GLUT4 Translocation. Journal of Biological Chemistry, 2002, 277, 50386-50395.	1.6	115
231	Involvement of Nuclear Factor-κB and Apoptosis Signal-Regulating Kinase 1 in G-Protein–Coupled Receptor Agonist–Induced Cardiomyocyte Hypertrophy. Circulation, 2002, 105, 509-515.	1.6	353
232	Integrins Play a Critical Role in Mechanical Stress–Induced p38 MAPK Activation. Hypertension, 2002, 39, 233-238.	1.3	179
233	Induction of apoptosis in vascular smooth muscle cells by mechanical stretch. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1709-H1716.	1.5	75
234	Fibronectin- and protein kinase C–mediated activation of ERK/MAPK are essential for proplateletlike formation. Blood, 2002, 99, 3579-3584.	0.6	54
235	Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochemical Journal, 2002, 362, 561.	1.7	105

#	Article	lF	CITATIONS
236	Transcription inhibitor actinomycin-D abolishes the cardioprotective effect of ischemic reconditioning. Cardiovascular Research, 2002, 55, 602-618.	1.8	32
237	Activation of the glucose transporter GLUT4 by insulin. Biochemistry and Cell Biology, 2002, 80, 569-578.	0.9	117
238	Cardiac Expression and Subcellular Localization of the p38 Mitogen-activated Protein Kinase Member, Stress-activated Protein Kinase-3 (SAPK3). Journal of Molecular and Cellular Cardiology, 2002, 34, 413-426.	0.9	57
239	What is the Unique Function of SAPK3/p38γ in Cardiac Myocytes?. Journal of Molecular and Cellular Cardiology, 2002, 34, 597-600.	0.9	8
240	Transcriptional Activation of the BNP Gene by Lipopolysaccharide is Mediated Through CATA Elements in Neonatal Rat Cardiac Myocytes. Journal of Molecular and Cellular Cardiology, 2002, 34, 649-659.	0.9	115
241	Phenylephrine Promotes Phosphorylation of Bad in Cardiac Myocytes Through the Extracellular Signal-regulated Kinases 1/2 and Protein Kinase A. Journal of Molecular and Cellular Cardiology, 2002, 34, 749-763.	0.9	50
242	Dissociation of Stress-activated Protein Kinase (p38-MAPK and JNKs) Phosphorylation from the Protective Effect of Preconditioning in vivo. Journal of Molecular and Cellular Cardiology, 2002, 34, 1019-1028.	0.9	18
243	Differentiation state-selective roles of p38 isoforms in human intestinal epithelial cell anoikis. Gastroenterology, 2002, 123, 1980-1991.	0.6	62
244	Reciprocal modulation of mitogen-activated protein kinases and mitogen-activated protein kinase phosphatase 1 and 2 in failing human myocardium. Journal of Cardiac Failure, 2002, 8, 86-92.	0.7	41
245	Chapter IX Mapping neuropathology with inducible and constitutive transcription factors. Handbook of Chemical Neuroanatomy, 2002, , 217-251.	0.3	0
246	Apoptosis and Heart Failure. American Journal of Cardiovascular Drugs, 2002, 2, 43-57.	1.0	61
247	Modulation of Endothelial Cell Apoptosis by Heme Oxygenase-1-Derived Carbon Monoxide. Antioxidants and Redox Signaling, 2002, 4, 321-329.	2.5	123
248	Examining signaling specificity to transcription factors. Methods, 2002, 26, 217-225.	1.9	1
249	Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L815-L829.	1.3	98
250	PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H695-H706.	1.5	46
251	The relative order of mKATP channels, free radicals and p38 MAPK in preconditioning's protective pathway in rat heart. Cardiovascular Research, 2002, 55, 681-689.	1.8	78
252	Hypoxia-induced cleavage of caspase-3 and DFF45/ICAD in human failed cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H990-H995.	1.5	31
253	The effect of aging on p38 signaling pathway activity in the mouse liver and in response to ROS generated by 3-nitropropionic acid. Mechanisms of Ageing and Development, 2002, 123, 1423-1435.	2.2	47

#	Article	IF	CITATIONS
254	Mechanical stress-induced apoptosis in the cardiovascular system. Progress in Biophysics and Molecular Biology, 2002, 78, 105-137.	1.4	53
255	Involvement of p38 mitogen-activated protein kinase in the induction of interleukin-12 p40 production in mouse macrophages by berberine, a benzodioxoloquinolizine alkaloid. Biochemical Pharmacology, 2002, 63, 1901-1910.	2.0	48
256	Reactive Oxygen Species, Mitochondria, and NAD(P)H Oxidases in the Development and Progression of Heart Failure. Congestive Heart Failure, 2002, 8, 132-140.	2.0	349
257	Merosin-integrin promotion of skeletal myofiber cell survival: Differentiation state-distinct involvement of p60Fyntyrosine kinase and p38α stress-activated MAP kinase. Journal of Cellular Physiology, 2002, 191, 69-81.	2.0	38
258	Inhibition of tumor necrosis factor-α-dependent cardiomyocyte apoptosis by metallothionein. Cardiovascular Toxicology, 2002, 2, 209-217.	1.1	19
259	Gutless Adenoviral Vectors - Promising Tools for Gene Therapy. European Surgery - Acta Chirurgica Austriaca, 2002, 34, 95-100.	0.3	3
260	Phorbol esters inhibit fibroblast growth factor-2-stimulated fibroblast proliferation by a p38 MAP kinase dependent pathway. Oncogene, 2002, 21, 1978-1988.	2.6	14
261	Pharmacologically activated migration of aortic endothelial cells is mediated through p38 SAPK. British Journal of Pharmacology, 2002, 136, 597-603.	2.7	19
262	Sequential Activation of the MEK-Extracellular Signal-Regulated Kinase and MKK3/6-p38 Mitogen-Activated Protein Kinase Pathways Mediates Oncogenic ras-Induced Premature Senescence. Molecular and Cellular Biology, 2002, 22, 3389-3403.	1.1	346
263	Signaling pathways and late-onset gene induction associated with renal mesangial cell hypertrophy. EMBO Journal, 2002, 21, 5427-5436.	3.5	63
264	Interaction of Xenobiotics with Myocardial Signal Transduction Pathways. Cardiovascular Toxicology, 2002, 2, 01-24.	1.1	2
265	Key Role of P38 Mitogen-Activated Protein Kinase and the Lipoxygenase Pathway in Angiotensin II Actions in H295R Adrenocortical Cells. Endocrine, 2002, 18, 295-302.	2.2	41
266	Distinct Roles of p42/p44 ^{ERK} and p38 MAPK in Oxidant-Induced AP-1 Activation and Cardiomyocyte Hypertrophy. Cardiovascular Toxicology, 2003, 3, 119-134.	1.1	26
267	Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Molecular and Cellular Biochemistry, 2003, 247, 127-138.	1.4	162
268	Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion. Molecular and Cellular Biochemistry, 2003, 251, 119-126.	1.4	13
269	Bisphosphonate Induced Growth Inhibition of Breast Cancer Cells is Augmented by p38 Inhibition. Breast Cancer Research and Treatment, 2003, 81, 231-241.	1.1	24
270	Mechanisms of Apoptosis in the Heart. Journal of Clinical Immunology, 2003, 23, 447-459.	2.0	123
271	Activation of p38 MAPK suppresses matrix metalloproteinase-1 gene expression induced by platelet-derived growth factor. Archives of Dermatological Research, 2003, 294, 552-558.	1.1	13

#	Article	IF	CITATIONS
272	Overexpression of 12-Lipoxygenase and Cardiac Fibroblast Hypertrophy. Trends in Cardiovascular Medicine, 2003, 13, 129-136.	2.3	34
273	p38 MAP kinase activation mediates \hat{I}^3 -globin gene induction in erythroid progenitors. Experimental Hematology, 2003, 31, 1089-1096.	0.2	78
274	Dynamic expression of p38β MAPK in neurons and astrocytes after transient focal ischemia. Brain Research, 2003, 976, 120-124.	1.1	14
275	Characterization of apoptosis signal transduction pathways in HL-5 cardiomyocytes exposed to ischemia/reperfusion oxidative stress model. Journal of Cellular Physiology, 2003, 195, 27-37.	2.0	60
276	Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain-induced alignment and proliferation of bovine aortic smooth muscle cells. Journal of Cellular Physiology, 2003, 195, 202-209.	2.0	41
277	Matrix Metalloproteinase-19 Expression in Dermal Wounds and by Fibroblasts in Culture. Journal of Investigative Dermatology, 2003, 121, 997-1004.	0.3	50
278	Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells. Kidney International, 2003, 63, 947-957.	2.6	113
279	High glucose activates the p38 MAPK pathway in cultured human peritoneal mesothelial cells. Kidney International, 2003, 63, 958-968.	2.6	35
280	GLUT4 activation: thoughts on possible mechanisms. Acta Physiologica Scandinavica, 2003, 178, 287-296.	2.3	78
281	Mitogen-activated protein kinases in chronic intestinal inflammation - targeting ancient pathways to treat modern diseases. Alimentary Pharmacology and Therapeutics, 2003, 18, 17-32.	1.9	25
282	Stress-responsive JNK mitogen-activated protein kinase mediates aspirin-induced suppression of B16 melanoma cellular proliferation. British Journal of Pharmacology, 2003, 138, 1156-1162.	2.7	32
283	Malondialdehyde inhibits cardiac contractile function in ventricular myocytes via a p38 mitogen-activated protein kinase-dependent mechanism. British Journal of Pharmacology, 2003, 139, 1310-1316.	2.7	46
284	Kinases as therapeutic targets for heart failure. Nature Reviews Drug Discovery, 2003, 2, 99-113.	21.5	106
285	p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nature Reviews Drug Discovery, 2003, 2, 717-726.	21.5	1,076
286	Signaling Through PI3K/Akt Mediates Stretch and PDGF-BB-Dependent DNA Synthesis in Bladder Smooth Muscle Cells. Journal of Urology, 2003, 169, 2388-2393.	0.2	62
287	Oxidative Stress-Induced Signal Transduction Pathways in Cardiac Myocytes: Involvement of ROS in Heart Diseases. Antioxidants and Redox Signaling, 2003, 5, 789-794.	2.5	186
288	Cardiac Hypertrophy: The Good, the Bad, and the Ugly. Annual Review of Physiology, 2003, 65, 45-79.	5.6	1,287
289	Preconditioning the Myocardium: From Cellular Physiology to Clinical Cardiology. Physiological Reviews, 2003, 83, 1113-1151.	13.1	925

