Oxidized LDL Regulates Macrophage Gene Expression t

Cell 93, 229-240 DOI: 10.1016/s0092-8674(00)81574-3

Citation Report

#	Article	IF	CITATIONS
1	Glucuronidation of Fatty Acids and Prostaglandins by Human UDP-Clucuronosyltransferases. , 2005, , 109-132.		1
2	Control of Eicosanoid Production by Cellular and Secreted Phospholipase A2. , 0, , 17-27.		0
3	Linoleic acid peroxidation—the dominant lipid peroxidation process in low density lipoprotein—and its relationship to chronic diseases. Chemistry and Physics of Lipids, 1998, 95, 105-162.	1.5	190
4	Interdomain communication regulating ligand binding by PPAR-Î ³ . Nature, 1998, 396, 377-380.	13.7	331
5	Receptor-interacting protein 140 interacts with and inhibits transactivation by, peroxisome proliferator-activated receptor α and liver-X-receptor α. Molecular and Cellular Endocrinology, 1998, 146, 69-76.	1.6	67
6	Orphan nuclear receptors—new ligands and new possibilities: Figure 1 Genes and Development, 1998, 12, 3149-3155.	2.7	274
7	The nuclear receptor PPARÎ ³ -bigger than fat. Current Opinion in Genetics and Development, 1998, 8, 576-581.	1.5	133
8	PPARÎ ³ in Monocytes: Less Pain, Any Gain?. Cell, 1998, 93, 153-155.	13.5	146
9	PPARÎ ³ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL. Cell, 1998, 93, 241-252.	13.5	1,689
10	Peroxisome proliferator-activated receptor γ1 (PPAR-γ1) as a major PPAR in a tissue in which estrogen induces peroxisome proliferation. FEBS Letters, 1998, 434, 394-400.	1.3	18
11	Downregulation of Macrophage Activation by PPARÎ ³ Suggests a Role for Conjugated Linoleic Acid in Prevention of Alzheimer's Disease and Atherosclerosis. Journal of Medicinal Food, 1998, 1, 217-226.	0.8	1
12	Differential Expression of the Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Its Coactivators Steroid Receptor Coactivator-1 and PPAR-Binding Protein PBP in the Brown Fat, Urinary Bladder, Colon, and Breast of the Mouse. American Journal of Pathology, 1998, 153, 349-354.	1.9	100
13	A mitochondrial ketogenic enzyme regulates its gene expression by association with the nuclear hormone receptor PPARI±. EMBO Journal, 1998, 17, 6972-6978.	3.5	81
14	Peroxisome Proliferator-Activated Receptor Gamma Activators Inhibit Gene Expression and Migration in Human Vascular Smooth Muscle Cells. Circulation Research, 1998, 83, 1097-1103.	2.0	565
15	Peroxisome Proliferator-activated Receptor α-Isoform Deficiency Leads to Progressive Dyslipidemia with Sexually Dimorphic Obesity and Steatosis. Journal of Biological Chemistry, 1998, 273, 29577-29585.	1.6	365
16	Activation of Proliferator-activated Receptors α and γ Induces Apoptosis of Human Monocyte-derived Macrophages. Journal of Biological Chemistry, 1998, 273, 25573-25580.	1.6	837
17	Induction of Murine Macrophage Growth by Oxidized Low Density Lipoprotein Is Mediated by Granulocyte Macrophage Colony-stimulating Factor. Journal of Biological Chemistry, 1998, 273, 28305-28313.	1.6	64
18	The Rabbit 15-Lipoxygenase Preferentially Oxygenates LDL Cholesterol Esters, and This Reaction Does Not Require Vitamin E. Journal of Biological Chemistry, 1998, 273, 23225-23232.	1.6	102

#	Article	IF	CITATIONS
19	Estrogen-induced Production of a Peroxisome Proliferator-activated Receptor (PPAR) Ligand in a PPARI ³ -expressing Tissue. Journal of Biological Chemistry, 1998, 273, 30131-30138.	1.6	64
20	Expression of 15-Lipoxygenase by Human Colorectal Carcinoma Caco-2 Cells during Apoptosis and Cell Differentiation. Journal of Biological Chemistry, 1998, 273, 21569-21577.	1.6	119
21	Genomic Organization and Regulation of Expression of the Lectin-like Oxidized Low-density Lipoprotein Receptor (LOX-1) Gene. Journal of Biological Chemistry, 1998, 273, 33702-33707.	1.6	98
22	PPARgamma: from adipose tissue to the atherosclerotic plaque. European Journal of Endocrinology, 1998, 139, 363-364.	1.9	5
23	Cytotoxic Effect of Oxidized Low Density Lipoprotein on Macrophages. Journal of Atherosclerosis and Thrombosis, 1998, 5, 66-75.	0.9	19
24	Role and Regulation of PPARy During Adipogenesis. Journal of Animal Science, 1999, 77, 9.	0.2	6
25	PPARy in Adipocyte Differentiation. Journal of Animal Science, 1999, 77, 16.	0.2	8
26	Regulation of 15-lipoxygenase expression and mucus secretion by IL-4 in human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L596-L603.	1.3	45
27	Bclâ€⊋ alters the balance between apoptosis and necrosis, but does not prevent cell death induced by oxidized low density lipoproteins. FASEB Journal, 1999, 13, 485-494.	0.2	80
28	Physical Interaction Between Retinoic Acid Receptor and Sp1: Mechanism for Induction of Urokinase by Retinoic Acid. Blood, 1999, 93, 4264-4276.	0.6	96
29	Peroxisome proliferator-activated receptor γ C161→T polymorphism and coronary artery disease. Cardiovascular Research, 1999, 44, 588-594.	1.8	123
30	Peroxisome proliterator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Current Opinion in Lipidology, 1999, 10, 245-258.	1.2	386
31	Growth inhibition of myeloid leukemia cells by troglitazone, a ligand for peroxisome proliferator activated receptor gamma, and retinoids International Journal of Oncology, 1999, 15, 1027-31.	1.4	33
32	p120 Acts as a Specific Coactivator for 9-cis-Retinoic Acid Receptor (RXR) on Peroxisome Proliferator-Activated Receptor-γ/RXR Heterodimers. Molecular Endocrinology, 1999, 13, 1695-1703.	3.7	25
33	A Novel Method for Analysis of Nuclear Receptor Function at Natural Promoters: Peroxisome Proliferator-Activated Receptor γ Agonist Actions on aP2 Gene Expression Detected Using Branched DNA Messenger RNA Quantitation. Molecular Endocrinology, 1999, 13, 410-417.	3.7	46
34	Peroxisome Proliferator–Activated Receptor γ Gene Locus Is Related to Body Mass Index and Lipid Values in Healthy Nonobese Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2940-2944.	1.1	31
35	PPARÎ ³ Activation in Human Endothelial Cells Increases Plasminogen Activator Inhibitor Type-1 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 546-551.	1.1	355
36	9-cis Retinoic Acid Induces Monocyte Chemoattractant Protein-1 Secretion in Human Monocytic THP-1 Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2105-2111.	1.1	31

#	Article	IF	CITATIONS
37	Characterization of the Amino-terminal Activation Domain of Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 1999, 274, 35152-35158.	1.6	42
38	Effects of Oxidized Low Density Lipoprotein, Lipid Mediators and Statins on Vascular Cell Interactions. Clinical Chemistry and Laboratory Medicine, 1999, 37, 243-51.	1.4	45
39	Depending on Their Concentration Oxidized Low Density Lipoproteins Stimulate Extracellular Matrix Synthesis or Induce Apoptosis in Human Coronary Artery Smooth Muscle Cells. Clinical Chemistry and Laboratory Medicine, 1999, 37, 319-26.	1.4	40
40	Plasmodium falciparum–Infected Erythrocytes and Oxidized Lowâ€Density Lipoprotein Bind to Separate Domains of CD36. Journal of Infectious Diseases, 1999, 180, 473-479.	1.9	5
41	Transcriptional Repression of pref-1by Glucocorticoids Promotes 3T3-L1 Adipocyte Differentiation. Journal of Biological Chemistry, 1999, 274, 12632-12641.	1.6	140
42	CD36, a Novel Receptor for Oxidized Low-Density Lipoproteins, Is Highly Expressed on Lipid-Laden Macrophages in Human Atherosclerotic Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1333-1339.	1.1	164
43	Lipoxygenases: Occurrence, Functions, Catalysis, and Acquisition of Substrate. Journal of Biological Chemistry, 1999, 274, 23679-23682.	1.6	1,124
44	LOX-1, a Possible Clue to the Missing Link Between Hypertension and Atherogenesis. Circulation Research, 1999, 84, 1113-1115.	2.0	52
45	Comparison of Class B Scavenger Receptors, CD36 and Scavenger Receptor BI (SR-BI), Shows That Both Receptors Mediate High Density Lipoprotein-Cholesteryl Ester Selective Uptake but SR-BI Exhibits a Unique Enhancement of Cholesteryl Ester Uptake. Journal of Biological Chemistry, 1999, 274, 41-47.	1.6	196
46	Peroxisome Proliferator–Activated Receptor Activators Target Human Endothelial Cells to Inhibit Leukocyte–Endothelial Cell Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2094-2104.	1.1	353
47	A Null Mutation in Murine CD36 Reveals an Important Role in Fatty Acid and Lipoprotein Metabolism. Journal of Biological Chemistry, 1999, 274, 19055-19062.	1.6	680
48	The Processing of Ligands by the Class A Scavenger Receptor Is Dependent on Signal Information Located in the Cytoplasmic Domain. Journal of Biological Chemistry, 1999, 274, 36808-36816.	1.6	42
49	Muscle-specific Overexpression of FAT/CD36 Enhances Fatty Acid Oxidation by Contracting Muscle, Reduces Plasma Triglycerides and Fatty Acids, and Increases Plasma Glucose and Insulin. Journal of Biological Chemistry, 1999, 274, 26761-26766.	1.6	315
50	High Expression of Human 15-Lipoxygenase Induces NF- <i>κ</i> B-Mediated Expression of Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and T-Cell Adhesion on Human Endothelial Cells. Antioxidants and Redox Signaling, 1999, 1, 83-96.	2.5	20
51	Endothelial Cell Apoptosis Induced by the Peroxisome Proliferator-activated Receptor (PPAR) Ligand 15-Deoxy-Δ12,14-prostaglandin J2. Journal of Biological Chemistry, 1999, 274, 17042-17048.	1.6	393
52	Oxidation-dependent effects of oxidized LDL: proliferation or cell death. Experimental and Molecular Medicine, 1999, 31, 165-173.	3.2	59
53	Oxidative Stress as a Regulator of Gene Expression in the Vasculature. Circulation Research, 1999, 85, 753-766.	2.0	742
54	Interleukin 1β Induces Type II-secreted Phospholipase A2 Gene in Vascular Smooth Muscle Cells by a Nuclear Factor κB and Peroxisome Proliferator-activated Receptor-mediated Process. Journal of Biological Chemistry, 1999, 274, 23085-23093	1.6	87

#	Article	IF	CITATIONS
55	Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. Current Opinion in Biotechnology, 1999, 10, 564-570.	3.3	184
56	The relation between insulin resistance and cardiovascular complications of the insulin resistance syndrome. Diabetes, Obesity and Metabolism, 1999, 1, 8-16.	2.2	30
57	Interleukin-4-dependent production of PPAR-Î ³ ligands in macrophages by 12/15-lipoxygenase. Nature, 1999, 400, 378-382.	13.7	822
58	Periodontitis-atherosclerosis syndrome: an expanded model of pathogenesis. Journal of Periodontal Research, 1999, 34, 346-352.	1.4	77
59	Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genetics, 1999, 21, 76-83.	9.4	692
60	An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cellular and Molecular Life Sciences, 1999, 55, 932.	2.4	173
61	Atherogenic Diet and Minimally Oxidized Low Density Lipoprotein Inhibit Osteogenic and Promote Adipogenic Differentiation of Marrow Stromal Cells. Journal of Bone and Mineral Research, 1999, 14, 2067-2078.	3.1	223
62	13â€HPODE and 13â€HODE modulate cytokineâ€induced expression of endothelial cell adhesion molecules differently. BioFactors, 1999, 9, 61-72.	2.6	38
63	Roles of lipid-activated receptors in the adipogenic action of fatty acids. Lipids, 1999, 34, S205-S208.	0.7	12
64	Fenofibrate protects lipoproteins from lipid peroxidation: Synergistic interaction with α-tocopherol. Lipids, 1999, 34, 497-502.	0.7	18
65	Inflammation and immune response in atherosclerosis. Current Atherosclerosis Reports, 1999, 1, 150-155.	2.0	77
66	Atherosclerotic plaque rupture: emerging insights and opportunities. American Journal of Cardiology, 1999, 84, 15-20.	0.7	100
67	Transcriptional activation of adipogenesis. Current Opinion in Cell Biology, 1999, 11, 689-694.	2.6	127
68	Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism*. Endocrine Reviews, 1999, 20, 649-688.	8.9	2,435
69	Orphan Nuclear Receptors: Shifting Endocrinology into Reverse. Science, 1999, 284, 757-760.	6.0	469
70	Requirement for Croquemort in Phagocytosis of Apoptotic Cells in Drosophila. Science, 1999, 284, 1991-1994.	6.0	342
71	Orphan Nuclear Receptors: From Gene to Function*. Endocrine Reviews, 1999, 20, 689-725.	8.9	630
72	Peroxisome proliferator-activated receptor-γ: a versatile metabolic regulator. Annals of Medicine, 1999, 31, 342-351.	1.5	82

#	Article	IF	CITATIONS
73	Drosophila hemocytes, phagocytosis, and croquemort, a macrophage receptor. Advances in Cellular and Molecular Biology of Membranes and Organelles, 1999, , 19-46.	0.3	2
74	Peroxisome Proliferator-activated Receptor α Negatively Regulates the Vascular Inflammatory Gene Response by Negative Cross-talk with Transcription Factors NF-κB and AP-1. Journal of Biological Chemistry, 1999, 274, 32048-32054.	1.6	982
75	PPARÎ ³ Is Required for Placental, Cardiac, and Adipose Tissue Development. Molecular Cell, 1999, 4, 585-595.	4.5	1,780
76	PPARÎ ³ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro. Molecular Cell, 1999, 4, 611-617.	4.5	1,804
77	Loss-of-Function Mutations in PPARÎ ³ Associated with Human Colon Cancer. Molecular Cell, 1999, 3, 799-804.	4.5	485
78	Correlation between expression of peroxisome proliferator-activated receptor Î ² and squamous differentiation in epidermal and tracheobronchial epithelial cells. Molecular and Cellular Endocrinology, 1999, 147, 85-92.	1.6	84
79	Medical significance of peroxisome proliferator-activated receptors. Lancet, The, 1999, 354, 141-148.	6.3	446
80	Immunologic and nonimmunologic correlates of chronic renal allograft dysfunction. Transplantation Proceedings, 1999, 31, 3356-3358.	0.3	4
81	Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions. FEBS Letters, 1999, 462, 145-150.	1.3	88
82	An Essential Regulator of Adipogenesis and Modulator of Fat Cell Function: PPARÎ ³ . Cell, 1999, 99, 239-242.	13.5	371
83	Receptors for oxidized low density lipoprotein. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1436, 279-298.	1.2	188
84	Prostaglandin D2 and sleep regulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1436, 606-615.	1.2	134
85	Troglitazone. Drugs, 1999, 57, 409-438.	4.9	89
86	15-Lipoxygenase-2 (15-LOX-2) Is Expressed in Benign Prostatic Epithelium and Reduced in Prostate Adenocarcinoma. American Journal of Pathology, 1999, 155, 235-245.	1.9	143
87	Induction of Lectin-like Oxidized LDL Receptor by Oxidized LDL and Lysophosphatidylcholine in Cultured Endothelial Cells. Journal of Molecular and Cellular Cardiology, 1999, 31, 2101-2114.	0.9	118
88	Regulation of 12-Lipoxygenase in Rat Intestinal Epithelial Cells during Differentiation and Apoptosis Induced by Sodium Butyrate. Archives of Biochemistry and Biophysics, 1999, 368, 45-55.	1.4	34
89	Association of Bone Mineral Density with a Polymorphism of the Peroxisome Proliferator-Activated Receptor Î ³ Gene: PPARÎ ³ Expression in Osteoblasts. Biochemical and Biophysical Research Communications, 1999, 260, 122-126.	1.0	110
90	PPARÎ ³ Activation Induces the Expression of the Adipocyte Fatty Acid Binding Protein Gene in Human Monocytes. Biochemical and Biophysical Research Communications, 1999, 261, 456-458.	1.0	167

#	Article	IF	CITATIONS
91	PPARÎ ³ Agonists Enhance Human Vascular Endothelial Adhesiveness by Increasing ICAM-1 Expression. Biochemical and Biophysical Research Communications, 1999, 263, 718-722.	1.0	39
92	Peroxisome Proliferator-Activated Receptor γ1 Expression in Porcine White Blood Cells: Dynamic Regulation with Acute Endotoxemia. Biochemical and Biophysical Research Communications, 1999, 263, 749-753.	1.0	25
93	Advanced Glycation End Product-Induced Peroxisome Proliferator-Activated Receptor Î ³ Gene Expression in the Cultured Mesangial Cells. Biochemical and Biophysical Research Communications, 1999, 264, 441-448.	1.0	54
94	Regulation of Ferritin Light Chain Gene Expression by Oxidized Low-Density Lipoproteins in Human Monocytic THP-1 Cells. Biochemical and Biophysical Research Communications, 1999, 265, 577-583.	1.0	18
95	The peroxisome proliferator-activated receptorl ³ (PPARl̂ ³) as a regulator of monocyte/macrophage function. Journal of Leukocyte Biology, 1999, 66, 733-739.	1.5	276
96	Macrophage scavenger receptors and foam cell formation. Journal of Leukocyte Biology, 1999, 66, 740-746.	1.5	146
97	Expression of Peroxisome Proliferator-activated Receptor PPARÎ [^] Promotes Induction of PPARÎ ³ and Adipocyte Differentiation in 3T3C2 Fibroblasts. Journal of Biological Chemistry, 1999, 274, 21920-21925.	1.6	149
98	Lipidology. Current Opinion in Lipidology, 1999, 10, 64.	1.2	3
99	Regulation of macrophage gene expression by peroxisome-proliferator-activated receptor y. Current Opinion in Lipidology, 1999, 10, 485-490.	1.2	54
100	Peroxisome proliterator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Current Opinion in Lipidology, 1999, 10, 151-160.	1.2	210
101	Improved insulin-sensitivity in mice heterozygous for PPAR-Î ³ deficiency. Journal of Clinical Investigation, 2000, 105, 287-292.	3.9	369
102	The Binding of Oxidized Low Density Lipoprotein to Mouse CD36 Is Mediated in Part by Oxidized Phospholipids That Are Associated with Both the Lipid and Protein Moieties of the Lipoprotein. Journal of Biological Chemistry, 2000, 275, 9163-9169.	1.6	170
103	Class A Scavenger Receptor Up-regulation in Smooth Muscle Cells by Oxidized Low Density Lipoprotein. Journal of Biological Chemistry, 2000, 275, 17661-17670.	1.6	91
104	Role of endocytosis in the transactivation of nuclear factor-κB by oxidized low-density lipoprotein. Biochemical Journal, 2000, 350, 829.	1.7	16
105	Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochemical Journal, 2000, 352, 809.	1.7	115
106	Role of endocytosis in the transactivation of nuclear factor-κB by oxidized low-density lipoprotein. Biochemical Journal, 2000, 350, 829-837.	1.7	37
107	Peroxisome proliferator-activated receptors (PPARs) and their implications in diseases. Current Opinion in Endocrinology, Diabetes and Obesity, 2000, 7, 8-18.	0.6	16
108	Thiazolidinediones, dyslipidaemia and insulin resistance syndrome. Current Opinion in Lipidology, 2000, 11, 397-402.	1.2	25

#	Article	IF	CITATIONS
109	CD36 and atherosclerosis. Current Opinion in Lipidology, 2000, 11, 483-491.	1.2	105
110	Metabolism of oxidized LDL by macrophages. Current Opinion in Lipidology, 2000, 11, 473-481.	1.2	61
111	Lipid transporters: membrane transport systems for cholesterol and fatty acids. Current Opinion in Clinical Nutrition and Metabolic Care, 2000, 3, 255-262.	1.3	36
112	Essential fatty acids in early life: structural and functional role. Proceedings of the Nutrition Society, 2000, 59, 3-15.	0.4	234
114	Oxidation of Linoleic Acid in Low-Density Lipoprotein: An Important Event in Atherogenesis. Angewandte Chemie - International Edition, 2000, 39, 585-589.	7.2	25
115	Radical Intermediates in the Jacobsen - Katsuki Epoxidation. Angewandte Chemie - International Edition, 2000, 39, 589-592.	7.2	85
116	Photoreceptor phagocytosis selectively activates PPAR? expression in retinal pigment epithelial cells. Journal of Neuroscience Research, 2000, 60, 328-337.	1.3	67
117	Regulation of macrophage-specific gene expression by degenerated lipoproteins. Electrophoresis, 2000, 21, 338-346.	1.3	4
118	Human CD36 deficiency is associated with elevation in low-density lipoprotein-cholesterol. American Journal of Medical Genetics Part A, 2000, 93, 299-304.	2.4	44
119	Peroxisome proliferator-activated receptors are expressed in human cultured mast cells: a possible role of these receptors in negative regulation of mast cell activation. European Journal of Immunology, 2000, 30, 3363-3370.	1.6	72
120	PPAR agonists as direct modulators of the vessel wall in cardiovascular disease. Medicinal Research Reviews, 2000, 20, 350-366.	5.0	35
121	Peroxisome proliferator-activated receptors in the cardiovascular system. British Journal of Pharmacology, 2000, 129, 823-834.	2.7	314
122	Lipid oxidation products in cell signaling. Free Radical Biology and Medicine, 2000, 28, 1370-1378.	1.3	186
123	Lipoxygenases and atherosclerosis: protection versus pathogenesis. Free Radical Biology and Medicine, 2000, 28, 1726-1734.	1.3	92
124	Ligands for Peroxisome Proliferator-Activated Receptor Inhibit Monocyte CCR2 Expression Stimulated by Plasma Lipoproteins. Trends in Cardiovascular Medicine, 2000, 10, 209-216.	2.3	21
125	Prostaglandins and fatty acids regulate transcriptional signaling via the peroxisome proliferator activated receptor nuclear receptors. Prostaglandins and Other Lipid Mediators, 2000, 62, 1-13.	1.0	53
126	COX-2 and the cyclopentenone prostaglandins - a new chapter in the book of inflammation?. Prostaglandins and Other Lipid Mediators, 2000, 62, 33-43.	1.0	45
127	PPARÎ ³ : observations in the hematopoietic systemâ [~] †. Prostaglandins and Other Lipid Mediators, 2000, 62, 45-73.	1.0	53

#	Article	IF	CITATIONS
128	Nuclear receptor binding factor-2 (NRBF-2), a possible gene activator protein interacting with nuclear hormone receptors. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1490, 189-197.	2.4	26
129	Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 448, 121-138.	0.4	414
130	Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochemical Pharmacology, 2000, 60, 1245-1250.	2.0	202
131	Impact of the Peroxisome Proliferator Activated Receptor γ2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. International Journal of Obesity, 2000, 24, 195-199.	1.6	155
132	Scavenger Receptors and Modified Lipoproteins: Fatal Attractions?. IUBMB Life, 2000, 49, 397-403.	1.5	35
133	Peroxisome Proliferator-Activated Receptors, Coactivators, and Downstream Targets. Cell Biochemistry and Biophysics, 2000, 32, 187-204.	0.9	196
134	Scavenger receptor regulation and atherosclerosis. BioFactors, 2000, 11, 189-200.	2.6	23
135	The effect of Î ³ -interferon to inhibit macrophage-high density lipoprotein interactions is reversed by Δ12,14-prostaglandin J2J2. Lipids, 2000, 35, 1239-1247.	0.7	11
136	Peroxisome proliferator-activated receptors in vascular biology and atherosclerosis: Emerging insights for evolving paradigms. Current Atherosclerosis Reports, 2000, 2, 327-335.	2.0	77
137	Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflammation Research, 2000, 49, 497-505.	1.6	853
138	Hormonal Signaling and Transcriptional Control of Adipocyte Differentiation. Journal of Nutrition, 2000, 130, 3116S-3121S.	1.3	254
139	Phenotype-genotype Correlation in CD36 Deficiency Types I and II. Thrombosis and Haemostasis, 2000, 84, 436-441.	1.8	49
140	Unrecognized hepatic steatosis and non-alcoholic steatohepatitis in adjuvant tamoxifen for breast cancer patients Oncology Reports, 2000, 7, 1299-304.	1.2	63
141	15-Deoxy-Δ12,14-prostaglandin J2Induces G1 Arrest and Differentiation Marker Expression in Vascular Smooth Muscle Cells. Molecular Pharmacology, 2000, 58, 837-844.	1.0	48
143	Early physiological and cytological events induced by wounding in potato tuber. Journal of Experimental Botany, 2000, 51, 1267-1275.	2.4	2
144	Effects of Lipoxygenases on Gene Expression in Mammalian Cells. , 2000, , 339-358.		2
145	Central Role of Peroxisome Proliferator–Activated Receptors in the Actions of Peroxisome Proliferators. Annual Review of Pharmacology and Toxicology, 2000, 40, 491-518.	4.2	310
146	TRANSCRIPTIONALCONTROL OFADIPOGENESIS. Annual Review of Nutrition, 2000, 20, 535-559.	4.3	292

