Methods for the continuous measurement of O2 consurnodulated legume root systems

Journal of Experimental Botany 49, 1041-1047 DOI: 10.1093/jxb/49.323.1041

Citation Report

#	Article	IF	CITATIONS
1	Hydrogen measurements provide direct evidence for a variable physical barrier to gas diffusion in legume nodules. Journal of Experimental Botany, 1998, 49, 1015-1020.	4.8	47
2	Sucrose Synthase in Legume Nodules Is Essential for Nitrogen Fixation1. Plant Physiology, 1999, 120, 867-878.	4.8	175
3	Stress-Induced Legume Root Nodule Senescence. Physiological, Biochemical, and Structural Alterations. Plant Physiology, 1999, 121, 97-112.	4.8	166
4	Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. Journal of Experimental Botany, 2001, 52, 285-293.	4.8	24
5	Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon-metabolising enzymes but does not enhance specific nitrogen fixation in pea. Physiologia Plantarum, 2001, 113, 33-40.	5.2	54
6	Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. Journal of Experimental Botany, 2001, 52, 285-293.	4.8	68
7	Shortâ€ŧerm metabolic responses of soybean root nodules to nitrate. Journal of Experimental Botany, 2002, 53, 423-428.	4.8	43
8	A Simple Model of Feedback Regulation for Nitrate Uptake and N2 Fixation in Contrasting Phenotypes of White Clover. Annals of Botany, 2002, 90, 139-147.	2.9	31
9	Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiologia Plantarum, 2002, 115, 531-540.	5.2	141
10	Physiological implications of trehalase from Phaseolus vulgaris root nodules: partial purification and characterization. Plant Physiology and Biochemistry, 2005, 43, 355-361.	5.8	18
11	Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. Journal of Experimental Botany, 2005, 56, 2551-2561.	4.8	119
12	Trehalose metabolism in root nodules of the model legume Lotus japonicus in response to salt stress. Physiologia Plantarum, 2006, 128, 701-709.	5.2	36
13	Nitrogen Fixation Control under Drought Stress. Localized or Systemic?. Plant Physiology, 2007, 143, 1968-1974.	4.8	114
14	Nitrogen Fixation Control under Drought Stress. Localized or Systemic?. Plant Physiology, 2007, 143, 1968-1974.	4.8	114
15	Medicago truncatula Root Nodule Proteome Analysis Reveals Differential Plant and Bacteroid Responses to Drought Stress. Plant Physiology, 2007, 144, 1495-1507.	4.8	178
16	The Response of Carbon Metabolism and Antioxidant Defenses of Alfalfa Nodules to Drought Stress and to the Subsequent Recovery of Plants. Plant Physiology, 2007, 144, 1104-1114.	4.8	210
17	Reduced Carbon Availability to Bacteroids and Elevated Ureides in Nodules, But Not in Shoots, Are Involved in the Nitrogen Fixation Response to Early Drought in Soybean. Plant Physiology, 2007, 145, 539-546.	4.8	124
18	Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: Nodule carbon metabolism. Journal of Plant Physiology, 2008, 165, 641-650.	3.5	94