#	Article	IF	CITATIONS
290	Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. Journal of Molecular and Cellular Cardiology, 2003, 35, 1385-1394.	0.9	210
291	The radical balance between life and death. Journal of Molecular and Cellular Cardiology, 2003, 35, 599-602.	0.9	12
292	Disruption of a single copy of the p38α MAP kinase gene leads to cardioprotection against ischemia–reperfusion. Biochemical and Biophysical Research Communications, 2003, 302, 56-60.	1.0	67
293	TACE is required for fetal murine cardiac development and modeling. Developmental Biology, 2003, 261, 371-380.	0.9	97
294	Ischemia–reperfusion decreases protein tyrosine phosphorylation and p38 mitogen-activated protein kinase phosphorylation in rat lung transplants. Journal of Heart and Lung Transplantation, 2003, 22, 338-346.	0.3	22
295	p38α Isoform Mxi2 Binds to Extracellular Signal-Regulated Kinase 1 and 2 Mitogen-Activated Protein Kinase and Regulates Its Nuclear Activity by Sustaining Its Phosphorylation Levels. Molecular and Cellular Biology, 2003, 23, 3079-3090.	1.1	45
296	Role of 12-Lipoxygenase in the Stimulation of p38 Mitogen-Activated Protein Kinase and Collagen α5(IV) in Experimental Diabetic Nephropathy and in Glucose-Stimulated Podocytes. Journal of the American Society of Nephrology: JASN, 2003, 14, 3178-3187.	3.0	67
297	p38 Isoforms Have Opposite Effects on AP-1-dependent Transcription through Regulation of c-Jun. Journal of Biological Chemistry, 2003, 278, 4831-4839.	1.6	136
298	Roles of Cardiac Transcription Factors in Cardiac Hypertrophy. Circulation Research, 2003, 92, 1079-1088.	2.0	335
299	Correlation of Mitogen-Activated Protein Kinase Activities with Cell Survival and Apoptosis in Porcine Granulosa Cells. Zoological Science, 2003, 20, 193-201.	0.3	34
300	Carbon Monoxide Inhibition of Apoptosis during Ischemia-Reperfusion Lung Injury Is Dependent on the p38 Mitogen-activated Protein Kinase Pathway and Involves Caspase 3. Journal of Biological Chemistry, 2003, 278, 1248-1258.	1.6	251
301	Diverse Mechanisms of Myocardial p38 Mitogen-Activated Protein Kinase Activation. Circulation Research, 2003, 93, 254-261.	2.0	126
302	Effect of Angiotensin II lype 2 Receptor Blockade on Activation of Mitogen-Activated Protein Kinases after Ischemia-Reperfusion in Isolated Working Rat Hearts. Journal of Cardiovascular Pharmacology and Therapeutics, 2003, 8, 285-296.	1.0	5
303	The Small CTP-binding Protein Rac1 Induces Cardiac Myocyte Hypertrophy through the Activation of Apoptosis Signal-regulating Kinase 1 and Nuclear Factor-I®B. Journal of Biological Chemistry, 2003, 278, 20770-20777.	1.6	64
304	Interleukin-3 Stimulation of mcl-1 Gene Transcription Involves Activation of the PU.1 Transcription Factor through a p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Molecular and Cellular Biology, 2003, 23, 1896-1909.	1.1	78
305	Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D1. European Journal of Heart Failure, 2003, 5, 121-129.	2.9	42
306	Inhibition of p38 MAPK decreases myocardial TNF-alpha expression and improves myocardial function and survival in endotoxemia. Cardiovascular Research, 2003, 59, 893-900.	1.8	90
307	The MKK6–p38 MAPK pathway prolongs the cardiac contractile calcium transient, downregulates SERCA2, and activates NF-AT. Cardiovascular Research, 2003, 59, 46-56.	1.8	28

#	Article	IF	CITATIONS
308	A Regulatory Role for p38ĺ MAPK in Keratinocyte Differentiation. Journal of Biological Chemistry, 2003, 278, 34277-34285.	1.6	129
309	Mechanisms of Lysophosphatidic Acid–induced DNA Synthesis in Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2003, 41, 381-387.	0.8	30
310	Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1871-H1881.	1.5	222
311	Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1506-H1514.	1.5	115
312	Mitogen-Activated Protein Kinases-Mediated Signaling in Cardiac Pathology: A Perspective of Novel Therapeutic Targets?. , 2003, , 67-86.		1
313	Stress kinase phosphorylation is increased in pacing-induced heart failure in rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2084-H2090.	1.5	27
314	Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1043-H1047.	1.5	46
315	Load-Induced Transcriptional Activation of c-junin Rat Myocardium. Circulation Research, 2003, 92, 243-251.	2.0	37
316	Cellular Functions of Mitogen-activated Protein Kinases and Protein Tyrosine Phosphatases in Ovarian Granulosa Cells. Journal of Reproduction and Development, 2004, 50, 47-55.	0.5	15
317	Reactive Oxygen Species as Mediators of Signal Transduction in Ischemic Preconditioning. Antioxidants and Redox Signaling, 2004, 6, 449-469.	2.5	134
318	p38α Mitogen-activated Protein Kinase Sensitizes Cells to Apoptosis Induced by Different Stimuli. Molecular Biology of the Cell, 2004, 15, 922-933.	0.9	213
319	Leptin Stimulates Tissue Inhibitor of Metalloproteinase-1 in Human Hepatic Stellate Cells. Journal of Biological Chemistry, 2004, 279, 4292-4304.	1.6	153
320	p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload. Molecular and Cellular Biology, 2004, 24, 10611-10620.	1.1	212
321	Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovascular Research, 2004, 61, 427-436.	1.8	306
322	Role of p38α Map Kinase in Type I Interferon Signaling. Journal of Biological Chemistry, 2004, 279, 970-979.	1.6	106
323	Targeted Inhibition of p38 Mitogen-activated Protein Kinase Antagonizes Cardiac Injury and Cell Death Following Ischemia-Reperfusion in Vivo. Journal of Biological Chemistry, 2004, 279, 15524-15530.	1.6	202
324	Glycogen Synthase Kinase-3β Regulates Growth, Calcium Homeostasis, and Diastolic Function in the Heart. Journal of Biological Chemistry, 2004, 279, 21383-21393.	1.6	115
325	Activation of Endothelial Nitric-oxide Synthase by the p38 MAPK in Response to Black Tea Polyphenols. Journal of Biological Chemistry, 2004, 279, 46637-46643.	1.6	123

#	Article	IF	CITATIONS
326	Mechanical Stretch Induces Phosphorylation of p38-MAPK and Apoptosis in Human Saphenous Vein. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 451-456.	1.1	44
327	Lack of p38 MAP Kinase Activation in TRAIL-Resistant Cells is Not Related to the Resistance to TRAIL-Mediated Cell Death. Cancer Biology and Therapy, 2004, 3, 296-301.	1.5	16
328	p38α Mitogen-Activated Protein Kinase Inhibition Improves Cardiac Function and Reduces Myocardial Damage in Isoproterenol-Induced Acute Myocardial Injury in Rats. Journal of Cardiovascular Pharmacology, 2004, 44, 486-492.	0.8	37
329	Protein phosphatase 2A-mediated cross-talk between p38 MAPK and ERK in apoptosis of cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2204-H2212.	1.5	137
330	The Pro-hypertrophic Basic Helix-Loop-Helix Protein p8 Is Degraded by the Ubiquitin/Proteasome System in a Protein Kinase B/Akt- and Glycogen Synthase Kinase-3-dependent Manner, whereas Endothelin Induction of p8 mRNA and Renal Mesangial Cell Hypertrophy Require NFAT4. Journal of Biological Chemistry, 2004, 279, 20950-20958.	1.6	35
331	Protein Kinase CδRegulates Keratinocyte Death and Survival by Regulating Activity and Subcellular Localization of a p38l´-Extracellular Signal-Regulated Kinase 1/2 Complex. Molecular and Cellular Biology, 2004, 24, 8167-8183.	1.1	381
332	Osteopontin Modulates Myocardial Hypertrophy in Response to Chronic Pressure Overload in Mice. Hypertension, 2004, 44, 826-831.	1.3	99
333	Inhibition of the Na+/H+ exchanger attenuates the deterioration of ventricular function during pacing-induced heart failure in rabbits. Cardiovascular Research, 2004, 63, 273-282.	1.8	63
334	Inhibition of p38 MAPK activity fails to attenuate contractile dysfunction in a mouse model of low-flow ischemia. Cardiovascular Research, 2004, 61, 123-131.	1.8	27
335	Differential roles of extracellular signal-regulated kinase 1/2 and p38MAPK in mechanical load-induced procollagen α1(I) gene expression in cardiac fibroblasts. Cardiovascular Research, 2004, 61, 736-744.	1.8	78
336	Protein kinase C and extracellular signal regulated kinase are involved in cardiac hypertrophy of rats with progressive renal injury. European Journal of Clinical Investigation, 2004, 34, 85-93.	1.7	19
337	Stress-Activated MAP Kinases in Cardiac Remodeling and Heart Failure New Insights from Transgenic Studies. Trends in Cardiovascular Medicine, 2004, 14, 50-55.	2.3	117
338	FR167653 diminishes infarct size in a murine model of myocardial ischemia-reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2004, 128, 588-594.	0.4	16
339	Stress-activated protein kinases—tumor suppressors or tumor initiators?. Seminars in Cancer Biology, 2004, 14, 271-282.	4.3	92
340	Inhibition of Cardiac Myocyte Contraction by 4-Hydroxy-<1>Trans<1>-2-Nonenal. Cardiovascular Toxicology, 2004, 4, 21-28.	1.1	17
341	Effect of angiotensin II type 2 receptor blockade on mitogen activated protein kinases during myocardial ischemia-reperfusion. Molecular and Cellular Biochemistry, 2004, 258, 211-218.	1.4	10
342	Nitric oxide and promotion of cardiac myocyte apoptosis. Molecular and Cellular Biochemistry, 2004, 263, 35-53.	1.4	21
343	p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Research in Cardiology, 2004, 99, 338-50.	2.5	76

	CITATION RE	EPORT	
#	Article	IF	CITATIONS
344	Calcium signalingvia voltage-dependent L-type Ca2+ channels. Signal Transduction, 2004, 4, 195-205.	0.7	3
345	Retinoblastoma suppression of matrix metalloproteinase 1, but not interleukin-6, through a p38-dependent pathway in rheumatoid arthritis synovial fibroblasts. Arthritis and Rheumatism, 2004, 50, 78-87.	6.7	20
346	Inhibition of phenylephrine-induced cardiac hypertrophy by docosahexaenoic acid. Journal of Cellular Biochemistry, 2004, 92, 1141-1159.	1.2	28
347	Human intestinal epithelial crypt cell survival and death: Complex modulations of Bcl-2 homologs by Fak, PI3-K/Akt-1, MEK/Erk, and p38 signaling pathways. Journal of Cellular Physiology, 2004, 198, 209-222.	2.0	56
348	Different roles of ERK and p38 MAP kinases during tube formation from endothelial cells cultured in 3-dimensional collagen matrices. Journal of Cellular Physiology, 2004, 200, 360-369.	2.0	56
349	ERK and p38 mediate high-glucose-induced hypertrophy and TGF-β expression in renal tubular cells. American Journal of Physiology - Renal Physiology, 2004, 286, F120-F126.	1.3	114
350	Mitogen-activated Protein Kinases and Mitogen-activated Protein Kinase Phosphatases Mediate the Inhibitory Effects of All-trans Retinoic Acid on the Hypertrophic Growth of Cardiomyocytes. Journal of Biological Chemistry, 2004, 279, 54905-54917.	1.6	65
351	p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. Journal of the American College of Cardiology, 2004, 44, 1679-1689.	1.2	157
352	The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Current Opinion in Pharmacology, 2004, 4, 372-377.	1.7	382
353	Calcium–calcineurin signaling in the regulation of cardiac hypertrophy. Biochemical and Biophysical Research Communications, 2004, 322, 1178-1191.	1.0	391
354	Anti-oxidants and apoptosis: attenuation of doxorubicin induced cardiomyopathy by carvedilol. Journal of Molecular and Cellular Cardiology, 2004, 37, 817-821.	0.9	14
355	Altered Activity of Signaling Pathways in Diaphragm and Tibialis Anterior Muscle of Dystrophic Mice. Experimental Biology and Medicine, 2004, 229, 503-511.	1.1	35
356	LEFT VENTRICULAR CONTRACTILE DYSFUNCTION AS A COMPLICATION OF THERMAL INJURY. Shock, 2004, 22, 495-507.	1.0	63
357	Glycogen Synthase Kinase-3.BETA. is Involved in the Process of Myocardial Hypertrophy Stimulated by Insulin-Like Growth Factor-1. Circulation Journal, 2004, 68, 247-253.	0.7	21
358	p38 MAPK/HSP25 signaling mediates cadmium-induced contraction of mesangial cells and renal glomeruli. American Journal of Physiology - Renal Physiology, 2005, 288, F1133-F1143.	1.3	46
359	Mitogen-Activated Protein Kinases (p38 and c-Jun NH ₂ -Terminal Kinase) Are Differentially Regulated During Cardiac Volume and Pressure Overload Hypertrophy. Cell Biochemistry and Biophysics, 2005, 43, 061-076.	0.9	37
360	Mechanical stretch induces podocyte hypertrophy in vitro1. Kidney International, 2005, 67, 157-166.	2.6	86
361	Activation and signaling of the p38 MAP kinase pathway. Cell Research, 2005, 15, 11-18.	5.7	1,352