#	Article	IF	CITATIONS
147	Oxidized Low Density Lipoprotein Inhibits Interleukin-12 Production in Lipopolysaccharide-activated Mouse Macrophages via Direct Interactions between Peroxisome Proliferator-activated Receptor-γ and Nuclear Factor-κB. Journal of Biological Chemistry, 2000, 275, 32681-32687.	1.6	320
148	Macrophage Lipoprotein Lipase Promotes Foam Cell Formation and Atherosclerosis in Low Density Lipoprotein Receptor-deficient Mice. Journal of Biological Chemistry, 2000, 275, 26293-26299.	1.6	136
149	Cloning and Function of Rabbit Peroxisome Proliferator-activated Receptor δ/β in Mature Osteoclasts. Journal of Biological Chemistry, 2000, 275, 8126-8132.	1.6	62
150	15-LOX-1: a Novel Molecular Target of Nonsteroidal Anti-inflammatory Drug-Induced Apoptosis in Colorectal Cancer Cells. Journal of the National Cancer Institute, 2000, 92, 1136-1142.	3.0	143
151	Degradation of the Peroxisome Proliferator-activated Receptor Î ³ Is Linked to Ligand-dependent Activation. Journal of Biological Chemistry, 2000, 275, 18527-18533.	1.6	327
152	Activation of Peroxisome Proliferator-activated Receptor-Î ³ Pathway Inhibits Osteoclast Differentiation. Journal of Biological Chemistry, 2000, 275, 14388-14393.	1.6	102
153	Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis*. Endocrine Reviews, 2000, 21, 115-137.	8.9	1,707
154	Nuclear receptors in metabolic diseases. Expert Opinion on Therapeutic Targets, 2000, 4, 377-396.	1.0	4
155	Early physiological and cytological events induced by wounding in potato tuber. Journal of Experimental Botany, 2000, 51, 1267-1275.	2.4	36
156	Reduced Atherosclerotic Lesions in Mice Deficient for Total or Macrophage-Specific Expression of Scavenger Receptor-A. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2593-2599.	1.1	148
157	Hepatic and Extrahepatic Scavenger Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1860-1872.	1.1	130
158	Retrovirus-Mediated, Stable Scavenger-Receptor Gene Transfer Leads to Functional Endocytotic Receptor Expression, Foam Cell Formation, and Increased Susceptibility to Apoptosis in Rabbit Aortic Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 52-60.	1.1	14
159	Peroxisome Proliferator-Activated Receptor-Î ³ Modulates Differentiation of Human Trophoblast in a Ligand-Specific Manner1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 3874-3881.	1.8	173
160	Role for Peroxisome Proliferator-Activated Receptor α in Oxidized Phospholipid–Induced Synthesis of Monocyte Chemotactic Protein-1 and Interleukin-8 by Endothelial Cells. Circulation Research, 2000, 87, 516-521.	2.0	284
161	Large Scale Gene Expression Analysis of Cholesterol-loaded Macrophages. Journal of Biological Chemistry, 2000, 275, 37324-37332.	1.6	113
162	Expression and Function of PPARÎ ³ in Rat and Human Vascular Smooth Muscle Cells. Circulation, 2000, 101, 1311-1318.	1.6	434
163	Ligand type-specific Interactions of Peroxisome Proliferator-activated Receptor Î ³ with Transcriptional Coactivators. Journal of Biological Chemistry, 2000, 275, 33201-33204.	1.6	173
164	The Nuclear Receptor PPARÎ ³ and Immunoregulation: PPARÎ ³ Mediates Inhibition of Helper T Cell Responses. Journal of Immunology, 2000, 164, 1364-1371.	0.4	442

#	Article	IF	CITATIONS
165	Feedback Control of Cyclooxygenase-2 Expression through PPARÎ ³ . Journal of Biological Chemistry, 2000, 275, 28028-28032.	1.6	254
166	Macrophage Scavenger Receptor Class A. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 29, 297.	1.1	211
167	Regulation of Lipid and Lipoprotein Metabolism by PPAR Activators. Clinical Chemistry and Laboratory Medicine, 2000, 38, 3-11.	1.4	225
168	Pathophysiology and Pharmacological Treatment of Insulin Resistance*. Endocrine Reviews, 2000, 21, 585-618.	8.9	263
169	Regulation of Macrophage Gene Expression by the Peroxisome Proliferator-Activated Receptor-γ. Hormone Research in Paediatrics, 2000, 54, 275-280.	0.8	62
170	Expression of Macrophage (Mφ) Scavenger Receptor, CD36, in Cultured Human Aortic Smooth Muscle Cells in Association With Expression of Peroxisome Proliferator Activated Receptor-Î ³ , Which Regulates Gain of Mφ-Like Phenotype In Vitro, and Its Implication in Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1027-1032	1.1	83
171	Vitamin E Reduces the Uptake of Oxidized LDL by Inhibiting CD36 Scavenger Receptor Expression in Cultured Aortic Smooth Muscle Cells. Circulation, 2000, 102, 82-87.	1.6	273
172	Fluid Shear Stress Induces Lipocalin-Type Prostaglandin D ₂ Synthase Expression in Vascular Endothelial Cells. Circulation Research, 2000, 86, 967-973.	2.0	110
173	Transforming Growth Factor-β1 (TGF-β1) and TGF-β2 Decrease Expression of CD36, the Type B Scavenger Receptor, through Mitogen-activated Protein Kinase Phosphorylation of Peroxisome Proliferator-activated Receptor-γ. Journal of Biological Chemistry, 2000, 275, 1241-1246.	1.6	152
174	A Dominant-negative Peroxisome Proliferator-activated Receptor Î ³ (PPARÎ ³) Mutant Is a Constitutive Repressor and Inhibits PPARÎ ³ -mediated Adipogenesis. Journal of Biological Chemistry, 2000, 275, 5754-5759.	1.6	249
175	Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis. Journal of Biological Chemistry, 2000, 275, 17527-17535.	1.6	371
176	PPAR-Î ³ Is Selectively Upregulated in Caco-2 Cells by Butyrate. Biochemical and Biophysical Research Communications, 2000, 272, 380-385.	1.0	82
177	Advanced Glycation End Products-Induced Gene Expression of Scavenger Receptors in Cultured Human Monocyte-Derived Macrophages. Biochemical and Biophysical Research Communications, 2000, 277, 368-380.	1.0	89
178	The Human Fatty Acid Transport Protein-1 (SLC27A1; FATP-1) cDNA and Gene: Organization, Chromosomal Localization, and Expression. Genomics, 2000, 66, 296-304.	1.3	53
179	Regulation of fatty acid transporters in mammalian cells. Progress in Lipid Research, 2000, 39, 83-107.	5.3	69
180	PPAR- \hat{I}^3 agonists: therapeutic role in diabetes, inflammation and cancer. Trends in Pharmacological Sciences, 2000, 21, 469-474.	4.0	369
181	Reduced 15-lipoxygenase-2 immunostaining in prostate adenocarcinoma: Correlation with grade and expression in high-grade prostatic intraepithelial neoplasia. Human Pathology, 2000, 31, 1146-1154.	1.1	58
182	Cholesterol and atherosclerosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1529, 299-309.	1.2	118

#	Article	IF	CITATIONS
183	LOX-1 mediates lysophosphatidylcholine-induced oxidized LDL uptake in smooth muscle cells. FEBS Letters, 2000, 467, 217-220.	1.3	103
184	Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner. FEBS Letters, 2000, 471, 34-38.	1.3	179
185	Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS Letters, 2000, 475, 201-204.	1.3	148
186	The Carboxyl-Terminal Fragment of α1-Antitrypsin Is Present in Atherosclerotic Plaques and Regulates Inflammatory Transcription Factors in Primary Human Monocytes. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 4, 50-61.	1.7	37
187	Docosahexaenoic Acid, a Ligand for the Retinoid X Receptor in Mouse Brain. Science, 2000, 290, 2140-2144.	6.0	707
188	Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis. , 2000, 21, 115-137.		798
189	Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. QJM - Monthly Journal of the Association of Physicians, 2000, 93, 85-91.	0.2	188
190	Prostaglandin D synthase: Structure and function. Vitamins and Hormones, 2000, 58, 89-120.	0.7	261
192	Ligands of peroxisome proliferator-activated receptor \hat{I}^3 modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology, 2000, 119, 466-478.	0.6	390
193	Dietary fish oil reduces intercellular adhesion molecule 1 and scavenger receptor expression on murine macrophages. Atherosclerosis, 2000, 152, 43-50.	0.4	91
194	Overexpression of PHGPx inhibits hydroperoxide-induced oxidation, NFκB activation and apoptosis and affects oxLDL-mediated proliferation of rabbit aortic smooth muscle cells. Atherosclerosis, 2000, 152, 307-316.	0.4	92
195	The PPARs:  From Orphan Receptors to Drug Discovery. Journal of Medicinal Chemistry, 2000, 43, 527-550.	2.9	1,706
196	PPARs in Inflammation, Atherosclerosis and Thrombosis. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 187-194.	3.1	40
197	Characterization of peroxynitrite-oxidized low density lipoprotein binding to human CD36. Atherosclerosis, 2001, 155, 19-28.	0.4	37
198	Localization of CD36 and scavenger receptor class A in human coronary arteries — a possible difference in the contribution of both receptors to plaque formation. Atherosclerosis, 2001, 156, 297-305.	0.4	22
199	The role of vitamin E in atherogenesis: linking the chemical, biological and clinical aspects of the disease. Atherosclerosis, 2001, 157, 257-283.	0.4	65
200	C-terminal fragment of \hat{l} ±1-antitrypsin activates human monocytes to a pro-inflammatory state through interactions with the CD36 scavenger receptor and LDL receptor. Atherosclerosis, 2001, 158, 41-51.	0.4	32
201	25-hydroxycholesterol induces lipopolysaccharide-tolerance and decreases a lipopolysaccharide-induced TNF-I± secretion in macrophages. Atherosclerosis, 2001, 158, 61-71.	0.4	36

#	Article	IF	CITATIONS
202	2,4-Decadienal downregulates TNF-α gene expression in THP-1 human macrophages. Atherosclerosis, 2001, 158, 95-101.	0.4	17
203	Peroxisome proliferator-activated receptor gamma (PPARγ) activation and its consequences in humans. Toxicology Letters, 2001, 120, 9-19.	0.4	30
204	Peroxisome proliferator-activated receptors (PPARs): nuclear receptors with functions in the vascular wall. Clinical Research in Cardiology, 2001, 90, III125-III132.	1.2	44
205	Peroxisome Proliferator–Activated Receptor γ and Metabolic Disease. Annual Review of Biochemistry, 2001, 70, 341-367.	5.0	552
206	PPARÎ ³ Ligands Inhibit TNF-α-Induced LOX-1 Expression in Cultured Endothelial Cells. Biochemical and Biophysical Research Communications, 2001, 286, 541-546.	1.0	52
207	Identification of a Novel Peroxisome Proliferator-Activated Receptor (PPAR) Î ³ Promoter in Man and Transactivation by the Nuclear Receptor RORα1. Biochemical and Biophysical Research Communications, 2001, 287, 383-390.	1.0	112
208	Evaluation of the activity and localization of 15-Lipoxygenase-1 after introduction into human colorectal carcinoma Caco-2 cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2001, 64, 217-225.	1.0	4
209	Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer's disease. Neurobiology of Aging, 2001, 22, 937-944.	1.5	167
210	The roles of PPARs in adipocyte differentiation. Progress in Lipid Research, 2001, 40, 269-281.	5.3	135
211	The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Progress in Lipid Research, 2001, 40, 325-438.	5.3	839
212	New roles for PPARs in cholesterol homeostasis. Trends in Pharmacological Sciences, 2001, 22, 441-443.	4.0	16
213	Activation of CD14 on circulating monocytes in patients with acute coronary syndrome. International Journal of Cardiology, 2001, 80, 135-142.	0.8	20
214	Peroxisome proliferator-activated receptor (PPAR)Î ³ agonists for diabetes. Advances in Protein Chemistry, 2001, 56, 181-212.	4.4	33
215	Inhibition of the transcription factors AP-1 and NF-κB in CD4 T cells by peroxisome proliferator-activated receptor γ ligands. International Immunopharmacology, 2001, 1, 803-812.	1.7	101
216	Adipophilin is a sensitive marker for lipid loading in human blood monocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1532, 97-104.	1.2	76
217	Energy-dependent export of the 13-oxooctadecadienoic acid–glutathione conjugate from HT-29 cells and plasma membrane vesicles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1533, 55-65.	1.2	6
218	A PPARÎ ³ -LXR-ABCA1 Pathway in Macrophages Is Involved in Cholesterol Efflux and Atherogenesis. Molecular Cell, 2001, 7, 161-171.	4.5	1,240
219	A Unique PPARÎ ³ Ligand with Potent Insulin-Sensitizing yet Weak Adipogenic Activity. Molecular Cell, 2001, 8, 737-747.	4.5	279

#	Article	IF	CITATIONS
220	Auto-oxidized cholesterol sulfates are antagonistic ligands of liver X receptors: implications for the development and treatment of atherosclerosis. Steroids, 2001, 66, 473-479.	0.8	88
221	Atherosclerosis. Cell, 2001, 104, 503-516.	13.5	2,772
222	CD36, insulin resistance, and coronary heart disease. Lancet, The, 2001, 357, 651-652.	6.3	38
223	Oxidation-Sensitive Transcription Factors and Molecular Mechanisms in the Arterial Wall. Antioxidants and Redox Signaling, 2001, 3, 1119-1130.	2.5	64
224	PPARÂ Ligands Increase Expression and Plasma Concentrations of Adiponectin, an Adipose-Derived Protein. Diabetes, 2001, 50, 2094-2099.	0.3	1,591
225	Opportunities for the treatment of inflammation in cardiovascular disease. Expert Opinion on Pharmacotherapy, 2001, 2, 1751-1763.	0.9	1
226	Binding of 13-HODE and 15-HETE to Phospholipid Bilayers, Albumin, and Intracellular Fatty Acid Binding Proteins. Journal of Biological Chemistry, 2001, 276, 15575-15580.	1.6	72
227	Arachidonic Acid Stimulates Glucose Uptake in 3T3-L1 Adipocytes by Increasing GLUT1 and GLUT4 Levels at the Plasma Membrane. Journal of Biological Chemistry, 2001, 276, 9149-9157.	1.6	94
228	Oxidized Frying Oil Up-Regulates Hepatic Acyl-CoA Oxidase and Cytochrome P450 4 A1 Genes in Rats and Activates PPARI±. Journal of Nutrition, 2001, 131, 3166-3174.	1.3	90
229	CD36, the Macrophage Class B Scavenger Receptor. , 2001, , 41-47.		2
230	ABC transporters and cholesterol metabolism. Frontiers in Bioscience - Landmark, 2001, 6, d505-514.	3.0	19
231	Gene Expression in Atherogenesis. Thrombosis and Haemostasis, 2001, 86, 404-412.	1.8	25
232	Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Current Opinion in Lipidology, 2001, 12, 245-254.	1.2	182
233	Peroxisome proliferator-activated receptors in endothelial cell biology. Current Opinion in Lipidology, 2001, 12, 511-518.	1.2	52
234	Peroxisome proliferator-activated receptors in macrophage biology: friend or foe?. Current Opinion in Lipidology, 2001, 12, 519-527.	1.2	50
235	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2001, 12, 363-365.	1.2	1
236	Title is missing!. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 187-194.	1.5	66
237	Title is missing!. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 203-210.	1.5	54

#	Article	IF	CITATIONS
238	Magnitude of Peroxisome Proliferator-Activated Receptor-Î ³ Activation is Associated With Important and Seemingly Opposite Biological Responses in Breast Cancer Cells. Journal of Investigative Medicine, 2001, 49, 413-420.	0.7	62
239	Biochemical and Physiological Characteristics of Fat Cell Journal of Nutritional Science and Vitaminology, 2001, 47, 1-12.	0.2	40
240	Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor co-activator 1 to $\hat{1}$ ± and $\hat{1}$ ³ isoforms of peroxisome-proliferator-activated receptors by competing with agonists. Biochemical Journal, 2001, 353, 231.	1.7	36
241	Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor α down-regulate platelet-activating-factor receptor expression in human macrophages. Biochemical Journal, 2001, 354, 225.	1.7	23
242	Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation. Biochemical Journal, 2001, 360, 305.	1.7	49
243	Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor co-activator 1 to $\hat{1}$ ± and $\hat{1}$ ³ isoforms of peroxisome-proliferator-activated receptors by competing with agonists. Biochemical Journal, 2001, 353, 231-238.	1.7	39
244	Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor α down-regulate platelet-activating-factor receptor expression in human macrophages. Biochemical Journal, 2001, 354, 225-232.	1.7	27
245	Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation. Biochemical Journal, 2001, 360, 305-312.	1.7	72
247	Nonhypoglycemic Effects of Thiazolidinediones. Annals of Internal Medicine, 2001, 134, 61.	2.0	359
248	Fonctionnalité, résilience, maintenance, acides gras insaturés Un exemple : l'acide linoléique et les récepteurs du LDL-cholestérol. Oleagineux Corps Gras Lipides, 2001, 8, 321-327.	0.2	0
249	Mildly Oxidized LDL Induces Activation of Platelet-Derived Growth Factor Î ² -Receptor Pathway. Circulation, 2001, 104, 1814-1821.	1.6	65
250	Potential roles of the peroxisome proliferator-activated receptor-gamma in macrophage biology and atherosclerosis. Journal of Endocrinology, 2001, 169, 461-464.	1.2	38
251	The pleiotropic functions of peroxisome proliferator-activated receptor γ. Journal of Molecular Medicine, 2001, 79, 30-47.	1.7	193
253	Peroxisome proliferator-activated receptor agonists prevent 25-OH-cholesterol induced c-jun activation and cell death. , 2001, 1, 10.		12
254	15-Lipoxygenase-2 Expression in Benign and Neoplastic Sebaceous Glands and Other Cutaneous Adnexa. Journal of Investigative Dermatology, 2001, 117, 36-43.	0.3	41
255	Peroxisome proliferator-activated receptors (PPARs): Novel therapeutic targets in renal disease. Kidney International, 2001, 60, 14-30.	2.6	257
256	Peroxisome proliferator-activated receptor-l ³ agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney International, 2001, 59, 1899-1910.	2.6	182
257	Role of oxidized low-density lipoprotein in the atherosclerosis of uremia. Kidney International, 2001, 59, S114-S119.	2.6	29

#	Article	IF	CITATIONS
258	Interaction between peroxisome proliferator-activated receptor Î ³ and its agonists: docking study of oximes having 5-benzyl-2,4-thiazolidinedione. Journal of Molecular Graphics and Modelling, 2001, 19, 536-542.	1.3	20
259	The function of scavenger receptorsexpressed by macrophages and their rolein the regulation of inflammation. Microbes and Infection, 2001, 3, 149-159.	1.0	186
260	Changes in the phospholipid composition of the arterial cell can result in severe atherosclerotic lesions. Journal of Nutritional Biochemistry, 2001, 12, 602-607.	1.9	35
261	Peroxisome proliferator-activated receptor (PPAR) modulators: Diabetes and beyond. Medicinal Research Reviews, 2001, 21, 540-552.	5.0	67
262	Multiple role of reactive oxygen species in the arterial wall. Journal of Cellular Biochemistry, 2001, 82, 674-682.	1.2	216
263	Peroxisome proliferator-activated receptor γ activators affect the maturation of human monocyte-derived dendritic cells. European Journal of Immunology, 2001, 31, 2857-2865.	1.6	212
264	Activation of retinoic X receptor and peroxisome proliferator–activated receptor-γ inhibits nitric oxide and tumor necrosis factor-α production in rat Kupffer cells. Hepatology, 2001, 33, 91-99.	3.6	119
265	Oxidized low-density lipoproteins bind to the scavenger receptor, CD36, of hepatic stellate cells and stimulate extracellular matrix synthesis. Hepatology, 2001, 34, 729-737.	3.6	73
266	Progress in cardiovascular biology: PPAR for the course. Nature Medicine, 2001, 7, 23-24.	15.2	67
267	Hitting the reset button for immune tolerance. Nature Medicine, 2001, 7, 24-25.	15.2	1
268	The role of PPAR-Î ³ in macrophage differentiation and cholesterol uptake. Nature Medicine, 2001, 7, 41-47.	15.2	476
269	PPAR-Î ³ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine, 2001, 7, 48-52.	15.2	1,014
270	Lack of macrophage fatty-acid–binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nature Medicine, 2001, 7, 699-705.	15.2	616
271	A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nature Medicine, 2001, 7, 840-846.	15.2	227
272	Phenolic antioxidants trolox and caffeic acid modulate the oxidized LDL-induced EGF-receptor activation. British Journal of Pharmacology, 2001, 132, 1777-1788.	2.7	30
273	Peroxidation of linoleic acid and its relation to aging and age dependent diseases. Mechanisms of Ageing and Development, 2001, 122, 617-657.	2.2	60
274	12/15-Lipoxygenase, Oxidative Modification of LDL and Atherogenesis. Trends in Cardiovascular Medicine, 2001, 11, 116-124.	2.3	114
275	Lipid peroxidation in aging and age-dependent diseases. Experimental Gerontology, 2001, 36, 1425-1457.	1.2	179

#	Article	IF	CITATIONS
276	Troglitazone Inhibits Atherosclerosis in Apolipoprotein E–Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 372-377.	1.1	327
277	Peroxisome proliferator-activated receptors in inflammation control. Journal of Endocrinology, 2001, 169, 453-459.	1.2	697
278	PPARÎ ³ /RXRα Heterodimers Control Human Trophoblast Invasion. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5017-5024.	1.8	106
279	Delayed activation of PPARγ by LPS and IFNâ€Î³ attenuates the oxidative burst in macrophages. FASEB Journal, 2001, 15, 535-544.	0.2	100
280	15-Lipoxygenase-1 Metabolites Down-regulate Peroxisome Proliferator-activated Receptor Î ³ via the MAPK Signaling Pathway. Journal of Biological Chemistry, 2001, 276, 34545-34552.	1.6	87
281	Peroxisome Proliferator-activated Receptors in Atherosclerosis and Inflammation—An Update. Toxicologic Pathology, 2001, 29, 224-231.	0.9	35
282	Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2610-2615.	3.3	271
283	Oxidized Alkyl Phospholipids Are Specific, High Affinity Peroxisome Proliferator-activated Receptor γ Ligands and Agonists. Journal of Biological Chemistry, 2001, 276, 16015-16023.	1.6	243
284	7-Ketocholesterol Is an Endogenous Modulator for the Arylhydrocarbon Receptor. Journal of Biological Chemistry, 2001, 276, 3054-3059.	1.6	105
285	Peroxisome Proliferator-activated Receptor Î ³ and Chicken Ovalbumin Upstream Promoter Transcription Factor II Negatively Regulate the Phosphoenolpyruvate Carboxykinase Promoter via a Common Element*. Journal of Biological Chemistry, 2001, 276, 30561-30569.	1.6	36
286	Antiatherogenic Effects of Thiazolidinediones?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 295-296.	1.1	20
287	Peroxisome Proliferator-Activated Receptors (PPARs) and Their Role in the Vessel Wall: Possible Mediators of Cardiovascular Risk?. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 203-210.	3.1	25
288	An olive oil-rich diet reduces scavenger receptor mRNA in murine macrophages. British Journal of Nutrition, 2001, 85, 185-191.	1.2	19
289	Oxidized Low Density Lipoprotein Decreases Macrophage Expression of Scavenger Receptor B-I. Journal of Biological Chemistry, 2001, 276, 16567-16572.	1.6	58
290	PPARÎ ³ : a Nuclear Regulator of Metabolism, Differentiation, and Cell Growth. Journal of Biological Chemistry, 2001, 276, 37731-37734.	1.6	1,034
291	The Peroxisome Proliferator-activated Receptor δPromotes Lipid Accumulation in Human Macrophages. Journal of Biological Chemistry, 2001, 276, 44258-44265.	1.6	243
292	Oxidized LDL Regulates Vascular Endothelial Growth Factor Expression in Human Macrophages and Endothelial Cells Through Activation of Peroxisome Proliferator–Activated Receptor-γ. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 560-566.	1.1	143
293	Induction of CD36 by allâ€ŧrans retinoic acid: retinoic acid receptor signaling in the pathogenesis of atherosclerosis. FASEB Journal, 2001, 15, 1221-1223.	0.2	42

