Expansion and contraction of ribosomal DNA repeats in requirement of replication fork blocking (Fob1) protein

Genes and Development 12, 3821-3830 DOI: 10.1101/gad.12.24.3821

Citation Report

#	Article	IF	CITATIONS
1	The shuffling of a mortal coil. Nature Genetics, 1999, 22, 4-6.	9.4	13
2	Yeast aging research: recent advances and medical relevance. Cellular and Molecular Life Sciences, 1999, 56, 807-816.	2.4	8
3	Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO Journal, 1999, 18, 6619-6629.	3.5	243
4	Elimination of Replication Block Protein Fob1 Extends the Life Span of Yeast Mother Cells. Molecular Cell, 1999, 3, 447-455.	4.5	380
5	Developmental regulation of replication fork pausing in Xenopus laevis ribosomal RNA genes. Journal of Molecular Biology, 1999, 291, 775-788.	2.0	24
6	Transcription Factor UAF, Expansion and Contraction of Ribosomal DNA (rDNA) Repeats, and RNA Polymerase Switch in Transcription of Yeast rDNA. Molecular and Cellular Biology, 1999, 19, 8559-8569.	1.1	76
7	Effects of Mutations in DNA Repair Genes on Formation of Ribosomal DNA Circles and Life Span in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 3848-3856.	1.1	145
8	The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes and Development, 1999, 13, 2570-2580.	2.7	1,951
9	Tnr8, a foldback transposable element from rice Genes and Genetic Systems, 2000, 75, 327-333.	0.2	12
10	RuvABC-dependent double-strand breaks in dnaBts mutants require RecA. Molecular Microbiology, 2000, 38, 565-574.	1.2	110
11	Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis of rDNA promoter elements in vivo. Nucleic Acids Research, 2000, 28, 3524-3534.	6.5	86
12	Ribosomal DNA Replication Fork Barrier and HOT1 Recombination Hot Spot: Shared Sequences but Independent Activities. Molecular and Cellular Biology, 2000, 20, 4948-4957.	1.1	58
13	Hemicatenanes form upon inhibition of DNA replication. Nucleic Acids Research, 2000, 28, 2187-2193.	6.5	43
14	Visualisation of plasmid replication intermediates containing reversed forks. Nucleic Acids Research, 2000, 28, 498-503.	6.5	30
15	Architecture of the Replication Fork Stalled at the 3′ End of Yeast Ribosomal Genes. Molecular and Cellular Biology, 2000, 20, 5777-5787.	1.1	61
16	Mechanisms and consequences of replication fork arrest. Biochimie, 2000, 82, 5-17.	1.3	87
17	Partial suppression of the fission yeast rqh1- phenotype by expression of a bacterial Holliday junction resolvase. EMBO Journal, 2000, 19, 2751-2762.	3.5	127
18	DNA quadruplexes and dynamical genetics. Medical Hypotheses, 2001, 57, 103-111.	0.8	6

#	Article	IF	CITATIONS
19	Transcription of chromosomal rRNA genes by both RNA polymerase I and II in yeast uaf30 mutants lacking the 30 kDa subunit of transcription factor UAF. EMBO Journal, 2001, 20, 4512-4521.	3.5	52
20	Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO Journal, 2001, 20, 619-629.	3.5	81
21	Yeast RNA Polymerase I Enhancer Is Dispensable for Transcription of the Chromosomal rRNA Gene and Cell Growth, and Its Apparent Transcription Enhancement from Ectopic Promoters Requires Fob1 Protein. Molecular and Cellular Biology, 2001, 21, 5541-5553.	1.1	36
22	Identification of DNA cis Elements Essential for Expansion of Ribosomal DNA Repeats in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 136-147.	1.1	70
23	Rescue of arrested replication forks by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8181-8188.	3.3	277
24	Mutations in DNA Replication Genes Reduce Yeast Life Span. Molecular and Cellular Biology, 2002, 22, 4136-4146.	1.1	63
25	hpr1 î" Affects Ribosomal DNA Recombination and Cell Life Span in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2002, 22, 421-429.	1.1	55
26	Concerted Evolution in the Ribosomal RNA Genes of an Epichloë Endophyte Hybrid: Comparison between Tandemly Arranged rDNA and Dispersed 5S rrn Genes. Fungal Genetics and Biology, 2002, 35, 39-51.	0.9	25
27	Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes and Development, 2002, 16, 2479-2484.	2.7	206
28	Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III. DNA Repair, 2002, 1, 175-207.	1.3	50
29	Paradigms and pitfalls of yeast longevity research. Mechanisms of Ageing and Development, 2002, 123, 857-867.	2.2	78
30	Amplification of Hot DNA segments in Escherichia coli. Molecular Microbiology, 2002, 45, 1575-1588.	1.2	11
31	Replication fork block protein, Fob1, acts as an rDNA region specific recombinator inS. cerevisiae. Genes To Cells, 2002, 7, 99-113.	0.5	85
32	A model of the replication fork blocking protein Fob1p based on the catalytic core domain of retroviral integrases. Protein Science, 2002, 11, 1274-1277.	3.1	14
33	Complex mechanism of site-specific DNA replication termination in fission yeast. EMBO Journal, 2003, 22, 3431-3440.	3.5	43
34	A high-throughput screening system for genes extending life-span. Experimental Gerontology, 2003, 38, 1051-1063.	1.2	27
35	Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 532, 157-172.	0.4	62
36	In Exponentially Growing Saccharomyces cerevisiae Cells, rRNA Synthesis Is Determined by the Summed RNA Polymerase I Loading Rate Rather than by the Number of Active Genes. Molecular and Cellular Biology, 2003, 23, 1558-1568.	1.1	298