#	Article	IF	CITATIONS
362	Increased Phosphorylation and Activation of Mitogen-Activated Protein Kinase p38 in Scleroderma Fibroblasts. Journal of Investigative Dermatology, 2005, 125, 247-255.	0.3	45
363	Critical roles of Raf/MEK/ERK and PI3K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Experimental Hematology, 2005, 33, 564-572.	0.2	83
364	Co-induction of $\hat{I}\pm B$ -crystallin and MAPKAPK-2 in astrocytes in the penumbra after transient focal cerebral ischemia. Experimental Brain Research, 2005, 163, 421-429.	0.7	37
365	The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Basic Research in Cardiology, 2005, 100, 35-47.	2.5	48
366	Apoptosis in the cardiovascular system: incidence, regulation, and therapeutic options. , 2005, , 156-187.		0
367	Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1925-H1930.	1.5	99
368	PYK2 regulates SERCA2 gene expression in neonatal rat ventricular myocytes. American Journal of Physiology - Cell Physiology, 2005, 289, C471-C482.	2.1	51
369	Differential cardioprotective/cardiotoxic effects mediated by β-adrenergic receptor subtypes. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2441-H2449.	1.5	82
370	Cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2 is mediated by the MAPK cascade. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2167-H2175.	1.5	56
371	AFos Dissociates Cardiac Myocyte Hypertrophy and Expression of the Pathological Gene Program. Circulation, 2005, 111, 1645-1651.	1.6	37
372	p38 MAP-kinase in cultured adult rat ventricular cardiomyocytes: expression and involvement in hypertrophic signalling. European Journal of Heart Failure, 2005, 7, 453-460.	2.9	15
373	Role of F-actin organization in p38 MAP kinase-mediated apoptosis and necrosis in neonatal rat cardiomyocytes subjected to simulated ischemia and reoxygenation. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2310-H2318.	1.5	51
374	Temporary blockade of contractility during reperfusion elicits a cardioprotective effect of the p38 MAP kinase inhibitor SB-203580. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2726-H2734.	1.5	21
375	GH-releasing peptides improve cardiac dysfunction and cachexia and suppress stress-related hormones and cardiomyocyte apoptosis in rats with heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1643-H1651.	1.5	66
376	p38 MAP Kinase Mediates Inflammatory Cytokine Induction in Cardiomyocytes and Extracellular Matrix Remodeling in Heart. Circulation, 2005, 111, 2494-2502.	1.6	134
377	Calcium-activated RAF/MEK/ERK Signaling Pathway Mediates p53-dependent Apoptosis and Is Abrogated by αB-Crystallin through Inhibition of RAS Activation. Molecular Biology of the Cell, 2005, 16, 4437-4453.	0.9	173
378	Cell signalling in the cardiovascular system: an overview. Heart, 2005, 91, 1366-1374.	1.2	46
379	Thyroid Hormone Induces Cardiac Myocyte Hypertrophy in a Thyroid Hormone Receptor α1-Specific Manner that Requires TAK1 and p38 Mitogen-Activated Protein Kinase. Molecular Endocrinology, 2005, 19–1618-1628	3.7	78

#	Article	IF	CITATIONS
380	Intracellular acidosisâ€activated p38 MAPK signaling and its essential role in cardiomyocyte hypoxic injury. FASEB Journal, 2005, 19, 109-111.	0.2	41
381	Heat Shock Protein-70 Mediates the Cytoprotective Effect of Carbon Monoxide: Involvement of p38β MAPK and Heat Shock Factor-1. Journal of Immunology, 2005, 175, 2622-2629.	0.4	135
382	Phosphorylation-Dependent Degradation of p300 by Doxorubicin-Activated p38 Mitogen-Activated Protein Kinase in Cardiac Cells. Molecular and Cellular Biology, 2005, 25, 2673-2687.	1.1	108
383	Cocaine Induces Apoptosis in Fetal Rat Myocardial Cells through the p38 Mitogen-Activated Protein Kinase and Mitochondrial/Cytochrome c Pathways. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 112-119.	1.3	38
384	Exercise Stimulates Pgc-1α Transcription in Skeletal Muscle through Activation of the p38 MAPK Pathway. Journal of Biological Chemistry, 2005, 280, 19587-19593.	1.6	575
385	Cardiomyocyte-Specific Knockout and Agonist of Peroxisome Proliferator–Activated Receptor-γ Both Induce Cardiac Hypertrophy in Mice. Circulation Research, 2005, 97, 372-379.	2.0	238
386	Overexpression of Mitogen-activated Protein Kinase Kinase 6 in the Heart Improves Functional Recovery from Ischemia in Vitro and Protects against Myocardial Infarction in Vivo. Journal of Biological Chemistry, 2005, 280, 669-676.	1.6	77
387	p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes and Development, 2005, 19, 1175-1187.	2.7	516
388	MACROPHAGE MIGRATION INHIBITORY FACTOR WITHIN THE ALVEOLAR SPACES INDUCES CHANGES IN THE HEART DURING LATE EXPERIMENTAL SEPSIS. Shock, 2005, 24, 556-563.	1.0	25
389	p38 Mitogen-Activated Protein Kinase Activates eNOS in Endothelial Cells by an Estrogen Receptor α-Dependent Pathway in Response to Black Tea Polyphenols. Circulation Research, 2005, 96, 1072-1078.	2.0	81
390	Assembly and Signaling of Adhesion Complexes. Current Topics in Developmental Biology, 2005, 68, 183-225.	1.0	45
391	Receptor-Signaling Pathways in Heart Failure. , 2005, , 123-143.		0
392	Preconditioning: Gender Effects1. Journal of Surgical Research, 2005, 129, 202-220.	0.8	22
393	Regulation of vertebrate myotome development by the p38 MAP kinase–MEF2 signaling pathway. Developmental Biology, 2005, 283, 171-179.	0.9	87
394	MK2 gene knockout mouse hearts carry anti-apoptotic signal and are resistant to ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 2005, 38, 93-97.	0.9	44
395	STRESS signaling pathways that modulate cardiac myocyte apoptosis. Journal of Molecular and Cellular Cardiology, 2005, 38, 47-62.	0.9	304
396	Peroxynitrite activates ERK via Raf-1 and MEK, independently from EGF receptor and p21 in H9C2 cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2005, 38, 765-775.	0.9	63
397	The role of p38 in the regulation of Na?Ca exchanger expression in adult cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2005, 38, 735-743.	0.9	18

#	Article	IF	CITATIONS
398	Antimycin A induced cardioprotection is dependent on pre-ischemic p38-MAPK activation but independent of MKK3. Journal of Molecular and Cellular Cardiology, 2005, 39, 709-717.	0.9	18
399	The immunophilin ligand FK506, but not the P38 kinase inhibitor SB203580, improves function of adult rat muscle reinnervated from transplants of embryonic neurons. Neuroscience, 2005, 130, 619-630.	1.1	18
400	Inhibition of p38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction. Journal of Cardiac Failure, 2005, 11, 74-81.	0.7	57
401	The Role of Apoptosis Signal-Regulating Kinase 1 in Cardiomyocyte Apoptosis. Antioxidants and Redox Signaling, 2006, 8, 1729-1736.	2.5	29
402	P38 MAP Kinase Activity Is Correlated With Angiotensin II Type 1 Receptor Blocker–Induced Left Ventricular Reverse Remodeling in Spontaneously Hypertensive Heart Failure Rats. Journal of Cardiac Failure, 2006, 12, 479-486.	0.7	15
403	Pleiotropic Effects of the β-Adrenoceptor Blocker Carvedilol on Calcium Regulation during Oxidative Stress-Induced Apoptosis in Cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 45-52.	1.3	41
404	c-Jun N-Terminal Kinases Mediate Reactivation of Akt and Cardiomyocyte Survival After Hypoxic Injury In Vitro and In Vivo. Circulation Research, 2006, 98, 111-118.	2.0	127
405	MAP-quest: Could we produce constitutively active variants of MAP kinases?. Molecular and Cellular Endocrinology, 2006, 252, 231-240.	1.6	18
406	Oxidative stress and DNA damage–DNA repair system in vascular smooth muscle cells in artery and vein grafts. Journal of Cardiothoracic-Renal Research, 2006, 1, 59-72.	0.1	7
407	The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neuroscience Letters, 2006, 394, 131-135.	1.0	31
408	PARP inhibition prevents postinfarction myocardial remodeling and heart failure via the protein kinase C/glycogen synthase kinase-31² pathwayâ~†. Journal of Molecular and Cellular Cardiology, 2006, 41, 149-159.	0.9	52
409	Pressure overload induces greater hypertrophy and mortality in female mice with p38α MAPK inhibition. Journal of Molecular and Cellular Cardiology, 2006, 41, 680-688.	0.9	15
410	Activation of MAPKs in thrombin-stimulated ventricular myocytes is dependent on Ca2+-independent PLA2. American Journal of Physiology - Cell Physiology, 2006, 290, C1350-C1354.	2.1	12
411	Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood, 2006, 108, 4170-4177.	0.6	120
412	Distinct gene expression profiles in adult mouse heart following targeted MAP kinase activation. Physiological Genomics, 2006, 25, 50-59.	1.0	41
413	Signaling Pathways Involved in the Cardioprotective Effects of Cannabinoids. Journal of Pharmacological Sciences, 2006, 102, 155-166.	1.1	29
414	Diabetes alters vascular mechanotransduction: pressure-induced regulation of mitogen activated protein kinases in the rat inferior vena cava. Cardiovascular Diabetology, 2006, 5, 18.	2.7	8
415	Mitogen activated protein kinase signaling in the kidney: target for intervention?. Signal Transduction, 2006, 6, 32-53.	0.7	12