#	Article	IF	CITATIONS
294	Autoregulation of the Human Liver X Receptor α Promoter. Molecular and Cellular Biology, 2001, 21, 7558-7568.	1.1	299
295	Oxidized Low Density Lipoprotein Exposure Alters the Transcriptional Response of Macrophages to Inflammatory Stimulus. Journal of Biological Chemistry, 2001, 276, 45729-45739.	1.6	49
296	CD36, a Member of the Class B Scavenger Receptor Family, as a Receptor for Advanced Glycation End Products. Journal of Biological Chemistry, 2001, 276, 3195-3202.	1.6	204
297	Absence of 12/15-Lipoxygenase Expression Decreases Lipid Peroxidation and Atherogenesis in Apolipoprotein E–Deficient Mice. Circulation, 2001, 103, 2277-2282.	1.6	225
298	Maternal Hypercholesterolemia and Treatment During Pregnancy Influence the Long-Term Progression of Atherosclerosis in Offspring of Rabbits. Circulation Research, 2001, 89, 991-996.	2.0	139
299	PPARγ/RXRα Heterodimers Are Involved in Human CGβ Synthesis and Human Trophoblast Differentiation. Endocrinology, 2001, 142, 4504-4514.	1.4	144
300	Troglitazone Reduces the Expression of PPARÎ ³ While Stimulating That of PPARα in Mononuclear Cells in Obese Subjects1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3130-3133.	1.8	19
301	Transcriptional Suppression of Type 1 Angiotensin II Receptor Gene Expression by Peroxisome Proliferator-Activated Receptor-1 ³ in Vascular Smooth Muscle Cells*. Endocrinology, 2001, 142, 3125-3134.	1.4	178
302	Albumin Regulates Induction of Peroxisome Proliferator-Activated Receptor-I³ (PPARI³) by 15-Deoxy-Ĩ²12–14-Prostaglandin J2 in Vitro and May Be an Important Regulator of PPARγ Function in Vivo**This work was supported by grants from the NSF (MCB-9513300; to E.C.P. and T.S.S.), the NIH [HD-08567 (to L.L.W.) and HD-30367 (to R.N.T.)], and the Sandler Foundation Endocrinology, 2001, 142,	1.4	14
303	551-556. Immunomodulatory Effects of Statins: Mechanisms and Potential Impact on Arteriosclerosis. Journal of the American Society of Nephrology: JASN, 2002, 13, 1673-1681.	3.0	109
304	A Novel Family of Atherogenic Oxidized Phospholipids Promotes Macrophage Foam Cell Formation via the Scavenger Receptor CD36 and Is Enriched in Atherosclerotic Lesions. Journal of Biological Chemistry, 2002, 277, 38517-38523.	1.6	333
305	Vascular Effects of GI262570X (PPAR-γ agonist) in the Brown Adipose Tissue of Han Wistar Rats: A Review of 1-month, 13-week, 27-week and 2-year Oral Toxicity Studies. Toxicologic Pathology, 2002, 30, 420-426.	0.9	9
306	Opposing Effects of 15-Lipoxygenase-1 and -2 Metabolites on MAPK Signaling in Prostate. Journal of Biological Chemistry, 2002, 277, 40549-40556.	1.6	136
307	Identification of a Novel Family of Oxidized Phospholipids That Serve as Ligands for the Macrophage Scavenger Receptor CD36. Journal of Biological Chemistry, 2002, 277, 38503-38516.	1.6	389
308	Activation of Peroxisome Proliferator-Activated Receptor γ by Nitric Oxide in Monocytes/Macrophages Down-Regulates p47 <i>phox</i> and Attenuates the Respiratory Burst. Journal of Immunology, 2002, 169, 2619-2626.	0.4	74
309	Interleukin (IL)-4 Indirectly Suppresses IL-2 Production by Human T Lymphocytes via Peroxisome Proliferator-activated Receptor Î ³ Activated by Macrophage-derived 12/15-Lipoxygenase Ligands. Journal of Biological Chemistry, 2002, 277, 3973-3978.	1.6	78
310	Novel 5′ Exon of Scavenger Receptor CD36 Is Expressed in Cultured Human Vascular Smooth Muscle Cells and Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 412-417.	1.1	38
311	Perturbation of Lipid Metabolism by Linoleic Acid Hydroperoxide in CaCo-2 Cells. Biological Chemistry, 2002, 383, 637-48.	1.2	8

#	Article	IF	CITATIONS
313	Cyclooxygenase-2 Is Induced in Monocytes by Peroxisome Proliferator Activated Receptor γ and Oxidized Alkyl Phospholipids from Oxidized Low Density Lipoprotein. Journal of Biological Chemistry, 2002, 277, 13029-13036.	1.6	94
314	Regulation of Peroxisome Proliferator-activated Receptor-Î ³ -mediated Gene Expression. Journal of Biological Chemistry, 2002, 277, 23582-23586.	1.6	55
315	Peroxisome Proliferator–activated Receptor Activators Inhibit Oxidized Low-density Lipoprotein–induced Endothelin-1 Secretion in Endothelial Cells. Journal of Cardiovascular Pharmacology, 2002, 40, 822-831.	0.8	83
316	Novel insulin sensitizers: pharmacogenomic aspects. Pharmacogenomics, 2002, 3, 99-116.	0.6	33
317	The Activity of PPARγ in Primary Human Trophoblasts Is Enhanced by Oxidized Lipids. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1105-1110.	1.8	85
318	Selective Intranuclear Redistribution of PPAR Isoforms by RXRα. Molecular Endocrinology, 2002, 16, 707-721.	3.7	42
319	Biology and toxicology of PPARg ligands. Human and Experimental Toxicology, 2002, 21, 429-437.	1.1	24
320	PPARÎ ³ but not PPARα Ligands Are Potent Repressors of Major Histocompatibility Complex Class II Induction in Atheroma-Associated Cells. Circulation Research, 2002, 90, 356-362.	2.0	52
321	PPARÎ ³ and Vascular Inflammation. Circulation Research, 2002, 91, 373-374.	2.0	15
322	Dual Promoter Structure of Mouse and Human Fatty Acid Translocase/CD36 Genes and Unique Transcriptional Activation by Peroxisome Proliferator-activated Receptor α and γ Ligands. Journal of Biological Chemistry, 2002, 277, 15703-15711.	1.6	140
323	The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterolâ€lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB Journal, 2002, 16, 1348-1360.	0.2	237
324	PPAR Activators as Antiinflammatory Mediators in Human T Lymphocytes. Circulation Research, 2002, 90, 703-710.	2.0	322
325	Dualism of Oxidized Lipoproteins in Provoking and Attenuating the Oxidative Burst in Macrophages: Role of Peroxisome Proliferator-Activated Receptor-γ. Journal of Immunology, 2002, 168, 2828-2834.	0.4	61
326	Divergent Effects of Selective Peroxisome Proliferator-Activated Receptor-Î ³ 2 Ligands on Adipocyte Versus Osteoblast Differentiation. Endocrinology, 2002, 143, 2376-2384.	1.4	393
327	Lipolysis in the Absence of Hormone-Sensitive Lipase: Evidence for a Common Mechanism Regulating Distinct Lipases. Diabetes, 2002, 51, 3368-3375.	0.3	111
328	Antiinflammatory and Antiarteriosclerotic Effects of Pioglitazone. Hypertension, 2002, 40, 687-693.	1.3	140
329	15-Deoxy-Δ12,14-prostaglandin J2-induced apoptosis does not require PPARÎ ³ in breast cancer cells. Journal of Lipid Research, 2002, 43, 1818-1828.	2.0	95
330	Lack of association between peroxisome proliferator-activated receptor-gamma-2 gene variants and the occurrence of coronary heart disease in patients with diabetes mellitus. European Journal of Endocrinology, 2002, 146, 545-551.	1.9	32

ARTICLE IF CITATIONS RÃ1es des "Peroxisome Proliferator-Activated Receptors―(PPARs) dans la régulation du métabolisme 331 0.3 35 des lipides et le contrÃ1e de l'inflammation. Société De Biologie Journal, 2002, 196, 47-52. Thiazolidinedione Derivatives as Novel Therapeutic Agents to Prevent the Development of Chronic Pancreatitis. Pancreas, 2002, 24, 184-190. Roles of peroxisome proliferator-activated receptor \hat{I}^3 in lipid homeostasis and inflammatory responses 333 1.2 27 of macrophages. Current Opinion in Lipidology, 2002, 13, 305-312. Role of peroxisome proliferator-activated receptor- \hat{I}^3 in hematologic malignancies. Current Opinion in 334 Hematology, 2002, 9, 294-302. CD36 deficiency induced by antiretroviral therapy. Aids, 2002, 16, 353-358. 335 1.0 45 Cardiovascular Effects of Thiazolidinediones., 2002, 12, 126-134. The terminal six amino-acids of the carboxy cytoplasmic tail of CD36 contain a functional domain 337 implicated in the binding and capture of oxidized low-density lipoprotein. Biochemical Journal, 2002, 1.7 21 364, 507-515. Transcriptional regulation of the human carboxyl ester lipase gene in THP-1 monocytes: an E-box required for activation binds upstream stimulatory factors 1 and 2. Biochemical Journal, 2002, 365, 338 1.7 481-488. Inhibition of peroxisome proliferator-activated receptor (PPAR)-mediated keratinocyte differentiation 339 1.7 58 by lipoxygenase inhibitors. Biochemical Journal, 2002, 366, 901-910. Structural and Functional Analysis of a New Upstream Promoter of the Human FAT/CD36 Gene.. 340 Biological and Pharmaceutical Bulletin, 2002, 25, 1476-1478. Dehydrotrametenolic Acid Induces Preadipocyte Differentiation and Sensitizes Animal Models of Noninsulin-Dependent Diabetes Mellitus to Insulin.. Biological and Pharmaceutical Bulletin, 2002, 25, 341 0.6 87 81-86. Differential Regulation of Vascular Endothelial Growth Factor Expression by Peroxisome Proliferator-activated Receptors in Bladder Cancer Cells. Journal of Biological Chemistry, 2002, 277, 1.6 99 23534-23543. Peroxisome proliferator-activated receptors and reverse endocrinology. Pharmacochemistry Library, 344 0.1 0 2002, 32, 67-79. Chemical responses to plant injury and plant aging. Studies in Natural Products Chemistry, 2002, 27, 345 0.8 59-102. Angiotensin II is associated with activation of NF-κB-mediated genes and downregulation of PPARs. 346 1.0 262 Physiological Genomics, 2002, 11, 21-30. Has Angiogenesis Been Invited to the PPARty?. Journal of Molecular and Cellular Cardiology, 2002, 34, 347 713-716. Arachidonic and Linoleic Acid Metabolism in Mouse Intestinal Tissue: Evidence for Novel Lipoxygenase 348 1.4 14 Activity. Archives of Biochemistry and Biophysics, 2002, 398, 51-60. PPARÎ³ Is Not a Critical Mediator of Primary Monocyte Differentiation or Foam Cell Formation. 349 Biochemical and Biophysical Research Communications, 2002, 290, 707-712.

#	Article	IF	CITATIONS
350	Pioglitazone Prevents Early-Phase Hepatic Fibrogenesis Caused by Carbon Tetrachloride. Biochemical and Biophysical Research Communications, 2002, 291, 55-61.	1.0	108
351	REGULATION OF THE INTERLEUKIN-1 RECEPTOR ANTAGONIST IN THP-1 CELLS BY LIGANDS OF THE PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR \hat{I}^3 . Cytokine, 2002, 18, 320-328.	1.4	62
352	Upregulation of interleukin-8 expression by prostaglandin D2 metabolite 15-deoxy-delta12, 14 prostaglandin J2 (15d-PGJ2) in human THP-1 macrophages. Atherosclerosis, 2002, 160, 11-20.	0.4	49
353	The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis, 2002, 165, 259-269.	0.4	170
354	The role of transcription factors in allergic inflammation. Journal of Allergy and Clinical Immunology, 2002, 110, 553-564.	1.5	36
355	Metabolic and Additional Vascular Effects of Thiazolidinediones. Drugs, 2002, 62, 1463-1480.	4.9	265
356	PPARÎ ³ ANDGLUCOSEHOMEOSTASIS. Annual Review of Nutrition, 2002, 22, 167-197.	4.3	393
357	A New Selective Peroxisome Proliferator-Activated Receptor Î ³ Antagonist with Antiobesity and Antidiabetic Activity. Molecular Endocrinology, 2002, 16, 2628-2644.	3.7	201
358	The Effect of Thiazolidinediones on Plasma Adiponectin Levels in Normal, Obese, and Type 2 Diabetic Subjects. Diabetes, 2002, 51, 2968-2974.	0.3	671
359	Lipoprotein metabolism and molecular pathogenesis of atherosclerosis. Advances in Cell Aging and Gerontology, 2002, 11, 23-77.	0.1	0
360	Anti-β 2 -Glycoprotein I Autoantibodies and Atherosclerosis. International Reviews of Immunology, 2002, 21, 51-66.	1.5	15
361	Conditional Disruption of the Peroxisome Proliferator-Activated Receptor Î ³ Gene in Mice Results in Lowered Expression of ABCA1, ABCG1, and apoE in Macrophages and Reduced Cholesterol Efflux. Molecular and Cellular Biology, 2002, 22, 2607-2619.	1.1	357
362	Effects of the Thiazolidinediones on Cardiovascular Risk Factors. American Journal of Cardiovascular Drugs, 2002, 2, 149-156.	1.0	28
363	Thrombomodulin expression by THP-1 but not by vascular endothelial cells is upregulated by pioglitazone. Thrombosis Research, 2002, 108, 227-234.	0.8	14
364	Genetic analysis of four novel peroxisome proliferator activated receptor-Î ³ splice variants in monkey macrophages. Biochemical and Biophysical Research Communications, 2002, 293, 274-283.	1.0	59
365	Adipocytes recognize and degrade oxidized low density lipoprotein through CD36. Biochemical and Biophysical Research Communications, 2002, 295, 319-323.	1.0	58
366	Thiol-bearing synthetic peptides retain the antioxidant activity of apolipoproteinA-IMilano. Biochemical and Biophysical Research Communications, 2002, 297, 206-213.	1.0	24
367	PPARÎ ³ ligands, troglitazone and pioglitazone, up-regulate expression of HMG-CoA synthase and HMG-CoA reductase gene in THP-1 macrophages. FEBS Letters, 2002, 520, 177-181.	1.3	36

#	Article	IF	CITATIONS
368	Modulation of inflammatory mediators and pparγand nfÎ⁰b expression by pravastatin in response to lipoproteins in human monocytes in vitro. Pharmacological Research, 2002, 45, 147-154.	3.1	148
369	Do changes in the cell membrane structure induce the generation of lipid peroxidation products which serve as first signalling molecules in cell to cell communication?. Prostaglandins Leukotrienes and Essential Fatty Acids, 2002, 67, 151-162.	1.0	11
370	Effect of peroxisome proliferator-activated receptor gamma on thromboxane A2 and prostaglandin E2 production in macrophage cell lines. Prostaglandins Leukotrienes and Essential Fatty Acids, 2002, 67, 245-251.	1.0	2
371	Molecular basis of cholesterol homeostasis: lessons from Tangier disease and ABCA1. Trends in Molecular Medicine, 2002, 8, 168-173.	3.5	89
372	Autoantibody-mediated atherosclerosis. Autoimmunity Reviews, 2002, 1, 348-353.	2.5	46
373	Peroxisome proliferator-activated receptor-Î ³ in macrophage lipid homeostasis. Trends in Endocrinology and Metabolism, 2002, 13, 331-335.	3.1	76
374	Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPARÎ ³ -dependent mechanism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1581, 89-99.	1.2	267
375	Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 132-137.	1.2	211
376	Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Molecular and Cellular Endocrinology, 2002, 194, 123-133.	1.6	123
377	The Mechanisms of Action of PPARs. Annual Review of Medicine, 2002, 53, 409-435.	5.0	2,256
379	The Generation of Monoclonal Antibodies against Human Peroxisome Proliferator-activated Receptors (PPARs). Journal of Atherosclerosis and Thrombosis, 2002, 9, 233-242.	0.9	36
380	Monitoring of Representational Difference Analysis Subtraction Procedures by Global Microarrays. BioTechniques, 2002, 32, 1348-1358.	0.8	9
381	Synergically Increased Expression of CD36, CLA-1 and CD68, but Not of SR-A and LOX-1, with the Progression to Foam Cells from Macrophages Journal of Atherosclerosis and Thrombosis, 2002, 9, 57-64.	0.9	63
382	Oxidized phospholipids inhibit cyclooxygenase-2 in human macrophages via nuclear factor-κB/lκB- and ERK2-dependent mechanisms. Cardiovascular Research, 2002, 55, 406-415.	1.8	34
383	CD36 mRNA and Protein Expression Levels Are Significantly Increased in the Heart and Testis of apoE Deficient Mice in Comparison to Wild Type (C57BL/6). Journal of Biomedicine and Biotechnology, 2002, 2, 14-21.	3.0	10
384	PPAR. , 2002, , 141-158.		0
385	Oxidized lipoproteins and macrophages. Vascular Pharmacology, 2002, 38, 239-248.	1.0	32
386	Vascular protective effects by activation of nuclear receptor PPARÎ ³ . Journal of Diabetes and Its Complications, 2002, 16, 46-49.	1.2	41

#	Article	IF	CITATIONS
387	Roles of peroxisome proliferator-activated receptor Î ³ in cardiovascular disease. Journal of Diabetes and Its Complications, 2002, 16, 108-114.	1.2	24
388	Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. Journal of Diabetes and Its Complications, 2002, 16, 401-415.	1.2	72
389	Synergistic effect of 4-hydroxynonenal and PPAR ligands in controlling human leukemic cell growth and differentiation. Free Radical Biology and Medicine, 2002, 32, 233-245.	1.3	61
390	Natural ligands of PPARÎ ³ :. Cellular Signalling, 2002, 14, 573-583.	1.7	123
391	BISPHENOL A DIGLYCIDYL ETHER (BADGE) SUPPRESSES TUMOR NECROSIS FACTOR-α PRODUCTION AS A PPARÎ ³ AGONIST IN THE MURINE MACROPHAGE-LIKE CELL LINE, RAW 264.7. Cell Biology International, 2002, 26, 235-241.	3 1.4	33
392	Atorvastatin activates PPAR-Î ³ and attenuates the inflammatory response in human monocytes. Inflammation Research, 2002, 51, 58-62.	1.6	109
393	Effects of thiazolidinediones on cardiovascular risk factors. Comprehensive Therapy, 2002, 28, 200-206.	0.2	2
394	Peroxisome proliferator-activated receptor α,γ coagonist LY465608 inhibits macrophage activation and atherosclerosis in apolipoprotein E knockout mice. Lipids, 2002, 37, 487-494.	0.7	38
395	Orphan nuclear receptors find a home in the arterial wall. Current Atherosclerosis Reports, 2002, 4, 213-221.	2.0	22
396	Peroxisome proliferator-activated receptors. Current Atherosclerosis Reports, 2002, 4, 59-64.	2.0	38
397	Vascular signaling pathways in the metabolic syndrome. Current Hypertension Reports, 2002, 4, 105-111.	1.5	25
398	Peroxisome proliferator-activated receptor \hat{I}^3 and atherosclerosis. Current Hypertension Reports, 2002, 4, 71-77.	1.5	22
399	The effect of 15-Lipoxygenase-1 expression on cancer cells. Current Urology Reports, 2002, 3, 207-214.	1.0	59
400	PPARs: transcriptional effectors of fatty acids and their derivatives. Cellular and Molecular Life Sciences, 2002, 59, 790-798.	2.4	284
401	Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. Apmis, 2002, 110, 458-468.	0.9	89
402	Peroxisome-proliferator-activated-receptor gamma (PPARgamma) independent induction of CD36 in THP-1 monocytes by retinoic acid. Immunology, 2002, 106, 53-59.	2.0	49
403	Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney International, 2002, 61, 2142-2148.	2.6	90
404	Role of Peroxisome Proliferator-Activated Receptor gamma Ligands in the Vessel Wall. European Surgery - Acta Chirurgica Austriaca, 2002, 34, 121-126.	0.3	1

#	Article	IF	CITATIONS
405	Post-transcriptional regulation of VEGF expression by oxidised LDL in human macrophages. European Journal of Clinical Investigation, 2002, 32, 767-774.	1.7	29
406	PPARgamma and the thiazolidinediones: molecular basis for a treatment of 'Syndrome X'?. Diabetes, Obesity and Metabolism, 2002, 4, 239-248.	2.2	21
407	Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes and Immunity, 2002, 3, 59-70.	2.2	203
408	Are Changes of the Cell Membrane Structure Causally Involved in the Aging Process?. Annals of the New York Academy of Sciences, 2002, 959, 30-44.	1.8	37
409	With a little help from your friends: cells don't die alone. Nature Cell Biology, 2002, 4, E139-E143.	4.6	28
410	A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nature Medicine, 2002, 8, 1122-1128.	15.2	360
411	Minireview: Lipid Metabolism, Metabolic Diseases, and Peroxisome Proliferator-Activated Receptors. Endocrinology, 2003, 144, 2201-2207.	1.4	786
412	Nuclear Receptors and the Control of Metabolism. Annual Review of Physiology, 2003, 65, 261-311.	5.6	551
413	Anti-inflammatory properties of lipid oxidation products. Journal of Molecular Medicine, 2003, 81, 613-626.	1.7	73
414	Apoptosis and phosphatidylserine-mediated recognition during the take-over phase of the colonial life-cycle in the ascidian Botryllus schlosseri. Cell and Tissue Research, 2003, 312, 369-376.	1.5	38
415	Pathophysiology of Human Genetic CD36 Deficiency. Trends in Cardiovascular Medicine, 2003, 13, 136-141.	2.3	124
416	Oxidants and antioxidants affect the expression of glycodelin. Free Radical Biology and Medicine, 2003, 34, 818-823.	1.3	3
417	DR1-like element in human topoisomerase Ilα gene involved in enhancement of etoposide-induced apoptosis by PPARγ ligand. Experimental Hematology, 2003, 31, 300-308.	0.2	10
418	The Potential Contributions of Chronic Inflammation to Lung Carcinogenesis. Clinical Lung Cancer, 2003, 5, 46-62.	1.1	189
419	Effects of troglitazone on intracellular cholesterol distribution and cholesterol-dependent cell functions in MA-10 Leydig tumor cells. Biochemical Pharmacology, 2003, 66, 307-313.	2.0	12
420	The potential role of peroxisome proliferator–activated receptors on inflammation in type 2 diabetes mellitus and atherosclerosis. American Journal of Cardiology, 2003, 92, 34-41.	0.7	70
421	Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins and Other Lipid Mediators, 2003, 71, 1-22.	1.0	109
422	Galectin-3 expression in macrophages is signaled by Ras/MAP kinase pathway and up-regulated by modified lipoproteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 13-23.	1.9	55