#	Article	IF	CITATIONS
37	Silencing in Yeast rDNA Chromatin. Molecular Cell, 2003, 12, 135-145.	4.5	78
38	The correlation between rDNA copy number and genome size in eukaryotes. Genome, 2003, 46, 48-50.	0.9	401
39	Sir2p suppresses recombination of replication forks stalled at the replication fork barrier of ribosomal DNA in Saccharomyces cerevisiae. Nucleic Acids Research, 2003, 31, 893-898.	6.5	35
40	Dna2 Helicase/Nuclease Causes Replicative Fork Stalling and Double-strand Breaks in the Ribosomal DNA of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 22513-22522.	1.6	102
41	Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes and Development, 2003, 17, 1497-1506.	2.7	239
42	Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes and Development, 2003, 17, 2162-2176.	2.7	203
43	The Replication Fork Barrier Site Forms a Unique Structure with Fob1p and Inhibits the Replication Fork. Molecular and Cellular Biology, 2003, 23, 9178-9188.	1.1	157
44	Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin. Microbiology and Molecular Biology Reviews, 2003, 67, 376-399.	2.9	207
45	Cellular glucose sensing, energy metabolism, and aging in Saccharomyces cerevisiae. Advances in Cell Aging and Gerontology, 2003, 14, 197-213.	0.1	0
46	Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes and Development, 2004, 18, 498-503.	2.7	63
47	Transcription Termination Factor reb1p Causes Two Replication Fork Barriers at Its Cognate Sites in Fission Yeast Ribosomal DNA In Vivo. Molecular and Cellular Biology, 2004, 24, 398-406.	1.1	68
48	Binding of the Replication Terminator Protein Fob1p to the Ter Sites of Yeast Causes Polar Fork Arrest. Journal of Biological Chemistry, 2004, 279, 1932-1941.	1.6	53
49	swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14085-14090.	3.3	102
50	Slx1-Slx4 Are Subunits of a Structure-specific Endonuclease That Maintains Ribosomal DNA in Fission Yeast. Molecular Biology of the Cell, 2004, 15, 71-80.	0.9	108
51	Transcription-mediated hyper-recombination in HOT1. Genes To Cells, 2004, 9, 305-315.	0.5	10
52	The Replication Fork Block Protein Fob1 Functions as a Negative Regulator of the FEAR Network. Current Biology, 2004, 14, 467-480.	1.8	56
53	Hyperinitiation of DNA replication in Escherichia coli leads to replication fork collapse and inviability. Molecular Microbiology, 2004, 51, 349-358.	1.2	91
54	At the crossroads of growth control; making ribosomal RNA. Current Opinion in Genetics and Development, 2004, 14, 210-217.	1.5	152

#	Article	IF	CITATIONS
55	rDNA Enhancer Affects Replication Initiation and Mitotic Recombination. Molecular Cell, 2004, 15, 409-421.	4.5	88
56	SIR2 Regulates Recombination between Different rDNA Repeats, but Not Recombination within Individual rRNA Genes in Yeast. Cell, 2004, 117, 441-453.	13.5	248
57	A novel gene amplification system in yeast based on double rolling-circle replication. EMBO Journal, 2005, 24, 190-198.	3.5	18
58	Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO Journal, 2005, 24, 2011-2023.	3.5	95
59	Wild-type p53 stimulates homologous recombination upon sequence-specific binding to the ribosomal gene cluster repeat. Oncogene, 2005, 24, 4183-4192.	2.6	11
60	Use of a Suspension Array for Rapid Identification of the Varieties and Genotypes of the Cryptococcus neoformans Species Complex. Journal of Clinical Microbiology, 2005, 43, 3662-3672.	1.8	63
61	Sap1p Binds to Ter1 at the Ribosomal DNA of Schizosaccharomyces pombe and Causes Polar Replication Fork Arrest. Journal of Biological Chemistry, 2005, 280, 39135-39142.	1.6	53
62	HST2 Mediates SIR2-Independent Life-Span Extension by Calorie Restriction. Science, 2005, 309, 1861-1864.	6.0	213
63	The Mating Type Switch-Activating Protein Sap1 Is Required for Replication Fork Arrest at the rRNA Genes of Fission Yeast. Molecular and Cellular Biology, 2005, 25, 8755-8761.	1.1	49
64	FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus. Nucleic Acids Research, 2005, 33, 6327-6337.	6.5	23
65	A Case of Selfish Nucleolar Segregation. Cell Cycle, 2005, 4, 113-117.	1.3	15
66	Recombination Regulation by Transcription-Induced Cohesin Dissociation in rDNA Repeats. Science, 2005, 309, 1581-1584.	6.0	283
67	Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing. Genes and Development, 2005, 19, 1199-1210.	2.7	75
68	Gross Chromosomal Rearrangements and Elevated Recombination at an Inducible Site-Specific Replication Fork Barrier. Cell, 2005, 121, 689-702.	13.5	241
69	Impact of ROS on ageing of two fungal model systems:Saccharomyces cerevisiaeandPodospora anserina. Free Radical Research, 2006, 40, 1350-1358.	1.5	35
70	Strategies to maintain the stability of the ribosomal RNA gene repeats -Collaboration of recombination, cohesion, and condensation Genes and Genetic Systems, 2006, 81, 155-161.	0.2	87
71	Long-lived yeast as a model for ageing research. Yeast, 2006, 23, 215-226.	0.8	75
72	Repeated elements coordinate the spatial organization of the yeast genome. Yeast, 2009, 26, 125-138.	0.8	33