		NLFOR	
#	Article	IF	CITATIONS
416	Oxidative Metabolism, Apoptosis and Perinatal Brain Injury. Brain Pathology, 1999, 9, 93-117.	2.1	133
417	Role of Mitogen-Activated Protein (MAP) Kinases in Cardiovascular Diseases. Cardiovascular Drug Reviews, 2005, 23, 247-254.	4.4	13
418	Role of inositol 1,4,5-trisphosphate receptors in alpha1-adrenergic receptor-induced cardiomyocyte hypertrophy1. Acta Pharmacologica Sinica, 2006, 27, 895-900.	2.8	17
419	Role of Ca2+ and transmitters of the sympathetic nervous system in transduction of stress signal in cardiomyocytes. Journal of Evolutionary Biochemistry and Physiology, 2006, 42, 117-127.	0.2	0
420	Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-κB transactivation by RANKL. Cell Death and Differentiation, 2006, 13, 1879-1891.	5.0	127
421	Isoform-Specific Regulation of the Actin-Organizing Protein Palladin during TGF-β1-Induced Myofibroblast Differentiation. Journal of Investigative Dermatology, 2006, 126, 2387-2396.	0.3	83
422	Effects of various oxidants and antioxidants on the p38-MAPK signalling pathway in the perfused amphibian heart. Molecular and Cellular Biochemistry, 2006, 291, 107-117.	1.4	20
423	Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia, 2006, 49, 2507-2513.	2.9	144
424	Oxidative signaling in renal epithelium: Critical role of cytosolic phospholipase A2 and p38SAPK. Free Radical Biology and Medicine, 2006, 41, 213-221.	1.3	22
425	Inhibition of phosphorylation of p38 MAPK involved in the protection of nephropathy by emodin in diabetic rats. European Journal of Pharmacology, 2006, 553, 297-303.	1.7	64
426	Leptin enhances α1(I) collagen gene expression in LX-2 human hepatic stellate cells through JAK-mediated H2O2-dependent MAPK pathways. Journal of Cellular Biochemistry, 2006, 97, 188-197.	1.2	67
427	Extracellular pH changes activate the p38-MAPK signalling pathway in the amphibian heart. Journal of Experimental Biology, 2006, 209, 1344-1354.	0.8	19
428	Myocyte-Restricted Focal Adhesion Kinase Deletion Attenuates Pressure Overload–Induced Hypertrophy. Circulation Research, 2006, 99, 636-645.	2.0	96
429	Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H52-H60.	1.5	125
430	Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2462-H2472.	1.5	28
431	Differential Regulation of Cardiomyocyte Survival and Hypertrophy by MDM2, an E3 Ubiquitin Ligase. Journal of Biological Chemistry, 2006, 281, 3679-3689.	1.6	82
432	Opposing effect of p38 MAP kinase and JNK inhibitors on the development of heart failure in the cardiomyopathic hamster. Cardiovascular Research, 2006, 69, 888-898.	1.8	60
433	A direct interaction between TGFβ activated kinase 1 and the TGFβ type II receptor: Implications for TGFβ signalling and cardiac hypertrophy. Cardiovascular Research, 2006, 69, 432-439.	1.8	49

\sim	 	D	ORT
		I R F D	ועראי
\sim		NLL	

#	ARTICLE	IF	CITATIONS
434	Estrogen receptor-α mediates acute myocardial protection in females. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2204-H2209.	1.5	163
435	Selective inhibition of p38α MAPK improves cardiac function and reduces myocardial apoptosis in rat model of myocardial injury. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1972-H1977.	1.5	60
436	The complex pattern of SMAD signaling in the cardiovascular systemâ ⁻ †. Cardiovascular Research, 2006, 69, 15-25.	1.8	141
437	Identification of Cell Cycle Regulatory and Inflammatory Genes As Predominant Targets of p38 Mitogen-Activated Protein Kinase in the Heart. Circulation Research, 2006, 99, 485-493.	2.0	59
438	TAB-1 Modulates Intracellular Localization of p38 MAP Kinase and Downstream Signaling. Journal of Biological Chemistry, 2006, 281, 6087-6095.	1.6	74
439	Cardiac Hypertrophy: A Risk Factor for QT-Prolongation and Cardiac Sudden Death. Toxicologic Pathology, 2006, 34, 58-66.	0.9	87
440	Effect of Simultaneous Inhibition of Epidermal Growth Factor Receptor and Cyclooxygenase-2 in HER-2/Neu-Positive Breast Cancer. Clinical Cancer Research, 2006, 12, 6161-6169.	3.2	17
441	p38 Mitogen-Activated Protein Kinase Mediates the Fas-Induced Mitochondrial Death Pathway in CD8 + T Cells. Molecular and Cellular Biology, 2006, 26, 2118-2129.	1.1	77
442	Myostatin Regulates Cardiomyocyte Growth Through Modulation of Akt Signaling. Circulation Research, 2006, 99, 15-24.	2.0	155
443	Role of the p38 Mitogen-Activated Protein Kinase Pathway in the Generation of Arsenic Trioxide–Dependent Cellular Responses. Cancer Research, 2006, 66, 6763-6771.	0.4	80
444	Inflame My Heart (by p38-MAPK). Circulation Research, 2006, 99, 455-458.	2.0	37
445	p38 Kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and antiâ€apoptotic mechanisms. FASEB Journal, 2006, 20, 1907-1909.	0.2	58
446	Estrogen Prevents Cardiomyocyte Apoptosis through Inhibition of Reactive Oxygen Species and Differential Regulation of p38 Kinase Isoforms. Journal of Biological Chemistry, 2006, 281, 6760-6767.	1.6	177
447	Deletion of the Inducible 70-kDa Heat Shock Protein Genes in Mice Impairs Cardiac Contractile Function and Calcium Handling Associated With Hypertrophy. Circulation, 2006, 113, 2589-2597.	1.6	93
448	Activation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H709-H715.	1.5	106
449	cCMP-dependent Protein Kinase Type I Inhibits TAB1-p38 Mitogen-activated Protein Kinase Apoptosis Signaling in Cardiac Myocytes. Journal of Biological Chemistry, 2006, 281, 32831-32840.	1.6	79
450	The Antiapoptotic Effect of Heme Oxygenase-1 in Endothelial Cells Involves the Degradation of p38α MAPK Isoform. Journal of Immunology, 2006, 177, 1894-1903.	0.4	99
451	Calcineurin Activation Is Not Necessary for Doxorubicin-Induced Hypertrophy in H9c2 Embryonic Rat Cardiac Cells: Involvement of the Phosphoinositide 3-Kinase-Akt Pathway. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 934-940.	1.3	45

#	ARTICLE	IF	CITATIONS
452	The Human Sef-a Isoform Utilizes Different Mechanisms to Regulate Receptor Tyrosine Kinase Signaling Pathways and Subsequent Cell Fate. Journal of Biological Chemistry, 2006, 281, 39225-39235.	1.6	29
453	Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovascular Research, 2007, 76, 473-481.	1.8	131
454	Diazoxide Prevents Diabetes through Inhibiting Pancreatic β-Cells from Apoptosis via Bcl-2/Bax Rate and p38-β Mitogen-Activated Protein Kinase. Endocrinology, 2007, 148, 81-91.	1.4	61
455	Role of p38MAPK in β ₂ AR-induced cardiomyopathy: at the heart of the matter?. Future Cardiology, 2007, 3, 387-389.	0.5	1
456	p38-MAPK Induced Dephosphorylation of $\hat{I}\pm$ -Tropomyosin Is Associated With Depression of Myocardial Sarcomeric Tension and ATPase Activity. Circulation Research, 2007, 100, 408-415.	2.0	86
457	Mitogen-Activated Protein Kinases in Heart Development and Diseases. Circulation, 2007, 116, 1413-1423.	1.6	264
458	Hyperactive Variants of p38α Induce, whereas Hyperactive Variants of p38γ Suppress, Activating Protein 1-mediated Transcription. Journal of Biological Chemistry, 2007, 282, 91-99.	1.6	45
459	Can the cardiomyocyte cell cycle be reprogrammed?. Journal of Molecular and Cellular Cardiology, 2007, 42, 706-721.	0.9	72
460	Novel strategies for inhibition of the p38 MAPK pathway. Trends in Pharmacological Sciences, 2007, 28, 286-295.	4.0	139
461	Leptin represses matrix metalloproteinase-1 gene expression in LX2 human hepatic stellate cells. Journal of Hepatology, 2007, 46, 124-133.	1.8	71
462	Impaired extracellular matrix degradation in aortic vessels of cirrhotic rats. Journal of Hepatology, 2007, 46, 440-446.	1.8	16
463	Leptin Signaling and Obesity. Circulation Research, 2007, 101, 545-559.	2.0	285
464	Cardiac Hypertrophy: Mechanisms and Therapeutic Opportunities. Antioxidants and Redox Signaling, 2007, 9, 623-652.	2.5	89
465	Cardiac Myocyte Cell Cycle Control in Development, Disease, and Regeneration. Physiological Reviews, 2007, 87, 521-544.	13.1	501
466	p38 MAPK Signaling in Oral-related Diseases. Journal of Dental Research, 2007, 86, 812-825.	2.5	53
467	Role of p38 mitogen-activated protein kinases in cardioprotection of morphine preconditioning. Chinese Medical Journal, 2007, 120, 777-781.	0.9	10
468	p38α and p38δ mitogen-activated protein kinase isoforms regulate invasion and growth of head and neck squamous carcinoma cells. Oncogene, 2007, 26, 5267-5279.	2.6	122
469	Role of p38 mitogen-activated protein kinase in cardiac remodelling. British Journal of Pharmacology, 2007, 150, 130-135.	2.7	13

			0
#	ARTICLE Role of p38 mitogenâ€activated protein kinase pathway on heart failure in the infant rat after burn	IF	CITATIONS
470	injury. International Journal of Experimental Pathology, 2008, 89, 55-63.	0.6	10
471	P38 MAPK inhibition enhancing ATOâ€induced cytotoxicity against multiple myeloma cells. British Journal of Haematology, 2008, 140, 169-180.	1.2	43
472	Negative regulation of Akt activity by p38αÂMAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1. Cellular Signalling, 2007, 19, 62-74.	1.7	57
473	Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. , 2007, 116, 192-206.		84
474	Regulation of Ncx1 Gene Expression in the Normal and Hypertrophic Heart. Annals of the New York Academy of Sciences, 2007, 1099, 195-203.	1.8	30
475	p38 MAP Kinase Regulation of Oligodendrocyte Differentiation with CREB as a Potential Target. Neurochemical Research, 2007, 32, 293-302.	1.6	51
476	Differential regulation of HSP70 expression by the JNK kinases SEK1 and MKK7 in mouse embryonic stem cells treated with cadmium. Journal of Cellular Biochemistry, 2008, 104, 1771-1780.	1.2	12
477	UNDERSTANDING THE ROLE OF TRANSFORMING GROWTH FACTORâ€Î² SIGNALLING IN THE HEART: OVERVIEW C STUDIES USING GENETIC MOUSE MODELS. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 335-341.)F 0.9	39
478	Cardioprotective Signaling by Endothelin. Trends in Cardiovascular Medicine, 2008, 18, 233-239.	2.3	42
479	Arsenite-Induced Germline Apoptosis through a MAPK-Dependent, p53-independent Pathway in Caenorhabditis elegans. Chemical Research in Toxicology, 2008, 21, 1530-1535.	1.7	23
480	Heme Oxygenase-1 and the Vascular Bed: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants and Redox Signaling, 2008, 10, 1767-1812.	2.5	238
481	Transient activation of P38 MAP kinase and up-regulation of Pim-1 kinase in cardiac hypertrophy despite no activation of AMPK. Journal of Molecular and Cellular Cardiology, 2008, 45, 404-410.	0.9	14
482	Know thy Sef: A novel class of feedback antagonists of receptor tyrosine kinase signaling. International Journal of Biochemistry and Cell Biology, 2008, 40, 2040-2052.	1.2	35
483	Anti-tumor effect of β-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Letters, 2008, 264, 127-134.	3.2	156
484	Targeting p38-MAPK in the ischaemic heart: kill or cure?. Current Opinion in Pharmacology, 2008, 8, 141-146.	1.7	72
485	Long-Term but Not Short-Term p38 Mitogen-Activated Protein Kinase Inhibition Improves Cardiac Function and Reduces Cardiac Remodeling Post-Myocardial Infarction. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 741-750.	1.3	53
486	Sympathetic Activation Causes Focal Adhesion Signaling Alteration in Early Compensated Volume Overload Attributable to Isolated Mitral Regurgitation in the Dog. Circulation Research, 2008, 102, 1127-1136.	2.0	41
487	Transcriptional regulation by the p38 MAPK signaling pathway in mammalian cells. , 2007, , 51-79.		7

