Emission factors of hydrocarbons, halocarbons, trace ga burning in Brazil

Journal of Geophysical Research 103, 32107-32118 DOI: 10.1029/98jd00692

Citation Report

#	Article	IF	CITATIONS
1	Physical and optical properties of young smoke from individual biomass fires in Brazil. Journal of Geophysical Research, 1998, 103, 32013-32030.	3.3	290
2	Humidification factors of aerosols from biomass burning in Brazil. Journal of Geophysical Research, 1998, 103, 32081-32089.	3.3	204
3	Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. Journal of Geophysical Research, 1998, 103, 32059-32080.	3.3	432
4	Comparisons of techniques for measuring shortwave absorption and black carbon content of aerosols from biomass burning in Brazil. Journal of Geophysical Research, 1998, 103, 32031-32040.	3.3	104
5	Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research, 1998, 103, 32119-32128.	3.3	184
6	Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment. Journal of Geophysical Research, 1998, 103, 31783-31808.	3.3	284
7	Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters, 1999, 26, 3101-3104.	1.5	244
8	Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment, 2000, 34, 1641-1653.	1.9	347
9	A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophysical Research Letters, 2000, 27, 217-220.	1.5	460
10	Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels?. Geophysical Research Letters, 2000, 27, 4061-4064.	1.5	190
11	Volatile organic trace gases emitted from North American wildfires. Global Biogeochemical Cycles, 2001, 15, 435-452.	1.9	79
12	Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 2001, 15, 955-966.	1.9	3,250
13	Effects of aerosols on tropospheric oxidants: A global model study. Journal of Geophysical Research, 2001, 106, 22931-22964.	3.3	165
14	Smoke aerosol from biomass burning in Mexico: Hygroscopic smoke optical model. Journal of Geophysical Research, 2001, 106, 4831-4844.	3.3	66
15	Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. Journal of Geophysical Research, 2001, 106, 1551-1568.	3.3	426
16	Intercomparison of smoke aerosol optical thickness derived from GOES 8 imager and ground-based Sun photometers. Journal of Geophysical Research, 2001, 106, 7387-7397.	3.3	48
17	Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmospheric Environment, 2001, 35, 135-149.	1.9	243
18	CH4 emissions from biomass burning of shifting cultivation areas of tropical deciduous forests – experimental results from ground-based measurements. Chemosphere, 2001, 3, 133-143.	1.2	33

#	Article	IF	CITATIONS
19	GOES-8 and NOAA-14 AVHRR retrieval of smoke aerosol optical thickness during SCAR-B. International Journal of Remote Sensing, 2002, 23, 4931-4944.	1.3	26
20	INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft. Journal of Geophysical Research, 2002, 107, INX2 32-1.	3.3	111
21	Atmospheric budget of acetone. Journal of Geophysical Research, 2002, 107, ACH 5-1-ACH 5-17.	3.3	290
22	STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea 1. Aerosol particles and trace gases. Journal of Geophysical Research, 2002, 107, AAC 1-1-AAC 1-15.	3.3	42
23	Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research, 2002, 107, ACH 16-1.	3.3	619
24	Biomass burning and fossil fuel signatures in the upper troposphere observed during a CARIBIC flight from Namibia to Germany. Geophysical Research Letters, 2002, 29, 16-1-16-4.	1.5	20
25	Aerosol optical properties during INDOEX 1999: Means, variability, and controlling factors. Journal of Geophysical Research, 2002, 107, INX2 19-1.	3.3	106
26	Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and probable sources. Journal of Geophysical Research, 2002, 107, INX2 29-1.	3.3	154
28	AEROSOL PARTICLES IN SMOG AND THE GLOBAL ENVIRONMENT. , 2002, , 115-144.		0
29	EFFECTS OF METEOROLOGY ON AIR POLLUTION. , 2002, , 145-178.		1
30	BASICS AND HISTORY OF DISCOVERY OF ATMOSPHERIC CHEMICALS. , 2002, , 1-28.		0
31	THE SUN, THE EARTH, AND THE EVOLUTION OF THE EARTH'S ATMOSPHERE. , 2002, , 29-48.		0
32	STRUCTURE AND COMPOSITION OF THE PRESENT-DAY ATMOSPHERE. , 2002, , 49-80.		0
33	EFFECTS OF POLLUTION ON VISIBILITY, ULTRAVIOLET RADIATION, AND ATMOSPHERIC OPTICS. , 2002, , 179-208.		0
34	INTERNATIONAL REGULATION OF URBAN SMOG SINCE THE 1940s. , 2002, , 209-240.		0
35	INDOOR AIR POLLUTION. , 2002, , 241-252.		0
36	ACID DEPOSITION. , 2002, , 253-272.		0
37	THE GREENHOUSE EFFECT AND GLOBAL WARMING. , 2002, , 309-352.		0