#	Article	IF	CITATIONS
423	15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cellsvia a peroxisome proliferator-activated receptor gamma-dependent pathway. International Journal of Cancer, 2003, 107, 837-843.	2.3	68
424	Primary culture model of peroxisome proliferator-activated receptor ? activity in prostate cancer cells. Journal of Cellular Physiology, 2003, 196, 131-143.	2.0	43
425	Rapid induction of peroxisome proliferator–activated receptor γ expression in human monocytes by monosodium urate monohydrate crystals. Arthritis and Rheumatism, 2003, 48, 231-239.	6.7	73
426	The relationship between changes in the cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiologia Plantarum, 2003, 119, 5-18.	2.6	62
427	Rosiglitazone (PPARγ-agonist) attenuates atherogenesis with no effect on hyperglycaemia in a combined diabetes-atherosclerosis mouse model. Diabetes, Obesity and Metabolism, 2003, 5, 45-50.	2.2	68
428	PPARÎ ³ and metabolism: insights from the study of human genetic variants. Clinical Endocrinology, 2003, 59, 267-277.	1.2	78
429	Effects of rosiglitazone and linoleic acid on human preadipocyte differentiation. European Journal of Clinical Investigation, 2003, 33, 574-581.	1.7	49
430	Fatty acids modulate the effect of darglitazone on macrophage CD36 expression. European Journal of Clinical Investigation, 2003, 33, 464-471.	1.7	14
431	PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy?. International Journal of Obesity, 2003, 27, 147-161.	1.6	250
432	Muscle-specific Pparg deletion causes insulin resistance. Nature Medicine, 2003, 9, 1491-1497.	15.2	454
433	Unsaturated fatty acids and their oxidation products stimulate CD36 expression in human macrophages. ClĀnica E Investigación En Arteriosclerosis, 2003, 15, 284-285.	0.4	0
434	Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes. Atherosclerosis, 2003, , .	0.4	1
435	Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes. Atherosclerosis, 2003, 167, 129-134.	0.4	105
436	Degree of oxidation of low density lipoprotein affects expression of CD36 and PPARÎ ³ , but not cytokine production, by human monocyte-macrophages. Atherosclerosis, 2003, 168, 271-282.	0.4	25
437	Regulation of MMP-1 expression in vascular endothelial cells by insulin sensitizing thiazolidinediones. Atherosclerosis, 2003, 169, 235-243.	0.4	9
438	Oxidised LDL decreases VEGFR-1 expression in human monocyte-derived macrophages. Atherosclerosis, 2003, 169, 259-267.	0.4	9
439	The state of macrophage differentiation determines the TNFα response to nitrated lipoprotein uptake. Atherosclerosis, 2003, 170, 213-221.	0.4	23
440	Fatty acids as gatekeepers of immune cell regulation. Trends in Immunology, 2003, 24, 639-645.	2.9	146

#	Article	IF	CITATIONS
441	The vascular biology of atherosclerosis. American Journal of Medicine, 2003, 115, 55-61.	0.6	58
442	Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nature Medicine, 2003, 9, 213-219.	15.2	1,088
443	Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL: roles of peroxidation, lipoprotein-associated phospholipase A2 and PPARÎ ³ . FEBS Letters, 2003, 553, 145-150.	1.3	32
444	Microarray analysis of peroxisome proliferator-activated receptor-Î ³ induced changes in gene expression in macrophages. Biochemical and Biophysical Research Communications, 2003, 308, 505-510.	1.0	54
445	Downregulation of PPARÎ ³ expression in peripheral blood monocytes correlated with adhesion molecules in acute coronary syndrome. Clinica Chimica Acta, 2003, 336, 19-25.	0.5	6
446	Roles of peroxisome proliferator-activated receptors delta and gamma in myoblast transdifferentiation. Experimental Cell Research, 2003, 288, 168-176.	1.2	55
447	Are lipid peroxidation processes induced by changes in the cell wall structure and how are these processes connected with diseases?. Medical Hypotheses, 2003, 60, 69-83.	0.8	67
448	Association of the PRO12ALA polymorphism of the PPAR-Î ³ 2 gene with oxidized low-density lipoprotein and cardiolipin autoantibodies in nondiabetic and type 2 diabetic subjects. Metabolism: Clinical and Experimental, 2003, 52, 213-217.	1.5	14
449	Atherogenic autoantigen: oxidized LDL complexes with ?2-glycoprotein I. Immunobiology, 2003, 207, 17-22.	0.8	28
450	Evaluation of eicosanoids and NSAIDs as PPARÎ ³ ligands in colorectal carcinoma cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 68, 323-330.	1.0	27
451	Effects of dietary fats on bone health in advanced age. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 68, 379-386.	1.0	44
452	PPARÎ ³ Promotes Mannose Receptor Gene Expression in Murine Macrophages and Contributes to the Induction of This Receptor by IL-13. Immunity, 2003, 19, 329-339.	6.6	81
453	Mouse models as tools for dissecting disorders of lipoprotein metabolism. Seminars in Cell and Developmental Biology, 2003, 14, 25-35.	2.3	5
454	Molecular cloning and characterisation of peroxisome proliferator activated receptor gamma1 (PPARγ1) cDNA gene from guinea pig (Cavia porcellus): tissue distribution. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 134, 37-44.	0.7	3
455	The Metabolic Syndrome: Peroxisome Proliferator-Activated Receptor Î ³ and Its Therapeutic Modulation. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2412-2421.	1.8	167
456	PPARÎ ³ Agonists and Vascular Risk Factors: Potential Effects on Cardiovascular Disease. Metabolic Syndrome and Related Disorders, 2003, 1, 23-32.	0.5	3
457	Activation and Binding of Peroxisome Proliferator-Activated Receptor Î ³ by Synthetic Cannabinoid Ajulemic Acid. Molecular Pharmacology, 2003, 63, 983-992.	1.0	122
458	Differential recruitment of the coactivator proteins CREB-binding protein and steroid receptor coactivator-1 to peroxisome proliferator-activated receptor gamma/9-cis-retinoic acid receptor heterodimers by ligands present in oxidized low-density lipoprotein. Journal of Endocrinology, 2003,	1.2	21

#	Article	IF	CITATIONS
459	Peroxisome Proliferator Activated Receptor (PPAR)α Agonists Inhibit Hypertrophy of Neonatal Rat Cardiac Myocytes. Endocrinology, 2003, 144, 4187-4194.	1.4	72
460	Peroxisome Proliferator–activated Receptors α and γ Down-regulate Allergic Inflammation and Eosinophil Activation. Journal of Experimental Medicine, 2003, 198, 411-421.	4.2	239
461	Synergism Between Platelet-Activating Factor-Like Phospholipids and Peroxisome Proliferator-Activated Receptor γ Agonists Generated During Low Density Lipoprotein Oxidation That Induces Lipid Body Formation in Leukocytes. Journal of Immunology, 2003, 171, 2090-2098.	0.4	35
462	Induction of Glutathione Synthesis in Macrophages by Oxidized Low-Density Lipoproteins Is Mediated by Consensus Antioxidant Response Elements. Circulation Research, 2003, 92, 386-393.	2.0	99
463	Activation of p38 Mitogen-Activated Protein Kinase and Activator Protein-1 during the Promotion of Neurite Extension of PC-12 Cells by 15-Deoxy-Δ12,14-prostaglandin J2. Molecular Pharmacology, 2003, 63, 607-616.	1.0	57
464	United They Go. Circulation Research, 2003, 93, 183-185.	2.0	19
465	Metalloproteinase Expression in PMA-stimulated THP-1 Cells. Journal of Biological Chemistry, 2003, 278, 51340-51346.	1.6	80
466	Tumor Necrosis Factor-α Promotes Macrophage-Induced Vascular Smooth Muscle Cell Apoptosis by Direct and Autocrine Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1553-1558.	1.1	169
467	Peroxisome Proliferator-Activated Receptor-Î ³ -Deficient Heterozygous Mice Develop an Exacerbated Neural Antigen-Induced Th1 Response and Experimental Allergic Encephalomyelitis. Journal of Immunology, 2003, 171, 5743-5750.	0.4	102
468	Generation and Characterization of IgG Monoclonal Antibodies Specific for Malondialdehyde. Hybridoma, 2003, 22, 259-262.	0.6	3
469	Dual Roles for Lipolysis and Oxidation in Peroxisome Proliferation-Activator Receptor Responses to Electronegative Low Density Lipoprotein. Journal of Biological Chemistry, 2003, 278, 39874-39881.	1.6	58
470	Peroxisome Proliferator-Activated Receptor γ Inhibits the Migration of Dendritic Cells: Consequences for the Immune Response. Journal of Immunology, 2003, 170, 5295-5301.	0.4	85
471	PPARÂ is a very low-density lipoprotein sensor in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1268-1273.	3.3	288
472	Convergence of Peroxisome Proliferator-activated Receptor Î ³ and Foxo1 Signaling Pathways. Journal of Biological Chemistry, 2003, 278, 45485-45491.	1.6	209
473	Role of Monocytes in Atherogenesis. Physiological Reviews, 2003, 83, 1069-1112.	13.1	355
474	Peroxisome Proliferator-Activated Receptor ^{ĵ3} Ligands Increase Release of Nitric Oxide From Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 52-57.	1.1	278
475	Activation of PPAR Â in colon tumor cell lines by oxidized metabolites of linoleic acid, endogenous ligands for PPAR Â. Carcinogenesis, 2003, 24, 1717-1722.	1.3	65
476	Human invasive trophoblasts transformed with simian virus 40 provide a new tool to study the role of PPARÂ in cell invasion process. Carcinogenesis, 2003, 24, 1325-1336.	1.3	61

#	Article	IF	CITATIONS
477	PPARÂ and PPARÂ negatively regulate specific subsets of lipopolysaccharide and IFN-Â target genes in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6712-6717.	3.3	395
478	Macrophage cholesterol transport: a critical player in foam cell formation. Annals of Medicine, 2003, 35, 146-155.	1.5	67
479	Recent Advances in Peroxisome Proliferator-Activated Receptor Science. Current Medicinal Chemistry, 2003, 10, 267-280.	1.2	95
480	The Lipid Droplet-Associated Protein Adipophilin Is Expressed in Human Trophoblasts and Is Regulated by Peroxisomal Proliferator-Activated Receptor-γ/Retinoid X Receptor. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 6056-6062.	1.8	74
481	On the Role of Liver X Receptors in Lipid Accumulation in Adipocytes. Molecular Endocrinology, 2003, 17, 172-182.	3.7	136
482	Cross-Talk between Peroxisome Proliferator-Activated Receptor (PPAR) α and Liver X Receptor (LXR) in Nutritional Regulation of Fatty Acid Metabolism. I. PPARs Suppress Sterol Regulatory Element Binding Protein-1c Promoter through Inhibition of LXR Signaling. Molecular Endocrinology, 2003, 17, 1240-1254.	3.7	264
483	When Translation Meets Metabolism: Multiple Links to Diabetes. Endocrine Reviews, 2003, 24, 91-101.	8.9	79
484	Lipids and the immune response: from molecular mechanisms to clinical applications. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 133-150.	1.3	62
485	Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Current Opinion in Lipidology, 2003, 14, 459-468.	1.2	83
486	Evaluation of Human Peroxisome Proliferator-Activated Receptor (PPAR) Subtype Selectivity of a Variety of Anti-inflammatory Drugs Based on a Novel Assay for PPARδ(β). Journal of Pharmacological Sciences, 2003, 93, 347-355.	1.1	38
487	Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1182-E1195.	1.8	142
488	Peroxisome Proliferator-Activated Receptors and the Cardiovascular System. Vitamins and Hormones, 2003, 66, 157-188.	0.7	44
489	Adipocyte differentiation of 3T3-L1 preadipocytes is dependent on lipoxygenase activity during the initial stages of the differentiation process. Biochemical Journal, 2003, 375, 539-549.	1.7	118
490	æ–°è¦è;¨çš®åž‹ãfªãƒã,ã,•ã,²ãƒŠãƒ¼ã,¼ã®æ§‹é€ãëç"Ÿç†æ©Ÿèƒ½. Nippon Nogeikagaku Kaishi, 2003, 77, 487-	49 0. 0	0
491	Soy Isoflavones Exert Antidiabetic and Hypolipidemic Effects through the PPAR Pathways in Obese Zucker Rats and Murine RAW 264.7 Cells. Journal of Nutrition, 2003, 133, 1238-1243.	1.3	333
492	Chemokine Receptor 2 (CCR2) in Atherosclerosis, Infectious Diseases, and Regulation of T-Cell Polarization. Microcirculation, 2003, 10, 259-264.	1.0	85
493	PPARs: Nuclear Hormone Receptors Involved in the Control of Inflammation. , 0, , 419-435.		1
494	PPARs, Cell Differentiation, and Glucose Homeostasis. , 0, , 309-326.		0

#	Article	IF	CITATIONS
496	PPARs in Atherosclerosis. , 0, , 401-417.		0
498	Structure and Function of PPARs and Their Molecular Recognition of Fatty Acids. , 0, , 173-189.		0
499	Trans10, cis12-conjugated linoleic acid prevents triacylglycerol accumulation in adipocytes by acting as a PPARÎ ³ modulator. Journal of Lipid Research, 2003, 44, 1441-1452.	2.0	101
500	Inflammatory Reactions in the Pathogenesis of Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 2003, 10, 63-71.	0.9	288
501	15-Deoxy-Δ12,14-prostaglandin J2 and laminar fluid shear stress stabilize c-IAP1 in vascular endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H38-H46.	1.5	22
502	Effect of Cerivastatin on Endothelial Dysfunction and Aortic CD36 Expression in Diabetic Hyperlipidemic Rats. Hypertension Research, 2004, 27, 589-598.	1.5	9
503	Conjugated Linoleic Acid Isomers and Trans Fatty Acids Inhibit Fatty Acid Transport in Hepatoma 7288CTC and Inguinal Fat Pads in Buffalo Rats. Journal of Nutrition, 2004, 134, 1989-1997.	1.3	21
505	Direct attenuation of plasminogen activator inhibitor type-1 expression in human adipose tissue by thiazolidinediones. Thrombosis and Haemostasis, 2004, 91, 674-682.	1.8	57
506	Deactivation of murine alveolar macrophages by peroxisome proliferator-activated receptor-l ³ ligands. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L613-L619.	1.3	69
508	Tyrosine Agonists Reverse the Molecular Defects Associated with Dominant-Negative Mutations in Human Peroxisome Proliferator-Activated Receptor Î ³ . Endocrinology, 2004, 145, 1527-1538.	1.4	55
509	Peroxisome Proliferator-Activated Receptors and Atherogenesis. Circulation Research, 2004, 94, 1168-1178.	2.0	471
510	Peroxisome Proliferator-Activated Receptor-Î ³ Calls for Activation in Moderation: Lessons from Genetics and Pharmacology. Endocrine Reviews, 2004, 25, 899-918.	8.9	251
511	Be Fit or Be Sick: Peroxisome Proliferator-Activated Receptors Are Down the Road. Molecular Endocrinology, 2004, 18, 1321-1332.	3.7	196
512	Statins and Cardiac Allograft Vasculopathy after Heart Transplantation. Seminars in Vascular Medicine, 2004, 4, 401-406.	2.1	26
513	Lipids from Oxidized Low-Density Lipoprotein Modulate Human Trophoblast Invasion: Involvement of Nuclear Liver X Receptors. Endocrinology, 2004, 145, 4583-4591.	1.4	77
514	Antiinflammatory Roles of Peroxisome Proliferator–activated Receptor γ in Human Alveolar Macrophages. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 195-200.	2.5	154
515	Peroxisome Proliferator-Activated Receptor Family and Its Relationship to Renal Complications of the Metabolic Syndrome. Journal of the American Society of Nephrology: JASN, 2004, 15, 2801-2815.	3.0	157
516	Polyunsaturated Fatty Acids Including Docosahexaenoic and Arachidonic Acid Bind to the Retinoid X Receptor α Ligand-binding Domain. Molecular and Cellular Proteomics, 2004, 3, 692-703.	2.5	270

#	Article	IF	CITATIONS
517	Transcriptional Regulation of Human CYP27 Integrates Retinoid, Peroxisome Proliferator-Activated Receptor, and Liver X Receptor Signaling in Macrophages. Molecular and Cellular Biology, 2004, 24, 8154-8166.	1.1	108
518	PPARÂ influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis, 2004, 25, 1747-1755.	1.3	105
519	Peroxisome Proliferator–Activated Receptor α Induces NADPH Oxidase Activity in Macrophages, Leading to the Generation of LDL with PPAR-α Activation Properties. Circulation Research, 2004, 95, 1174-1182.	2.0	108
520	Insulin resistance and cardiovascular disease: the role of PPARÎ ³ activators beyond their anti-diabetic action. Diabetes and Vascular Disease Research, 2004, 1, 76-81.	0.9	18
521	Are Oxidized LDL/β2-glycoprotein I Complexes Pathogenic Antigens in Autoimmune-mediated Atherosclerosis?. Clinical and Developmental Immunology, 2004, 11, 103-111.	3.3	48
522	Evidence for a Potent Antiinflammatory Effect of Rosiglitazone. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2728-2735.	1.8	355
523	Sterol regulation of scavenger receptor class B type I in macrophages. Journal of Lipid Research, 2004, 45, 889-899.	2.0	56
524	Decoding Transcriptional Programs Regulated by PPARs and LXRs in the Macrophage. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 230-239.	1.1	145
525	Stem Cell Transplantation Reveals That Absence of Macrophage CD36 Is Protective Against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2333-2338.	1.1	152
526	Pitavastatin Downregulates Expression of the Macrophage Type B Scavenger Receptor, CD36. Circulation, 2004, 109, 790-796.	1.6	78
527	Reduction of Atherosclerotic Plaques by Lysosomal Acid Lipase Supplementation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 147-154.	1.1	41
528	A Novel Pathway Involving Progesterone Receptor, 12/15-Lipoxygenase-derived Eicosanoids, and Peroxisome Proliferator-activated Receptor Î ³ Regulates Implantation in Mice. Journal of Biological Chemistry, 2004, 279, 11570-11581.	1.6	83
529	Sensing Environmental Lipids by Dendritic Cell Modulates Its Function. Journal of Immunology, 2004, 172, 54-60.	0.4	52
530	Antitumor effects of peroxisome proliferator activate receptor Î ³ ligands on anaplastic thyroid carcinoma. International Journal of Oncology, 2004, 24, 89.	1.4	16
531	ATVB In Focus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1340-1341.	1.1	4
532	Hemozoin (Malarial Pigment) Inhibits Differentiation and Maturation of Human Monocyte-Derived Dendritic Cells: A Peroxisome Proliferator-Activated Receptor-Î ³ -Mediated Effect. Journal of Immunology, 2004, 173, 4066-4074.	0.4	156
533	Oxidized Low Density Lipoprotein Blocks Lipopolysaccharide-induced Interferon Î ² Synthesis in Human Macrophages by Interfering with IRF3 Activation. Journal of Biological Chemistry, 2004, 279, 28781-28788.	1.6	14
534	Nuclear Receptor Signaling in the Control of Cholesterol Homeostasis. Circulation Research, 2004, 95, 660-670.	2.0	111

#	Article	IF	CITATIONS
535	Role of Nrf2 in the Regulation of CD36 and Stress Protein Expression in Murine Macrophages. Circulation Research, 2004, 94, 609-616.	2.0	388
536	Stringent rosiglitazone-dependent gene switch in muscle cells without effect on myogenic differentiation. Molecular Therapy, 2004, 9, 637-649.	3.7	21
537	Ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-Î ³ . Experimental and Molecular Medicine, 2004, 36, 534-544.	3.2	22
538	PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. Journal of Lipid Research, 2004, 45, 2161-2173.	2.0	291
539	Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Ligands and Their Therapeutic Utility. Progress in Medicinal Chemistry, 2004, 42, 1-53.	4.1	21
540	Peroxisome Proliferator-activated Receptor β/δ Regulates Very Low Density Lipoprotein Production and Catabolism in Mice on a Western Diet. Journal of Biological Chemistry, 2004, 279, 20874-20881.	1.6	85
541	Lysosomal acid lipase deficiency causes respiratory inflammation and destruction in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L801-L807.	1.3	80
542	Fatty Acids and Mitochondria, Cell Growth and Injury: Broader Implications. , 2004, , 143-175.		Ο
543	Inhibition of LPS- and CpG DNA-induced TNF-α response by oxidized phospholipids. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L808-L816.	1.3	63
544	The effect of high glucose and PPAR-γ agonists on PPAR-γ expression and function in HK-2 cells. American Journal of Physiology - Renal Physiology, 2004, 287, F528-F534.	1.3	70
545	Severe Hypercholesterolaemia Leads to Strong Th2 Responses to an Exogenous Antigen. Scandinavian Journal of Immunology, 2004, 59, 285-293.	1.3	56
546	Troglitazone Inhibits Cyclin D1 Expression and Cell Cycling Independently of PPARÎ ³ in Normal Mouse Skin Keratinocytes. Journal of Investigative Dermatology, 2004, 123, 1110-1119.	0.3	34
547	Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death and Differentiation, 2004, 11, S126-S143.	5.0	237
548	Peroxisome proliferatorâ€activated receptorâ€Î³: too much of a good thing causes harm. EMBO Reports, 2004, 5, 142-147.	2.0	128
549	Peroxisome proliferator-activated receptor-Î ³ activation inhibits tumor progression in non-small-cell lung cancer. Oncogene, 2004, 23, 100-108.	2.6	190
550	Expression of CD36 in Macrophages and Atherosclerosis The Role of Lipid Regulation of PPARÎ ³ Signaling. Trends in Cardiovascular Medicine, 2004, 14, 8-12.	2.3	74
551	CD36, oxidized LDL and PPARÎ ³ : pathological interactions in macrophages and atherosclerosis. Vascular Pharmacology, 2004, 41, 139-146.	1.0	65
552	CD36 overexpression in human brain correlates with β-amyloid deposition but not with Alzheimer's disease. Free Radical Biology and Medicine, 2004, 36, 1018-1024.	1.3	53

#	Article	IF	CITATIONS
553	Thioredoxin reductase 1 is upregulated in atherosclerotic plaques: specific induction of the promoter in human macrophages by oxidized low-density lipoproteins. Free Radical Biology and Medicine, 2004, 37, 71-85.	1.3	46
554	Enzymatically modified low-density lipoprotein upregulates CD36 in low-differentiated monocytic cells in a peroxisome proliferator-activated receptor-l ³ -dependent way. Biochemical Pharmacology, 2004, 67, 841-854.	2.0	14
555	Nuclear receptor signaling in macrophages. Biochemical Pharmacology, 2004, 67, 201-212.	2.0	85
556	Reduction of intracellular cholesterol accumulation in THP-1 macrophages by a combination of rosiglitazone and atorvastatin. Biochemical Pharmacology, 2004, 68, 155-163.	2.0	32
557	17-Â estradiol enhances prostaglandin E2production in human U937-derived macrophages. Molecular and Cellular Biochemistry, 2004, 262, 101-110.	1.4	13
558	Crosstalk of oncogenic and prostanoid signaling pathways. Journal of Cancer Research and Clinical Oncology, 2004, 130, 429-44.	1.2	41
560	The up-regulation of hepatic acyl-coA oxidase and cytochrome P450 4A1 mRNA expression by dietary oxidized frying oil is comparable between male and female rats. Lipids, 2004, 39, 233-238.	0.7	29
561	Diet and lipoprotein oxidation: Analysis of oxidized triacylglycerols in pig lipoproteins. Lipids, 2004, 39, 639-647.	0.7	30
562	Diet, fatty acids, and regulation of genes important for heart disease. Current Atherosclerosis Reports, 2004, 6, 432-440.	2.0	43
563	Rosiglitazone Inhibits Proliferation, Motility, and Matrix Metalloproteinase Production in Keratinocytes. Journal of Investigative Dermatology, 2004, 122, 130-139.	0.3	54
564	Lipid-activated nuclear receptors: from gene transcription to the control of cellular metabolism. European Journal of Lipid Science and Technology, 2004, 106, 432-450.	1.0	10
565	Suppression of cyclooxygenase-2 overexpression by 15S-hydroxyeicosatrienoic acid in androgen-dependent prostatic adenocarcinoma cells. International Journal of Cancer, 2004, 111, 192-197.	2.3	27
566	Approaches to understanding the importance and clinical implications of peroxisome proliferator-activated receptor gamma (PPAR?) signaling in prostate cancer. Journal of Cellular Biochemistry, 2004, 91, 513-527.	1.2	27
567	Decreased expression of peroxisome proliferator activated receptor ? in CFTR?/? mice. Journal of Cellular Physiology, 2004, 200, 235-244.	2.0	66
568	A yeast two-hybrid technology-based system for the discovery of PPARÎ ³ agonist and antagonist. Analytical Biochemistry, 2004, 335, 253-259.	1.1	28
569	NUCLEAR RECEPTORS IN MACROPHAGE BIOLOGY: At the Crossroads of Lipid Metabolism and Inflammation. Annual Review of Cell and Developmental Biology, 2004, 20, 455-480.	4.0	262
570	Potency of arachidonic acid in polyunsaturated fatty acid-induced death of human monocyte?macrophages: implications for atherosclerosis*1. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, , .	1.0	0
571	Regulated Production of a Peroxisome Proliferator-activated Receptor-Î ³ Ligand during an Early Phase of Adipocyte Differentiation in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2004, 279, 36093-36102.	1.6	161

