Topography, boundary forces, and the Indo-Australian

Journal of Geophysical Research 103, 919-931 DOI: 10.1029/97jb02381

Citation Report

#	Article	IF	CITATIONS
1	In situstress field of eastern Australia. Australian Journal of Earth Sciences, 1999, 46, 813-825.	1.0	58
2	Diffuse oceanic plate boundaries: Strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors. Geophysical Monograph Series, 2000, , 143-159.	0.1	50
3	At what stress level is the central Indian Ocean lithosphere buckling?. Earth and Planetary Science Letters, 2000, 178, 165-181.	4.4	72
4	The Australian Stress Map. Journal of the Geological Society, 2000, 157, 915-921.	2.1	170
5	Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis. Journal of Geophysical Research, 2000, 105, 19163-19184.	3.3	145
6	Thein situstress field of the Perth Basin, Australia. Geophysical Research Letters, 2000, 27, 3421-3424.	4.0	24
7	In situstresses in the Southern Bonaparte Basin, Australia: Implications for first- and second-order controls on stress orientation. Geophysical Research Letters, 2000, 27, 3413-3416.	4.0	3
8	On the dynamics of the Juan de Fuca plate. Earth and Planetary Science Letters, 2001, 189, 115-131.	4.4	45
9	Analytic models for the dynamics of diffuse oceanic plate boundaries. Geophysical Journal International, 2001, 145, 145-156.	2.4	32
10	Petrogenesis and Geodynamic Implications of Late Cenozoic Basalts in North Queensland, Australia: Trace-element and Sr-Nd-Pb Isotope Evidence. Journal of Petrology, 2001, 42, 685-719.	2.8	79
11	Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling. Journal of Geophysical Research, 2002, 107, ETG 1-1-ETG 1-15.	3.3	92
12	Neotectonics on the Arabian Sea coasts. Geological Society Special Publication, 2002, 195, 87-96.	1.3	7
13	Multiple fracture sets in the southeastern Permian-Triassic Sydney Basin, New South Wales. Australian Journal of Earth Sciences, 2003, 50, 49-61.	1.0	8
14	Spacing of faults at the scale of the lithosphere and localization instability: 2. Application to the Central Indian Basin. Journal of Geophysical Research, 2003, 108, .	3.3	15
15	Plate-like regime of a numerically modeled thermal convection in a fluid with temperature-, pressure-, and stress-history-dependent viscosity. Journal of Geophysical Research, 2003, 108, .	3.3	51
16	A kinematic model of the Scotia plate (SW Atlantic Ocean). Journal of South American Earth Sciences, 2003, 16, 179-191.	1.4	30
17	Three-dimensional finite-element modelling of the tectonic stress field in continental Australia. , 2003, , .		9
18	Paleoseismicity of Two Historically Quiescent Faults in Australia: Implications for Fault Behavior in Stable Continental Regions. Bulletin of the Seismological Society of America, 2003, 93, 1913-1934.	2.3	125

		TATION REPORT	
#	Article	IF	CITATIONS
19	Origin of thein situstress field in south-eastern Australia. Basin Research, 2004, 16, 325-338.	2.7	140
20	Maximum horizontal stress orientations in the Cooper Basin, Australia: implications for plate-scale tectonics and local stress sources. Geophysical Journal International, 2004, 160, 332-344.	2.4	26
21	Origin of the lithospheric stress field. Journal of Geophysical Research, 2004, 109, .	3.3	111
22	Tectonic evolution of a continental collision zone: A thermomechanical numerical model. Tectonics, 2004, 23, n/a-n/a.	2.8	83
23	Thin plate neotectonic models of the Australian plate. Journal of Geophysical Research, 2004, 109, .	3.3	25
24	Buckle-controlled seismogenic faulting in peninsular India. Quaternary Science Reviews, 2004, 23, 2405-2412.	3.0	27