#	Article	IF	CITATIONS
488	Designing Heart Performance by Gene Transfer. Physiological Reviews, 2008, 88, 1567-1651.	13.1	52
489	PPAR- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="E1"><mml:mi>Î³</mml:mi></mml:math> in the Cardiovascular System. PPAR Research, 2008, 2008, 1-10.	1.1	39
490	Differential Role of Mitogen-Activated Protein Kinases in Response to Manganese Treatment in Substantia Nigra Dopaminergic Neurons. Journal of Health Science, 2008, 54, 244-249.	0.9	2
491	MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clinical Science, 2008, 115, 203-218.	1.8	395
492	Group B Streptococcal Î ² -Hemolysin/Cytolysin Directly Impairs Cardiomyocyte Viability and Function. PLoS ONE, 2008, 3, e2446.	1.1	27
493	Mitogen Activated Protein Kinase Activated Protein Kinase 2 Regulates Actin Polymerization and Vascular Leak in Ventilator Associated Lung Injury. PLoS ONE, 2009, 4, e4600.	1.1	53
494	Induction of germline apoptosis by cobalt and relevant signal transduction pathways in <i>Caenorhabditis elegans</i> . Toxicology Mechanisms and Methods, 2009, 19, 541-546.	1.3	7
495	Procaspase 8 and Bax Are Up-regulated by Distinct Pathways in Streptococcal Pyrogenic Exotoxin B-induced Apoptosis. Journal of Biological Chemistry, 2009, 284, 33195-33205.	1.6	16
496	p38 MAPK Is a Major Regulator of MafA Protein Stability under Oxidative Stress. Molecular Endocrinology, 2009, 23, 1281-1290.	3.7	34
497	Dietary-Induced Obesity Hastens the Progression From Concentric Cardiac Hypertrophy to Pump Dysfunction in Spontaneously Hypertensive Rats. Hypertension, 2009, 54, 1376-1383.	1.3	24
498	Local wound p38 MAPK inhibition attenuates burn-induced cardiac dysfunction. Surgery, 2009, 146, 775-786.	1.0	13
499	Myocardial Survival Signaling in Response to Stem Cell Transplantation. Journal of the American College of Surgeons, 2009, 208, 607-613.	0.2	13
500	Genistein enhances TRAIL-induced apoptosis through inhibition of p38 MAPK signaling in human hepatocellular carcinoma Hep3B cells. Chemico-Biological Interactions, 2009, 180, 143-150.	1.7	53
501	Isoflavone genistein protects human vascular endothelial cells against tumor necrosis factor-α-induced apoptosis through the p38β mitogen-activated protein kinase. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 66-76.	2.2	23
503	p38 MAP Kinase Inhibits Neutrophil Development Through Phosphorylation of C/EBPα on Serine 21. Stem Cells, 2009, 27, 2271-2282.	1.4	34
504	Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nature Medicine, 2009, 15, 1298-1306.	15.2	375
505	Development of Arterial Calcification in Adiponectin-Deficient Mice: Adiponectin Regulates Arterial Calcification. Journal of Bone and Mineral Research, 2009, 24, 1461-1468.	3.1	76
506	The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling. Biochemical and Biophysical Research Communications, 2009, 388, 155-160.	1.0	43

#	Article	IF	CITATIONS
507	Treatment with a p38 MAPK inhibitor attenuates cisplatin nephrotoxicity starting after the beginning of renal damage. Life Sciences, 2009, 84, 590-597.	2.0	37
508	Emodin suppresses cell proliferation and fibronectin expression via p38MAPK pathway in rat mesangial cells cultured under high glucose. Molecular and Cellular Endocrinology, 2009, 307, 157-162.	1.6	64
509	The Potential of p38 MAPK Inhibitors to Modulate Periodontal Infections. Current Drug Metabolism, 2009, 10, 55-67.	0.7	46
510	Mechanisms of Remodelling A Question of Life (Stem Cell Production) and Death (Myocyte Apoptosis). Circulation Journal, 2009, 73, 1973-1982.	0.7	38
511	Effect of p38 MAP kinases on contractility and ischemic injury in intact heart. Acta Physiologica Hungarica, 2009, 96, 307-323.	0.9	5
512	Cyclic AMP stimulates Mrp2 translocation by activating p38α MAPK in hepatic cells. American Journal of Physiology - Renal Physiology, 2010, 298, G667-G674.	1.6	13
513	The role of p38α mitogen-activated protein kinase gene in the HELLP syndrome. Cell Stress and Chaperones, 2010, 15, 95-100.	1.2	9
514	BNIP3 induces IL6 and calcineurin/NFAT3 hypertrophic-related pathways in H9c2 cardiomyoblast cells. Molecular and Cellular Biochemistry, 2010, 345, 241-247.	1.4	16
515	Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. , 2010, 128, 191-227.		694
516	β1-Adrenergic receptor vs adenylyl cyclase 6 expression in cardiac myocytes: Differences in transgene localization and intracellular signaling. Cellular Signalling, 2010, 22, 584-589.	1.7	7
517	Characterization of a novel MK3 splice variant from murine ventricular myocardium. Cellular Signalling, 2010, 22, 1502-1512.	1.7	5
518	Effect of pressure overload-induced hypertrophy on the expression and localization of p38 MAP kinase isoforms in the mouse heart. Cellular Signalling, 2010, 22, 1634-1644.	1.7	50
519	Modulation of doxorubicin-induced cardiac dysfunction in dominant-negative p38α mitogen-activated protein kinase mice. Free Radical Biology and Medicine, 2010, 49, 1422-1431.	1.3	47
520	TNFâ€Î±â€mediated signal transduction pathway is a major determinant of apoptosis in dilated cardiomyopathy. Journal of Cellular and Molecular Medicine, 2010, 14, 1988-1997.	1.6	19
521	Distinctive ERK and p38 signaling in remote and infarcted myocardium during postâ€MI remodeling in the mouse. Journal of Cellular Biochemistry, 2010, 109, 1185-1191.	1.2	38
522	Selective blockade of protein kinase B protects the rat and human myocardium against ischaemic injury. Journal of Physiology, 2010, 588, 2173-2191.	1.3	11
523	MAPK-Activated Protein Kinase-2 in Cardiac Hypertrophy and Cyclooxygenase-2 Regulation in Heart. Circulation Research, 2010, 106, 1434-1443.	2.0	101
524	Specific Regulation of Noncanonical p38î± Activation by Hsp90-Cdc37 Chaperone Complex in Cardiomyocyte. Circulation Research, 2010, 106, 1404-1412.	2.0	54

#	Article	IF	CITATIONS
525	Nickel-induced apoptosis and relevant signal transduction pathways in Caenorhabditis elegans. Toxicology and Industrial Health, 2010, 26, 249-256.	0.6	20
526	Differential Regulation of Vascular Tone and Remodeling via Stimulation of Type 2 and Type 6 Adenylyl Cyclases in the Ductus Arteriosus. Circulation Research, 2010, 106, 1882-1892.	2.0	44
527	Tanshinone IIA Inhibits miR-1 Expression through p38 MAPK Signal Pathway in Post-infarction Rat Cardiomyocytes. Cellular Physiology and Biochemistry, 2010, 26, 991-998.	1.1	80
528	Protein Kinases as Drug Development Targets for Heart Disease Therapy. Pharmaceuticals, 2010, 3, 2111-2145.	1.7	30
529	Angiotensin-(1–7) improves cardiac remodeling and inhibits growth-promoting pathways in the heart of fructose-fed rats. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1003-H1013.	1.5	64
530	Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale. Physiological Reviews, 2010, 90, 1507-1546.	13.1	610
531	Pharmacological Strategies to Contend Against Myocardial Reperfusion Damage: Diverse Chemicals for Multiple Targets. Current Medicinal Chemistry, 2010, 17, 2261-2273.	1.2	7
532	Multifarious molecular signaling cascades of cardiac hypertrophy: Can the muddy waters be cleared?aˆ†. Pharmacological Research, 2010, 62, 365-383.	3.1	86
533	β-Adrenergic receptor stimulated Ncx1 upregulation is mediated via a CaMKII/AP-1 signaling pathway in adult cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2010, 48, 342-351.	0.9	34
534	The activation of p38alpha, and not p38beta, mitogen-activated protein kinase is required for ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2010, 48, 1324-1328.	0.9	29
535	Activation of ASK1, downstream MAPKK and MAPK isoforms during cardiac ischaemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 733-740.	1.8	20
536	Gambogenic acid inhibits proliferation of A549 cells through apoptosis inducing through up-regulation of the p38 MAPK cascade. Journal of Asian Natural Products Research, 2011, 13, 993-1002.	0.7	20
537	Effects of Beraprost Sodium, a Prostaglandin 12 Analog, on High Glucose-Induced Proliferation and Oxidative Stress in a Rat Glomerular Mesangial Cell Line. Pharmacology, 2011, 87, 350-358.	0.9	3
538	Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiology, 2011, 7, 673-691.	0.5	22
539	p38β MAPK affords cytoprotection against oxidative stress-induced astrocyte apoptosis via induction of αB-crystallin and its anti-apoptotic function. Neuroscience Letters, 2011, 501, 132-137.	1.0	24
540	Distinct regulation of B-type natriuretic peptide transcription by p38 MAPK isoforms. Molecular and Cellular Endocrinology, 2011, 338, 18-27.	1.6	27
541	The p38 mitogen-activated protein kinase pathway—A potential target for intervention in infarction, hypertrophy, and heart failure. Journal of Molecular and Cellular Cardiology, 2011, 51, 485-490.	0.9	134
542	Activation of the Renin-Angiotensin System in Heart Failure. , 2011, , 134-151.		3