#	Article	IF	CITATIONS
40	URBAN AIR POLLUTION., 2002,, 81-114.		1
41	GLOBAL STRATOSPHERIC OZONE REDUCTION. , 2002, , 273-308.		Ο
42	Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China. Atmospheric Environment, 2002, 36, 161-173.	1.9	222
43	Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models. Journal of Geophysical Research, 2002, 107, ACH 8-1-ACH 8-12.	3.3	152
44	Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka–Bangladesh). Atmospheric Environment, 2003, 37, 2517-2528.	1.9	180
45	Emission estimates of selected volatile organic compounds from tropical savanna burning in northern Australia. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	48
46	The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	212
47	Emissions of trace gases and particles from savanna fires in southern Africa. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	153
48	Evolution of gases and particles from a savanna fire in South Africa. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	208
49	Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. Journal of Geophysical Research, 2003, 108, ACH 1-1.	3.3	609
50	Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI) Tj ETQqO O African biomass burning. Journal of Geophysical Research, 2003, 108, n/a-n/a.	0 rgBT /0 3.3	verlock 10 Tf 131
51	Trace gas chemistry in a young biomass burning plume over Namibia: Observations and model simulations. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	92
52	Sources of atmospheric acidity in an agricultural-industrial region of São Paulo State, Brazil. Journal of Geophysical Research, 2003, 108, .	3.3	27
53	Variability of aerosol size-resolved composition at an Indian coastal site during the Indian Ocean Experiment (INDOEX) intensive field phase. Journal of Geophysical Research, 2003, 108, .	3.3	28
54	Large-scale distribution of CH4in the western North Pacific: Sources and transport from the Asian continent. Journal of Geophysical Research, 2003, 108, .	3.3	21
55	Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment. Journal of Geophysical Research, 2003, 108, .	3.3	95
56	Clouds and trace gas distributions during TRACE-P. Journal of Geophysical Research, 2003, 108, .	3.3	27
57	Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. Journal of Geophysical Research, 2003, 108, .	3.3	109

#	Article	IF	CITATIONS
58	In-canopy gradients, composition, sources, and optical properties of aerosol over the Amazon forest. Journal of Geophysical Research, 2003, 108, .	3.3	52
59	Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research, 2003, 108, .	3.3	369
60	Chemical processes in a young biomassâ€burning plume. Journal of Geophysical Research, 2003, 108, .	3.3	58
61	Aerosol chemical characteristics of an island site in the Bay of Bengal (Bhola - Bangladesh). Journal of Environmental Monitoring, 2003, 5, 483.	2.1	33
62	Effect of Biomass Burning on Tropospheric Chemistry in Southeast ASIA — A Numerical Simulation for September and October, 1994. , 2004, , 287-296.		0
63	The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning. Journal of Climate, 2004, 17, 2909-2926.	1.2	89
64	Real-time monitoring of South American smoke particle emissions and transport using a coupled remote sensing/box-model approach. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	74
65	Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. Journal of Geophysical Research, 2004, 109, .	3.3	181
66	Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD. Journal of Geophysical Research, 2004, 109, .	3.3	158
67	In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	76
68	Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia. Journal of Geophysical Research, 2004, 109, .	3.3	38
69	Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. Journal of Geophysical Research, 2004, 109, .	3.3	213
70	Remote sensing and geographic information systems methods for global spatiotemporal modeling of biomass burning emissions: Assessment in the African continent. Journal of Geophysical Research, 2004, 109, .	3.3	13
71	A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada. Journal of Geophysical Research, 2004, 109, .	3.3	117
72	Smoking Rain Clouds over the Amazon. Science, 2004, 303, 1337-1342.	6.0	1,282
73	Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin. Atmospheric Chemistry and Physics, 2005, 5, 3111-3126.	1.9	118
74	A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics, 2005, 5, 827-849.	1.9	484
75	Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia. Atmospheric Chemistry and Physics, 2005, 5, 2989-3002.	1.9	93