25	Modelling the Contemporary and Palaeo Stress Field of Australia using Finite-Element Modelling with Automatic Optimisation. Exploration Geophysics, 2004, 35, 236-241.	1.1	10
26	Dynamics of diffuse oceanic plate boundaries: insensitivity to rheology. Geophysical Journal International, 2005, 162, 239-248.	2.4	24
27	Finite-element modelling of contemporary and palaeo-intraplate stress using ABAQUSâ,,¢. Computers and Geosciences, 2005, 31, 297-307.	5 4.2	40
28	In situstresses of the West Tuna area, Gippsland Basin. Australian Journal of Earth Sciences, 2005, 52 299-313.	, 1.0	19
29	Modes of active intraplate deformation, Flinders Ranges, Australia. Tectonics, 2005, 24, n/a-n/a.	2.8	72
30	Paleostress field evolution of the Australian continent since the Eocene. Journal of Geophysical Research, 2005, 110, .	3.3	35
31	Evaluating slab-plate coupling in the Indo-Australian plate. Geology, 2005, 33, 113.	4.4	32
32	Stress-field constraints from recent intraplate seismicity in southeastern Australia. Australian Journal of Earth Sciences, 2005, 52, 217-230.	1.0	10
33	Determination of stress fields in the elastic lithosphere by methods based on stress orientations. International Journal of Rock Mechanics and Minings Sciences, 2006, 43, 66-88.	5.8	16
34	Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 2006, 34, 321.	4.4	89
35	Quaternary faults of south-central Australia: Palaeoseismicity, slip rates and origin. Australian Journal of Earth Sciences, 2006, 53, 285-301.	1.0	97
36	Lithosphere Stress and Deformation. , 2007, , 255-271.		12

#	Article	IF	CITATIONS
37	Relocation of aftershocks, focal mechanisms and stress inversion: Implications toward the seismo-tectonics of the causative fault zone of Mw7.6 2001 Bhuj earthquake (India). Tectonophysics, 2007, 429, 61-78.	2.2	57
38	Plate boundary forces are not enough: Second―and thirdâ€order stress patterns highlighted in the World Stress Map database. Tectonics, 2007, 26, .	2.8	162
39	Lithosphere Stress and Deformation. , 2007, , 253-273.		8
40	Dynamic Processes in Extensional and Compressional Settings – Mountain Building: From Earthquakes to Geological Deformation. , 2007, , 377-439.		31
41	Instantaneous deformation and kinematics of the India-Australia Plate. Geophysical Journal International, 2007, 168, 818-842.	2.4	88
42	Distinguishing tectonic from climatic controls on rangeâ€front sedimentation. Basin Research, 2007, 19, 491-505.	2.7	65
43	Finite element modelling of elastic intraplate stresses due to heterogeneities in crustal density and mechanical properties for the Jabalpur earthquake region, central India. Journal of Earth System Science, 2008, 117, 103-111.	1.3	10
44	Cenozoic Eucla Basin and associated palaeovalleys, southern Australia — Climatic and tectonic influences on landscape evolution, sedimentation and heavy mineral accumulation. Sedimentary Geology, 2008, 203, 112-130.	2.1	65
45	Mantle convection: A review. Fluid Dynamics Research, 2008, 40, 379-398.	1.3	31
46	Three-dimensional velocity imaging of the Kachchh seismic zone, Gujarat, India. Tectonophysics, 2008, 452, 1-16.	2.2	49
47	Enhanced intraplate seismicity along continental margins: Some causes and consequences. Tectonophysics, 2008, 457, 197-208.	2.2	39
48	Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture Radar. Journal of Geophysical Research, 2008, 113, .	3.3	53
49	<i>In situ</i> stresses and natural fractures in the Northern Perth Basin, Australia. Australian Journal of Earth Sciences, 2008, 55, 685-701.	1.0	31
50	Present-day stresses, seismicity and Neogene-to-Recent tectonics of Australia's â€~passive' margins: intraplate deformation controlled by plate boundary forces. Geological Society Special Publication, 2008, 306, 71-90.	1.3	90