#	Article	IF	CITATIONS
572	Activation of PPAR Î ³ and δby conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology, 2004, 127, 777-791.	0.6	354
573	Reduction of intracellular cholesterol accumulation in THP-1 macrophages by a combination of rosiglitazone and atorvastatin. Biochemical Pharmacology, 2004, 68, 155-155.	2.0	1
574	Dual Role of Oxidized LDL on the NF-KappaB Signaling Pathway. Free Radical Research, 2004, 38, 541-551.	1.5	134
575	Role of the Adipocyte, Free Fatty Acids, and Ectopic Fat in Pathogenesis of Type 2 Diabetes Mellitus: Peroxisomal Proliferator-Activated Receptor Agonists Provide a Rational Therapeutic Approach. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 463-478.	1.8	570
576	Identification of hepatic molecular mechanisms of action of alpha-tocopherol using global gene expression profile analysis in rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1689, 66-74.	1.8	98
577	Phenotype of palmitic acid transport and of signalling in alveolar type II cells from E/H-FABP double-knockout mice: contribution of caveolin-1 and PPARγ. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1636, 196-204.	1.2	16
578	Translocation of phospholipase A2 to membranes by oxidized LDL and hydroxyoctadecadienoic acid to contribute to cholesteryl ester formation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1686, 77-84.	1.2	9
579	Involvement of clusterin in 15-deoxy-Δ12,14-prostaglandin J2-induced vascular smooth muscle cell differentiation. Biochemical and Biophysical Research Communications, 2004, 319, 163-168.	1.0	14
580	Leptin and insulin down-regulate angiopoietin-like protein 3, a plasma triglyceride-increasing factor. Biochemical and Biophysical Research Communications, 2004, 322, 1080-1085.	1.0	74
581	Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation. Biochemical and Biophysical Research Communications, 2004, 323, 782-788.	1.0	46
582	Oxidized low-density lipoproteins may induce expression of monocyte chemotactic protein-3 in atherosclerotic plaques. Biochemical and Biophysical Research Communications, 2004, 323, 898-905.	1.0	20
583	Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells, Molecules, and Diseases, 2004, 32, 182-190.	0.6	181
584	Role of PPARÎ ³ in macrophage biology and atherosclerosis. Trends in Endocrinology and Metabolism, 2004, 15, 500-505.	3.1	70
585	Chronic disease: long-term outcomes of metabolic dysfunction. Trends in Food Science and Technology, 2004, 15, 519-527.	7.8	1
586	Nuclear prostaglandin receptors: role in pregnancy and parturition?. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, 70, 149-165.	1.0	35
587	Potency of arachidonic acid in polyunsaturated fatty acid-induced death of human monocyte–macrophages: implications for atherosclerosis. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, 71, 251-262.	1.0	16
588	Activation of PPARÎ ³ Specifies a Dendritic Cell Subtype Capable of Enhanced Induction of iNKT Cell Expansion. Immunity, 2004, 21, 95-106.	6.6	150
589	15-lipoxygenase-2 expression in benign and neoplastic lung: an immunohistochemical study and correlation with tumor grade and proliferation*1. Human Pathology, 2004, 35, 840-849.	1.1	42

#	Article	IF	CITATIONS
590	Genetics of the metabolic syndrome and implications for therapy. International Congress Series, 2004, 1262, 224-229.	0.2	1
591	Exogenous and endogenous mechanisms of PPAR activation: implications for inflammation and atherosclerosis. International Congress Series, 2004, 1262, 147-151.	0.2	2
592	Characterization of a class alpha glutathione-S-transferase with glutathione peroxidase activity in human liver microsomes. Archives of Biochemistry and Biophysics, 2004, 424, 72-80.	1.4	53
593	RRR-?-tocopherol decreases the expression of the major scavenger receptor, CD36, in human macrophages via inhibition of tyrosine kinase (Tyk2). Atherosclerosis, 2004, 175, 213-220.	0.4	44
594	9HODE Stimulates Cell Proliferation and Extracellular Matrix Synthesis in Human Mesangial Cells via PPARÎ ³ . Experimental Biology and Medicine, 2004, 229, 1053-1060.	1.1	17
595	Troglitazone Inhibits the Progression of Chronic Pancreatitis and the Profibrogenic Activity of Pancreatic Stellate Cells via a PPARÎ ³ -Independent Mechanism. Pancreas, 2004, 29, 67-74.	0.5	39
596	Lipolytic PPAR activation: new insights into the intersection of triglycerides and inflammation?. Current Opinion in Clinical Nutrition and Metabolic Care, 2004, 7, 369-375.	1.3	20
597	Fatty acid-mediated inhibition of IL-12 production by murine macrophages is independent of PPARÎ ³ . British Journal of Nutrition, 2004, 91, 733-739.	1.2	19
598	Lipoprotein receptors in the vascular wall. Current Opinion in Lipidology, 2004, 15, 175-181.	1.2	29
599	LXR (liver X receptor) and HNF-4 (hepatocyte nuclear factor-4): key regulators in reverse cholesterol transport. Biochemical Society Transactions, 2004, 32, 92-96.	1.6	54
600	Lipid oxidation in atherogenesis: an overview. Biochemical Society Transactions, 2004, 32, 134-138.	1.6	69
601	Scavenger receptors: friend or foe in atherosclerosis?. Current Opinion in Lipidology, 2005, 16, 525-535.	1.2	79
602	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-?? IS A NEW THERAPEUTIC TARGET IN SEPSIS AND INFLAMMATION. Shock, 2005, 23, 393-399.	1.0	137
603	Troglitazone Inhibits Long-Term Glycation and Oxidation of Low-Density Lipoprotein. Journal of Cardiovascular Pharmacology, 2005, 46, 672-680.	0.8	13
604	Recent Advances in Peroxisome Proliferator- Activated Receptor Science. Frontiers in Drug Design and Discovery, 2005, 2, 233-251.	0.3	1
605	Free radical oxidation of coriolic acid (13-(S)-hydroxy-9Z,11E-octadecadienoic Acid). Chemistry and Physics of Lipids, 2005, 134, 161-171.	1.5	6
606	Is Atherosclerosis a Multifactorial Disease or Is It Induced by a Sequence of Lipid Peroxidation Reactions?. Annals of the New York Academy of Sciences, 2005, 1043, 355-366.	1.8	21
607	A redox-sensitive pathway mediates oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Journal of Lipid Research, 2005, 46, 1266-1277.	2.0	42

#	Article	IF	CITATIONS
608	Peroxisome proliferator-activated receptor gamma: the more the merrier?. European Journal of Clinical Investigation, 2005, 35, 82-92.	1.7	65
609	Peroxisome proliferator-activated receptor-γ (PPARγ) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene, 2005, 24, 1412-1422.	2.6	106
610	Therapeutic potential of thiazolidinediones in activation of peroxisome proliferator-activated receptor γ for monocyte recruitment and endothelial regeneration. European Journal of Pharmacology, 2005, 508, 255-265.	1.7	40
611	CD36 overexpression in ritonavir-treated THP-1 cells is reversed by α-tocopherol. Free Radical Biology and Medicine, 2005, 38, 1047-1056.	1.3	36
612	PPARÎ ³ antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis. Journal of Neuroimmunology, 2005, 167, 99-107.	1.1	53
613	The relation of lipid peroxidation processes with atherogenesis: A new theory on atherogenesis. Molecular Nutrition and Food Research, 2005, 49, 999-1013.	1.5	80
614	Roles for lipid-activated transcription factors in atherosclerosis. Molecular Nutrition and Food Research, 2005, 49, 1072-1074.	1.5	10
615	Characterization of Circulating Human Osteoclast Progenitors: Development of In Vitro Resorption Assay. Calcified Tissue International, 2005, 76, 222-230.	1.5	66
616	Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. Journal of Nutritional Biochemistry, 2005, 16, 321-330.	1.9	137
617	RÃ1e des récepteurs nucléaires PPAR et ROR dans les cellules articulaires de la polyarthrite rhumatoÃ⁻de. Revue Du Rhumatisme (Edition Francaise), 2005, 72, 331-336.	0.0	0
618	Triacylglycerol oxidation in pig lipoproteins after a diet rich in oxidized sunflower seed oil. Lipids, 2005, 40, 437-444.	0.7	37
619	PPAR-Î ³ agonists and diabetic nephropathy. Current Diabetes Reports, 2005, 5, 470-475.	1.7	19
620	Cholesterol regulation of genes involved in sterol trafficking in human THP-1 macrophages. Molecular and Cellular Biochemistry, 2005, 273, 185-191.	1.4	15
621	Hypochlorite-oxidized low-density lipoprotein upregulates CD36 and PPARÎ ³ mRNA expression and modulates SR-BI gene expression in murine macrophages. Molecular and Cellular Biochemistry, 2005, 277, 143-152.	1.4	20
622	Dietary (n-3) Polyunsaturated Fatty Acids Inhibit HER-2/neu-Induced Breast Cancer in Mice Independently of the PPARÎ ³ Ligand Rosiglitazone. Journal of Nutrition, 2005, 135, 983-988.	1.3	58
623	Oxidized linoleic acid regulates expression and shedding of syndecan-4. American Journal of Physiology - Cell Physiology, 2005, 288, C458-C466.	2.1	10
624	PPARÎ ³ agonists exert antifibrotic effects in renal tubular cells exposed to high glucose. American Journal of Physiology - Renal Physiology, 2005, 289, F1153-F1158.	1.3	84
625	ATP-Binding Cassette Transporter A1: A Cell Cholesterol Exporter That Protects Against Cardiovascular Disease. Physiological Reviews, 2005, 85, 1343-1372.	13.1	443

#	Article	IF	CITATIONS
626	Retinoids Potentiate Peroxisome Proliferator-Activated Receptor Î ³ Action in Differentiation, Gene Expression, and Lipid Metabolic Processes in Developing Myeloid Cells. Molecular Pharmacology, 2005, 67, 1935-1943.	1.0	49
627	Gene-Nutrient Interaction in Type 2 Diabetes: An Appraisal of the Role of the Peroxisome Proliferator-Activated Receptor Pathway. Current Pharmacogenomics and Personalized Medicine: the International Journal for Expert Reviews in Pharmacogenomics, 2005, 3, 119-128.	0.3	1
628	Macrophage Differentiation to Foam Cells. Current Pharmaceutical Design, 2005, 11, 3061-3072.	0.9	237
629	Anti-Atherogenic Role of Peroxisome Proliferator-Activated Receptor Ligands. Current Cardiology Reviews, 2005, 1, 89-102.	0.6	4
630	Transcriptional Control of Metabolism, Inflammation and the Immune Response: The Role of PPARs. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 631-635.	0.4	0
631	Peroxisome Proliferator-activated Receptor-Â as a Regulator of Lung Inflammation and Repair. Proceedings of the American Thoracic Society, 2005, 2, 226-231.	3.5	122
632	Thematic review series: The Immune System and Atherogenesis. Recent insights into the biology of macrophage scavenger receptors. Journal of Lipid Research, 2005, 46, 11-20.	2.0	181
633	PPARs as Targets for Metabolic and Cardiovascular Diseases. Mini-Reviews in Medicinal Chemistry, 2005, 5, 741-753.	1.1	35
634	Peroxisome Proliferator-activated Receptor γ Is a Novel Target of the Nerve Growth Factor Signaling Pathway in PC12 Cells. Journal of Biological Chemistry, 2005, 280, 9604-9609.	1.6	36
635	Stimulation of Resorption in Cultured Mouse Calvarial Bones by Thiazolidinediones. Endocrinology, 2005, 146, 4349-4361.	1.4	30
636	Effects of aldehydes on CD36 expression. Free Radical Research, 2005, 39, 973-977.	1.5	13
637	α,β-Unsaturated Ketone Is a Core Moiety of Natural Ligands for Covalent Binding to Peroxisome Proliferator-activated Receptor γ. Journal of Biological Chemistry, 2005, 280, 14145-14153.	1.6	199
638	Search of Factors That Intermediate Cytokine-induced Group IIAPhospholipase A2 Expression through the Cytosolic PhospholipaseA2- and 12/15-Lipoxygenase-dependentPathway. Journal of Biological Chemistry, 2005, 280, 25830-25839.	1.6	20
639	Nitrolinoleic acid: An endogenous peroxisome proliferator-activated receptor ligand. Proceedings of the United States of America, 2005, 102, 2340-2345.	3.3	400
640	Interactions of Peroxisome Proliferator-Activated Receptor and Diet in Etiology of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1224-1229.	1.1	37
641	Sulfonylurea Agents Exhibit Peroxisome Proliferator-activated Receptor Î ³ Agonistic Activity. Journal of Biological Chemistry, 2005, 280, 23653-23659.	1.6	97
642	Peroxisome proliferator activated receptor in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut, 2005, 55, 1104-1113.	6.1	166
643	Peroxisome Proliferator-Activated Receptor Î ³ and Retinoid X Receptor Agonists Have Minimal Effects on the Interaction of Endothelial Cells with Plasmodium falciparum- Infected Erythrocytes. Infection and Immunity, 2005, 73, 1209-1213.	1.0	11
#	Article	IF	CITATIONS
-----	---	------	-----------
644	The Fatty Acid-binding Protein, aP2, Coordinates Macrophage Cholesterol Trafficking and Inflammatory Activity. Journal of Biological Chemistry, 2005, 280, 12888-12895.	1.6	343
645	Induction of NR4A Orphan Nuclear Receptor Expression in Macrophages in Response to Inflammatory Stimuli. Journal of Biological Chemistry, 2005, 280, 29256-29262.	1.6	241
646	Effects of silencing leukocyte-type 12/15-lipoxygenase using short interfering RNAs. Journal of Lipid Research, 2005, 46, 220-229.	2.0	33
647	Rosiglitazone Attenuates Atherosclerosis in a Model of Insulin Insufficiency Independent of Its Metabolic Effects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1903-1909.	1.1	120
649	Role of nuclear receptors in lung tumourigenesis. European Journal of Cancer, 2005, 41, 2561-2568.	1.3	30
650	A potent activator of PPAR \hat{l}_{\pm} and \hat{l}^3 reduces the vascular cell recruitment and inhibits the intimal thickning in hypercholesterolemic rabbits. Atherosclerosis, 2005, 178, 1-7.	0.4	23
651	Pioglitazone inhibits MMP-1 expression in vascular smooth muscle cells through a mitogen-activated protein kinase-independent mechanism. Atherosclerosis, 2005, 178, 249-256.	0.4	21
652	Potential Cardiovascular Benefits of Insulin Sensitizers. Endocrinology and Metabolism Clinics of North America, 2005, 34, 117-135.	1.2	11
653	Inverse Relationship between 15-Lipoxygenase-2 and PPAR-Î ³ Gene Expression in Normal Epithelia Compared with Tumor Epithelia. Neoplasia, 2005, 7, 280-293.	2.3	56
654	Retinoid X Receptor Heterodimers in the Metabolic Syndrome. New England Journal of Medicine, 2005, 353, 604-615.	13.9	347
655	The Pathogenesis of Atherosclerosis. Handbook of Experimental Pharmacology, 2005, , 3-70.	0.9	46
656	The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Molecular Cancer Therapeutics, 2005, 4, 1740-1746.	1.9	38
657	Selective activation of PPAR ^{î3} in breast, colon, and lung cancer cell lines. Molecular and Cellular Endocrinology, 2005, 235, 21-29.	1.6	68
658	Paraoxonase-1 and linoleic acid oxidation in familial hypercholesterolemia. Biochemical and Biophysical Research Communications, 2005, 333, 787-793.	1.0	17
659	Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications, 2005, 338, 668-676.	1.0	676
660	Molecular Determinants of Crosstalk between Nuclear Receptors and Toll-like Receptors. Cell, 2005, 122, 707-721.	13.5	592
661	The Many Faces of PPARÎ ³ . Cell, 2005, 123, 993-999.	13.5	1,291
662	15d-PGJ2: The anti-inflammatory prostaglandin?. Clinical Immunology, 2005, 114, 100-109.	1.4	298

#	Article	IF	Citations
663	Lipoproteins, macrophage function, and atherosclerosis: Beyond the foam cell?. Cell Metabolism, 2005, 1, 223-230.	7.2	125
664	Spotlight on…Laszlo Nagy. FEBS Letters, 2005, 579, 6009-6009.	1.3	0
665	Peroxisome Proliferator-Activated Receptors and their Ligands. Drugs, 2005, 65, 1919-1934.	4.9	21
666	PPARs and Their Emerging Role in Vascular Biology, Inflammation, and Atherosclerosis. , 2005, , 93-105.		Ο
667	Cytokines and Peroxisome Proliferator-Activated Receptor Î ³ Ligand Regulate Phagocytosis by Pancreatic Stellate Cells. Gastroenterology, 2005, 128, 2105-2118.	0.6	86
668	An overview on biological mechanisms of PPARs. Pharmacological Research, 2005, 51, 85-94.	3.1	580
669	Role of PPARs in the Pathogenesis of the Metabolic Syndrome. , 2005, , 253-269.		0
670	Role of insulin secretagogues and insulin sensitizing agents in the prevention of cardiovascular disease in patients who have diabetes. Cardiology Clinics, 2005, 23, 119-138.	0.9	14
671	A Nuclear Receptor Atlas: Macrophage Activation. Molecular Endocrinology, 2005, 19, 2466-2477.	3.7	220
673	Mechanisms of Disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nature Clinical Practice Cardiovascular Medicine, 2005, 2, 309-315.	3.3	127
676	Peroxisome Proliferator-Activated Receptor-??. BioDrugs, 2006, 20, 121-135.	2.2	15
677	Diabetes Mellitus-Associated Atherosclerosis. American Journal of Cardiovascular Drugs, 2006, 6, 15-40.	1.0	26
678	Peroxisome Proliferator-Activated Receptor-?? Agonists for Management and Prevention of Vascular Disease in Patients with and without Diabetes Mellitus. American Journal of Cardiovascular Drugs, 2006, 6, 231-242.	1.0	29
680	Macrophage-Specific Expression of Human Lysosomal Acid Lipase Corrects Inflammation and Pathogenic Phenotypes in lalâ~'/â~' Mice. American Journal of Pathology, 2006, 169, 916-926.	1.9	66
681	Lipid metabolism mediated by adipocyte lipid binding protein (ALBP/aP2) gene expression in human THP-1 macrophages. Atherosclerosis, 2006, 188, 102-111.	0.4	69
682	Peroxisome Proliferator-Activated Receptor Gamma Agonists: Their Role as Vasoprotective Agents in Diabetes. Endocrinology and Metabolism Clinics of North America, 2006, 35, 561-574.	1.2	27
683	Accelerated Atheroma in the Antiphospholipid Syndrome. Rheumatic Disease Clinics of North America, 2006, 32, 537-551.	0.8	11
684	Bioassay for the Identification of Natural Product-Based Activators of Peroxisome Proliferator-Activated Receptor-γ (PPARγ):  The Marine Sponge Metabolite Psammaplin A Activates PPARγ and Induces Apoptosis in Human Breast Tumor Cells. Journal of Natural Products, 2006, 69, 547-552.	1.5	44

#	Article	IF	CITATIONS
685	Modulation of Nitrated Lipid Signaling by Multidrug Resistance Protein 1 (MRP1):Â Glutathione Conjugation and MRP1-Mediated Efflux Inhibit Nitrolinoleic Acid-Induced, PPARγ-Dependent Transcription Activationâ€. Biochemistry, 2006, 45, 7889-7896.	1.2	52
686	A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metabolism, 2006, 4, 211-221.	7.2	425
687	Metabolism of oxidized linoleic acid by glutathione transferases: Peroxidase activity toward 13-hydroperoxyoctadecadienoic acid. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1064-1070.	1.1	14
688	Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 392-415.	1.2	156
689	Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-κB-dependent signaling pathways through macrophage scavenger receptors. Biochemical and Biophysical Research Communications, 2006, 343, 286-294.	1.0	129
690	Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-1 ³ . Biochemical and Biophysical Research Communications, 2006, 348, 1003-1010.	1.0	50
691	The human myeloperoxidase gene is regulated by LXR and PPARα ligands. Biochemical and Biophysical Research Communications, 2006, 349, 846-854.	1.0	24
692	Resistin increases lipid accumulation and CD36 expression in human macrophages. Biochemical and Biophysical Research Communications, 2006, 351, 376-382.	1.0	70
693	Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPARα. Biochemical and Biophysical Research Communications, 2006, 351, 733-738.	1.0	30
695	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS: How Their Effects on Macrophages Can Lead to the Development of a New Drug Therapy Against Atherosclerosis. Annual Review of Pharmacology and Toxicology, 2006, 46, 1-39.	4.2	67
696	The pleiotropic function of PPARÎ ³ in the placenta. Molecular and Cellular Endocrinology, 2006, 249, 10-15.	1.6	88
697	Troglitazone induction of COX-2 expression is dependent on ERK activation in keratinocytes. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 74, 193-197.	1.0	9
698	Dietary Î ³ -linolenate attenuates tumor growth in a rodent model of prostatic adenocarcinoma via suppression of elevated generation of PGE2 and 5S-HETE. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 74, 271-282.	1.0	29
699	Differential modulation of cell cycle, apoptosis and PPARÎ ³ 2 gene expression by PPARÎ ³ agonists ciglitazone and 9-hydroxyoctadecadienoic acid in monocytic cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 74, 283-293.	1.0	32
700	Inflammation and immune regulation by 12/15-lipoxygenases. Progress in Lipid Research, 2006, 45, 334-356.	5.3	340
701	Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Progress in Lipid Research, 2006, 45, 466-486.	5.3	143
702	Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiology of Aging, 2006, 27, 983-993.	1.5	332
703	Peroxisome Proliferator-Activated Receptors and Shock State. Scientific World Journal, The, 2006, 6, 1770-1782.	0.8	8