#	Article	IF	CITATIONS
73	Cell-type-specific regulation of RNA polymerase I transcription: a new frontier. BioEssays, 2006, 28, 719-725.	1.2	9
74	Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Research, 2006, 34, 2914-2924.	6.5	35
75	CTD kinase I is required for the integrity of the rDNA tandem array. Nucleic Acids Research, 2006, 34, 4996-5006.	6.5	14
76	Condensin Function in Mitotic Nucleolar Segregation is Regulated by rDNA Transcription. Cell Cycle, 2006, 5, 2260-2267.	1.3	43
77	Replication fork blockage by transcription factor-DNA complexes in Escherichia coli. Nucleic Acids Research, 2006, 34, 5194-5202.	6.5	49
78	Rad22Rad52-dependent Repair of Ribosomal DNA Repeats Cleaved by Slx1-Slx4 Endonuclease. Molecular Biology of the Cell, 2006, 17, 2081-2090.	0.9	34
79	Condensin Loaded onto the Replication Fork Barrier Site in the rRNA Gene Repeats during S Phase in a FOB1 -Dependent Fashion To Prevent Contraction of a Long Repetitive Array in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 2226-2236.	1.1	53
80	The F-Box Protein Dia2 Overcomes Replication Impedance to Promote Genome Stability in Saccharomyces cerevisiae. Genetics, 2006, 174, 1709-1727.	1.2	53
81	Transcription of ribosomal genes can cause nondisjunction. Journal of Cell Biology, 2006, 173, 893-903.	2.3	32
82	Molecular Architecture of a Eukaryotic DNA Replication Terminus-Terminator ProteinComplex. Molecular and Cellular Biology, 2006, 26, 8061-8074.	1.1	20
83	Expression of rRNA Genes and Nucleolus Formation at Ectopic Chromosomal Sites in the Yeast Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 6223-6238.	1.1	25
84	Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proceedings of the United States of America, 2006, 103, 18196-18201.	3.3	42
85	Ribosomal DNA Transcription-Dependent Processes Interfere with Chromosome Segregation. Molecular and Cellular Biology, 2006, 26, 6239-6247.	1.1	38
86	Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Research, 2007, 17, 184-191.	2.4	307
87	Abnormality in Initiation Program of DNA Replication Is Monitored by the Highly Repetitive rRNA Gene Array on Chromosome XII in Budding Yeast. Molecular and Cellular Biology, 2007, 27, 568-578.	1.1	34
88	Replication Fork Stalling at Natural Impediments. Microbiology and Molecular Biology Reviews, 2007, 71, 13-35.	2.9	433
89	Can eukaryotic cells monitor the presence of unreplicated DNA?. Cell Division, 2007, 2, 19.	1.1	6
90	The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biology, 2007, 9, 923-931.	4.6	345

#	Article	IF	CITATIONS
91	Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO Journal, 2007, 26, 448-458.	3.5	64
92	Replication fork barriers: pausing for a break or stalling for time?. EMBO Reports, 2007, 8, 346-353.	2.0	132
93	RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA. Nature Structural and Molecular Biology, 2007, 14, 123-130.	3.6	72
94	RNA polymerase I transcription obstructs condensin association with 35S rRNA coding regions and can cause contraction of long repeat in Saccharomyces cerevisiae. Genes To Cells, 2007, 12, 070606122915001-???.	0.5	30
95	Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair, 2007, 6, 900-913.	1.3	120
96	Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair, 2007, 6, 981-993.	1.3	69
97	Arrested replication fork processing: Interplay between checkpoints and recombination. DNA Repair, 2007, 6, 1042-1061.	1.3	100
98	Mus81 functions in the quality control of replication forks at the rDNA and is involved in the maintenance of rDNA repeat number in Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 625, 1-19.	0.4	21
99	A new role of the rDNA and nucleolus in the nucleus—rDNA instability maintains genome integrity. BioEssays, 2008, 30, 267-272.	1.2	153
100	A redundancy of processes that cause replication fork stalling enhances recombination at two distinct sites in yeast rDNA. Molecular Microbiology, 2008, 69, 361-375.	1.2	8
101	Replication fork arrest, recombination and the maintenance of ribosomal DNA stability. DNA Repair, 2008, 7, 1613-1623.	1.3	54
102	Chapter 4 Replication and Partitioning of Papillomavirus Genomes. Advances in Virus Research, 2008, 72, 155-205.	0.9	106
103	Visual Analysis of the Yeast 5S rRNA Gene Transcriptome: Regulation and Role of La Protein. Molecular and Cellular Biology, 2008, 28, 4576-4587.	1.1	42
104	Cooperation of Sumoylated Chromosomal Proteins in rDNA Maintenance. PLoS Genetics, 2008, 4, e1000215.	1.5	61
105	Low Levels of DNA Polymerase Alpha Induce Mitotic and Meiotic Instability in the Ribosomal DNA Gene Cluster of Saccharomyces cerevisiae. PLoS Genetics, 2008, 4, e1000105.	1.5	26
106	Actively transcribed rRNA genes in <i>S. cerevisiae</i> are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes and Development, 2008, 22, 1190-1204.	2.7	162
107	Title is missing!. Kagaku To Seibutsu, 2009, 47, 104-110.	0.0	0
108	Contrasting Roles of Checkpoint Proteins as Recombination Modulators at Fob1- <i>Ter</i> Complexes with or without Fork Arrest. Eukaryotic Cell, 2009, 8, 487-495.	3.4	23

#	Article	IF	CITATIONS
109	Retrotransposon overdose and genome integrity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13927-13932.	3.3	28
110	The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Proceedings of the United States of America, 2009, 106, 2153-2158.	3.3	82
111	Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole-genome resequencing. Genome Research, 2009, 19, 626-635.	2.4	82
112	Opposing Role of Condensin and Radiation-sensitive Gene RAD52 in Ribosomal DNA Stability Regulation. Journal of Biological Chemistry, 2009, 284, 21908-21919.	1.6	15
113	Tracing the Roots of Death: Apoptosis in Saccharomyces cerevisiae. , 2009, , 325-354.		4
114	The Human Papillomavirus Type 8 E2 Tethering Protein Targets the Ribosomal DNA Loci of Host Mitotic Chromosomes. Journal of Virology, 2009, 83, 640-650.	1.5	42
115	Putting the Brake on FEAR: Tof2 Promotes the Biphasic Release of Cdc14 Phosphatase during Mitotic Exit. Molecular Biology of the Cell, 2009, 20, 245-255.	0.9	22
116	Can an antagonist gene of unicellular organism cause chromosome instability in multicellular organisms?. DNA Repair, 2009, 8, 144-145.	1.3	0
117	Regulation of rDNA stability by sumoylation. DNA Repair, 2009, 8, 507-516.	1.3	19
118	Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe. Molecular Genetics and Genomics, 2009, 281, 497-509.	1.0	7
119	Geographically localised bursts of ribosomal DNA mobility in the grasshopper Podisma pedestris. Heredity, 2009, 103, 54-61.	1.2	16
120	Calorie restriction reduces rDNA recombination independently of rDNA silencing. Aging Cell, 2009, 8, 624-632.	3.0	43
121	â€~ <i>Glomus intraradices</i> DAOM197198', a model fungus in arbuscular mycorrhiza research, is not <i>Glomus intraradices</i> . New Phytologist, 2009, 183, 1176-1187.	3.5	244
122	The Effect of Replication Initiation on Gene Amplification in the rDNA and Its Relationship to Aging. Molecular Cell, 2009, 35, 683-693.	4.5	132
123	Extrachromosomal Circular DNA in Eukaryotes: Possible Involvement in the Plasticity of Tandem Repeats. Cytogenetic and Genome Research, 2009, 124, 327-338.	0.6	138
124	A trial of minimization of chromosome 7 in Aspergillus oryzae by multiple chromosomal deletions. Molecular Genetics and Genomics, 2010, 283, 1-12.	1.0	11
125	DNA ligase 4 stabilizes the ribosomal DNA array upon fork collapse at the replication fork barrier. DNA Repair, 2010, 9, 879-888.	1.3	16
126	Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny?. FEMS Microbiology Reviews, 2010, 34, 59-86.	3.9	106