#	Article	IF	Citations
76	Biomass Burning in the Amazon-Fertilizer for the Mountaineous Rain Forest in Ecuador (7 pp). Environmental Science and Pollution Research, 2005, 12, 290-296.	2.7	59
77	A disappearing biome? Reconsidering land-cover change in the Brazilian savanna. Geographical Journal, 2005, 171, 99-111.	1.6	115
78	Measurement of aerosol particles, gases and flux radiation in the Pico de Orizaba National Park, and its relationship to air pollution transport. Atmospheric Environment, 2005, 39, 3877-3890.	1.9	18
79	Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil. Atmospheric Environment, 2005, 39, 4627-4637.	1.9	106
80	Biomass Burning Emissions: A Review of Models Using Remote-Sensing Data. Environmental Monitoring and Assessment, 2005, 104, 189-209.	1.3	59
82	Atmospheric structure, composition, and thermodynamics. , 2005, , 12-60.		1
83	The momentum equation in Cartesian and spherical coordinates. , 2005, , 82-137.		0
84	Boundary-layer and surface processes. , 2005, , 228-272.		1
85	Gas-phase species, chemical reactions, and reaction rates. , 2005, , 336-356.		0
86	Urban, free-tropospheric, and stratospheric chemistry. , 2005, , 357-417.		0
87	Methods of solving chemical ordinary differential equations. , 2005, , 418-445.		0
88	Particle components, size distributions, and size structures. , 2005, , 446-469.		0
89	Aerosol emission and nucleation. , 2005, , 470-493.		1
90	Condensation, evaporation, deposition, and sublimation. , 2005, , 525-552.		0
91	Cloud thermodynamics and dynamics. , 2005, , 598-644.		0
92	Sedimentation, dry deposition, and airâ \in "sea exchange. , 2005, , 661-680.		2
93	Model design, application, and testing. , 2005, , 681-708.		1
96	The continuity and thermodynamic energy equations. , 2005, , 61-81.		0

#	Article	IF	CITATIONS
97	Vertical-coordinate conversions. , 2005, , 138-168.		0
98	Numerical solutions to partial differential equations. , 2005, , 169-203.		1
99	Finite-differencing the equations of atmospheric dynamics. , 2005, , 204-227.		0
100	Radiative energy transfer. , 2005, , 273-335.		1
101	Coagulation. , 2005, , 494-524.		1
102	Chemical equilibrium and dissolution processes. , 2005, , 553-597.		0
103	Irreversible aqueous chemistry. , 2005, , 645-660.		0
106	Above-ground biomass and the fate of carbon after burning in the savannas of Roraima, Brazilian Amazonia. Forest Ecology and Management, 2005, 216, 295-316.	1.4	56
107	Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	134
108	Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization. Journal of Geophysical Research, 2005, 110, .	3.3	207
109	Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	142
110	Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	271
111	Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2. Journal of Geophysical Research, 2006, 111, .	3.3	54
112	Emissions of major gaseous and particulate species during experimental burns of southern African biomass. Journal of Geophysical Research, 2006, 111, .	3.3	84
113	Mesoscale modeling of Central American smoke transport to the United States: 1. "Top-down― assessment of emission strength and diurnal variation impacts. Journal of Geophysical Research, 2006, 111, .	3.3	83
114	Satellite-observed pollution from Southern Hemisphere biomass burning. Journal of Geophysical Research, 2006, 111, .	3.3	259
115	Parameterization of aerosols from burning biomass in the Brazil-SR radiative transfer model. Solar Energy, 2006, 80, 231-239.	2.9	9
116	Low emissions from wood burning in an ecolabelled residential boiler. Atmospheric Environment, 2006, 40, 1148-1158.	1.9	41