#	Article	IF	CITATIONS
704	Unique Properties of Coactivator Recruitment Caused by Differential Binding of FK614, an Anti-diabetic Agent, to Peroxisome Proliferator-Activated Receptor .GAMMA Biological and Pharmaceutical Bulletin, 2006, 29, 423-429.	0.6	26
705	Physiological ligands of PPARs in inflammation and lipid homeostasis. Future Lipidology, 2006, 1, 191-201.	0.5	8
706	Comparative toxicity of fatty acids on a macrophage cell line (J774). Clinical Science, 2006, 111, 307-317.	1.8	94
707	Spectroscopic analyses of the binding kinetics of 15d-PGJ2 to the PPARÎ ³ ligand-binding domain by multi-wavelength global fitting. Biochemical Journal, 2006, 393, 749-755.	1.7	19
708	Aged Garlic Extract Inhibits Homocysteine-Induced CD36 Expression and Foam Cell Formation in Human Macrophages. Journal of Nutrition, 2006, 136, 755S-758S.	1.3	28
709	On the road to discovering protective endogenous peroxisome proliferator-activator receptor-γ ligands for endotoxemia: Are we there yet?*. Critical Care Medicine, 2006, 34, 1277-1279.	0.4	3
710	PPARÎ ³ Ligand Troglitazone Lowers Cholesterol Synthesis in HepG2 and Caco-2 Cells <i>via</i> a Reduced Concentration of Nuclear SREBP-2. Experimental Biology and Medicine, 2006, 231, 1365-1372.	1.1	55
712	Synthesis and PPARGAMMA. Ligand-Binding Activity of the New Series of 2'-Hydroxychalcone and Thiazolidinedione Derivatives. Chemical and Pharmaceutical Bulletin, 2006, 54, 368-371.	0.6	44
713	Regulation of Lipoprotein Lipase Expression by Effect of Hawthorn Flavonoids on Peroxisome Proliferator Response Element Pathway. Journal of Pharmacological Sciences, 2006, 100, 51-58.	1.1	44
714	Insulin and glucose play a role in foam cell formation and function. Cardiovascular Diabetology, 2006, 5, 13.	2.7	22
715	Peroxisome proliferator-activated receptor gamma ligands stimulate myeloid differentiation and lipogenensis in human leukemia NB4 cells. Development Growth and Differentiation, 2006, 48, 177-188.	0.6	22
716	Role of CD36, the Macrophage Class B Scavenger Receptor, in Atherosclerosis. Annals of the New York Academy of Sciences, 2001, 947, 224-228.	1.8	116
717	PPARs: Transcription Factors Controlling Lipid and Lipoprotein Metabolism. Annals of the New York Academy of Sciences, 2002, 967, 7-18.	1.8	148
718	PPARγ, an Xâ€ceptor for Xs. Annals of the New York Academy of Sciences, 2002, 967, 28-33.	1.8	8
719	Oxidizedâ€LDL and Atherosclerosis: Role of LOXâ€1. Annals of the New York Academy of Sciences, 2000, 902, 95-102.	1.8	40
720	CD36 in Atherosclerosis: The Role of a Class B Macrophage Scavenger Receptor. Annals of the New York Academy of Sciences, 2000, 902, 128-133.	1.8	70
721	PPAR? phosphorylation mediated by JNK MAPK: a potential role in mac-rophage-derived foam cell formation. Acta Pharmacologica Sinica, 2006, 27, 1146-1152.	2.8	36
722	Peroxisome Proliferator-Activated Receptor alpha, delta, gamma1 and gamma2 Expressions are Present in Human Monocyte-Derived Dendritic Cells and Modulate Dendritic Cell Maturation by Addition of Subtype-Specific Ligands. Scandinavian Journal of Immunology, 2006, 63, 330-337.	1.3	43

#	Article	IF	CITATIONS
723	Combinatorial roles of nuclear receptors in inflammation and immunity. Nature Reviews Immunology, 2006, 6, 44-55.	10.6	391
724	Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 2006, 25, 1225-1241.	2.6	95
725	15-Lipoxygenase-2 gene regulation by its product 15-(S)-hydroxyeicosatetraenoic acid through a negative feedback mechanism that involves peroxisome proliferator-activated receptor γ. Oncogene, 2006, 25, 6015-6025.	2.6	22
726	Improved prediction of early-onset coronary artery disease using APOE Îμ4, BChE-K, PPARγ2 Pro12 and ENOS T-786C in a polygenic model. Clinical Biochemistry, 2006, 39, 109-114.	0.8	30
727	Free radical oxidation of 15-(S)-hydroxyeicosatetraenoic acid with the Fenton reagent: characterization of an epoxy-alcohol and cytotoxic 4-hydroxy-2E-nonenal from the heptatrienyl radical pathway. Chemistry and Physics of Lipids, 2006, 142, 14-22.	1.5	7
728	Bioâ€markers of lipid peroxidation in vivo: Hydroxyoctadecadienoic acid and hydroxycholesterol. BioFactors, 2006, 27, 195-202.	2.6	69
729	PPARÂ, a Lipid-Activated Transcription Factor as a Regulator of Dendritic Cell Function. Annals of the New York Academy of Sciences, 2006, 1088, 207-218.	1.8	58
730	Tissue inhibitor of metalloproteinases 4 (TIMP4) is involved in inflammatory processes of human cardiovascular pathology. Histochemistry and Cell Biology, 2006, 126, 335-342.	0.8	72
731	Peritoneal metastasis inhibition by linoleic acid with activation of PPARÎ ³ in human gastrointestinal cancer cells. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2006, 448, 422-427.	1.4	35
732	Nitric oxide-independent lipid metabolism in RAW 264.7 macrophages loaded with oleic acid. Cell Biology International, 2006, 30, 947-951.	1.4	1
733	Differential action of 13-HPODE on PPARα downstream genes in rat Fao and human HepG2 hepatoma cell lines. Journal of Nutritional Biochemistry, 2006, 17, 410-418.	1.9	41
734	Importance of blood cellular genomic profile in coronary heart disease. Journal of Biomedical Science, 2006, 13, 17-26.	2.6	11
736	Are thiazolidinediones good or bad for the heart?. Current Diabetes Reports, 2006, 6, 378-383.	1.7	1
737	Long-term exposure to oxidized low-density lipoprotein enhances tumor necrosis factor-α-stimulated endothelial adhesiveness of monocytes by activating superoxide generation and redox-sensitive pathways. Free Radical Biology and Medicine, 2006, 40, 817-826.	1.3	34
738	Differential effects of oxidized LDL on apolipoprotein AI and B synthesis in HepG2 cells. Free Radical Biology and Medicine, 2006, 41, 786-796.	1.3	4
739	Peroxisome proliferator-activated receptors: Bridging metabolic syndrome with molecular nutrition. Clinical Nutrition, 2006, 25, 871-885.	2.3	50
740	Niacin induces PPARÎ ³ expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochemical Pharmacology, 2006, 71, 646-656.	2.0	89
741	Synthetic peroxisome proliferator-activated receptor Î ³ agonists rosiglitazone and troglitazone suppress transcription by promoter 3 of the human thromboxane A2 receptor gene in human erythroleukemia cells. Biochemical Pharmacology, 2006, 71, 1308-1323.	2.0	22

#	Article	IF	CITATIONS
742	The kinase p38 Regulates Peroxisome Proliferator Activated Receptor-Î ³ in Human Trophoblasts. Placenta, 2006, 27, 191-199.	0.7	32
743	The Dipeptide H-Trp-Glu-OH Shows Highly Antagonistic Activity against PPARÎ ³ : Bioassay with Molecular Modeling Simulation. ChemBioChem, 2006, 7, 74-82.	1.3	37
744	Functional polymorphism inALOX15results in increased allele-specific transcription in macrophages through binding of the transcription factor SPI1. Human Mutation, 2006, 27, 78-87.	1.1	45
745	Inhibitory effect of linoleic acid on transformation of IEC6 intestinal cells by in vitro azoxymethane treatment. International Journal of Cancer, 2006, 118, 593-599.	2.3	17
746	Catalpa seed oil rich in 9t,11t,13c-conjugated linolenic acid suppresses the development of colonic aberrant crypt foci induced by azoxymethane in rats. Oncology Reports, 2006, 16, 989.	1.2	11
747	A Growth Hormone-Releasing Peptide that Binds Scavenger Receptor CD36 and Ghrelin Receptor Up-Regulates Sterol Transporters and Cholesterol Efflux in Macrophages through a Peroxisome Proliferator-Activated Receptor Î ³ -Dependent Pathway. Molecular Endocrinology, 2006, 20, 3165-3178.	3.7	69
748	Selective Modulators of PPAR Activity as New Therapeutic Tools in Metabolic Diseases. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2006, 6, 33-43.	0.6	64
749	Human ACAT1 gene expression and its involvement in the development of atherosclerosis. Future Cardiology, 2006, 2, 93-99.	0.5	7
750	PPAR Activity in the Vessel Wall: Anti-Atherogenic Properties. Current Medicinal Chemistry, 2006, 13, 3227-3238.	1.2	22
751	Endotoxin, TLR4 Signaling and Vascular Inflammation: Potential Therapeutic Targets in Cardiovascular Disease. Current Pharmaceutical Design, 2006, 12, 4229-4245.	0.9	101
752	Downregulated CD36 and oxLDL uptake and stimulated ABCA1/G1 and cholesterol efflux as anti-atherosclerotic mechanisms of interleukin-10. Cardiovascular Research, 2006, 69, 527-535.	1.8	75
753	Antagonistic Effects of Oxidized Low Density Lipoprotein and α-Tocopherol on CD36 Scavenger Receptor Expression in Monocytes. Journal of Biological Chemistry, 2006, 281, 6489-6497.	1.6	80
754	Clinical Thiazolidinediones as PPARγ Ligands with the Potential for the Prevention of Cardiovascular Disease in Diabetes. Current Diabetes Reviews, 2006, 2, 227-239.	0.6	4
755	Oxidized Lipid-Driven Chemokine Receptor Switch, CCR2 to CX3CR1, Mediates Adhesion of Human Macrophages to Coronary Artery Smooth Muscle Cells Through a Peroxisome Proliferator-Activated Receptor l ³ –Dependent Pathway. Circulation, 2006, 114, 807-819.	1.6	95
756	Oxidized low-density lipoprotein depletes PKCα and attenuates reactive oxygen species formation in monocytes/macrophages. Cardiovascular Research, 2006, 71, 574-585.	1.8	12
757	Oxidative stress influences cholesterol efflux in THP-1 macrophages: Role of ATP-binding cassette A1 and nuclear factorsâ~†. Cardiovascular Research, 2006, 72, 473-482.	1.8	64
758	New Strategies in Evaluation of Therapeutic Efficacy in Fibromyalgia Syndrome. Current Pharmaceutical Design, 2006, 12, 67-71.	0.9	11
759	PPAR-γ Agonists as Regulators of Microglial Activation and Brain Inflammation. Current Pharmaceutical Design, 2006, 12, 93-109.	0.9	191

#	Article	IF	Citations
761	Obesity, Peroxisome Proliferator-Activated Receptor, and Atherosclerosis in Type 2 Diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 28-40.	1.1	131
762	Low-Density Lipoprotein Modified by Macrophage-Derived Lysosomal Hydrolases Induces Expression and Secretion of IL-8 Via p38 MAPK and NF-I® by Human Monocyte-Derived Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2504-2509.	1.1	18
763	Modulation of Hepatic Inflammatory Risk Markers of Cardiovascular Diseases by PPAR–α Activators. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 977-986.	1.1	154
764	Regulation of Macrophage Inflammatory Gene Expression by the Orphan Nuclear Receptor Nur77. Molecular Endocrinology, 2006, 20, 786-794.	3.7	185
765	PPARÎ ³ controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. Journal of Experimental Medicine, 2006, 203, 2351-2362.	4.2	176
766	The Diabetic Kidney. , 2006, , .		1
767	Transgenic mice express human MPO â^'463G/A alleles at atherosclerotic lesions, developing hyperlipidemia and obesity in â^'463G males. Journal of Lipid Research, 2006, 47, 1366-1377.	2.0	62
768	Function of PparÎ ³ and Its Ligands in Lung Cancer. Critical Reviews in Clinical Laboratory Sciences, 2006, 43, 183-202.	2.7	29
769	Activation of AP-1 and Increased Synthesis of MMP-9 in the Rabbit Retina Induced by Lipid Hydroperoxide. Current Eye Research, 2006, 31, 337-346.	0.7	16
770	Identification of a Serum Component That Regulates Cyclooxygenase-2 Gene Expression in Cooperation with 4-Hydroxy-2-nonenal. Journal of Biological Chemistry, 2007, 282, 24166-24174.	1.6	20
771	Ajulemic Acid, a Synthetic Nonpsychoactive Cannabinoid Acid, Bound to the Ligand Binding Domain of the Human Peroxisome Proliferator-activated Receptor γ. Journal of Biological Chemistry, 2007, 282, 18625-18633.	1.6	58
772	Atherogenic Lipids Induce Adhesion of Human Coronary Artery Smooth Muscle Cells to Macrophages by Up-regulating Chemokine CX3CL1 on Smooth Muscle Cells in a TNFα-NFήB-dependent Manner. Journal of Biological Chemistry, 2007, 282, 19167-19176.	1.6	54
773	High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15093-15098.	3.3	243
774	Catalase potentiates retinoic acid-induced THP-1 monocyte differentiation into macrophage through inhibition of peroxisome proliferator-activated receptor l³. Journal of Leukocyte Biology, 2007, 81, 1568-1576.	1.5	29
775	PPARs and Diabetes-Associated Atherosclerosis. Current Pharmaceutical Design, 2007, 13, 2736-2741.	0.9	8
776	Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinsons Disease. Current Neuropharmacology, 2007, 5, 35-46.	1.4	56
777	PPAR Ligands: Are They Potential Agents for Cardiovascular Disorders?. Pharmacology, 2007, 80, 1-10.	0.9	60
778	Mechanical Loading Down-Regulates Peroxisome Proliferator-Activated Receptor Î ³ in Bone Marrow Stromal Cells and Favors Osteoblastogenesis at the Expense of Adipogenesis. Endocrinology, 2007, 148, 2553-2562.	1.4	281

#	Article	IF	CITATIONS
779	Measuring biomarkers to assess the therapeutic effects of PPAR agonists?. Pharmacogenomics, 2007, 8, 1567-1580.	0.6	4
780	Resistin- and Obesity-associated Metabolic Diseases. Hormone and Metabolic Research, 2007, 39, 710-716.	0.7	177
781	Role of Redox Regulation and Lipid Rafts in Macrophages During Ox-LDL–Mediated Foam Cell Formation. Antioxidants and Redox Signaling, 2007, 9, 1499-1518.	2.5	63
782	Rosiglitazone. Clinical Journal of the American Society of Nephrology: CJASN, 2007, 2, 1329-1331.	2.2	2
783	Dyslipidemia inhibits Toll-like receptor–induced activation of CD8α-negative dendritic cells and protective Th1 type immunity. Journal of Experimental Medicine, 2007, 204, 441-452.	4.2	100
784	Identification of a Novel Prostaglandin Reductase Reveals the Involvement of Prostaglandin E2 Catabolism in Regulation of Peroxisome Proliferator-activated Receptor Î ³ Activation. Journal of Biological Chemistry, 2007, 282, 18162-18172.	1.6	86
785	Enhanced Levels of Oxidized Low-Density Lipoprotein Prime Monocytes to Cytokine Overproduction via Upregulation of CD14 and Toll-Like Receptor 4 in Unstable Angina. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1991-1997.	1.1	48
786	Peroxisome Proliferator-Activated Receptor γ Control of Dendritic Cell Function Contributes to Development of CD4+ T Cell Anergy. Journal of Immunology, 2007, 178, 2122-2131.	0.4	108
787	Maternal PPARÎ ³ protects nursing neonates by suppressing the production of inflammatory milk. Genes and Development, 2007, 21, 1895-1908.	2.7	97
788	Monocyte Chemoattractant Protein-1/CC Chemokine Ligand 2 Controls Microtubule-Driven Biogenesis and Leukotriene B4-Synthesizing Function of Macrophage Lipid Bodies Elicited by Innate Immune Response. Journal of Immunology, 2007, 179, 8500-8508.	0.4	86
789	PPARs in Alveolar Macrophage Biology. PPAR Research, 2007, 2007, 1-12.	1.1	16
790	Attenuated aerobic exercise capacity in CD36 deficiency. Journal of Medical Genetics, 2007, 44, 445-447.	1.5	12
791	â€~Striking the Right Balance' in Targeting PPARγ in the Metabolic Syndrome: Novel Insights from Human Genetic Studies. PPAR Research, 2007, 2007, 1-14.	1.1	22
792	Peroxisome Proliferator-Activated Receptors in Lung Cancer. PPAR Research, 2007, 2007, 1-10.	1.1	18
793	Differentiation of CD1aâ^' and CD1a+ monocyte-derived dendritic cells is biased by lipid environment and PPARÎ ³ . Blood, 2007, 109, 643-652.	0.6	121
794	Thermally Oxidized Oil Increases the Expression of Insulin-Induced Genes and Inhibits Activation of Sterol Regulatory Element-Binding Protein-2 in Rat Liver. Journal of Nutrition, 2007, 137, 2018-2023.	1.3	36
795	HDL Elevation and Lipid Lowering Therapy: Current Scenario and Future Perspectives. Recent Patents on Cardiovascular Drug Discovery, 2007, 2, 214-227.	1.5	6
796	Use of Mouse Models to Evaluate Roles of Nuclear Receptors and their Ligands in the Pathogenesis and Treatment of Atherosclerosis. Current Drug Targets, 2007, 8, 1273-1287.	1.0	1

#	Article	IF	CITATIONS
797	Vascular effects of PPARγ activators – From bench to bedside. Progress in Lipid Research, 2007, 46, 283-296.	5.3	21
798	5-Methyltetrahydrofolic acid stimulates endothelin-1 production in low density lipoprotein-treated human endothelial cells. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17, 188-194.	1.1	3
799	PPARÎ ³ in immunity and inflammation: cell types and diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1014-1030.	1.2	138
800	Molecular basis of selective PPAR ^î ³ modulation for the treatment of Type 2 diabetes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1094-1107.	1.2	70
801	Xanthine Oxidoreductase Is a Regulator of Adipogenesis and PPARÎ ³ Activity. Cell Metabolism, 2007, 5, 115-128.	7.2	171
802	Monocyte-derived macrophages from men and women with Type 2 diabetes mellitus differ in fatty acid composition compared with non-diabetic controls. Diabetes Research and Clinical Practice, 2007, 75, 292-300.	1.1	14
803	Cellular, molecular and clinical aspects of vitamin E on atherosclerosis prevention. Molecular Aspects of Medicine, 2007, 28, 538-590.	2.7	66
805	Tratamiento de enfermedades metabólicas mediante la modulación del PPARγ. ClÃnica E Investigación En Arteriosclerosis, 2007, 19, 191-210.	0.4	1
806	Antiatherogenic Effects of Kaempferol and Rhamnocitrin. Journal of Agricultural and Food Chemistry, 2007, 55, 9969-9976.	2.4	69
807	A Novel Cell-permeable Antioxidant Peptide, SS31, Attenuates Ischemic Brain Injury by Down-regulating CD36. Journal of Biological Chemistry, 2007, 282, 4634-4642.	1.6	156
808	Association of Pro12Ala polymorphism in the peroxisome proliferator–activated receptor γ2 gene with small dense low-density lipoprotein in the general population. Metabolism: Clinical and Experimental, 2007, 56, 1345-1349.	1.5	20
809	Vascular Oxidant Stress and Inflammation in Hyperhomocysteinemia. Antioxidants and Redox Signaling, 2007, 9, 1941-1958.	2.5	184
810	Dietary Oxidized Fat Prevents Ethanol-Induced Triacylglycerol Accumulation and Increases Expression of PPARα Target Genes in Rat Liver. Journal of Nutrition, 2007, 137, 77-83.	1.3	53
811	Nuclear transcription factors and lipid homeostasis in liver. Chinese Medical Journal, 2007, 120, 2290-2296.	0.9	6
812	Present concepts and future outlook: Function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. Journal of Cellular Physiology, 2007, 212, 1-12.	2.0	93
813	PPARÎ ³ -dependent regulation of human macrophages in phagocytosis of apoptotic cells. European Journal of Immunology, 2007, 37, 1343-1354.	1.6	133
814	IL-13 induces expression of CD36 in human monocytes through PPARÎ ³ activation. European Journal of Immunology, 2007, 37, 1642-1652.	1.6	83
815	Reversal of expression of 15â€lipoxygenaseâ€1 to cyclooxygenaseâ€2 is associated with development of colonic cancer. Histopathology, 2007, 51, 520-527.	1.6	29

#	Article	IF	CITATIONS
816	PPARs and their metabolic modulation: new mechanisms for transcriptional regulation?. Journal of Internal Medicine, 2007, 262, 184-198.	2.7	132
817	Peroxisome proliferatorâ€activated receptors – from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. Journal of Internal Medicine, 2008, 263, 28-42.	2.7	39
818	Clitazones in the treatment of cardiovascular risk factors. Fundamental and Clinical Pharmacology, 2007, 21, 7-13.	1.0	3
819	Nitric oxide in blood. FEBS Journal, 2007, 274, 906-923.	2.2	43
820	13-Oxo-ODE is an endogenous ligand for PPARÎ ³ in human colonic epithelial cells. Biochemical Pharmacology, 2007, 74, 612-622.	2.0	104
821	In vitro effect of PPAR-γ2 Pro12Ala polymorphism on the deposition of Alzheimer's amyloid-β peptides. Brain Research, 2007, 1173, 1-5.	1.1	2
822	The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). Free Radical Biology and Medicine, 2007, 42, 1155-1164.	1.3	99
823	Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clinical Nutrition, 2007, 26, 107-116.	2.3	134
824	Long-term effects of a PPAR-gamma agonist, pioglitazone, on neointimal hyperplasia and endothelial regrowth in insulin resistant rats. Vascular Pharmacology, 2007, 46, 188-194.	1.0	13
825	Leukocyte lipid bodies regulation and function: Contribution to allergy and host defense. , 2007, 113, 30-49.		108
826	From pathophysiology to targeted therapy for atherothrombosis: A role for the combination of statin and aspirin in secondary prevention. , 2007, 113, 184-196.		49
827	PPARs and the Placenta. Placenta, 2007, 28, 65-76.	0.7	116
828	20-Carboxy-arachidonic acid is a dual activator of peroxisome proliferator-activated receptors α and γ. Prostaglandins and Other Lipid Mediators, 2007, 82, 175-184.	1.0	48
829	Glycoxidised LDL isolated from subjects with impaired glucose tolerance increases CD36 and peroxisome proliferator–activator receptor γ gene expression in macrophages. Diabetologia, 2007, 50, 1080-1088.	2.9	16
830	Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Molecular and Cellular Biochemistry, 2007, 299, 19-22.	1.4	116
831	Third promoter and differential regulation of mouse and human fatty acid translocase/CD36 genes. Molecular and Cellular Biochemistry, 2007, 299, 37-43.	1.4	21
832	Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Molecular and Cellular Biochemistry, 2007, 305, 133-143.	1.4	57
833	Peroxisome proliferator-activated receptor γ (PPARγ) and colorectal carcinogenesis. Journal of Cancer Research and Clinical Oncology, 2007, 133, 917-928.	1.2	33

#	Article	IF	CITATIONS
834	Lipid peroxidation and redox-sensitive signaling pathways. Current Atherosclerosis Reports, 2007, 9, 216-221.	2.0	32
835	Biomimetic nitration of the linoleic acid metabolite 13-hydroxyoctadecadienoic acid: isolation and spectral characterization of novel chain-rearranged epoxy nitro derivatives. Chemistry and Physics of Lipids, 2008, 151, 51-61.	1.5	9
836	Structure and physiological functions of the human peroxisome proliferator-activated receptor γ. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 331-345.	1.0	98
837	DiC14-amidine confers new anti-inflammatory properties to phospholipids. Cellular and Molecular Life Sciences, 2008, 65, 620-630.	2.4	15
838	Nuclear receptors, intestinal architecture and colon cancer: an intriguing link. Cellular and Molecular Life Sciences, 2008, 65, 1523-1543.	2.4	51
839	Different Gene Expression Patterns in the Bone Tissue of Aging Postmenopausal Osteoporotic and Non-osteoporotic Women. Calcified Tissue International, 2008, 82, 12-26.	1.5	44
840	Conjugated Linoleic Acid Isomers Reduce Cholesterol Accumulation in Acetylated LDLâ€Induced Mouse RAW264.7 Macrophageâ€Derived Foam Cells. Lipids, 2008, 43, 913-923.	0.7	35
841	PPARÎ ³ ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis, 2008, 11, 361-367.	3.7	99
842	Rosiglitazone but not losartan prevents Nrf-2 dependent CD36 gene expression up-regulation in an in vivo atherosclerosis model. Cardiovascular Diabetology, 2008, 7, 3.	2.7	13
843	Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Medicinal Research Reviews, 2008, 28, 483-544.	5.0	134
844	Tryptophan-containing dipeptide derivatives as potent PPARÎ ³ antagonists: Design, synthesis, biological evaluation, and molecular modeling. European Journal of Medicinal Chemistry, 2008, 43, 2699-2716.	2.6	14
845	Lipid homeostasis in macrophages – Implications for atherosclerosis. , 2008, 160, 93-125.		59
846	Apolipoprotein E predisposes to obesity and related metabolic dysfunctions in mice. FEBS Journal, 2008, 275, 4796-4809.	2.2	63
847	Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function. EMBO Journal, 2008, 27, 2353-2362.	3.5	78
848	A novel activity for substance P: stimulation of peroxisome proliferatorâ€activated receptorâ€Î³ protein expression in human monocytes and macrophages. British Journal of Pharmacology, 2008, 154, 144-152.	2.7	24
849	Synergistic effect of 15-lipoxygenase 2 and radiation in killing head-and-neck cancer. Cancer Gene Therapy, 2008, 15, 323-330.	2.2	11
850	Molecular recognition of nitrated fatty acids by PPARÎ ³ . Nature Structural and Molecular Biology, 2008, 15, 865-867.	3.6	161
851	Structural basis for the activation of PPARÎ ³ by oxidized fatty acids. Nature Structural and Molecular Biology, 2008, 15, 924-931.	3.6	380