		CITATION REPORT		
#	ARTICLE		IF	Citations
127	Roles for nuclear organization in the maintenance of genome stability. Epigenomics, 20	010, 2, 289-305.	1.0	24
128	Replication Fork Arrest and rDNA Silencing Are Two Independent and Separable Function Replication Terminator Protein Fob1 of Saccharomyces cerevisiae. Journal of Biological 2010, 285, 12612-12619.	ons of the Chemistry,	1.6	23
129	TURNIP: tracking unresolved nucleotide polymorphisms in large hard-to-assemble regic DNA sequence. Bioinformatics, 2010, 26, 2908-2909.	ons of repetitive	1.8	3
130	The Budding Yeast Nucleus. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000	612-a000612.	2.3	105
131	Rad3ATR Decorates Critical Chromosomal Domains with γH2A to Protect Genome Inte S-Phase in Fission Yeast. PLoS Genetics, 2010, 6, e1001032.	grity during	1.5	67
132	Interaction of the Betapapillomavirus E2 Tethering Protein with Mitotic Chromosomes. Virology, 2010, 84, 543-557.	Journal of	1.5	38
133	Cis-interactions between non-coding ribosomal spacers dependent on RNAP-II separate RNAP-III transcription domains. Cell Cycle, 2010, 9, 4328-4337.	RNAP-I and	1.3	34
134	Eukaryotic Replication Barriers: How, Why and Where Forks Stall. , 2011, , .			2
135	Replicative Age Induces Mitotic Recombination in the Ribosomal RNA Gene Cluster of Scerevisiae. PLoS Genetics, 2011, 7, e1002015.	Saccharomyces	1.5	93
136	Visualization of the dynamic behavior of ribosomal RNA gene repeats in living yeast cel Cells, 2011, 16, 491-502.	ls. Genes To	0.5	23
137	How does genome instability affect lifespan?. Genes To Cells, 2011, 16, 617-624.		0.5	52
138	Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome Saccharomyces cerevisiae. Genes To Cells, 2011, 16, 467-477.	e instability in	0.5	29
139	The yin and yang of yeast: biodiversity research and systems biology as complementary innovation in biotechnology. Biotechnology Letters, 2011, 33, 477-487.	/ forces driving	1.1	5
140	An intranucleolar body associated with rDNA. Chromosoma, 2011, 120, 481-499.		1.0	30
141	Regulation of ribosomal RNA gene copy number and its role in modulating genome into evolutionary adaptability in yeast. Cellular and Molecular Life Sciences, 2011, 68, 1395	egrity and 1-1403.	2.4	189
142	Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Sacc cerevisiae. Nucleic Acids Research, 2011, 39, 1336-1350.	haromyces	6.5	70
143	Ultrafine anaphase bridges, broken DNA and illegitimate recombination induced by a re barrier. Nucleic Acids Research, 2011, 39, 6568-6584.	plication fork	6.5	51
144	A Midzone-Based Ruler Adjusts Chromosome Compaction to Anaphase Spindle Length 465-468.	. Science, 2011, 332,	6.0	87

#	Article	IF	CITATIONS
145	Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. Nucleic Acids Research, 2011, 39, 8778-8791.	6.5	42
146	The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase. Molecular Biology of the Cell, 2011, 22, 1599-1607.	0.9	82
147	Monitoring the Rate and Dynamics of Concerted Evolution in the Ribosomal DNA Repeats of Saccharomyces cerevisiae Using Experimental Evolution. Molecular Biology and Evolution, 2011, 28, 2883-2891.	3.5	55
148	Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression. Molecular Therapy, 2012, 20, 1912-1923.	3.7	27
149	Regulation of Ribosomal RNA Production by RNA Polymerase I: Does Elongation Come First?. Genetics Research International, 2012, 2012, 1-13.	2.0	27
150	Nicotinamide induces Fob1-dependent plasmid integration into chromosome XII in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2012, 12, 949-957.	1.1	2
151	Interference Between DNA Replication and Transcription as a Cause of Genomic Instability. Current Genomics, 2012, 13, 65-73.	0.7	46
152	Replication fork dynamics and the DNA damage response. Biochemical Journal, 2012, 443, 13-26.	1.7	112
153	Structure and Function in the Budding Yeast Nucleus. Genetics, 2012, 192, 107-129.	1.2	183
154	RNA polymerase I activity is regulated at multiple steps in the transcription cycle: Recent insights into factors that influence transcription elongation. Gene, 2012, 493, 176-184.	1.0	70
155	A positive role for yeast extrachromosomal rDNA circles?. BioEssays, 2012, 34, 725-729.	1.2	18
156	Increase in rRNA content in a Saccharomyces cerevisiae suppressor strain from rrn10 disruptant by rDNA cluster duplication. Applied Microbiology and Biotechnology, 2013, 97, 9011-9019.	1.7	3
157	Cellular Senescence in Yeast Is Regulated by rDNA Noncoding Transcription. Current Biology, 2013, 23, 1794-1798.	1.8	99
158	Condensins and 3D Organization of the Interphase Nucleus. Current Genetic Medicine Reports, 2013, 1, 219-229.	1.9	14
159	Gene Copy-Number Alterations: A Cost-Benefit Analysis. Cell, 2013, 152, 394-405.	13.5	281
160	Enforcement of a lifespanâ€sustaining distribution of Sir2 between telomeres, matingâ€type loci, and <scp>rDNA</scp> repeats by Rif1. Aging Cell, 2013, 12, 67-75.	3.0	29
161	Transcription-Associated Genome Instability. Chemical Reviews, 2013, 113, 8638-8661.	23.0	53
162	A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan. PLoS Genetics, 2013, 9, e1003329.	1.5	97