#	ARTICLE	IF	CITATIONS
117	Size distribution, composition and origin of the submicron aerosol in the marine boundary layer during the eastern Mediterranean "SUB-AERO―experiment. Atmospheric Environment, 2006, 40, 6245-6260.	1.9	57
118	Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects. Atmospheric Chemistry and Physics, 2007, 7, 4043-4064.	1.9	198
119	The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 2007, 7, 5175-5196.	1.9	212
120	Emissions from forest fires near Mexico City. Atmospheric Chemistry and Physics, 2007, 7, 5569-5584.	1.9	205
121	The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning. Atmospheric Chemistry and Physics, 2007, 7, 5883-5897.	1.9	186
122	Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. Journal of Geophysical Research, 2007, 112, .	3.3	39
123	Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns. Atmospheric Environment, 2007, 41, 2660-2669.	1.9	83
124	An integrated greenhouse gas assessment of an alternative to slashâ€andâ€burn agriculture in eastern Amazonia. Global Change Biology, 2008, 14, 998-1007.	4.2	89
125	Methyl halide emission estimates from domestic biomass burning in Africa. Atmospheric Environment, 2008, 42, 5241-5250.	1.9	13
126	Impact of the summer 2004 Alaska fires on top of the atmosphere clearâ€sky radiation fluxes. Journal of Geophysical Research, 2008, 113, .	3.3	30
127	Clobal distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 2008, 22, .	1.9	617
128	Chapter 4 Chemical Composition of Wildland Fire Emissions. Developments in Environmental Science, 2008, 8, 79-107.	0.5	98
129	Wildland Fires and Air Pollution. Developments in Environmental Science, 2008, , iii.	0.5	2
130	Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign. Atmospheric Chemistry and Physics, 2008, 8, 3427-3439.	1.9	40
131	The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmospheric Chemistry and Physics, 2008, 8, 3509-3527.	1.9	221
132	Aerosol background at two remote CAWNET sites in western China. Science of the Total Environment, 2009, 407, 3518-3529.	3.9	35
133	Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire. Atmospheric Environment, 2009, 43, 438-446.	1.9	67
134	The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition. Chemical Geology, 2009, 267, 46-63.	1.4	320

#	Article	IF	CITATIONS
135	Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research, 2009, 114, .	3.3	336
136	Aerosol optical depth retrieval over land using MODIS data and its application in monitoring air quality. , 2009, , .		1
138	Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.	1.9	433
139	Biomass burning in Amazonia: Emissions, long-range transport of smoke and its regional and remote impacts. Geophysical Monograph Series, 2009, , 207-232.	0.1	27
140	Light absorption by organic carbon from wood combustion. Atmospheric Chemistry and Physics, 2010, 10, 1773-1787.	1.9	641
141	Estimates of biomass burning emissions in tropical Asia based on satellite-derived data. Atmospheric Chemistry and Physics, 2010, 10, 2335-2351.	1.9	117
142	Particulate organic compounds emitted from experimental wildland fires in a Mediterranean ecosystem. Atmospheric Environment, 2010, 44, 2750-2759.	1.9	65
143	Smoke emissions from biomass burning in a Mediterranean shrubland. Atmospheric Environment, 2010, 44, 3024-3033.	1.9	103
144	Toxic emissions from open burning. Chemosphere, 2010, 80, 193-207.	4.2	181
146	Shortâ€ŧerm effects of controlling fossilâ€fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. Journal of Geophysical Research, 2010, 115, .	3.3	267
147	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	9.0	283
148	Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, 2011, 116, .	3.3	206
149	An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Atmospheric Measurement Techniques, 2011, 4, 379-408.	1.2	237
150	Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 2011, 11, 4039-4072.	1.9	1,527
151	Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics, 2011, 11, 6787-6808.	1.9	133
152	Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States. Atmospheric Chemistry and Physics, 2011, 11, 12197-12216.	1.9	140
153	Evaluation of the carbon content of aerosols from the burning of biomass in the Brazilian Amazon using thermal, optical and thermal-optical analysis methods. Atmospheric Chemistry and Physics, 2011, 11, 4425-4444.	1.9	25
154	Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition. Atmospheric Environment, 2011, 45, 641-649.	1.9	85