#	Article	IF	CITATIONS
852	G2A Plays Proinflammatory Roles in Human Keratinocytes under Oxidative Stress as a Receptor for 9-Hydroxyoctadecadienoic Acid. Journal of Investigative Dermatology, 2008, 128, 1123-1133.	0.3	83
853	Oxidation as a crucial reaction for cholesterol to induce tissue degeneration: CD36 overexpression in human promonocytic cells treated with a biologically relevant oxysterol mixture. Aging Cell, 2008, 7, 375-382.	3.0	32
854	Cytoprotective effect of tauroursodeoxycholate on hepatocyte apoptosis induced by peroxisome proliferatorâ€activated receptor gamma ligand. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, e198-206.	1.4	5
855	Nuclear receptors, transcription factors linking lipid metabolism and immunity: the case of peroxisome proliferatorâ€activated receptor gamma. European Journal of Clinical Investigation, 2008, 38, 695-707.	1.7	55
856	Tollâ€like receptor 4 mediates crossâ€ŧalk between peroxisome proliferatorâ€activated receptor γ and nuclear factorâ€ÎºB in macrophages. Immunology, 2008, 125, 344-358.	2.0	113
857	Nuclear receptors in macrophages: A link between metabolism and inflammation. FEBS Letters, 2008, 582, 106-116.	1.3	32
858	Oxidised LDL upâ€regulate CD36 expression by the Nrf2 pathway in 3T3‣1 preadipocytes. FEBS Letters, 2008, 582, 2291-2298.	1.3	43
859	Oxidation of LDL and its clinical implication. Autoimmunity Reviews, 2008, 7, 558-566.	2.5	195
860	Differential modulation of PPARα and γ target gene expression in the liver and kidney of rats treated with aspirin. Experimental and Toxicologic Pathology, 2008, 59, 391-397.	2.1	8
861	Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR $\hat{I}\pm$ expression in adipose tissue. Clinical Nutrition, 2008, 27, 764-772.	2.3	53
862	Role of nuclear receptors and their ligands in human trophoblast invasion. Journal of Reproductive Immunology, 2008, 77, 161-170.	0.8	47
863	Oxidized glycerophosphocholines as biologically active mediators for ultraviolet radiation-mediated effects. Prostaglandins and Other Lipid Mediators, 2008, 87, 1-8.	1.0	37
864	Narrowing in on Cardiovascular Disease: The Atheroprotective Role of Peroxisome Proliferator–Activated Receptor γ. Trends in Cardiovascular Medicine, 2008, 18, 39-44.	2.3	17
865	Peroxisome Proliferator-Activated Receptors (PPARs) and the Human Skin. American Journal of Clinical Dermatology, 2008, 9, 15-31.	3.3	114
866	Atherosclerosis, Hypertension and Aging. , 2008, , 239-276.		0
868	Interleukin-13 primes iNO synthase expression induced by LPS in mouse peritoneal macrophages. Molecular Immunology, 2008, 45, 235-243.	1.0	3
869	The many faces of PPARÎ ³ : Anti-inflammatory by any means?. Immunobiology, 2008, 213, 789-803.	0.8	140
870	Cationic liposomal lipids: From gene carriers to cell signaling. Progress in Lipid Research, 2008, 47, 340-347.	5.3	186

#	Article	IF	CITATIONS
871	Effect of niacin on adipocyte leptin in hypercholesterolemic rabbits. Cardiovascular Pathology, 2008, 17, 219-225.	0.7	10
872	Fisetin, morin and myricetin attenuate CD36 expression and oxLDL uptake in U937-derived macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 601-609.	1.2	63
873	4-Hydroxydocosahexaenoic acid, a potent peroxisome proliferator-activated receptor Î ³ agonist alleviates the symptoms of DSS-induced colitis. Biochemical and Biophysical Research Communications, 2008, 367, 566-572.	1.0	13
874	Effect of tumor necrosis factor α on cholesterol efflux in adipocytes. Clinica Chimica Acta, 2008, 389, 67-71.	0.5	37
875	Fat and Beyond: The Diverse Biology of PPARÎ ³ . Annual Review of Biochemistry, 2008, 77, 289-312.	5.0	1,757
876	Ox-LDL induces monocyte-to-macrophage differentiation in vivo: Possible role for the macrophage colony stimulating factor receptor (M-CSF-R). Atherosclerosis, 2008, 196, 598-607.	0.4	63
877	Dietary homocysteine promotes atherosclerosis in apoE-deficient mice by inducing scavenger receptors expression. Atherosclerosis, 2008, 197, 620-629.	0.4	44
878	Estudio farmacogenómico mediante microarrays en monocitos de pacientes con hiperlipemia familiar combinada tratados con atorvastatina. ClÃnica E Investigación En Arteriosclerosis, 2008, 20, 135-144.	0.4	0
879	PPARÎ ³ and Proline Oxidase in Cancer. PPAR Research, 2008, 2008, 1-9.	1.1	23
880	Peroxisome Proliferator-Activated Receptor Î ³ as a Novel Therapeutic Target in Asthma. Journal of Asthma, 2008, 45, 1-8.	0.9	16
881	Low-Intensity Exercise Exerts Beneficial Effects on Plasma Lipids via PPARÎ ³ . Medicine and Science in Sports and Exercise, 2008, 40, 1263-1270.	0.2	106
882	Reviews of Physiology Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, 2008, , .	0.9	0
883	Transcriptional Regulation of Fatty Acid Translocase/CD36 Expression by CCAAT/Enhancer-binding Protein α. Journal of Biological Chemistry, 2008, 283, 8788-8795.	1.6	60
884	Autoimmune-mediated atherothrombosis. Lupus, 2008, 17, 879-888.	0.8	37
885	IL-13 Attenuates Gastrointestinal Candidiasis in Normal and Immunodeficient RAG-2â^'/â^' Mice via Peroxisome Proliferator-Activated Receptor-l ³ Activation. Journal of Immunology, 2008, 180, 4939-4947.	0.4	33
886	12/15-Lipoxygenase Activity Increases the Degradation of Macrophage ATP-Binding Cassette Transporter G1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1811-1819.	1.1	34
887	Hepatocyte Retinoid X Receptor α-Dependent Regulation of Lipid Homeostasis and Inflammatory Cytokine Expression Contributes to Alcohol-Induced Liver Injury. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 443-453.	1.3	55
888	<i>CREB3L2-PPARÎ³</i> Fusion Mutation Identifies a Thyroid Signaling Pathway Regulated by Intramembrane Proteolysis. Cancer Research, 2008, 68, 7156-7164.	0.4	67

#	Article	IF	CITATIONS
889	Transcriptional Control of Vascular Smooth Muscle Cell Proliferation by Peroxisome Proliferator-Activated Receptor-γ: Therapeutic Implications for Cardiovascular Diseases. PPAR Research, 2008, 2008, 1-11.	1.1	27
890	Dialysis-related systemic microinflammation is associated with specific genomic patterns. Nephrology Dialysis Transplantation, 2008, 23, 1673-1681.	0.4	32
891	Expression profiling of macrophages from subjects with atherosclerosis to identify novel susceptibility genes. International Journal of Molecular Medicine, 2008, , .	1.8	7
892	Immunomodulatory Role of PPAR-Î ³ in Alveolar Macrophages. Journal of Investigative Medicine, 2008, 56, 522-527.	0.7	62
893	Dietary Modulators of Peroxisome Proliferator-Activated Receptors: Implications for the Prevention and Treatment of Metabolic Syndrome. Journal of Nutrigenetics and Nutrigenomics, 2008, 1, 126-135.	1.8	5
894	A Functional Peroxisome Proliferator-activated Receptor-Î ³ Ligand-binding Domain Is Not Required for Adipogenesis. Journal of Biological Chemistry, 2008, 283, 24290-24294.	1.6	45
895	Oxidized Low Density Lipoprotein Activates Peroxisome Proliferator-activated Receptor-α (PPARα) and PPARγ through MAPK-dependent COX-2 Expression in Macrophages. Journal of Biological Chemistry, 2008, 283, 9852-9862.	1.6	57
896	PPAR- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="E1"><mml:mi>Î³</mml:mi></mml:math> in the Cardiovascular System. PPAR Research, 2008, 2008, 1-10.	1.1	39
897	Hexarelin Signaling to PPAR <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="E1"><mml:mi>I³</mml:mi></mml:math> in Metabolic Diseases. PPAR Research, 2008, 2008, 1-9.	1.1	19
898	Peroxisome Proliferator-Activated Receptor γ–Mediated Up-regulation of Syndecan-1 by n-3 Fatty Acids Promotes Apoptosis of Human Breast Cancer Cells. Cancer Research, 2008, 68, 2912-2919.	0.4	101
899	Peroxisome Proliferator-Activated Receptor-γ–Mediated Effects in the Vasculature. Circulation Research, 2008, 102, 283-294.	2.0	256
900	15-Lipoxygenase-1 Prevents Vascular Endothelial Growth Factor A– and Placental Growth Factor–Induced Angiogenic Effects in Rabbit Skeletal Muscles via Reduction in Growth Factor mRNA Levels, NO Bioactivity, and Downregulation of VEGF Receptor 2 Expression. Circulation Research, 2008. 102. 177-184.	2.0	45
901	Thrombospondin-1 Deficiency Accelerates Atherosclerotic Plaque Maturation in <i>ApoE</i> ^{â^'/â^'} Mice. Circulation Research, 2008, 103, 1181-1189.	2.0	98
902	Linoleic-Acid-Induced Growth Suppression Induces Quiescent Cancer Cell Nests in Nude Mice. Pathobiology, 2008, 75, 226-232.	1.9	13
903	Peroxisome Proliferator-Activated Receptor Î ³ Is a Target of Progesterone Regulation in the Preovulatory Follicles and Controls Ovulation in Mice. Molecular and Cellular Biology, 2008, 28, 1770-1782.	1.1	106
904	Peroxisome Proliferator-Activated Receptor γ Agonists as Insulin Sensitizers: From the Discovery to Recent Progress. Current Topics in Medicinal Chemistry, 2008, 8, 1483-1507.	1.0	77
905	LPA modulates monocyte migration directly and via LPA-stimulated endothelial cells. American Journal of Physiology - Cell Physiology, 2008, 295, C905-C914.	2.1	38
906	PPARs and the kidney in metabolic syndrome. American Journal of Physiology - Renal Physiology, 2008, 294, F1032-F1047.	1.3	89

#	Article	IF	CITATIONS
907	Arginase I Induction by Modified Lipoproteins in Macrophages: A Peroxisome Proliferator-Activated Receptor-γ/δ-Mediated Effect that Links Lipid Metabolism and Immunity. Molecular Endocrinology, 2008, 22, 1394-1402.	3.7	127
908	Genome-wide profiling of PPARÎ ³ :RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes and Development, 2008, 22, 2953-2967.	2.7	475
909	A Lesson in Moderation: Applying Pharmacodynamics to Clarify the Relationship Between Thiazolidinediones and Adverse Vascular Outcomes in Type 2 Diabetes. Journal of Clinical Pharmacology, 2008, 48, 999-1002.	1.0	1
910	A monounsaturated fatty acid-rich diet reduces macrophage uptake of plasma oxidised low-density lipoprotein in healthy young men. British Journal of Nutrition, 2008, 100, 569-575.	1.2	25
912	PPARÎ ³ . Journal of Investigative Medicine, 2008, 56, 515-517.	0.7	15
913	PPARγ and Early Human Placental Development. Current Medicinal Chemistry, 2008, 15, 3011-3024.	1.2	41
914	Thiazolidinediones Anti-Inflammatory and Anti-Atherosclerotic Effects in Type 2 Diabetes Mellitus. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2008, 7, 217-223.	1.1	3
915	Glycoxidation of Low Density Lipoprotein in Impaired Glucose Tolerance: Implications for the Pathogenesis of Diabetic Vascular Disease. Vascular Disease Prevention, 2008, 5, 24-28.	0.2	0
916	A Role for the PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>in Cancer Therapy. PPAR Research, 2008, 2008, 1-17.</mml:math 	1.1	32
917	Omega-3 Fatty Acids and PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>in Cancer. PPAR Research, 2008, 2008, 1-14.</mml:math 	1.1	100
918	Activated PPARÎ ³ Targets Surface and Intracellular Signals That Inhibit the Proliferation of Lung Carcinoma Cells. PPAR Research, 2008, 2008, 1-8.	1.1	7
919	PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility. PPAR Research, 2008, 2008, 1-19.	1.1	36
920	Role of Peroxisome Proliferator-Activated Receptor Gamma and Its Ligands in the Treatment of Hematological Malignancies. PPAR Research, 2008, 2008, 1-18.	1.1	26
921	Macrophages, PPARs, and Cancer. PPAR Research, 2008, 2008, 1-11.	1.1	41
922	Clinical Use of PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>Ligands in Cancer. PPAR Research, 2008, 2008, 1-13.</mml:math 	1.1	32
923	The Roles of Dietary PPAR Ligands for Metastasis in Colorectal Cancer. PPAR Research, 2008, 2008, 1-7.	1.1	24
924	Activation and Molecular Targets of Peroxisome Proliferator-Activated Receptor- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi>Ligands in Lung Cancer. PPAR Research, 2008, 2008, 1-8.</mml:math 	1.1	25
925	Peroxisome Proliferator-Activated Receptors in the Modulation of the Immune/Inflammatory Response in Atherosclerosis. PPAR Research, 2008, 2008, 1-7.	1.1	22

#	Article	IF	CITATIONS
926	Potential Therapeutic Use of PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi>-Programed Human Monocyte-Derived Dendritic Cells in Cancer Vaccination Therapy. PPAR Research, 2008, 2008, 1-10.</mml:math 	1.1	2
927	Peroxisome Proliferator-Activated Receptors in Diabetic Nephropathy. PPAR Research, 2008, 2008, 1-11.	1.1	15
928	Association Analysis of Peroxisome Proliferator-activated Receptors Gamma Gene Polymorphisms with asprin hypersensitivity in Asthmatics. Allergy, Asthma and Immunology Research, 2009, 1, 30.	1.1	20
929	Cross-Talk between PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR Research, 2009, 2009, 1-12.</mml:math 	1.1	162
931	TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13353-13358.	3.3	94
932	Lipid G Protein-coupled Receptor Ligand Identification Using β-Arrestin PathHunter™ Assay. Journal of Biological Chemistry, 2009, 284, 12328-12338.	1.6	289
933	Lipid droplets in host–pathogen interactions. Clinical Lipidology, 2009, 4, 791-807.	0.4	19
934	Skeletal Consequences of Deletion of Steroid Receptor Coactivator-2/Transcription Intermediary Factor-2. Journal of Biological Chemistry, 2009, 284, 18767-18777.	1.6	21
935	Increased Lipid Oxidation Causes Oxidative Stress, Increased Peroxisome Proliferator-activated Receptor-γ Expression, and Diminished Pro-osteogenic Wnt Signaling in the Skeleton. Journal of Biological Chemistry, 2009, 284, 27438-27448.	1.6	225
936	Control of ovulation in mice by progesterone receptor-regulated gene networks. Molecular Human Reproduction, 2009, 15, 821-828.	1.3	67
937	Intravitreal Adenoviral 15-Lipoxygenase-1 Gene Transfer Prevents Vascular Endothelial Growth Factor A-Induced Neovascularization in Rabbit Eyes. Human Gene Therapy, 2009, 20, 1679-1686.	1.4	15
938	PPARs and the Cardiovascular System. Antioxidants and Redox Signaling, 2009, 11, 1415-1452.	2.5	173
939	Peroxisome proliferator-activated receptor Î ³ in bladder cancer: A promising therapeutic target. Cancer Biology and Therapy, 2009, 8, 575-584.	1.5	56
940	Chronic Treatment With Losartan Results in Sufficient Serum Levels of the Metabolite EXP3179 for PPARÎ ³ Activation. Hypertension, 2009, 54, 738-743.	1.3	43
941	Modulation of Microglial Innate Immunity in Alzheimers Disease by Activation of Peroxisome Proliferator-activated Receptor Gamma. Current Medicinal Chemistry, 2009, 16, 643-651.	1.2	37
942	CD36-mediated cholesterol efflux is associated with PPARÎ ³ activation via a MAPK-dependent COX-2 pathway in macrophages. Cardiovascular Research, 2009, 83, 457-464.	1.8	50
943	Regulation of Skeletal Muscle Physiology and Metabolism by Peroxisome Proliferator-Activated Receptor δ. Pharmacological Reviews, 2009, 61, 373-393.	7.1	197
944	Polymorphism and Human Health. PPAR Research, 2009, 2009, 1-15.	1.1	41

#	Article	IF	CITATIONS
945	<i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin Infection Induces TLR2-Dependent Peroxisome Proliferator-Activated Receptor γ Expression and Activation: Functions in Inflammation, Lipid Metabolism, and Pathogenesis. Journal of Immunology, 2009, 183, 1337-1345.	0.4	148
946	Lipoprotein Oxidation and Modification. , 2009, , 93-110.		2
947	LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. Journal of Lipid Research, 2009, 50, 1676-1684.	2.0	54
948	Berberine improves free-fatty-acid–induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator–activated receptor γ and fatty acid transferase expressions. Metabolism: Clinical and Experimental, 2009, 58, 1694-1702.	1.5	46
949	Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. , 2009, 122, 246-263.		127
950	G2A as a receptor for oxidized free fatty acids. Prostaglandins and Other Lipid Mediators, 2009, 89, 66-72.	1.0	70
951	Functional alterations of myeloid cell subsets in hyperlipidaemia: relevance for atherosclerosis. Journal of Cellular and Molecular Medicine, 2009, 13, 4293-4303.	1.6	31
952	Augmentation of PPAR ^î 3-TAZ interaction contributes to the anti-adipogenic activity of KR62980. Biochemical Pharmacology, 2009, 78, 1323-1329.	2.0	32
953	Convergence of nitric oxide and lipid signaling: Anti-inflammatory nitro-fatty acids. Free Radical Biology and Medicine, 2009, 46, 989-1003.	1.3	111
954	Peroxisome proliferator-activated receptor gamma overexpression and knockdown: impact on human B cell lymphoma proliferation and survival. Cancer Immunology, Immunotherapy, 2009, 58, 1071-1083.	2.0	17
955	Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Communications in Mass Spectrometry, 2009, 23, 863-876.	0.7	53
956	15â€Lipoxygenaseâ€1 expression suppresses the invasive properties of colorectal carcinoma cell lines HCTâ€116 and HTâ€29. Cancer Science, 2009, 100, 2283-2291.	1.7	40
957	7-Chloroarctinone-b as a new selective PPARÎ ³ antagonist potently blocks adipocyte differentiation. Acta Pharmacologica Sinica, 2009, 30, 1351-1358.	2.8	28
958	Altering PPARÎ ³ Ligand Selectivity Impairs Adipogenesis by Thiazolidinediones But Not Hormonal Inducers. Obesity, 2009, 17, 965-972.	1.5	12
959	Mechanisms of obesity and related pathologies: Role of apolipoprotein E in the development of obesity. FEBS Journal, 2009, 276, 5720-5728.	2.2	49
960	The Role of Oxidized Low-Density Lipoprotein in the Activation of Peroxisome Proliferator-activated Receptor Î ³ : Implications for Atherosclerosis. Nutrition Reviews, 2009, 57, 88-91.	2.6	6
961	CD36: A multiâ€modal target for acute stroke therapy. Journal of Neurochemistry, 2009, 109, 126-132.	2.1	31
962	Eicosanoid-Based Signaling. , 0, , 229-244.		0

#	Article	IF	CITATIONS
963	15-Lipoxygenase-1 in Colorectal Cancer: A Review. Tumor Biology, 2009, 30, 185-199.	0.8	28
964	LPS-induced suppression of macrophage cholesterol efflux is mediated by adipocyte enhancer-binding protein 1. International Journal of Biochemistry and Cell Biology, 2009, 41, 1518-1525.	1.2	45
965	Leukocyte lipid bodies — Biogenesis and functions in inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 540-551.	1.2	204
966	Lipid ligand-activated transcription factors regulating lipid storage and release in human macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 486-493.	1.2	25
967	Transport of fatty acids across the human placenta: A review. Progress in Lipid Research, 2009, 48, 52-61.	5.3	261
968	Resistin increases lipid accumulation by affecting class A scavenger receptor, CD36 and ATP-binding cassette transporter-A1 in macrophages. Life Sciences, 2009, 84, 97-104.	2.0	63
969	Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Molecular Aspects of Medicine, 2009, 30, 134-152.	2.7	69
970	Peroxisome proliferator-activated receptor-gamma in normal human pregnancy and miscarriage. Acta Histochemica, 2009, 111, 373-379.	0.9	14
971	Chapter 13 PPAR and Pain. International Review of Neurobiology, 2009, 85, 165-177.	0.9	36
972	Human articular chondrocytes express 15-lipoxygenase-1 and -2: potential role in osteoarthritis. Arthritis Research and Therapy, 2009, 11, R44.	1.6	28
973	Lipid Signaling Protocols. Methods in Molecular Biology, 2009, , .	0.4	1
974	PPARgamma Promoter Polymorphisms and Acute Coronary Syndrome. Atherosclerosis, 2009, 205, 186-191.	0.4	22
975	Immunohistochemical Detection of 13(R)-hydroxyoctadecadienoic Acid in Atherosclerotic Plaques of Human Carotid Arteries Using a Novel Specific Antibody. Acta Histochemica Et Cytochemica, 2009, 42, 197-203.	0.8	14
976	Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood, 2009, 113, 2047-2055.	0.6	127
977	Peroxisome Proliferator-Activated Receptor .GAMMA. Ligands Isolated from Adlay Seed (Coix) Tj ETQq0 0 0 rgBT	/Oyerlock	101f 50 182
978	Peroxisome Proliferator-Activated Receptor .GAMMA. and Cardiovascular Diseases. Circulation Journal, 2009, 73, 214-220.	0.7	69
979	Direct antiatherosclerotic effects of PPAR agonists. Current Opinion in Lipidology, 2009, 20, 24-29.	1.2	29
980	Interaction Between Retinoids and Eicosanoids: Their Relevance to Cancer Chemoprevention. Current Nutrition and Food Science, 2009, 5, 126-133.	0.3	4