#	Article	IF	CITATIONS
163	Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression. PLoS Genetics, 2013, 9, e1003366.	1.5	102
164	Rtt109 Prevents Hyper-Amplification of Ribosomal RNA Genes through Histone Modification in Budding Yeast. PLoS Genetics, 2013, 9, e1003410.	1.5	39
165	Rpd3- and Spt16-Mediated Nucleosome Assembly and Transcriptional Regulation on Yeast Ribosomal DNA Genes. Molecular and Cellular Biology, 2013, 33, 2748-2759.	1.1	22
166	Evolutionary Mobility of the Ribosomal DNA Array in Yeasts. Genome Biology and Evolution, 2013, 5, 525-531.	1.1	13
167	The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure?. Biomolecular Concepts, 2013, 4, 277-286.	1.0	24
168	Chromosome Copy Number Variation and Control in the Ciliate Chilodonella uncinata. PLoS ONE, 2013, 8, e56413.	1.1	15
169	Domain Behavior and Supercoil Dynamics in Bacterial Chromosomes. , 2014, , 133-153.		8
170	The fine line between lifespan extension and shortening in response to caloric restriction. Nucleus, 2014, 5, 56-65.	0.6	27
171	Yeast histone H3 lysine 4 demethylase Jhd2 regulates mitotic ribosomal DNA condensation. BMC Biology, 2014, 12, 75.	1.7	29
172	Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability. Nucleic Acids Research, 2014, 42, 4985-4995.	6.5	22
173	YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens. Genome Medicine, 2014, 6, 100.	3.6	95
174	The Anaphase Promoting Complex Regulates Yeast Lifespan and rDNA Stability by Targeting Fob1 for Degradation. Genetics, 2014, 196, 693-709.	1.2	17
175	To peep into Pif1 helicase: Multifaceted all the way from genome stability to repair-associated DNA synthesis. Journal of Microbiology, 2014, 52, 89-98.	1.3	28
176	Assessment of yeast chromosome XII instability: Single chromosome comet assay. Fungal Genetics and Biology, 2014, 63, 9-16.	0.9	20
177	Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Research, 2014, 14, 49-59.	1.1	98
178	Mechanisms and Regulation of Mitotic Recombination in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 198, 795-835.	1.2	313
179	Yeast sirtuins and the regulation of aging. FEMS Yeast Research, 2014, 14, 73-88.	1.1	97
180	Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell and Bioscience, 2014, 4, 43.	2.1	47

#	Article	IF	CITATIONS
181	Neurodegeneration-associated instability of ribosomal DNA. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 860-868.	1.8	52
182	Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nature Communications, 2014, 5, 4850.	5.8	126
183	Swi2/Snf2-like protein Uls1 functions in the Sgs1-dependent pathway of maintenance of rDNA stability and alleviation of replication stress. DNA Repair, 2014, 21, 24-35.	1.3	8
184	Chromosome length and perinuclear attachment constrain resolution of DNA intertwines. Journal of Cell Biology, 2014, 206, 719-733.	2.3	23
185	Ribosomal RNA gene repeats, their stability and cellular senescence. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 119-129.	1.6	135
186	Chromatin dynamics of plant telomeres and ribosomal genes. Plant Journal, 2015, 83, 18-37.	2.8	52
187	Understanding replication fork progression, stability, and chromosome fragility by exploiting the Suppressor of Underreplication protein. BioEssays, 2015, 37, 856-861.	1.2	10
188	The Human RNA Polymerase I Transcription Terminator Complex Acts as a Replication Fork Barrier That Coordinates the Progress of Replication with rRNA Transcription Activity. Molecular and Cellular Biology, 2015, 35, 1871-1881.	1.1	71
189	Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2485-2490.	3.3	162
190	A budding yeast's perspective on aging: The shape I'm in. Experimental Biology and Medicine, 2015, 240, 701-710.	1.1	7
191	Measuring Chromatin Structure in Budding Yeast: Figure 1 Cold Spring Harbor Protocols, 2015, 2015, pdb.top077552.	0.2	4
192	Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology, 2015, 16, 599-620.	2.0	61
193	Genetic instability in budding and fission yeast—sources and mechanisms. FEMS Microbiology Reviews, 2015, 39, 917-967.	3.9	50
194	Inhibition of Telomere Recombination by Inactivation of KEOPS Subunit Cgi121 Promotes Cell Longevity. PLoS Genetics, 2015, 11, e1005071.	1.5	18
195	A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability. Molecular and Cellular Biology, 2015, 35, 544-554.	1.1	7
196	Diversity of the expression profiles of late embryogenesis abundant (LEA) protein encoding genes in the anhydrobiotic midge Polypedilum vanderplanki. Planta, 2015, 242, 451-459.	1.6	30
197	Regulation of ribosomal DNA amplification by the TOR pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9674-9679.	3.3	74
198	Spt6 Is Essential for rRNA Synthesis by RNA Polymerase I. Molecular and Cellular Biology, 2015, 35, 2321-2331.	1.1	13