51	Tectonic framework for the Cenozoic cratonic basins of Australia. Australian Journal of Earth Sciences, 2009, 56, S5-S18.	1.0	50
52	Constraints on the current rate of deformation and surface uplift of the Australian continent from a new seismic database and low-T thermochronological data. Australian Journal of Earth Sciences, 2009, 56, 99-110.	1.0	57
53	Metamorphic patterns in orogenic systems and the geological record. Geological Society Special Publication, 2009, 318, 37-74.	1.3	102
54	Iterative de-convolution of the local waveforms: Characterization of the seismic sources in Kachchh, India. Tectonophysics, 2009, 478, 143-157.	2.2	19

#	Article	IF	CITATIONS
55	TOPO-OZ: Insights into the various modes of intraplate deformation in the Australian continent. Tectonophysics, 2009, 474, 405-416.	2.2	56
56	Intraplate stress state from finite element modelling: The southern border of the Spanish Central System. Tectonophysics, 2009, 473, 417-427.	2.2	10
57	Episodic intraplate deformation of stable continental margins: evidence from Late Neogene and Quaternary marine terraces, Cape Liptrap, Southeastern Australia. Quaternary Science Reviews, 2009, 28, 39-53.	3.0	27
58	NW Australian intraplate seismicity and stress regime. Journal of Geophysical Research, 2009, 114, .	3.3	18
59	The role of the gravitational potential of the lithosphere in the formation of a global stress field. Izvestiya, Physics of the Solid Earth, 2010, 46, 1080-1094.	0.9	20
60	Tectonic geomorphology of Australia. Geological Society Special Publication, 2010, 346, 243-265.	1.3	67
61	Why are the continents just soâ \in \mid ?. Journal of Metamorphic Geology, 2010, 28, 569-577.	3.4	12
62	Indiaâ€Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. Journal of Geophysical Research, 2010, 115, .	3.3	332
63	Present-day stress field of Southeast Asia. Tectonophysics, 2010, 482, 92-104.	2.2	82
64	Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 2010, 482, 3-15.	2.2	453
65	Preliminary Probabilistic Seismic Hazard Analysis of the CO2CRC Otway Project Site, Victoria, Australia. Bulletin of the Seismological Society of America, 2011, 101, 2726-2736.	2.3	16
66	Mountain building along a passive margin: Late Neogene tectonism in southeastern Victoria, Australia. Geomorphology, 2011, 125, 253-262.	2.6	12
67	Mantle conveyor beneath the Tethyan collisional belt. Earth and Planetary Science Letters, 2011, 310, 453-461.	4.4	163
68	Crustal stress and strain patterns in the Indian plate interior: implications for the deformation behaviour of a stable continent and its seismicity. Terra Nova, 2011, 23, 407-415.	2.1	8
69	Late Neogene tectonics in northwestern Victoria: Evidence from the Late Miocene–Pliocene Loxton Sand. Australian Journal of Earth Sciences, 2011, 58, 579-586.	1.0	8
70	Long-term behaviour of Australian stable continental region (SCR) faults. Tectonophysics, 2012, 566-567, 1-30.	2.2	108
72	Exploiting seismic signal and noise in an intracratonic environment to constrain crustal structure and source parameters of infrequent earthquakes. Geophysical Journal International, 2012, 188, 1303-1321.	2.4	3
73	On the Evolution of Motion Across Diffuse Plate Boundaries. Geodynamic Series, 2013, , 265-281.	0.1	0

#	Article	IF	CITATIONS
74	A Review of using theÆ'C-Æ'lDiagram to Evaluate Continental Deformation. Geodynamic Series, 2013, , 283-294.	0.1	1
75	Middle–Late Paleozoic Australia–Asia convergence and tectonic extrusion of Australia. Gondwana Research, 2013, 24, 5-54.	6.0	43
76	Shallow caves and blowholes on the Nullarbor Plain, Australia — Flank margin caves on a low gradient limestone platform. Geomorphology, 2013, 201, 246-253.	2.6	21