#	Article	IF	Citations
155	Characterization of PM2.5 collected during broadcast and slash-pile prescribed burns of predominately ponderosa pine forests in northern Arizona. Atmospheric Environment, 2011, 45, 2087-2094.	1.9	20
156	Laboratory evaluation of Amazon forest biomass burning emissions. Atmospheric Environment, 2011, 45, 7455-7461.	1.9	35
157	Evolution of trace gases and particles emitted by a chaparral fire in California. Atmospheric Chemistry and Physics, 2012, 12, 1397-1421.	1.9	300
158	Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons. Atmospheric Chemistry and Physics, 2012, 12, 6041-6065.	1.9	81
159	FTIR time-series of biomass burning products (HCN,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 597 Td (C <sub< td=""><td>>2 1.9</td><td>252</td></sub<>	>2 1.9	252
160	comparisons with model data. Atmospheric Chemistry and Physics, 2012, 12, 10367-10385. Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions. Environmental Science & amp; Technology, 2012, 46, 13093-13102.	4.6	109
161	Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds. Journal of Geophysical Research, 2012, 117, .	3.3	44
162	Investigating cloud absorption effects: Clobal absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	148
163	Ozone production from wildfires: A critical review. Atmospheric Environment, 2012, 51, 1-10.	1.9	414
164	Interactions of fire emissions and urban pollution over California: Ozone formation and air quality simulations. Atmospheric Environment, 2012, 56, 45-51.	1.9	92
165	VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal. Atmospheric Environment, 2013, 64, 339-348.	1.9	51
166	Influence of specimen size, tray inclination and air flow rate on the emission of gases from biomass combustion. Atmospheric Environment, 2013, 74, 52-59.	1.9	12
167	Characteristics of Carbon-containing Gases Release During Combustion of Main Arbor in Heilongjiang Province of China. Procedia Engineering, 2013, 52, 645-651.	1.2	1
168	Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmospheric Environment, 2013, 71, 158-169.	1.9	49
169	Emission Factors from Aerial and Ground Measurements of Field and Laboratory Forest Burns in the Southeastern U.S.: PM2.5, Black and Brown Carbon, VOC, and PCDD/PCDF. Environmental Science & Technology, 2013, 47, 130729092352005.	4.6	45
170	Emission factors and detailed chemical composition of smoke particles from the 2010 wildfire season. Atmospheric Environment, 2013, 71, 295-303.	1.9	82
171	Characteristics of Carbon-Containning Gases Release during Combustion of Main Arbor in Heilongjiang Province of China. Advanced Materials Research, 2013, 726-731, 4215-4221.	0.3	0
172	Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmospheric Chemistry and Physics, 2013, 13, 10325-10338.	1.9	94

# 173	ARTICLE Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6797-6815.	IF 1.2	CITATIONS 34
174	Emissions of nonmethane volatile organic compounds from open crop residue burning in the Yangtze River Delta region, China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7684-7698.	1.2	43
175	PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: Temporal variability and aerosol organic carbon-to-organic mass conversion factor. Science of the Total Environment, 2014, 487, 196-205.	3.9	117
176	Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon. Environmental Sciences: Processes and Impacts, 2014, 16, 2371-2379.	1.7	49
177	Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 113, 10-22.	0.6	102
178	Measurements of Particulate (PM2.5), BC and Trace Gases Over the Northwestern Himalayan Region of India. Mapan - Journal of Metrology Society of India, 2014, 29, 243-253.	1.0	24
179	Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio. Chemosphere, 2014, 103, 74-79.	4.2	50
180	Organic aerosol emission ratios from the laboratory combustion of biomass fuels. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,850.	1.2	31
181	Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8980-9002.	1.2	188
182	Space-based observations of fire NO _x emission coefficients: a global biome-scale comparison. Atmospheric Chemistry and Physics, 2014, 14, 2509-2524.	1.9	30
183	Satellite observations indicate substantial spatiotemporal variability in biomass burning NO _x emission factors for South America. Atmospheric Chemistry and Physics, 2014, 14, 3929-3943.	1.9	57
184	Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmospheric Chemistry and Physics, 2014, 14, 9727-9754.	1.9	188
185	Laboratory measurements of emission factors of nonmethane volatile organic compounds from burning of Chinese crop residues. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5237-5252.	1.2	24
186	Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires. Atmospheric Chemistry and Physics, 2015, 15, 3077-3095.	1.9	61
187	Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania. Atmospheric Chemistry and Physics, 2015, 15, 13393-13411.	1.9	27
188	Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period. Environmental Science and Pollution Research, 2015, 22, 3594-3605.	2.7	9
189	Residential wood combustion in two domestic devices: Relationship of different parameters throughout the combustion cycle. Atmospheric Environment, 2015, 116, 72-82.	1.9	30
190	Emissions from southeastern U.S. Grasslands and pine savannas: Comparison of aerial and ground field measurements with laboratory burns. Atmospheric Environment, 2015, 111, 170-178.	1.9	57