#	Article	IF	CITATIONS
199	Functional divergence of eukaryotic RNA polymerases: Unique properties of RNA polymerase I suit its cellular role. Gene, 2015, 556, 19-26.	1.0	33
200	Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex. PLoS ONE, 2016, 11, e0160744.	1.1	12
201	rDNA Copy Number Variants Are Frequent Passenger Mutations in <i>Saccharomyces cerevisiae</i> Deletion Collections and <i>de Novo</i> Transformants. G3: Genes, Genomes, Genetics, 2016, 6, 2829-2838.	0.8	48
202	Loss of Nat4 and its associated histone H4 Nâ€ŧerminal acetylation mediates calorie restrictionâ€induced longevity. EMBO Reports, 2016, 17, 1829-1843.	2.0	38
203	Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA–DNA hybrids. Nucleic Acids Research, 2016, 44, 8870-8884.	6.5	25
204	A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture. Biochemistry and Cell Biology, 2016, 94, 433-440.	0.9	2
205	The Epigenetic Pathways to Ribosomal DNA Silencing. Microbiology and Molecular Biology Reviews, 2016, 80, 545-563.	2.9	60
206	Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer). Journal of Ginseng Research, 2016, 40, 176-184.	3.0	9
207	Transcription as a Threat to Genome Integrity. Annual Review of Biochemistry, 2016, 85, 291-317.	5.0	145
208	SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 202, 1377-1394.	1.2	22
209	More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance. Nucleic Acids Research, 2016, 44, 4211-4221.	6.5	53
210	Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase. Genome Research, 2016, 26, 365-375.	2.4	39
211	Molecular mechanisms governing differential robustness of development and environmental responses in plants. Annals of Botany, 2016, 117, 795-809.	1.4	68
212	Ribosomal DNA stability is supported by many †buffer genes'—introduction to the Yeast rDNA Stability Database. FEMS Yeast Research, 2017, 17, .	1.1	42
213	Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nucleus, 2017, 8, 162-181.	0.6	27
214	Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator. AMB Express, 2017, 7, 32.	1.4	8
215	Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks. Molecular Cell, 2017, 66, 533-545.e5.	4.5	46
216	Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biology, 2017, 15, e2001333.	2.6	123

		CITATION I	Report	
#	Article		IF	CITATIONS
217	DNA replication stress restricts ribosomal DNA copy number. PLoS Genetics, 2017, 13, e1	.007006.	1.5	82
218	The abundance of Fob1 modulates the efficiency of rRFBs to stall replication forks. Nuclei Research, 2017, 45, 10089-10102.	c Acids	6.5	10
219	The generational scalability of single-cell replicative aging. Science Advances, 2018, 4, ea	ao4666.	4.7	25
220	The yeast replicative aging model. Biochimica Et Biophysica Acta - Molecular Basis of Dise 1864, 2690-2696.	ase, 2018,	1.8	70
221	The conservation landscape of the human ribosomal RNA gene repeats. PLoS ONE, 2018,	13, e0207531.	1.1	55
222	Genomic Copy-Number Loss Is Rescued by Self-Limiting Production of DNA Circles. Molec 2018, 72, 583-593.e4.	ular Cell,	4.5	56
223	The annotation of repetitive elements in the genome of channel catfish (Ictalurus puncta ONE, 2018, 13, e0197371.	tus). PLoS	1.1	13
224	Chromatin Remodeling Factors Isw2 and Ino80 Regulate Chromatin, Replication, and Cop the <i>Saccharomyces cerevisiae</i> Ribosomal DNA Locus. Genetics, 2018, 210, 1543-1	y Number of 556.	1.2	19
225	DNA polymerase ε-dependent modulation of the pausing property of the CMG helicase a Genes and Development, 2018, 32, 1315-1320.	t the barrier.	2.7	34
226	An interplay between multiple sirtuins promotes completion of DNA replication in cells w telomeres. PLoS Genetics, 2018, 14, e1007356.	ith short	1.5	8
227	An Evaluation of Function of Multicopy Noncoding RNAs in Mammals Using ENCODE/FAN Comparative Genomics. Molecular Biology and Evolution, 2018, 35, 1451-1462.	JTOM Data and	3.5	5
228	Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication PLoS Genetics, 2018, 14, e1007418.	on origins.	1.5	28
229	Deregulation of the G1/S-phase transition is the proximal cause of mortality in old yeast r Genes and Development, 2018, 32, 1075-1084.	nother cells.	2.7	46
230	Absolute quantitation of microbiota abundance in environmental samples. Microbiome, 2	.018, 6, 110.	4.9	203
231	Activating the Anaphase Promoting Complex to Enhance Genomic Stability and Prolong L International Journal of Molecular Sciences, 2018, 19, 1888.	.ifespan.	1.8	16
232	Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cere Nucleic Acids Research, 2018, 46, 7586-7611.	visiae.	6.5	19
233	A Budding Topic. , 2018, , 389-415.			1
234	Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lif Nature Cell Biology, 2019, 21, 952-965.	espan.	4.6	25