#	Article	IF	CITATIONS
19	Nitrogen fixation is synchronized with carbon metabolism inLotus japonicusandMedicago truncatulanodules under salt stress. Journal of Plant Interactions, 2008, 3, 137-144.	2.1	9
20	Evidence for Transcriptional and Post-Translational Regulation of Sucrose Synthase in Pea Nodules by the Cellular Redox State. Molecular Plant-Microbe Interactions, 2008, 21, 622-630.	2.6	33
21	Comparison of Galvanic and Chemiâ€Luminescent Sensors for Detecting Soil Air Oxygen in Floodâ€Irrigated Pecans. Soil Science Society of America Journal, 2008, 72, 758-766.	2.2	10
22	Carbon Metabolism and Bacteroid Functioning Are Involved in the Regulation of Nitrogen Fixation in <i>Medicago truncatula</i> Under Drought and Recovery. Molecular Plant-Microbe Interactions, 2009, 22, 1565-1576.	2.6	114
23	Validamycin A improves the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules. Journal of Plant Physiology, 2009, 166, 1218-1222.	3.5	35
24	Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environmental and Experimental Botany, 2010, 68, 75-82.	4.2	69
25	Relationship between photosynthetic capacity, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa) grown with sewage sludge. Journal of Hazardous Materials, 2010, 182, 210-216.	12.4	21
26	Comparing Symbiotic Efficiency between Swollen versus Nonswollen Rhizobial Bacteroids. Plant Physiology, 2010, 154, 1541-1548.	4.8	108
27	Sewage sludge application can induce changes in antioxidant status of nodulated alfalfa plants. Ecotoxicology and Environmental Safety, 2010, 73, 436-442.	6.0	16
28	Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis, 2011, 55, 69-75.	2.3	34
29	Different strategies for salt tolerance in determined and indeterminate nodules of <i>Lotus japonicus</i> and <i>Medicago truncatula</i> . Archives of Agronomy and Soil Science, 2012, 58, 1061-1073.	2.6	9
30	Impact of arbuscular mycorrhizal fungi (AMF) and atmospheric CO2 concentration on the biomass production and partitioning in the forage legume alfalfa. Symbiosis, 2012, 58, 171-181.	2.3	30
31	Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L Journal of Experimental Botany, 2012, 63, 4095-4106.	4.8	43
32	Ascorbate oxidase: The unexpected involvement of a â€~wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. Plant Physiology and Biochemistry, 2012, 59, 71-79.	5.8	26
33	John Featherstone Witty. Plant and Soil, 2012, 356, 291-293.	3.7	1
34	Alfalfa yield under elevated CO2 and temperature depends on the Sinorhizobium strain and growth season. Environmental and Experimental Botany, 2012, 77, 267-273.	4.2	37
35	Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Science, 2013, 208, 75-82.	3.6	113
36	Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress. Environmental and Experimental Botany, 2013, 85, 43-49.	4.2	29

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed <i>Medicago truncatula</i> ?. Journal of Experimental Botany, 2013, 64, 281-292.	4.8	38
38	Development of Tools for the Biochemical Characterization of the Symbiotic Receptor-Like Kinase DMI2. Molecular Plant-Microbe Interactions, 2013, 26, 216-226.	2.6	11
39	Effect of Longâ€Term Irrigation with Treated Wastewater on the Root Zone Environment. Vadose Zone Journal, 2013, 12, 1-10.	2.2	51
40	Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis. Frontiers in Microbiology, 2014, 5, 447.	3.5	24
41	Unravelling the mechanisms that improve photosynthetic performance of N2-fixing pea plants exposed to elevated [CO2]. Environmental and Experimental Botany, 2014, 99, 167-174.	4.2	19
42	Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity. Plant Science, 2014, 223, 16-24.	3.6	31
43	Longâ€ŧerm nonâ€invasive and continuous measurements of legume nodule activity. Plant Journal, 2015, 81, 637-648.	5.7	12
44	Performance of Bradyrhizobium and Bradyrhizobium–Azospirillum in Alleviating the Effects of Water-Restrictive Conditions During the Early Stages of Arachis hypogaea Growth. Journal of Plant Growth Regulation, 2019, 38, 1362-1374.	5.1	10
45	A novel biosensor to monitor proline in pea root exudates and nodules under osmotic stress and recovery. Plant and Soil, 2020, 452, 413-422.	3.7	8
46	Oxygen Diffusion, Production Of Reactive Oxygen And Nitrogen Species, And Antioxidants In Legume Nodules. , 2008, , 321-362.		6
47	Long-Term Effects of CO2 Enrichment on Nitrogen Fixation and Nodule Metabolism in Pisum sativum L. Plants. , 2002, , 110-110.		0
48	Quality control of Bradyrhizobium inoculant strains: detection of nosZ and correlation of symbiotic efficiency with soybean leaf chlorophyll levels. Frontiers in Agronomy, 0, 6, .	3.3	0