#	Article	IF	CITATIONS
191	Pyroligneous acid—the smoky acidic liquid from plant biomass. Applied Microbiology and Biotechnology, 2015, 99, 611-622.	1.7	91
192	Residential Biomass Burning Emissions over Northwestern Himalayan Region of India: Chemical Characterization and Budget Estimation. Aerosol and Air Quality Research, 2016, 16, 504-518.	0.9	19
193	Chemical characterization of carbonaceous carbon from industrial and semi urban site of eastern India. SpringerPlus, 2016, 5, 837.	1.2	15
194	Atmospheric salt deposition in a tropical mountain rainforest at the eastern Andean slopes of south Ecuador – Pacific or Atlantic origin?. Atmospheric Chemistry and Physics, 2016, 16, 10241-10261.	1.9	21
195	Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior. Atmospheric Chemistry and Physics, 2016, 16, 14057-14078.	1.9	38
196	In situ measurements and modeling of reactive trace gases in a small biomass burning plume. Atmospheric Chemistry and Physics, 2016, 16, 3813-3824.	1.9	81
197	Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. Atmospheric Environment, 2016, 140, 94-105.	1.9	41
198	Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Science of the Total Environment, 2016, 568, 391-401.	3.9	145
199	Spatio-temporal variation in chemical characteristics of PM10 over Indo Gangetic Plain of India. Environmental Science and Pollution Research, 2016, 23, 18809-18822.	2.7	51
200	Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhalation Toxicology, 2016, 28, 95-139.	0.8	189
201	Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain. Atmospheric Environment, 2016, 125, 437-449.	1.9	59
202	Investigating dominant characteristics of fires across the Amazon during 2005–2014 through satellite data synthesis of combustion signatures. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1224-1245.	1.2	16
203	Characteristics of air quality and sources affecting fine particulate matter (PM2.5) levels in the City of Red Deer, Canada. Environmental Pollution, 2017, 221, 367-376.	3.7	23
204	Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced aerosol constituents. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8951-8966.	1.2	86
205	Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmospheric Environment, 2017, 169, 65-79.	1.9	48
206	Diagnosing Tibetan pollutant sources via volatile organic compound observations. Atmospheric Environment, 2017, 166, 244-254.	1.9	18
207	Seasonal variation of chemical composition and source apportionment of PM2.5 in Pune, India. Environmental Science and Pollution Research, 2017, 24, 21065-21072.	2.7	28
208	Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement. Environmental Science and Pollution Research, 2017, 24, 2100-2115.	2.7	19

#	Article	IF	CITATIONS
209	Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city. Atmospheric Research, 2017, 183, 245-254.	1.8	31
210	Biomass burning at Cape Grim: exploring photochemistry using multi-scale modelling. Atmospheric Chemistry and Physics, 2017, 17, 11707-11726.	1.9	9
211	Biomass burning emissions in north Australia during the early dry season: an overview of the 2014 SAFIRED campaign. Atmospheric Chemistry and Physics, 2017, 17, 13681-13697.	1.9	24
212	Study of temporal variability and mass closure of PM2.5 and its chemical constituents during weak south-west monsoon. Atmospheric Pollution Research, 2018, 9, 864-870.	1.8	13
213	Highly controlled, reproducible measurements of aerosol emissions from combustion of aÂcommon African biofuel source. Atmospheric Chemistry and Physics, 2018, 18, 385-403.	1.9	21
214	Light absorption of organic carbon emitted from burning wood, charcoal, and kerosene in household cookstoves. Environmental Pollution, 2018, 240, 60-67.	3.7	42
215	Carbonaceous and inorganic species in PM10 during wintertime over Giridih, Jharkhand (India). Journal of Atmospheric Chemistry, 2018, 75, 219-233.	1.4	11
216	Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of the Total Environment, 2018, 631-632, 627-640.	3.9	179
217	Chemical characterization of PM2.5 collected from a rural coastal island of the Bay of Bengal (Bhola,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
218	Halocarbon Emissions from a Degraded Forested Wetland in Coastal South Carolina Impacted by Sea Level Rise. ACS Earth and Space Chemistry, 2018, 2, 955-967.	1.2	16
219	High Hydroquinone Emissions from Burning Manzanita. Environmental Science and Technology Letters, 2018, 5, 309-314.	3.9	7
220	Inorganic chemical composition of PM2.5 emissions from the combustion of six main tree species in subtropical China. Atmospheric Environment, 2018, 189, 107-115.	1.9	23
221	Aircraft observations of the chemical composition and aging of aerosol in the Manaus urban plume during GoAmazon 2014/5. Atmospheric Chemistry and Physics, 2018, 18, 10773-10797.	1.9	32
222	Particle and VOC emission factor measurements for anthropogenic sources in West Africa. Atmospheric Chemistry and Physics, 2018, 18, 7691-7708.	1.9	41
223	Emissions and characteristics of particulate matter from rainforest burning in the Southeast Asia. Atmospheric Environment, 2018, 191, 194-204.	1.9	26
224	Thermochemical Properties of PM2.5 as Indicator of Combustion Phase of Fires. Atmosphere, 2018, 9, 230.	1.0	3
225	Satellite-Based Analysis of CO Seasonal and Interannual Variability Over the Amazon Basin. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5641-5656.	1.2	15
226	The Firepower Sweep Test: A novel approach to cookstove laboratory testing. Indoor Air, 2018, 28, 936-949.	2.0	23