		CITATION RE	PORT	
#	Article		IF	CITATIONS
235	Mechanisms of rDNA Copy Number Maintenance. Trends in Genetics, 2019, 35, 734-74.	2.	2.9	59
236	Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cano 8, 779.	er. Cells, 2019,	1.8	37
237	Use of 6â€Methylisoxanthopterin, a Fluorescent Guanine Analog, to Probe Fob1â€Medi Stalling Fork Barrier DNA Sequences. Chemistry - an Asian Journal, 2019, 14, 4760-4766	ated Dynamics at the	1.7	1
238	Transcriptional Mutagenesis Prevents Ribosomal DNA Deterioration: The Role of Duplica Deletions. Genome Biology and Evolution, 2019, 11, 3207-3217.	tions and	1.1	3
239	Defects in the NuA4 acetyltransferase complex increase stability of the ribosomal RNA g replicative lifespan. Genes and Genetic Systems, 2019, 94, 197-206.	ene and extend	0.2	6
240	Quantification of the dynamic behaviour of ribosomal DNA genes and nucleolus during Saccharomyces cerevisiae cell cycle. Journal of Structural Biology, 2019, 208, 152-164.	veast	1.3	16
241	Genome Organization in and around the Nucleolus. Cells, 2019, 8, 579.		1.8	92
242	Replication fork pausing at protein barriers on chromosomes. FEBS Letters, 2019, 593, 3	1449-1458.	1.3	19
243	Ribosomal RNA gene repeats associate with the nuclear pore complex for maintenance a damage. PLoS Genetics, 2019, 15, e1008103.	after DNA	1.5	36
244	Multiple roles of CTDK-I throughout the cell. Cellular and Molecular Life Sciences, 2019,	76, 2789-2797.	2.4	2
245	How do cells count multi-copy genes?: "Musical Chair―model for preserving the nu copies. Current Genetics, 2019, 65, 883-885.	mber of rDNA	0.8	25
246	Outer kinetochore protein Dam1 promotes centromere clustering in parallel with Slk19 yeast. Chromosoma, 2019, 128, 133-148.	in budding	1.0	6
247	Substitutions Are Boring: Some Arguments about Parallel Mutations and High Mutation in Genetics, 2019, 35, 253-264.	Rates. Trends	2.9	38
248	Phenotypic and Genotypic Consequences of CRISPR/Cas9 Editing of the Replication Origof <i>Saccharomyces cerevisiae</i> . Genetics, 2019, 213, 229-249.	gins in the rDNA	1.2	9
249	The CCR4-NOT Complex Maintains Stability and Transcription of rRNA Genes by Repress Transcripts. Molecular and Cellular Biology, 2020, 40, .	ing Antisense	1.1	10
250	Common Features of the Pericentromere and Nucleolus. Genes, 2019, 10, 1029.		1.0	20
251	Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Ge	nes, 2019, 10, 901.	1.0	30
252	Genomeâ€based estimates of fungal rDNA copy number variation across phylogenetic s ecological lifestyles. Molecular Ecology, 2019, 28, 721-730.	cales and	2.0	163

		CITATION REPORT		
#	Article		IF	CITATIONS
253	Keeping ribosomal DNA intact: a repeating challenge. Chromosome Research, 2019, 2	7, 57-72.	1.0	62
254	RNA Polymerase I Activators Count and Adjust Ribosomal RNA Gene Copy Number. Mc 73, 645-654.e13.	blecular Cell, 2019,	4.5	61
255	Ribosomal DNA instability and genome adaptability. Chromosome Research, 2019, 27,	, 73-87.	1.0	58
256	A chromosomeâ€scale genome assembly reveals a highly dynamic effector repertoire o mildew. New Phytologist, 2019, 221, 2176-2189.	of wheat powdery	3.5	79
257	The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational o inheritance. Chromosome Research, 2019, 27, 19-30.	epigenetic	1.0	24
258	Rejuvenation of ribosomal RNA gene repeats at the nuclear pore. Current Genetics, 20	20, 66, 7-13.	0.8	2
259	Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acid 2020, 48, 9449-9461.	s Research,	6.5	44
260	G4 Structures in Control of Replication and Transcription of rRNA Genes. Frontiers in P 2020, 11, 593692.	lant Science,	1.7	15
261	Saccharomyces cerevisiae rDNA as super-hub: the region where replication, transcription recombination meet. Cellular and Molecular Life Sciences, 2020, 77, 4787-4798.	on and	2.4	14
262	Transposon-mediated telomere destabilization: a driver of genome evolution in the bla Nucleic Acids Research, 2020, 48, 7197-7217.	st fungus.	6.5	14
263	Design and validation of a real-time PCR technique for assessing the level of inclusion of yeast-based additives in feeds. Journal of Microbiological Methods, 2020, 171, 105867	of fungus- and 7.	0.7	1
264	Challenges and Approaches to Genotyping Repetitive DNA. G3: Genes, Genomes, Gene 417-430.	etics, 2020, 10,	0.8	15
265	Genome (in)stability at tandem repeats. Seminars in Cell and Developmental Biology, 2	2021, 113, 97-112.	2.3	23
266	Investigation of protein expression of <i>Saccharomyces cerevisiae</i> cells in quiesce proliferating state before and after toxic stress. Biotechnology and Biotechnological Ec 2021, 35, 366-376.	nt and quipment,	0.5	4
267	Variability of Human rDNA. Cells, 2021, 10, 196.		1.8	14
268	Thousands of high-quality sequencing samples fail to show meaningful correlation bet 45S ribosomal DNA arrays in humans. Scientific Reports, 2021, 11, 449.	ween 5S and	1.6	19
269	Simulated microgravity accelerates aging in Saccharomyces cerevisiae. Life Sciences in 2021, 28, 32-40.	Space Research,	1.2	3
271	Engineered yeast genomes accurately assembled from pure and mixed samples. Nature 2021, 12, 1485.	e Communications,	5.8	11