		CITATION REPORT	
#	Article	IF	CITATIONS
543	Rapid Disruption of Cellular Integrity of Zinc-treated Astroglia Is Regulated by p38 MAPK and Ca ^{2+‹/sup>-dependent Mechanisms. Experimental Neurobiology, 2011, 20, 45-53.}	0.7	9
544	Integrin Signaling, Cell Survival, and Anoikis: Distinctions, Differences, and Differentiation. Journ of Signal Transduction, 2011, 2011, 1-18.	nal 2.0	113
545	CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cel Journal of Neurochemistry, 2011, 119, 1108-1118.	death. 2.1	85
546	Moxonidine improves cardiac structure and performance in SHR through inhibition of cytokines MAPK and Akt. British Journal of Pharmacology, 2011, 164, 946-957.	s, p38 2.7	25
547	p38 phosphorylates Rb on Ser567 by a novel, cell cycle-independent mechanism that triggers R interaction and apoptosis. Oncogene, 2011, 30, 588-599.	b–Hdm2 2.6	42
548	Activation of mitogen activated protein kinases in post-infarcted patients. Journal of Thrombos Thrombolysis, 2011, 31, 424-430.	is and 1.0	2
549	A pro-survival effect of polyamine depletion on norepinephrine-mediated apoptosis in cardiac corrole of signaling enzymes. Amino Acids, 2011, 40, 1127-1137.	ells: 1.2	13
550	N-acetylglucosamine Conjugated to Nanoparticles Enhances Myocyte Uptake and Improves De a Small Molecule p38 Inhibitor for Post-infarct Healing. Journal of Cardiovascular Translational Research, 2011, 4, 631-643.	livery of 1.1	36
551	p38γ Promotes Breast Cancer Cell Motility and Metastasis through Regulation of RhoC GTPase Cytoskeletal Architecture, and a Novel Leading Edge Behavior. Cancer Research, 2011, 71, 633	?, 8-6349. 0.4	53
552	Attenuation of CHOP-mediated Myocardial Apoptosis in Pressure-overloaded Dominant Negativ Mitogen-activated Protein Kinase Mice. Cellular Physiology and Biochemistry, 2011, 27, 487-49	ve p38α 1.1 6.	37
553	C-Reactive Protein Overexpression Exacerbates Pressure Overload–Induced Cardiac Remodel Through Enhanced Inflammatory Response. Hypertension, 2011, 57, 208-215.	ing 1.3	66
554	Genetic analysis of specific and redundant roles for p38α and p38β MAPKs during mouse deve Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2	lopment. 12764-12769. 3.3	53
555	New Therapeutic Targets in Cardiology. Circulation, 2012, 126, 357-368.	1.6	68
556	Characterization of hsp27 kinases activated by elevated aortic pressure in heart. Molecular and Cellular Biochemistry, 2012, 371, 31-42.	1.4	6
557	Effects of activation of vitamin D receptor and phosphorus on left ventricular hypertrophy in chronic kidney disease. Hipertension Y Riesgo Vascular, 2012, 29, 130-135.	0.3	1
558	Mitogen-Activated Protein Kinase and Natural Phenolic Compounds in Cardiovascular Remodeli Studies in Natural Products Chemistry, 2012, 38, 159-190.	ing. 0.8	1
559	ERK1/2 and p38 MAPKs Are Complementarily Involved in Estradiol 17ß-d-Glucuronide-Induced Cholestasis: Crosstalk with cPKC and PI3K. PLoS ONE, 2012, 7, e49255.	1.1	26
560	Angiotensins Inhibit Cell Growth in GH3 Lactosomatotroph Pituitary Tumor Cell Culture: A Poss Involvement of the p44/42 and p38 MAPK Pathways. Scientific World Journal, The, 2012, 2012		2

#	Article	IF	CITATIONS
561	Infecting mice with recombinant Ad5-BPI23-FcÎ ³ 1 virus protects against systemic Escherichia coli challenge. Journal of Medical Microbiology, 2012, 61, 1262-1269.	0.7	5
562	Role of p38 inhibition in cardiac ischemia/reperfusion injury. European Journal of Clinical Pharmacology, 2012, 68, 513-524.	0.8	41
563	The p38 mitogen-activated protein kinases modulate endothelial cell survival and tissue repair. Inflammation Research, 2012, 61, 233-244.	1.6	9
564	Isoproterenol induced hypertrophy and associated signaling pathways are modulated by Somatostatin in H9c2 cells. International Journal of Cardiology, 2013, 167, 1012-1022.	0.8	15
565	Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovascular Diabetology, 2013, 12, 90.	2.7	37
566	17â€ <scp>β</scp> Oestradiol prevents cardiovascular dysfunction in postâ€menopausal metabolic syndrome by affecting <scp>SIRT1</scp> / <scp>AMPK</scp> / <scp>H3</scp> acetylation. British Journal of Pharmacology, 2013, 170, 779-795.	2.7	62
567	Mechanism and consequence of the autoactivation of p38α mitogen-activated protein kinase promoted by TAB1. Nature Structural and Molecular Biology, 2013, 20, 1182-1190.	3.6	95
568	Characterization of synergistic anti-cancer effects of docosahexaenoic acid and curcumin on DMBA-induced mammary tumorigenesis in mice. BMC Cancer, 2013, 13, 418.	1.1	52
569	Exogenous nitric oxide negatively regulates the Sâ€nitrosylation p38 mitogenâ€activated protein kinase activation during cerebral ischaemia and reperfusion. Neuropathology and Applied Neurobiology, 2013, 39, 284-297.	1.8	24
570	Role of cytochrome P450–mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metabolism Reviews, 2013, 45, 173-195.	1.5	41
571	Preventing p38 MAPK-Mediated MafA Degradation Ameliorates β-Cell Dysfunction under Oxidative Stress. Molecular Endocrinology, 2013, 27, 1078-1090.	3.7	20
572	Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. International Journal of Molecular Medicine, 2013, 31, 644-650.	1.8	66
573	Heart Rate After Cardiac Transplantation—Lessons From the Tortoise and the Shrew. Transplantation, 2013, 95, 259-265.	0.5	6
574	A-Kinase Anchoring Protein Lbc Coordinates a p38 Activating Signaling Complex Controlling Compensatory Cardiac Hypertrophy. Molecular and Cellular Biology, 2013, 33, 2903-2917.	1.1	37
575	Thymoquinone Induces Apoptosis in Oral Cancer Cells Through P38Î ² Inhibition. The American Journal of Chinese Medicine, 2013, 41, 683-696.	1.5	53
576	Selective inhibition of ATPase activity during contraction alters the activation of p38 MAP kinase isoforms in skeletal muscle. Journal of Cellular Biochemistry, 2013, 114, 1445-1455.	1.2	18
577	Baicalin Attenuates Acute Myocardial Infarction of Rats <i>via</i> Mediating the Mitogen-Activated Protein Kinase Pathway. Biological and Pharmaceutical Bulletin, 2013, 36, 988-994.	0.6	35
578	Mitochondrial p38Î ² and Manganese Superoxide Dismutase Interaction Mediated by Estrogen in Cardiomyocytes. PLoS ONE, 2014, 9, e85272.	1.1	24

		CHAHON K		
# 579	ARTICLE Gαq signalling: The new and the old. Cellular Signalling, 2014, 26, 833-848.		IF 1.7	Citations 81
579			1.7	01
580	p38l̂´ mitogen-activated protein kinase regulates the expression of tight junction protein differentiating human epidermal keratinocytes. Archives of Dermatological Research, 20	n ZO-1 in 014, 306, 131-141.	1.1	18
581	An image processing approach to analyze morphological features of microscopic image fibers. Computerized Medical Imaging and Graphics, 2014, 38, 803-814.	s of muscle	3.5	5
582	Silver nanoparticles induce apoptotic cell death in cultured cerebral cortical neurons. Mand Cellular Toxicology, 2014, 10, 173-179.	olecular	0.8	27
583	Cardioprotective Role of P38 MAPK During Myocardial Infarction Via Parallel Activation B and Nrf2. Journal of Cellular Physiology, 2014, 229, 1272-1282.	of αâ€Crystallin	2.0	38
584	Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMP of p38 MAPK signaling. Archives of Biochemistry and Biophysics, 2014, 562, 22-30.	K and activation	1.4	12
586	Human cord blood stem cell paracrine factors activate the survival protein kinase Akt ar death protein kinases JNK and p38 in injured cardiomyocytes. Cytotherapy, 2014, 16, 1		0.3	13
587	Profilin-1 Promotes the Development of Hypertension-induced Artery Remodeling. Journ Histochemistry and Cytochemistry, 2014, 62, 298-310.	nal of	1.3	16
588	Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac disea Therapeutic perspectives. , 2014, 144, 202-225.	ises:		127
589	TSC-22 up-regulates collagen 3a1 gene expression in the rat heart. BMC Cardiovascular 15, 122.	Disorders, 2015,	0.7	2
590	Identification of anesthetic-induced expression changes using DNA microarray. Molecula Reports, 2015, 11, 589-596.	ar Medicine	1.1	5
591	WDR12, a Member of Nucleolar PeBoW-Complex, Is Up-Regulated in Failing Hearts and Deterioration of Cardiac Function. PLoS ONE, 2015, 10, e0124907.	Causes	1.1	7
592	The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Frontiers in Pharmacology, 2015, 6, 102.	1	1.6	55
593	Differential Role of Leptin and Adiponectin in Cardiovascular System. International Jourr Endocrinology, 2015, 2015, 1-13.	nal of	0.6	145
594	Low-dose radiation affects cardiac physiology: gene networks and molecular signaling ir cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 201 H1947-H1963.	n 5, 309,	1.5	51
595	Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating m protein kinase signaling in cardiovascular disease (Review). International Journal of Mole Medicine, 2015, 35, 1095-1102.	nitogen-activated ecular	1.8	17
596	Effect of panax notoginseng saponins injection on the p38MAPK pathway in lung tissue of hypoxic pulmonary hypertension. Chinese Journal of Integrative Medicine, 2015, 21,		0.7	12
597	SR calcium handling dysfunction, stress-response signaling pathways, and atrial fibrillati Frontiers in Physiology, 2015, 6, 46.	ion.	1.3	7