77	Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics. Journal of Geophysical Research: Solid Earth, 2013, 118, 346-368.	3.4	66
79	Cenozoic deformation in the Otway Basin, southern Australian margin: implications for the origin and nature of postâ€breakup compression at rifted margins. Basin Research, 2014, 26, 10-37.	2.7	51
80	Stress inversion and basement-cover stress transmission across weak layers in the Paris basin, France. Tectonophysics, 2014, 617, 44-57.	2.2	24
81	Compressional intracontinental orogens: Ancient and modern perspectives. Earth-Science Reviews, 2014, 130, 128-153.	9.1	153
82	Intraplate earthquakes in Australia. , 0, , 8-49.		13
83	Deformation of Indian Ocean lithosphere: Evidence for a highly nonlinear rheological law. Journal of Geophysical Research: Solid Earth, 2015, 120, 4434-4449.	3.4	22
84	Influence of basement structures on in situ stresses over the Surat Basin, southeast Queensland. Journal of Geophysical Research: Solid Earth, 2015, 120, 4946-4965.	3.4	66
85	Mountain Building: From Earthquakes to Geologic Deformation. , 2015, , 381-432.		33
86	Tsunami Hazards along the Eastern Australian Coast from Potential Earthquakes: Results from Numerical Simulations. Pure and Applied Geophysics, 2015, 172, 2087-2115.	1.9	9
87	The tectonic stress field evolution of India since the Oligocene. Gondwana Research, 2015, 28, 612-624.	6.0	30
88	Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate. Geophysical Journal International, 2016, 207, 393-413.	2.4	22
89	The present-day stress field of New South Wales, Australia. Australian Journal of Earth Sciences, 2016, 63, 1-21.	1.0	48
90	Occurrences of large-magnitude earthquakes in the Kachchh region, Gujarat, western India: Tectonic implications. Tectonophysics, 2016, 679, 102-116.	2.2	17
91	The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production. Marine and Petroleum Geology, 2016, 77, 776-790.	3.3	83
92	The 2 March 2016 Wharton Basin <i>M_w</i> 7.8 earthquake: High stress drop northâ€south strikeâ€slip rupture in the diffuse oceanic deformation zone between the Indian and Australian Plates. Geophysical Research Letters, 2016, 43, 7937-7945.	4.0	18

#	Article	IF	CITATIONS
93	Stressâ€induced seismic azimuthal anisotropy in the upper crust across the North West Shelf, Australia. Journal of Geophysical Research: Solid Earth, 2016, 121, 1023-1039.	3.4	10
94	Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand. Journal of Geophysical Research: Solid Earth, 2016, 121, 6053-6070.	3.4	20
95	Paleoseismology of the Mount Narryer fault zone, Western Australia: A multistrand intraplate fault system. Bulletin of the Geological Society of America, 2016, 128, 684-704.	3.3	6
96	Finite element models to represent seismic activity of the Indian plate. Geoscience Frontiers, 2017, 8, 81-91.	8.4	5
97	The Cadell Fault, southeastern Australia: a record of temporally clustered morphogenic seismicity in a low-strain intraplate region. Geological Society Special Publication, 2017, 432, 163-185.	1.3	15
98	Presentâ€day stress orientation in the Clarenceâ€Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations. Basin Research, 2017, 29, 622-640.	2.7	68
99	The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone. Science Advances, 2017, 3, e1601689.	10.3	34
100	The present-day stress field of Australia. Earth-Science Reviews, 2017, 168, 165-189.	9.1	74
101	Modeling of source parameters of the 15 December 2015 Deogarh earthquake of Mw 4.0. Journal of the Geological Society of India, 2017, 89, 363-368.	1.1	1