#	ARTICLE	IF	CITATIONS
227	Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012. Atmospheric Chemistry and Physics, 2018, 18, 5619-5638.	1.9	19
228	Characterization of pollutants emitted during burning of eight main tree species in subtropical China. Atmospheric Environment, 2019, 215, 116899.	1.9	7
229	Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems. Atmosphere, 2019, 10, 464.	1.0	9
230	The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2019, 19, 5771-5790.	1.9	19
231	CO2, CO, hydrocarbon gases and PM2.5 emissions on dry season by deforestation fires in the Brazilian Amazonia. Environmental Pollution, 2019, 249, 311-320.	3.7	24
232	Identification of gas-phase pyrolysis products in a prescribed fire: first detections using infrared spectroscopy for naphthalene, methyl nitrite, allene, acrolein and acetaldehyde. Atmospheric Measurement Techniques, 2019, 12, 763-776.	1.2	18
233	Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmospheric Research, 2019, 224, 180-195.	1.8	66
234	AERONET Remotely Sensed Measurements and Retrievals of Biomass Burning Aerosol Optical Properties During the 2015 Indonesian Burning Season. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4722-4740.	1.2	40
235	Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa. Renewable Energy, 2019, 139, 924-935.	4.3	19
236	Impact of Water Content on Energy Potential and Combustion Characteristics of Methanol and Ethanol Fuels. Energies, 2019, 12, 3491. Isotopic characterization of nitrogen oxides	1.6	10
237	(NO _{<i>x</i>}), nitrous acid (HONO), and nitrate (<i>p</i> NO ₃ ^{â^'& from laboratory biomass burning during FIREX. Atmospheric Measurement Techniques, 2019, 12,}	amp;lt;/su	ıp>)
238	6303-6317. Burning process characterization of biodiesel pool fires. Journal of Fire Sciences, 2019, 37, 3-17.	0.9	10
239	Emission factors and composition of PM2.5 from laboratory combustion of five Western Australian vegetation types. Science of the Total Environment, 2020, 703, 134796.	3.9	14
240	Detecting nighttime fire combustion phase by hybrid application of visible and infrared radiation from Suomi NPP VIIRS. Remote Sensing of Environment, 2020, 237, 111466.	4.6	32
241	Evaluation of Stratospheric Intrusions and Biomass Burning Plumes on the Vertical Distribution of Tropospheric Ozone Over the Midwestern United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032454.	1.2	13
242	Transformation and ageing of biomass burning carbonaceous aerosol over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2020, 20, 5309-5326.	1.9	26
243	Oxy-Fuel Combustion Characteristics of Pulverized Coal under O2/Recirculated Flue Gas Atmospheres. Applied Sciences (Switzerland), 2020, 10, 1362.	1.3	13
244	Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. Atmosphere, 2020, 11, 640.	1.0	7