#	Article	IF	CITATIONS
598	Green synthesis of peptide-templated gold nanoclusters as novel fluorescence probes for detecting protein kinase activity. Chemical Communications, 2015, 51, 10006-10009.	2.2	72
599	Mouse models for the study of postnatal cardiac hypertrophy. IJC Heart and Vasculature, 2015, 7, 131-140.	0.6	12
600	Remodelling after an Infarct: Crosstalk between Life and Death. Cardiology, 2016, 135, 68-76.	0.6	9
601	Collagen regulates transforming growth factor- \hat{I}^2 receptors of HL-1 cardiomyocytes through activation of stretch and integrin signaling. Molecular Medicine Reports, 2016, 14, 3429-3436.	1.1	5
602	Pioglitazone Protected against Cardiac Hypertrophy via Inhibiting AKT/GSK3 <i>β</i> and MAPK Signaling Pathways. PPAR Research, 2016, 2016, 1-11.	1.1	35
603	Zinc delays the progression of obesityâ€related glomerulopathy in mice via downâ€regulating <scp>P</scp> 38 <scp>MAPK</scp> â€mediated inflammation. Obesity, 2016, 24, 1244-1256.	1.5	23
604	Characterisation of equine satellite cell transcriptomic profile response to β-hydroxy-β-methylbutyrate (HMB). British Journal of Nutrition, 2016, 116, 1315-1325.	1.2	12
605	Long Noncoding RNA PICSAR Promotes Growth of Cutaneous Squamous Cell Carcinoma by Regulating ERK1/2 Activity. Journal of Investigative Dermatology, 2016, 136, 1701-1710.	0.3	61
606	Cardiomyocyte-Specific Human Bcl2-Associated Anthanogene 3 P209L Expression Induces Mitochondrial Fragmentation, Bcl2-Associated Anthanogene 3 Haploinsufficiency, and Activates p38 Signaling. American Journal of Pathology, 2016, 186, 1989-2007.	1.9	36
607	Endoplasmic reticulum (ER) stress triggers Hax1-dependent mitochondrial apoptotic events in cardiac cells. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 1227-1239.	2.2	14
608	The Stress-Response MAP Kinase Signaling in Cardiac Arrhythmias. Reviews of Physiology, Biochemistry and Pharmacology, 2016, 172, 77-100.	0.9	11
609	Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling. Toxicology Letters, 2016, 258, 134-146.	0.4	31
610	Analyzing the anti-ischemia–reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of p38α MAPK. Canadian Journal of Physiology and Pharmacology, 2016, 94, 97-103.	0.7	29
611	Valproic Acid Induced Human Retinal Pigment Epithelial Cell Death as Well as its Survival after Hydrogen Peroxide Damage is Mediated by P38 Kinase Advances in Experimental Medicine and Biology, 2016, 854, 765-772.	0.8	4
612	p38 MAP kinases in the heart. Gene, 2016, 575, 369-376.	1.0	112
613	Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. FASEB Journal, 2016, 30, 674-687.	0.2	46
614	Electrical and mechanical stimulation of cardiac cells and tissue constructs. Advanced Drug Delivery Reviews, 2016, 96, 135-155.	6.6	210
615	Cyclovirobuxinum D alleviates cardiac hypertrophy in hyperthyroid rats by preventing apoptosis of cardiac cells and inhibiting the p38 mitogen-activated protein kinase signaling pathway. Chinese Journal of Integrative Medicine, 2017, 23, 770-778.	0.7	21

ARTICLE IF CITATIONS Expression of claudinâ€11 by tumor cells in cutaneous squamous cell carcinoma is dependent on the 1.4 12 616 activity of p38l². Experimental Dermatology, 2017, 26, 771-777. p38Î² Mitogen-Activated Protein Kinase Signaling Mediates Exenatide-Stimulated Microglial Î²-Endorphin Expression. Molecular Pharmacology, 2017, 91, 451-463. 1.0 The significance of the washout period in preconditioning. Cardiovascular Therapeutics, 2017, 35, 618 2 1.1 e12252. MK5 haplodeficiency attenuates hypertrophy and preserves diastolic function during remodeling induced by chronic pressure overload in the mouse heart. American Journal of Physiology - Heart and 619 Circulatory Physiology, 2017, 313, H46-H58. Differential roles of PKC isoforms (PKCs) and Ca 2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells. Molecular and Cellular 620 1.6 11 Endocrinology, 2017, 439, 141-154. Cardiac myocyte p38l[±] kinase regulates angiogenesis via myocyte-endothelial cell cross-talk during stress-induced remodeling in the heart. Journal of Biological Chemistry, 2017, 292, 12787-12800. 1.6 Arctiin protects against cardiac hypertrophy through inhibiting MAPKs and AKT signaling pathways. 622 1.1 26 Journal of Pharmacological Sciences, 2017, 135, 97-104. Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models. Cell 5.7 Research, 2017, 27, 1441-1465. Kinase inhibitor screening using artificial neural networks and engineered cardiac biowires. 624 25 1.6 Scientific Reports, 2017, 7, 11807. Cardiac Immunomodulation., 2017, , 681-714. 1 Sodium Tanshinone IIA Sulfonate Prevents Radiation-Induced Toxicity in H9c2 Cardiomyocytes. 626 9 0.5 Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-13. Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis. PPAR Research, 1.1 2017, 2017, 1-12. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome 628 1.7 13 proliferator-activated receptors in left ventricle performance. Heart Failure Reviews, 2018, 23, 389-408. Sequential gene regulatory events leading to glucocorticoid-evoked apoptosis of CEM human leukemic cells:interactions of MAPK, MYC and glucocorticoid pathways. Molecular and Cellular 1.6 Endocrinology, 2018, 471, 118-130. Effects of Anti-Inflammatory Medications in Patients With Coronary Artery Disease: A Focus on 630 7 0.6 Losmapimod. Cardiology in Review, 2018, 26, 152-156. Gentisic acid attenuates pressure overloadâ€induced cardiac hypertrophy and fibrosis in mice through inhibition of the <scp>ERK</scp>1/2 pathway. Journal of Cellular and Molecular Medicine, 2018, 22, 30 The serine/threonine-protein kinase/endoribonuclease IRE1α protects the heart against pressure 633 1.6 20 overloadâ€"induced heart failure. Journal of Biological Chemistry, 2018, 293, 9652-9661. Cardiac fibroblastâ€specific p38î± MAP kinase promotes cardiac hypertrophy <i>via</i> a putative paracrine 634 interleukinâ€6 signaling mechanism. FASEB Journal, 2018, 32, 4941-4954.

#	Article	IF	CITATIONS
635	Beneficial Effect of Silymarin in Pressure Overload Induced Experimental Cardiac Hypertrophy. Cardiovascular Toxicology, 2019, 19, 23-35.	1.1	11
636	Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. Journal of Cardiovascular Development and Disease, 2019, 6, 27.	0.8	61
637	p38-Regulated/activated protein kinase plays a pivotal role in protecting heart against ischemia-reperfusion injury and preserving cardiac performance. American Journal of Physiology - Cell Physiology, 2019, 317, C525-C533.	2.1	4
638	C1q-TNF-related protein-3 attenuates pressure overload-induced cardiac hypertrophy by suppressing the p38/CREB pathway and p38-induced ER stress. Cell Death and Disease, 2019, 10, 520.	2.7	52
639	The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells, 2019, 8, 1383.	1.8	141
640	Neuroendocrine Impairments of Polycystic Ovary Syndrome. Endocrinology, 2019, 160, 2230-2242.	1.4	56
641	Cardiac Hypertrophy. , 2019, , 63-86.		1
642	Pretreatment of Tribulus terrestris L. causes anti-ischemic cardioprotection through MAPK mediated anti-apoptotic pathway in rat. Biomedicine and Pharmacotherapy, 2019, 111, 1342-1352.	2.5	16
643	The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart. International Journal of Molecular Sciences, 2019, 20, 102.	1.8	36
644	NMDA receptorâ€driven calcium influx promotes ischemic human cardiomyocyte apoptosis through a p38 MAPKâ€mediated mechanism. Journal of Cellular Biochemistry, 2019, 120, 4872-4882.	1.2	12
645	Effect of c‣ki on atrial remodelling in a rapid atrial pacing canine model. Journal of Cellular and Molecular Medicine, 2020, 24, 1795-1803.	1.6	4
646	Development of a Cardiac Sarcomere Functional Genomics Platform to Enable Scalable Interrogation of Human <i>TNNT2</i> Variants. Circulation, 2020, 142, 2262-2275.	1.6	31
647	Mechanisms of Herbal Nephroprotection in diabetes mellitus. Journal of Diabetes Research, 2020, 2020, 1-31.	1.0	17
648	p38Ĩ´ genetic ablation protects female mice from anthracycline cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H775-H786.	1.5	7
649	The Role of microRNAs in Heart Failure: A Systematic Review. Frontiers in Cardiovascular Medicine, 2020, 7, 161.	1.1	23
650	p38 MAPK Pathway in the Heart: New Insights in Health and Disease. International Journal of Molecular Sciences, 2020, 21, 7412.	1.8	73
652	Extracellular heat shock protein HSC70 protects against lipopolysaccharide-induced hypertrophic responses in rat cardiomyocytes. Biomedicine and Pharmacotherapy, 2020, 128, 110370.	2.5	10
653	Neutrophil-Mediated Cardiac Damage After Acute Myocardial Infarction: Significance of Defining a New Target Cell Type for Developing Cardioprotective Drugs. Antioxidants and Redox Signaling, 2020, 33, 689-712.	2.5	22

#	Article	IF	CITATIONS
654	Stretch-Induced Biased Signaling in Angiotensin II Type 1 and Apelin Receptors for the Mediation of Cardiac Contractility and Hypertrophy. Frontiers in Physiology, 2020, 11, 181.	1.3	18
655	Translating Translation to Mechanisms of Cardiac Hypertrophy. Journal of Cardiovascular Development and Disease, 2020, 7, 9.	0.8	18
656	Structure-guided optimization of a novel class of ASK1 inhibitors with increased sp3 character and an exquisite selectivity profile. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127405.	1.0	5
657	Dexmedetomidine protects intestinal ischemia-reperfusion injury via inhibiting p38 MAPK cascades. Experimental and Molecular Pathology, 2020, 115, 104444.	0.9	19
658	The protective effect of isosteviol sodium on cardiac function and myocardial remodelling in transverse aortic constriction rat. Journal of Cellular and Molecular Medicine, 2021, 25, 1166-1177.	1.6	5
659	Cell Cycle Regulation in Cardiomyocytes. , 2021, , 25-39.		0
660	MK2â€Deficient Mice Are Bradycardic and Display Delayed Hypertrophic Remodeling in Response to a Chronic Increase in Afterload. Journal of the American Heart Association, 2021, 10, e017791.	1.6	5
661	The Cardioprotective Mechanism of Phenylaminoethyl Selenides (PAESe) Against Doxorubicin-Induced Cardiotoxicity Involves Frataxin. Frontiers in Pharmacology, 2020, 11, 574656.	1.6	9
662	Interleukin-6 ablation does not alter morphofunctional heart characteristics but modulates physiological and inflammatory markers after strenuous exercise. Cytokine, 2021, 142, 155494.	1.4	4
663	Mechanisms of Postnatal \hat{I}^2 -Cell Mass Regulation. Growth Hormone, 2001, , 289-297.	0.2	2
664	Familial Dilated Cardiomyopathy. Developments in Cardiovascular Medicine, 2000, , 195-218.	0.1	2
665	Detection of Cardiac Signaling in the Injured and Hypertrophied Heart. Methods in Molecular Medicine, 2005, 112, 291-303.	0.8	4
666	p38 MAPK in cardiac remodeling and failure: cytokine signaling and beyond. , 2003, , 293-312.		1
667	p38 MAPK Family. , 2018, , 3728-3739.		1
668	Molecular Background of 18F-2-deoxy-D-glucose (FDG) Uptake in the Ischemic Heart. , 2003, , 421-441.		1
669	Induction of prostaglandin endoperoxide synthase 2 by mitogen-activated protein kinase cascades. Biochemical Journal, 2000, 352, 419-424.	1.7	22
670	Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clinical Science, 2020, 134, 2137-2160.	1.8	68
672	Redox-dependent dimerization of p38α mitogen-activated protein kinase with mitogen-activated protein kinase kinase 3. Journal of Biological Chemistry, 2017, 292, 16161-16173.	1.6	24