102	Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical–numerical models. Australian Journal of Earth Sciences, 2017, 64, 435-454.	1.0	33
103	<i>In situ</i> stress distribution and mechanical stratigraphy in the Bowen and Surat basins, Queensland, Australia. Geological Society Special Publication, 2017, 458, 31-47.	1.3	9
104	Denudation history of the Southeastern Highlands of Australia. Australian Journal of Earth Sciences, 2017, 64, 841-850.	1.0	15
105	Crustal stress pattern in China and its adjacent areas. Journal of Asian Earth Sciences, 2017, 149, 20-28.	2.3	36
106	AN INTER-DISCIPLINARY, MULTI-PHYSICS APPROACH FOR RAPID MAPPING AND HYDROGEOLOGICAL CHARACTERISATION OF NEOGENE INTRA-PLATE FAULT SYSTEMS IN DEPOSITIONAL LANDSCAPES. , 2017, , .		1
107	Moment Tensor Solutions of some Selected Local Events: Implications towards the Present-day Tectonics of the Kachchh Rift zone. Journal of the Geological Society of India, 2018, 91, 158-164.	1.1	4
108	Numerical simulation of present day tectonic stress across the Indian subcontinent. International Journal of Earth Sciences, 2018, 107, 2449-2462.	1.8	12
109	On the Role of Lower Crust and Midlithosphere Discontinuity for Cratonic Lithosphere Delamination and Recycling. Geophysical Research Letters, 2018, 45, 7425-7433.	4.0	26
110	New constraints on the neotectonic stress pattern of the Flinders and Mount Lofty Ranges, South Australia. Exploration Geophysics, 2018, 49, 111-124.	1.1	8

#	Article	IF	CITATIONS
111	Intracontinental Orogeny Enhanced by Farâ€Field Extension and Local Weak Crust. Tectonics, 2018, 37, 4421-4443.	2.8	19
112	The 2018 <scp><i>M</i>_{<i>W</i>}</scp> 7.9 Gulf of Alaska Earthquake: Multiple Fault Rupture in the Pacific Plate. Geophysical Research Letters, 2018, 45, 9542-9551.	4.0	51
113	Active Faulting Geometry and Stress Pattern Near Complex Strikeâ€Slip Systems Along the Maghreb Region: Constraints on Active Convergence in the Western Mediterranean. Tectonics, 2018, 37, 3148-3173.	2.8	46
114	The effects of azimuthal anisotropy on 3D and 4D seismic amplitude variation with offset responses. Geophysics, 2019, 84, C251-C267.	2.6	0
115	<i>In situ</i> stress and natural fractures in the Carnarvon Basin, North West Shelf, Australia. Exploration Geophysics, 2019, 50, 514-531.	1.1	5
116	Interacting Intraplate Fault Systems in Australia: The 2012 Thorpdale, Victoria, Seismic Sequences. Journal of Geophysical Research: Solid Earth, 2019, 124, 4673-4693.	3.4	14
117	Lateral Variations in Lithospheric Mantle Structure Control the Location of Intracontinental Seismicity in Australia. Geophysical Research Letters, 2019, 46, 12862-12869.	4.0	13
118	Reactivation of Oceanic Fracture Zones in Large Intraplate Earthquakes?. , 2019, , 89-104.		11
119	Evaluation of maximum horizontal near-surface stress (SHmax) azimuth and its distribution along Narmada-Son Lineament, India by geogenic Electromagnetic Radiation (EMR) technique. Journal of Geodynamics, 2020, 133, 101672.	1.6	14
120	Hydrogeological implications of active tectonics in the Great Artesian Basin, Australia. Hydrogeology Journal, 2020, 28, 57-73.	2.1	9
121	A note on stress rotations due to the 2004 Mw 9.2 Sumatra–Andaman megathrust earthquake. Journal of Earth System Science, 2020, 129, 1.	1.3	3
122	Macrofracturing of Oceanic Lithosphere in Complex Large Earthquake Sequences. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020137.	3.4	4
123	Rupture Characteristics and Bedrock Structural Control of the 2016 MwÂ6.0 Intraplate Earthquake in the Petermann Ranges, Australia. Bulletin of the Seismological Society of America, 2020, 110, 1037-1045.	2.3	15