# 272	ARTICLE A novel allele of <i>SIR2</i> reveals a heritable intermediate state of gene silencing. Genetics, 2021, 218,	IF 1.2	CITATIONS
273	DNA replication, transcription, and H3K56 acetylation regulate copy number and stability at tandem repeats. G3: Genes, Genomes, Genetics, 2021, , .	0.8	2
274	The S-Phase Cyclin Clb5 Promotes rRNA Gene (rDNA) Stability by Maintaining Replication Initiation Efficiency in rDNA. Molecular and Cellular Biology, 2021, 41, .	1.1	10
275	Eukaryotic RNA Polymerases: The Many Ways to Transcribe a Gene. Frontiers in Molecular Biosciences, 2021, 8, 663209.	1.6	19
276	Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genetics, 2021, 17, e1009520.	1.5	14
277	Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes. Frontiers in Cell and Developmental Biology, 2021, 9, 672510.	1.8	11
278	Large-scale comparative analysis of cytogenetic markers across Lepidoptera. Scientific Reports, 2021, 11, 12214.	1.6	13
281	Characterization and use of Tetrahymena thermophila artificial chromosome 2 (TtAC2) constructed by biomimetic of macronuclear rDNA minichromosome. Microbiological Research, 2021, 248, 126764.	2.5	2
282	The human ribosomal DNA array is composed of highly homogenized tandem clusters. Genome Research, 2021, 31, 1971-1982.	2.4	33
283	Formation of artificial chromosomes in <i>Caenorhabditis elegans</i> and analyses of their segregation in mitosis, DNA sequence composition and holocentromere organization. Nucleic Acids Research, 2021, 49, 9174-9193.	6.5	13
284	Fission yeast Stn1 maintains stability of repetitive DNA at subtelomere and ribosomal DNA regions. Nucleic Acids Research, 2021, 49, 10465-10476.	6.5	2
285	rDNA gene structure, transcription, and its coregulation. , 2021, , 33-45.		0
287	The rDNA Loci—Intersections of Replication, Transcription, and Repair Pathways. International Journal of Molecular Sciences, 2021, 22, 1302.	1.8	15
288	Establishment of an " <i>in saccharo</i> ―experimental system. Genes and Genetic Systems, 2021, 96, 107-118.	0.2	0
289	Random and Site-Specific Replication Termination. Methods in Molecular Biology, 2009, 521, 35-53.	0.4	14
290	Resolution of Budding Yeast Chromosomes Using Pulsed-Field Gel Electrophoresis. Methods in Molecular Biology, 2013, 1054, 195-207.	0.4	22
291	Sirtuins in Yeast: Phenotypes and Tools. Methods in Molecular Biology, 2013, 1077, 11-37.	0.4	9
292	Genome Instability of Repetitive Sequence: Lesson from the Ribosomal RNA Gene Repeat. , 2016, , 235-247.		1

#	Article	IF	CITATIONS
295	Ribosomal RNA Genes, RNA Polymerases, Nucleolar Structures, and Synthesis of rRNA in the Yeast Saccharomyces cerevisiae. Cold Spring Harbor Symposia on Quantitative Biology, 2001, 66, 555-566.	2.0	64
296	Regulation of Ribosome Biosynthesis in <i>Escherichia coli</i> and <i>Saccharomyces cerevisiae</i> : Diversity and Common Principles. Journal of Bacteriology, 1999, 181, 6857-6864.	1.0	136
297	Budding Yeast Rif1 Controls Genome Integrity by Inhibiting rDNA Replication. PLoS Genetics, 2016, 12, e1006414.	1.5	30
298	Ribosomal DNA status inferred from DNA cloud assays and mass spectrometry identification of agarose-squeezed proteins interacting with chromatin (ASPIC-MS). Oncotarget, 2017, 8, 24988-25004.	0.8	4
299	A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast. ELife, 2018, 7, .	2.8	56
300	Metabolic Regulation of Gene Silencing and Life Span. , 2003, , 193-211.		0
301	The cell biology of mitotic recombination in Saccharomyces cerevisiae. Topics in Current Genetics, 2007, , 317-333.	0.7	1
302	Beurteilung, Messmethoden, Identifizierung. , 2013, , 195-422.		0
303	A User's Guide to the Ribosomal DNA in Saccharomyces cerevisiae. Methods in Molecular Biology, 2014, 1205, 303-328.	0.4	0
304	When the DNA Replication Fork Comes to a Halt Seibutsu Butsuri, 1999, 39, 351-360.	0.0	0
315	Gel Electrophoresis Analysis of rDNA Instability in Saccharomyces cerevisiae. Methods in Molecular Biology, 2021, 2153, 403-425.	0.4	7
317	Transcription and Genomic Integrity. , 2006, , 409-429.		0
319	Secreted acid phosphatases maintain replicative lifespan via inositol polyphosphate metabolism in budding yeast. FEBS Letters, 2022, 596, 189-198.	1.3	2
320	Replication fork pausing and recombination or "gimme a breakâ€. Genes and Development, 2000, 14, 1-10.	2.7	279
321	Inter simple sequence repeat (ISSR) markers reveal DNA stability in pineapple plantlets after shoot tip cryopreservation. Vegetos, 0, , 1.	0.8	6
322	Identification of factors involved in ribosome assembly in the protozoan parasite Leishmania major. Acta Tropica, 2022, 228, 106315.	0.9	2
324	<i>RPS12</i> and <i>UBC4</i> Are Related to Senescence Signal Production in the Ribosomal RNA Gene Cluster. Molecular and Cellular Biology, 2022, 42, e0002822.	1.1	3
325	Reverse-transcription PCR increases sensitivity of broad-range fungal detection in bronchoalveolar lavage fluid. Medical Mycology, 2021, 60, .	0.3	1

#	Article	IF	CITATIONS
326	rDNA array length is a major determinant of replicative lifespan in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119593119.	3.3	23
330	POLQ suppresses genome instability and alterations inÂDNA repeat tract lengths. NAR Cancer, 2022, 4, .	1.6	3
332	A new method for determining ribosomal DNA copy number shows differences between Saccharomyces cerevisiae populations. Genomics, 2022, 114, 110430.	1.3	6
333	Extrachromosomal circular DNA: A neglected nucleic acid molecule in plants. Current Opinion in Plant Biology, 2022, 69, 102263.	3.5	19
334	The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Science Alliance, 2022, 5, e202101161.	1.3	2
335	Regulatory processes that maintain or alter ribosomal DNA stability during the repair of programmed DNA double-strand breaks. Genes and Genetic Systems, 2023, 98, 103-119.	0.2	4
336	A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection. PLoS ONE, 2022, 17, e0272878.	1.1	2
337	Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nature Reviews Molecular Cell Biology, 2023, 24, 414-429.	16.1	31
338	Two differentially stable rDNA loci coexist on the same chromosome and form a single nucleolus. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
339	Ribosomal DNA replication time coordinates completion of genome replication and anaphase in yeast. Cell Reports, 2023, 42, 112161.	2.9	2
340	Changed life course upon defective replication of ribosomal RNA genes. Genes and Genetic Systems, 2022, 97, 285-295.	0.2	3
341	TELOMERE BIOLOGY AND RIBOSOME BIOGENESIS: STRUCTURAL AND FUNCTIONAL INTERCONNECTIONS. Biochemistry and Cell Biology, 0, , .	0.9	1