#	Article	IF	CITATIONS
245	Carboxymethylated cellulose nanocrystals as clay suspension dispersants: effect of size and surface functional groups. Cellulose, 2020, 27, 3759-3772.	2.4	12
246	Analyzing Wildland Fire Smoke Emissions Data Using Compositional Data Techniques. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032128.	1.2	11
247	Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia. Environmental Pollution, 2020, 262, 114266.	3.7	18
248	Wildfire and prescribed burning impacts on air quality in the United States. Journal of the Air and Waste Management Association, 2020, 70, 583-615.	0.9	180
249	Effects of Agricultural Waste Burning on PM2.5-Bound Polycyclic Aromatic Hydrocarbons, Carbonaceous Compositions, and Water-Soluble Ionic Species in the Ambient Air of Chiang-Mai, Thailand. Polycyclic Aromatic Compounds, 2022, 42, 749-770.	1.4	33
250	Chemical composition and source attribution of PM2.5 and PM10 in Delhi-National Capital Region (NCR) of India: results from an extensive seasonal campaign. Journal of Atmospheric Chemistry, 2021, 78, 35-58.	1.4	13
251	Intraseasonal variability of greenhouse gas emission factors from biomass burning in the Brazilian Cerrado. Biogeosciences, 2021, 18, 1375-1393.	1.3	16
252	Peat-forest burning smoke in Maritime Continent: Impacts on receptor PM2.5 and implications at emission sources. Environmental Pollution, 2021, 275, 116626.	3.7	9
253	The Evaluation of Torrefied Wood Using a Cone Calorimeter. Polymers, 2021, 13, 1748.	2.0	8
254	Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WEâ€CAN Aircraft Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033838.	1.2	54
255	Emission factors of selected air pollutants from rice straw burning in Hanoi, Vietnam. Air Quality, Atmosphere and Health, 2021, 14, 1757-1771.	1.5	13
256	The recognition of selected burning liquids by convolutional neural networks under laboratory conditions. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5787-5799.	2.0	5
257	Deriving Global Quantitative Estimates for Spatial and Temporal Distributions of Biomass Burning Emissions. Advances in Global Change Research, 2004, , 71-113.	1.6	32
258	Satellite Observation of Biomass Burning. , 2008, , 109-142.		12
259	Combustion Chemistry and Smoke. , 2001, , 55-77.		25
262	Evaluation of aerosol iron solubility over Australian coastal regions based on inverse modeling: implications of bushfires on bioaccessible iron concentrations in the Southern Hemisphere. Progress in Earth and Planetary Science, 2020, 7, .	1.1	22
263	Spatially Explicit Modeling of Savanna Processes. , 2010, , 313-332.		2
264	Chemical Characterization of Fine Atmospheric Particles of Water-Soluble Ions and Carbonaceous Species in a Tropical Urban Atmosphere over the Eastern Indo-Gangetic Plain. Aerosol and Air Quality Research, 2019, 19, 129-147.	0.9	20

#	Article	IF	CITATIONS
265	Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research, 2002, 107, .	3.3	1
289	Human Impact. , 2014, , 83-123.		0
290	NATURAL FIRES: OBSERVATIONAL DATA AND MODELLING. Fundamental and Applied Climatology, 2020, 3, 73-119.	0.2	0
291	Biocides through pyrolytic degradation of biomass. , 2022, , 337-352.		2
292	Chemical properties of emissions from solid residential fuels used for energy in the rural sector of the southern region of India. Environmental Science and Pollution Research, 2022, , 1.	2.7	0
293	Understanding the Greenhouse Gas Impact of Deforestation Fires in Indonesia and Brazil in 2019 and 2020. Frontiers in Climate, 2022, 4, .	1.3	7
294	Characteristics, Effects and Sources of Ambient Volatile Organic Compounds in Kaifeng, China. SSRN Electronic Journal, 0, , .	0.4	0
295	Evaluating combustion characteristics and combustion kinetics of corn stover-derived hydrochars by cone calorimeter. Chemical Engineering Journal, 2023, 452, 139419.	6.6	9
296	Characterization of Aerosol Properties from the Burning Emissions of Typical Residential Fuels on the Tibetan Plateau. Environmental Science & amp; Technology, 2022, 56, 14296-14305.	4.6	7
297	Sixteen years of MOPITT satellite data strongly constrain Amazon COÂfire emissions. Atmospheric Chemistry and Physics, 2022, 22, 14735-14750.	1.9	4
299	Emission factors and evolution of SO ₂ measured from biomass burning in wildfires and agricultural fires. Atmospheric Chemistry and Physics, 2022, 22, 15603-15620.	1.9	7
300	Enhancement of Nighttime Fire Detection and Combustion Efficiency Characterization Using Suomi-NPP and NOAA-20 VIIRS Instruments. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-20.	2.7	1