124	Melt-present shear zones enable intracontinental orogenesis. Geology, 2020, 48, 643-648.	4.4	25
125	Transfer of stress from the 2004 M w9.2 Sumatra subduction earthquake promoted widespread seismicity and large strikeâ€slip events in the Wharton Basin. Terra Nova, 2021, 33, 74-85.	2.1	1
126	Dynamics of the African Plate 75ÂMa: From Plate Kinematic Reconstructions to Intraplate Paleoâ€ S tresses. Tectonics, 2021, 40, e2020TC006355.	2.8	2
127	Strike-slip seismicity at the Andaman-Sumatra Subduction Zone: Role of the fracture zones and age of the subducting lithosphere. Tectonophysics, 2021, 811, 228862.	2.2	4
128	Seismic velocity images of a crystallized crustal magma-conduit (related to the Deccan plume) below the seismically active Kachchh rift zone, Gujarat, India. Natural Hazards, 2022, 111, 239-260.	3.4	0

#	Article	IF	CITATIONS
129	Glimmerite: A product of melt-rock interaction within a crustal-scale high-strain zone. Gondwana Research, 2022, 105, 160-184.	6.0	12
130	Driving Forces: Slab Pull, Ridge Push. Encyclopedia of Earth Sciences Series, 2016, , 193-196.	0.1	1
131	PRESENT-DAY STATE-OF-STRESS OF SOUTHEAST AUSTRALIA. APPEA Journal, 2006, 46, 283.	0.2	28
132	PLATE TECTONICS: Indian Ocean Actively Deforms. Science, 2001, 292, 1850-1851.	12.6	30
133	Global stresses in the Western Europe lithosphere and the collision forces in the Africa-Eurasia convergence zone. Russian Journal of Earth Sciences, 2002, 4, 1-17.	0.7	6
134	Late Neogene and Quaternary Vertical Motions in the Otway Coast, Southeast Australia (I): Development and Geochronology of Quaternary Marine Terraces. Journal of the Korean Earth Science Society, 2012, 33, 519-533.	0.2	3
135	Late Neogene and Quaternary Vertical Motions in the Otway Coast, Southeast Australia (II): Epeirogenic Uplift Driven by Lithospheric Flexural Deformation. Journal of the Korean Earth Science Society, 2012, 33, 534-543.	0.2	2
136	The Role of Faults and Fractures in Local and Regional Perturbation of Present-day Horizontal Stresses - An Example from the Clarence-Moreton Basin, Eastern Australia. , 2015, , .		1
137	Heterogeneity of Stress Field in NE Japan and Implications for Fault Strength and Earthquake Occurrence Mechanism. Journal of Geography (Chigaku Zasshi), 2020, 129, 451-471.	0.3	4
138	Simulation of Intraplate Stress Distribution of the Indian Tectonic Plate Using the Finite Element Method. Pure and Applied Geophysics, 0, , 1.	1.9	2
139	3D geodynamic-geomorphologic modelling of deformation and exhumation at curved plate boundaries: Implications for the southern Alaskan plate corner. Scientific Reports, 2022, 12, .	3.3	2
140	Intraplate seismicity and earthquake hazard in the Aravalli–Delhi Fold Belt, India. Journal of Earth System Science, 2022, 131, .	1.3	7
141	Geochemical and geomechanical evaluation of the Mungaroo Formation, offshore northwestern Australia. Boletin De Geologia, 2022, 43, .	0.2	0
142	Modulation of Seismic Radiation by Fault-Scale Geology of the 2016 MwÂ6.0 Shallow Petermann Ranges Earthquake (PRE) in Central Australia. Bulletin of the Seismological Society of America, 2023, 113, 604-612.	2.3	4
143	Fluid-assisted intra-plate seismicity at the edge of the Gawler Craton, South Australia. Physics of the Earth and Planetary Interiors, 2024, 346, 107133.	1.9	0
144	Contribution of mine borehole data toward high-resolution stress mapping: An example from northern Bowen Basin, Australia. International Journal of Rock Mechanics and Minings Sciences, 2024, 173, 105630.	5.8	1
145	Intraplate stress distribution within the Indian Plate: Insights from finite element modelling. Journal of Asian Earth Sciences, 2024, 265, 106102.	2.3	0