#	Article	IF	CITATIONS
673	Expression of human collagenaseâ€3 (MMPâ€13) by fetal skin fibroblasts is induced by transforming growth factorâ€Î² via p38 mitogenâ€activated protein kinase. FASEB Journal, 2001, 15, 1098-1100.	0.2	6
674	Cardiac Fatty Acid Metabolism and the Induction of Apoptosis. American Journal of the Medical Sciences, 1999, 318, 15.	0.4	33
675	Signaling Pathways Involved in Desflurane-induced Postconditioning in Human Atrial Myocardium In VitroÂ. Anesthesiology, 2008, 109, 1036-1044.	1.3	22
677	Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A–deficient mice. Journal of Clinical Investigation, 2001, 107, 975-984.	3.9	275
678	Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. Journal of Clinical Investigation, 2001, 107, 967-974.	3.9	173
679	Suppressor of cytokine signaling-3 is a biomechanical stress–inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. Journal of Clinical Investigation, 2001, 108, 1459-1467.	3.9	138
680	The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. Journal of Clinical Investigation, 2003, 111, 833-841.	3.9	184
681	The suppressor of cytokine signaling–1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. Journal of Clinical Investigation, 2003, 111, 469-478.	3.9	107
682	Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. Journal of Clinical Investigation, 2003, 111, 1475-1486.	3.9	184
683	Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. Journal of Clinical Investigation, 2003, 111, 1475-1486.	3.9	265
684	A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy Journal of Clinical Investigation, 1998, 102, 929-937.	3.9	129
685	Inhibition of p38α MAPK rescues cardiomyopathy induced by overexpressed β2-adrenergic receptor, but not β1-adrenergic receptor. Journal of Clinical Investigation, 2007, 117, 1335-1343.	3.9	53
686	Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy Journal of Clinical Investigation, 1998, 102, 1311-1320.	3.9	179
687	Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. Journal of Clinical Investigation, 1999, 104, 391-398.	3.9	158
688	Mechanical strain activates BNP gene transcription through a p38/NF-κB–dependent mechanism. Journal of Clinical Investigation, 1999, 104, 1603-1612.	3.9	196
689	Myocyte hypertrophy: the long and winding RhoA'd. Journal of Clinical Investigation, 1999, 103, 1619-1620.	3.9	17
690	p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. Journal of Cell Science, 2002, 115, 3193-3206.	1.2	396
691	Angiotensin II-Induced Ventricular Hypertrophy and Extracellular Signal-Regulated Kinase Activation Are Suppressed in Mice Overexpressing Brain Natriuretic Peptide in Circulation. Hypertension Research, 2003, 26, 847-853.	1.5	29

#	Article	IF	CITATIONS
692	Calcium Signaling Is Involved in Cadmium-Induced Neuronal Apoptosis via Induction of Reactive Oxygen Species and Activation of MAPK/mTOR Network. PLoS ONE, 2011, 6, e19052.	1.1	158
693	Estrogen Protects the Female Heart from Ischemia/Reperfusion Injury through Manganese Superoxide Dismutase Phosphorylation by Mitochondrial p38β at Threonine 79 and Serine 106. PLoS ONE, 2016, 11, e0167761.	1.1	28
694	SB202190 inhibits endothelial cell apoptosis via induction of autophagy and heme oxygenase-1. Oncotarget, 2018, 9, 23149-23163.	0.8	9
695	Identification of Caspase-Independent PKC.EPSILONJNK/p38 MAPK Signaling Module in Response to Metabolic Inhibition in H9c2 Cells. The Japanese Journal of Physiology, 2004, 54, 23-29.	0.9	16
696	Fibrosis as a Therapeutic Target Post-Myocardial Infarction. Current Pharmaceutical Design, 2005, 11, 477-487.	0.9	46
697	Gadd45 Proteins as Critical Signal Transducers Linking NF-κB to MAPK Cascades. Current Cancer Drug Targets, 2009, 9, 915-930.	0.8	72
698	Physiological versus pathological cardiac hypertrophy. , 2005, , 117-136.		6
699	p38α MAPK pathway: A key factor in colorectal cancer therapy and chemoresistance. World Journal of Gastroenterology, 2014, 20, 9744.	1.4	181
700	p38 Mitogen-Activated Protein Kinase and Hematologic Malignancies. Archives of Pathology and Laboratory Medicine, 2009, 133, 1850-1856.	1.2	27
701	Molecular Mechanism of Mechanical Stress-Induced Cardiac Hypertrophy. Progress in Experimental Cardiology, 2000, , 109-121.	0.0	Ο
702	Strategies to prevent apoptosis. , 2000, , 232-246.		0
703	Role of Oxidative Stress, Cytokines, and Apoptosis in Myocardial Dysfunction. Developments in Cardiovascular Medicine, 2000, , 193-209.	0.1	Ο
704	Oxidative stress in heart failure. , 2000, , 262-284.		1
705	P38 Inhibition. , 2000, , .		Ο
706	Cardiac Hypertrophic Signaling the Good, the Bad and the Ugly. Developments in Cardiovascular Medicine, 2002, , 131-156.	0.1	1
707	Ischaemic and Pharmacological Preconditioning Is Associated with Attenuation of p38 MAPK Activation During Sustained Ischaemia and Reperfusion. Progress in Experimental Cardiology, 2003, , 249-273.	0.0	0
708	Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion. , 2003, , 119-126.		2
709	Protein Kinase C Signaling and Expression of the Diabetic Cardiac Phenotype. Progress in Experimental Cardiology, 2003, , 409-426.	0.0	Ο

	CHATION	REPORT	
#	Article	IF	CITATIONS
710	JAK/Stat Signaling in Cardiac Diseases. Progress in Experimental Cardiology, 2003, , 349-356.	0.0	0
711	Stress-activated signals and their role in myocardial ischemia. , 2003, , 271-291.		0
712	Novel Aspects of Mechanical Signaling in Cardiac Tissue. Progress in Experimental Cardiology, 2003, , 181-198.	0.0	0
713	Mechanisms of Stress Response Signaling and Recovery in the Liver of Young versus Aged Mice: The p38 MAPK and SOCS Families of Regulatory Proteins. , 2003, , 515-529.		0
714	Apoptosis and Necrosis. , 2004, , 72-79.		0
715	Reactive Oxygen Species, Na+/H+ Exchange and Ca2+ Overload During Myocardial Ischemia/Reperfusion Injury: The Paradox Explained?. Progress in Experimental Cardiology, 2004, , 229-238.	0.0	0
716	Expression Systems to Analyze Transgenes in the Heart. Basic Science for the Cardiologist, 2004, , 201-210.	0.1	0
717	415 P38 kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and anti-apoptotic mechanisms. European Journal of Heart Failure, Supplement, 2006, 5, 96-97.	0.2	1
718	Receptor Signaling Pathways in Heart Failure: Transgenic Mouse Models. , 2008, , 89-111.		0
719	Proliferation of cardiomyocytes a question unresolved. Frontiers in Bioscience - Elite, 2009, E1, 528-536.	0.9	6
720	Molecular Signaling Mechanisms of Myocardial Stretch: Implications for Heart Disease. , 2009, , 55-81.		3
721	Cell Cycle and Differentiation in the Cardiovascular System. , 2010, , 179-202.		1
723	p38 MAPK Family of Signal Transduction Proteins. , 2012, , 1323-1331.		0
724	Cardiac Function and Organ Blood Flow at Early Stage Following Severe Burn. , 0, , .		0
725	Preconditioning in the Heart. , 2013, , 51-101.		0
726	Curcumin and Cardiovascular Diseases. , 2013, , 487-500.		0
727	Signaling Pathways in Cardiac Hypertrophy. Lecture Notes in Electrical Engineering, 2014, , 1617-1626.	0.3	0
728	心ä,ů¨ç"ç©¶ã®é€²æ©(循環噔å¦1998å¹´ã®é€²æ©). Journal of JCS Cardiologists, 1999, 7, 89-102.	0.1	0

		CITATION REPC	DRT	
#	Article	II	F	CITATIONS
729	High-throughput analysis of kinase inhibitor drugs on cardiac function using engineered heart t constructs. Frontiers in Bioengineering and Biotechnology, 0, 4, .	issue 2	2.0	0
730	The Progression of Hypertensive Heart Disease to Left Ventricular Hypertrophy and Heart Failur 2016, , 59-74.	е.,		0
731	p38 MAPK Family. , 2017, , 1-12.			0
732	Adenine Decreases Hypertrophic Effects through Interleukin-18 Receptor. Chinese Journal of Physiology, 2019, 62, 139-147.	G).4	2
735	The Role of Adrenoceptors in Mechanotransduction. , 2007, , 106-119.			0
737	Transmembrane signalling mechanisms regulating expression of cationic amino acid transporte inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochemical Journal, 1999, 3 1, 265-72.	rs and 44 Pt 1	7	6
738	Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulat ischaemia mediates adaptive cytoprotection in cardiomyocytes. Biochemical Journal, 2000, 350 891-9.	ed) Pt 3, 1	7	24
739	Induction of prostaglandin endoperoxide synthase 2 by mitogen-activated protein kinase casca Biochemical Journal, 2000, 352 Pt 2, 419-24.	des. 1	7	5
740	Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Experimental Clinical Cardiology, 2003, 8, 173-83.	and 1	3	62
744	Signaling pathways mediating the response to hypertrophic stress in the heart. Gene Expression 7, 337-48.	n, 1999, o).5	27
745	Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion. Molecular and Cellular Biochemistry, 2003, 251, 119-26.	1	.4	6
746	Neferine attenuates doxorubicinâ€induced fibrosis and hypertrophy in H9c2 cells. Journal of Biochemical and Molecular Toxicology, 2022, 36, e23054.	1	4	7
747	Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transductior Targeted Therapy, 2022, 7, 134.	i and 7	.1	18
749	Animal Models to Study Cardiac Arrhythmias. Circulation Research, 2022, 130, 1926-1964.	2	2.0	14
750	Application of emetine in SARS-CoV-2 treatment: regulation of p38 MAPK signaling pathway fo preventing emetine-induced cardiac complications. Cell Cycle, 2022, 21, 2379-2386.	. 1	3	11
751	The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. International Journal of Molecular Sciences, 2022, 23, 8582.	1	8	17
752	Stress Kinase Signaling in Cardiac Myocytes. , 2022, , 67-110.			0
753	Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science, 377, 1399-1406.	2022,	5.0	44

		CITATION	CITATION REPORT	
#	Article		IF	Citations
755	Doxorubicin-induced Toxicity Through the p38 MAPK Protein Kinase Pathway. , 0, 19, 9	9-15.		1
756	Efficacy and Safety of ARRY-371797 in <i>LMNA</i> -Related Dilated Cardiomyopathy: Circulation Genomic and Precision Medicine, 2023, 16, .	A Phase 2 Study.	1.6	1
758	Notch1 Is Involved in Physiologic Cardiac Hypertrophy of Mice via the p38 Signaling Pa Voluntary Running. International Journal of Molecular Sciences, 2023, 24, 3212.	athway after	1.8	1
759	Cardiomyocyte Apoptosis Is Associated with Contractile Dysfunction in Stem Cell Mod E848G Hypertrophic Cardiomyopathy. International Journal of Molecular Sciences, 202	lel of MYH7 23, 24, 4909.	1.8	2
760	Effect of artesunate on cardiovascular complications in periodontitis in a type I diabete and related mechanisms. Journal of Endocrinological Investigation, 0, , .	es rat model	1.8	0
761	Myocardial Remodeling with Ventricular Assist Devices. , 0, , .			0