#	Article	IF	CITATIONS
981	Lipid Rafts and Redox Regulation of Cellular Signaling in Cholesterol Induced Atherosclerosis. Current Cardiology Reviews, 2010, 6, 309-324.	0.6	31
982	Tongxinluo Inhibits Oxidized Low-density Lipoprotein–induced Maturation of Human Dendritic Cells via Activating Peroxisome Proliferator-Activated Receptor Gamma Pathway. Journal of Cardiovascular Pharmacology, 2010, 56, 177-183.	0.8	24
983	PPARÎ ³ 1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nuclear Receptor Signaling, 2010, 8, nrs.08004.	1.0	70
984	Inhibitory Effects of Balsamic Vinegar on LDL Oxidation and Lipid Accumulation in THP-1 Macrophages. Journal of Nutritional Science and Vitaminology, 2010, 56, 421-427.	0.2	13
985	Generation and Biological Activities of Oxidized Phospholipids. Antioxidants and Redox Signaling, 2010, 12, 1009-1059.	2.5	461
986	Evaluation of foam cell formation in cultured macrophages: an improved method with Oil Red O staining and Dil-oxLDL uptake. Cytotechnology, 2010, 62, 473-481.	0.7	165
987	Insulin resistance due to lipid-induced signaling defects could be prevented by mahanine. Molecular and Cellular Biochemistry, 2010, 336, 97-107.	1.4	22
988	The rise of antioxidant signaling—The evolution and hormetic actions of Nrf2. Toxicology and Applied Pharmacology, 2010, 244, 4-15.	1.3	209
989	Inhibiting effects of total saponins of panax ginseng on immune maturation of dendritic cells induced by oxidized-low density lipoprotein. Cellular Immunology, 2010, 263, 99-104.	1.4	15
990	Vitamin C deficiency attenuates liver fibrosis by way of up-regulated peroxisome proliferator-activated receptor-gamma expression in senescence marker protein 30 knockout mice. Hepatology, 2010, 51, 1766-1777.	3.6	55
991	Oxygenated metabolites of polyunsaturated fatty acids: Formation and function in blood and vascular cells. European Journal of Lipid Science and Technology, 2010, 112, 941-947.	1.0	8
992	Increased expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ in human atherosclerosis. Pathology Research and Practice, 2010, 206, 429-438.	1.0	18
993	STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPARÎ ³ -Regulated Gene Expression in Macrophages and Dendritic Cells. Immunity, 2010, 33, 699-712.	6.6	352
994	Aged garlic extract inhibits CD36 expression in human macrophages via modulation of the PPARÎ ³ pathway. Phytotherapy Research, 2010, 24, 602-608.	2.8	20
995	Aiming drug discovery at lysophosphatidic acid targets. British Journal of Pharmacology, 2010, 161, 241-270.	2.7	154
996	Oxidized low-density lipoprotein increases interleukin-8 production in human gingival epithelial cell line Ca9-22. Journal of Periodontal Research, 2010, 45, 488-95.	1.4	17
997	Review article: lymphatic system and associated adipose tissue in the development of inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2010, 32, 697-711.	1.9	60
998	Singleâ€nucleotide Polymorphism of CD36 Locus and Obesity in European Adolescents. Obesity, 2010, 18, 1398-1403.	1.5	58

#	Article	IF	CITATIONS
999	Polyphenol-rich grape powder extract (GPE) attenuates inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media. International Journal of Obesity, 2010, 34, 800-808.	1.6	51
1000	Chemokine Receptor 2 (CCR2) in Atherosclerosis, Infectious Diseases, and Regulation of T-Cell Polarization. Microcirculation, 2010, 10, 259-264.	1.0	53
1001	Possibility of the regression of atherosclerosis through the prevention of endothelial senescence by the regulation of nitric oxide and free radical scavengers. Geriatrics and Gerontology International, 2010, 10, 115-130.	0.7	16
1002	Peroxisome Proliferator-activated Receptor-γ Agonist Inhibits Pro-inflammatory Gene Expressions and Cellular Proliferation of Fibroblast Like Synoviocytes from Patients with Rheumatoid Arthritis by Down-regulation of NF-kappaB. The Journal of the Korean Rheumatism Association, 2010, 17, 153.	0.1	7
1003	Peroxisome Proliferator-Activated Receptors. , 2010, , 145-167.		1
1004	The Bile Acid Sensor FXR Protects against Dyslipidemia and Aortic Plaques Development Induced by the HIV Protease Inhibitor Ritonavir in Mice. PLoS ONE, 2010, 5, e13238.	1.1	28
1005	Anticancer actions of PPARÎ ³ ligands: Current state and future perspectives in human lung cancer. World Journal of Biological Chemistry, 2010, 1, 31.	1.7	14
1006	Skeletal Muscle Stem Cells from Animals I. Basic Cell Biology. International Journal of Biological Sciences, 2010, 6, 465-474.	2.6	53
1007	Free Radicals as Atherosclerotic Risk in Relation to Nitric Oxide. , 2010, , 673-703.		0
1008	Phospholipase A ₂ –Modified Low-Density Lipoprotein Activates Macrophage Peroxisome Proliferator–Activated Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 313-320.	1.1	15
1009	15-Hydroxyeicosatetraenoic Acid Is a Preferential Peroxisome Proliferator-Activated Receptor β/Î′ Agonist. Molecular Pharmacology, 2010, 77, 171-184.	1.0	77
1010	Control of Macrophage Activation and Function by PPARs. Circulation Research, 2010, 106, 1559-1569.	2.0	447
1011	Review: Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Therapeutic Advances in Endocrinology and Metabolism, 2010, 1, 51-60.	1.4	160
1012	Deletion of the α-Arrestin Protein Txnip in Mice Promotes Adiposity and Adipogenesis While Preserving Insulin Sensitivity. Diabetes, 2010, 59, 1424-1434.	0.3	131
1013	PPARÎ ³ modulated inflammatory response of human dendritic cell subsets to engulfed apoptotic neutrophils. Journal of Leukocyte Biology, 2010, 88, 981-991.	1.5	21
1014	Health aspects of oxidized dietary fats. , 2010, , 143-180.		7
1015	Fetal programming of skeletal muscle development in ruminant animals1. Journal of Animal Science, 2010, 88, E51-E60.	0.2	364
1016	Identification and Analysis of Two Splice Variants of Human G2A Generated by Alternative Splicing. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 469-478.	1.3	11

#	Article	IF	CITATIONS
1017	Oxidized low-density lipoprotein activates adipophilin through ERK1/2 signal pathway in RAW264.7 cells. Acta Biochimica Et Biophysica Sinica, 2010, 42, 635-645.	0.9	17
1018	Nrf2-regulated PPARγ Expression Is Critical to Protection against Acute Lung Injury in Mice. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 170-182.	2.5	184
1019	Therapeutic Implications of PPARÎ ³ in Cardiovascular Diseases. PPAR Research, 2010, 2010, 1-12.	1.1	12
1020	Molecular Determinants of the Cardiometabolic Phenotype. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2010, 10, 109-123.	0.6	7
1021	Nuclear Receptors of the Peroxisome Proliferator-Activated Receptor (PPAR) Family in Gestational Diabetes: From Animal Models to Clinical Trials1. Biology of Reproduction, 2010, 83, 168-176.	1.2	51
1022	Epidermis-Type Lipoxygenase 3 Regulates Adipocyte Differentiation and Peroxisome Proliferator-Activated Receptor γ Activity. Molecular and Cellular Biology, 2010, 30, 4077-4091.	1.1	45
1023	An Imbalance Between CD36 and ABCA1 Protein Expression Favors Lipid Accumulation in Stroke-Prone Ulcerated Carotid Plaques. Stroke, 2010, 41, 389-393.	1.0	16
1024	Endogenous Ligands for Nuclear Receptors: Digging Deeper. Journal of Biological Chemistry, 2010, 285, 40409-40415.	1.6	142
1025	Serum Amyloid A Activates Peroxisome Proliferator-Activated Receptor \hat{I}^3 through Extracellularly Regulated Kinase 1/2 and COX-2 Expression in Hepatocytes. Biochemistry, 2010, 49, 9508-9517.	1.2	12
1026	PPARs: Important Regulators in Metabolism and Inflammation. , 2010, , 259-285.		1
1027	Phospholipase D2-Dependent Inhibition of the Nuclear Hormone Receptor PPARÎ ³ by Cyclic Phosphatidic Acid. Molecular Cell, 2010, 39, 421-432.	4.5	117
1028	PPARs and adipocyte function. Molecular and Cellular Endocrinology, 2010, 318, 61-68.	1.6	119
1029	Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Science, 2010, 86, 103-109.	2.7	88
1030	Electrophilic nitro-fatty acids: anti-inflammatory mediators in the vascular compartment. Current Opinion in Pharmacology, 2010, 10, 179-184.	1.7	56
1031	Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 327-337.	1.2	79
1032	PPARÎ ³ regulates the expression of cholesterol metabolism genes in alveolar macrophages. Biochemical and Biophysical Research Communications, 2010, 393, 682-687.	1.0	61
1033	Alpinia pricei Hayata rhizome extracts have suppressive and preventive potencies against hypercholesterolemia. Food and Chemical Toxicology, 2010, 48, 2350-2356.	1.8	7
1034	Mechanisms of LDL oxidation. Clinica Chimica Acta, 2010, 411, 1875-1882.	0.5	229

# 1035	ARTICLE Lipid droplets in inflammation and cancer. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 82, 243-250.	IF 1.0	CITATIONS 343
1036	PPARÎ ³ in bone homeostasis. Trends in Endocrinology and Metabolism, 2010, 21, 722-728.	3.1	124
1037	Oxidants and Endothelial Dysfunction. , 2010, , 243-274.		6
1038	Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy. Carcinogenesis, 2010, 31, 446-454.	1.3	71
1041	Oxidized LDL: Diversity, Patterns of Recognition, and Pathophysiology. Antioxidants and Redox Signaling, 2010, 13, 39-75.	2.5	354
1042	Notch Targets and Their Regulation. Current Topics in Developmental Biology, 2010, 92, 253-275.	1.0	136
1043	A metabolomics strategy for detecting protein–metabolite interactions to identify natural nuclear receptor ligands. Molecular BioSystems, 2011, 7, 1046.	2.9	21
1044	Peroxisome proliferator-activated receptor gamma in osteoarthritis. Modern Rheumatology, 2011, 21, 1-9.	0.9	57
1045	Mulberry Leaf Polyphenols Possess Antiatherogenesis Effect via Inhibiting LDL Oxidation and Foam Cell Formation. Journal of Agricultural and Food Chemistry, 2011, 59, 1985-1995.	2.4	64
1046	Effects of Fufang Zhenzhu Tiaozhi Prescription (åæ−¹è´žæœ⁻è°ƒè,,,æ−¹), A Chinese herbal preparation, on atherc ApoE-/- mice and related mechanisms. Chinese Journal of Integrative Medicine, 2011, , 1.	osclerosis i 0.7	n ₁₀
1047	Peroxisome Proliferator-Activated Receptors and Atherosclerosis. Angiology, 2011, 62, 523-534.	0.8	28
1048	Link between metformin and the peroxisome proliferator-activated receptor $\hat{1}^3$ pathway in the uterine tissue of hyperandrogenized prepubertal mice. Fertility and Sterility, 2011, 95, 2534-2537.e1.	0.5	15
1049	PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1007-1022.	1.8	693
1050	NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell. Biochemical and Biophysical Research Communications, 2011, 411, 543-548.	1.0	29
1051	Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice. Biochemical and Biophysical Research Communications, 2011, 415, 288-293.	1.0	17
1052	Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet. Life Sciences, 2011, 88, 384-391.	2.0	32
1053	Aged garlic extract inhibits homocysteine-induced scavenger receptor CD36 expression and oxidized low-density lipoprotein cholesterol uptake in human macrophages in vitro. Journal of Ethnopharmacology, 2011, 134, 711-716.	2.0	26
1054	Functional and pathological roles of the 12- and 15-lipoxygenases. Progress in Lipid Research, 2011, 50, 115-131.	5.3	269

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
1055	PPARs and Lipid Ligands in Inflammation and Metabolism. Chemical Reviews, 2011, 11	1, 6321-6340.	23.0	151
1056	Unique Mode of Lipogenic Activation in Rat Preputial Sebocytes. Journal of Nutrition at 2011, 2011, 1-9.	nd Metabolism,	0.7	8
1057	Effects of Sulfonylureas on Peroxisome Proliferator-Activated Receptor \hat{I}^3 Activity and o Uptake by Thiazolidinediones. Diabetes and Metabolism Journal, 2011, 35, 340.	on Glucose	1.8	23
1058	Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subv Exposure. PLoS ONE, 2011, 6, e23864.	way Air	1.1	57
1059	Peroxisome Proliferator-Activated Receptors: Role of Isoform Gamma in the Antineopla Iodine in Mammary Cancer. Current Cancer Drug Targets, 2011, 11, 775-786.	stic Effect of	0.8	12
1060	Lipid Mediator Profiling in Pulmonary Disease. Current Pharmaceutical Biotechnology, 1026-1052.	2011, 12,	0.9	59
1061	Adipocyte Enhancer-Binding Protein 1 (AEBP1) (a Novel Macrophage Proinflammatory Overexpression Promotes and Ablation Attenuates Atherosclerosis in ApoEâ^'/â^' and L Molecular Medicine, 2011, 17, 1056-1064.	Mediator) DLRâ^'/â^' Mice.	1.9	23
1062	Spontaneous and induced osteoclastogenic behaviour of human peripheral blood mon and their CD14+ and CD14â [~] cell fractions. Cell Proliferation, 2011, 44, 410-419.	onuclear cells	2.4	29
1063	Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. International Journal of Obesity, 2011, 35, 1165-1172) 2.	1.6	89
1064	Scavenger receptors as regulators of natural antibody responses and B cell activation i autoimmunity. Molecular Immunology, 2011, 48, 1307-1318.	n	1.0	18
1065	PPARÎ ³ and human trophoblast differentiation. Journal of Reproductive Immunology, 20	011, 90, 41-49.	0.8	56
1066	Tanshinone IIA attenuates atherosclerosis in ApoEâ^'/â^' mice through down-regulation receptor expression. European Journal of Pharmacology, 2011, 650, 275-284.	of scavenger	1.7	74
1067	PPARÎ ³ activation redirects macrophage cholesterol from fecal excretion to adipose tis mice via SR-BI. Biochemical Pharmacology, 2011, 81, 934-941.	sue uptake in	2.0	19
1068	Electrospray MS/MS reveals extensive and nonspecific oxidation of cholesterol esters in peripheral vascular lesions. Journal of Lipid Research, 2011, 52, 2070-2083.	n human	2.0	68
1069	Modified Low Density Lipoproteins Decrease the Activity and Expression of Lysosomal Human Endothelial and Smooth Muscle Cells. Cell Biochemistry and Biophysics, 2011,	Acid Lipase in 61, 209-216.	0.9	13
1070	Neuroimmune Pharmacology of Neurodegenerative and Mental Diseases. Journal of Ne Pharmacology, 2011, 6, 28-40.	eurolmmune	2.1	16
1071	Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pasto peroxisome proliferator-activated receptors. Lipids in Health and Disease, 2011, 10, 15	rianus activate 0.	1.2	25
1072	Primary human monocyte differentiation regulated by Nigella sativa pressed oil. Lipids Disease, 2011, 10, 216.	in Health and	1.2	6

#	Article	IF	CITATIONS
1073	13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages. Lipids in Health and Disease, 2011, 10, 222.	1.2	39
1074	Regulation of genes involved in lipid metabolism by dietary oxidized fat. Molecular Nutrition and Food Research, 2011, 55, 109-121.	1.5	41
1075	15â€lipoxygenaseâ€1 exerts its tumor suppressive role by inhibiting nuclear factorâ€kappa B via activation of PPAR gamma. Journal of Cellular Biochemistry, 2011, 112, 2490-2501.	1.2	32
1076	15-Deoxy-Δ ^{12,14} -prostaglandin J ₂ -Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor γ. Molecular Pharmacology, 2011, 80, 201-209.	1.0	38
1077	Xenobiotic Metabolism, Disposition, and Regulation by Receptors: From Biochemical Phenomenon to Predictors of Major Toxicities. Toxicological Sciences, 2011, 120, S49-S75.	1.4	294
1078	Differential Effects of PPARÎ ³ Ligands on Oxidative Stress–Induced Death of Retinal Pigmented Epithelial Cells. , 2011, 52, 890.		28
1079	Dynamic Modification of Sphingomyelin in Lipid Microdomains Controls Development of Obesity, Fatty Liver, and Type 2 Diabetes. Journal of Biological Chemistry, 2011, 286, 28544-28555.	1.6	162
1080	Lipid Peroxidation Modification of Protein Generates Nïµ-(4-Oxononanoyl)lysine as a Pro-inflammatory Ligand. Journal of Biological Chemistry, 2011, 286, 19943-19957.	1.6	31
1082	Pivotal Role for Platelet-Activating Factor Receptor in CD36 Expression and oxLDL Uptake by Human Monocytes/Macrophages. Cellular Physiology and Biochemistry, 2011, 27, 363-372.	1.1	24
1083	PPARÎ ³ expression is increased in systemic lupus erythematosus patients and represses CD40/CD40L signaling pathway. Lupus, 2011, 20, 575-587.	0.8	27
1084	CCR5 Blockade in Combination with Cyclosporine Increased Cardiac Graft Survival and Generated Alternatively Activated Macrophages in Primates. Journal of Immunology, 2011, 186, 3753-3761.	0.4	26
1085	Peroxisome proliferator-activated receptor-Î ³ and the endothelium: implications in cardiovascular disease. Expert Review of Cardiovascular Therapy, 2011, 9, 1279-1294.	0.6	8
1086	Restoration of PPARÎ ³ reverses lipid accumulation in alveolar macrophages of GM-CSF knockout mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L73-L80.	1.3	45
1087	Atherogenic ω-6 Lipids Modulate PPAR- EGR-1 Crosstalk in Vascular Cells. PPAR Research, 2011, 2011, 1-11.	1.1	10
1088	Nrf2, a PPARÎ ³ Alternative Pathway to Promote CD36 Expression on Inflammatory Macrophages: Implication for Malaria. PLoS Pathogens, 2011, 7, e1002254.	2.1	70
1089	PPAR <i>γ</i> Expression and Function in Mycobacterial Infection: Roles in Lipid Metabolism, Immunity, and Bacterial Killing. PPAR Research, 2012, 2012, 1-7.	1.1	78
1090	Deletion of the Angiotensin II Type 1a Receptor Prevents Atherosclerotic Plaque Rupture in Apolipoprotein E ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1453-1459.	1.1	23
1091	The Role of PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold-italic">γ</mml:mi </mml:math> in the Transcriptional Control by Agonists and Antagonists. PPAR Research, 2012, 2012, 1-9.	1.1	22

		Report	
#	Article	IF	CITATIONS
1092	Effects of PPAR <i>Î³</i> Ligands on Leukemia. PPAR Research, 2012, 2012, 1-8.	1.1	13
1093	PPAR and Oxidative Stress: Con() Catenating NRF2 and FOXO. PPAR Research, 2012, 2012, 1-15.	1.1	189
1094	Role of Peroxisome Proliferator-Activated Receptor- <i><i>ì³</i></i> in Vascular Inflammation. International Journal of Vascular Medicine, 2012, 2012, 1-9.	0.4	18
1095	Peroxisome Proliferator–Activated Receptors Modulate Proliferation and Angiogenesis in Human Endometrial Carcinoma. Molecular Cancer Research, 2012, 10, 441-453.	1.5	41
1096	Anti- and Protumorigenic Effects of PPARγin Lung Cancer Progression: A Double-Edged Sword. PPAR Research, 2012, 2012, 1-12.	1.1	5
1097	Insulin promotes macrophage foam cell formation: potential implications in diabetes-related atherosclerosis. Laboratory Investigation, 2012, 92, 1171-1180.	1.7	37
1098	Cholesteryl ester acyl oxidation and remodeling in murine macrophages: formation of oxidized phosphatidylcholine. Journal of Lipid Research, 2012, 53, 1588-1597.	2.0	38
1099	Exercise-associated generation of PPARÎ ³ ligands activates PPARÎ ³ signaling events and upregulates genes related to lipid metabolism. Journal of Applied Physiology, 2012, 112, 806-815.	1.2	59
1100	Adipose tissue signaling by nuclear receptors in metabolic complications of obesity. Adipocyte, 2012, 1, 4-12.	1.3	34
1101	Fatty Acids Regulate Endothelial Lipase and Inflammatory Markers in Macrophages and in Mouse Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2929-2937.	1.1	44
1102	Stem Bromelain–Induced Macrophage Apoptosis and Activation Curtail Mycobacterium tuberculosis Persistence. Journal of Infectious Diseases, 2012, 206, 366-376.	1.9	19
1103	Pro- and Anti-Inflammatory Cytokine Networks in Atherosclerosis. ISRN Vascular Medicine, 2012, 2012, 1-17.	0.7	15
1104	Prostaglandins as PPAR <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi mathvariant="bold">γ</mml:mi></mml:mrow></mml:math> Modulators in Adipogenesis. PPAR Research, 2012, 2012, 1-8.	1.1	38
1105	Nutraceuticals as Ligands of PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">Î3. PPAR Research, 2012, 2012, 1-7.</mml:mi </mml:math 	1.1	50
1106	Pharmacological and Toxicological Advances in PPAR-Related Medicines. PPAR Research, 2012, 2012, 1-2.	1.1	3
1107	Pioglitazone Prevents Smoking Carcinogen-Induced Lung Tumor Development in Mice. Current Cancer Drug Targets, 2012, 12, 597-606.	0.8	21
1108	Enhanced CD36 expression changes the role of Nrf2 activation from anti-atherogenic to pro-atherogenic in apoE-deficient mice. Atherosclerosis, 2012, 225, 83-90.	0.4	19
1109	Mechanisms of Gene Regulation by Fatty Acids. Advances in Nutrition, 2012, 3, 127-134.	2.9	243

#	Article	IF	CITATIONS
1110	Vitamin C deficiency accelerates bone loss inducing an increase in PPARâ€Î³ expression in SMP30 knockout mice. International Journal of Experimental Pathology, 2012, 93, 332-340.	0.6	28
1111	PPAR-γ Agonistic Metabolites from the Ascidian <i>Herdmania momus</i> . Journal of Natural Products, 2012, 75, 2082-2087.	1.5	24
1112	Thiazolidinedioneâ€independent activation of peroxisome proliferatorâ€activated receptor γ is a potential target for diabetic macrovascular complications. Journal of Diabetes Investigation, 2012, 3, 11-23.	1.1	2
1113	Role of PPARg2 transcription factor in thiazolidinedione-induced insulin sensitization. Journal of Pharmacy and Pharmacology, 2012, 64, 161-171.	1.2	38
1114	Nrf2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation. Free Radical Biology and Medicine, 2012, 53, 2256-2262.	1.3	56
1115	Proline dehydrogenase (oxidase) in cancer. BioFactors, 2012, 38, 398-406.	2.6	62
1116	Peroxisome Proliferator-Activated Receptor γ B Cell-Specific–Deficient Mice Have an Impaired Antibody Response. Journal of Immunology, 2012, 189, 4740-4747.	0.4	27
1117	Applications of metabolomics for understanding the action of peroxisome proliferator-activated receptors (PPARs) in diabetes, obesity and cancer. Genome Medicine, 2012, 4, 32.	3.6	60
1118	Peptidoglycan induced expression of peroxisome proliferator-activated receptor Î ³ in mouse peritoneal macrophages: Role of ERK and JNK MAP kinases. Cytokine, 2012, 60, 778-786.	1.4	12
1119	Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukotrienes and Essential Fatty Acids, 2012, 87, 135-141.	1.0	153
1120	Co-Stimulation of PAFR and CD36 Is Required for oxLDL-Induced Human Macrophages Activation. PLoS ONE, 2012, 7, e36632.	1.1	44
1121	The Language of Reactive Oxygen Species Signaling in Plants. Journal of Botany, 2012, 2012, 1-22.	1.2	144
1122	Proline metabolism and cancer. Frontiers in Bioscience - Landmark, 2012, 17, 1835.	3.0	90
1123	The Role of IL-10 in Atherosclerosis. , 2012, , .		2
1124	Rosiglitazone and Cardiovascular Risk – A Review. Bayero Journal of Pure and Applied Sciences, 2012, 4,	0.1	0
1125	Amniotic Membrane Induces Peroxisome Proliferator-Activated Receptor-Î ³ Positive Alternatively Activated Macrophages. , 2012, 53, 799.		32
1126	Oxidized low-density lipoprotein as a biomarker of in vivo oxidative stress: from atherosclerosis to periodontitis. Journal of Clinical Biochemistry and Nutrition, 2012, 51, 1-8.	0.6	72
1127	Redox Mechanisms in Regulation of Adipocyte Differentiation: Beyond a General Stress Response. Cells, 2012, 1, 976-993.	1.8	79

#	Article	IF	CITATIONS
1128	Nuclear Hormone Receptors Enable Macrophages and Dendritic Cells to Sense Their Lipid Environment and Shape Their Immune Response. Physiological Reviews, 2012, 92, 739-789.	13.1	195
1129	Regulation of the human endogenous retroviral Syncytinâ€1 and cell–cell fusion by the nuclear hormone receptors PPARγ/RXṞ in placentogenesis. Journal of Cellular Biochemistry, 2012, 113, 2383-2396.	1.2	58
1130	Rigid and flexible docking studies on PPAR-Î ³ agonists: key interactions for a better antihyperglycemic activity and in silico pharmacodynamic activity versus experimental in vivo activity. Medicinal Chemistry Research, 2012, 21, 624-633.	1.1	3
1131	An essential function for MKP5 in the formation of oxidized low density lipid-induced foam cells. Cellular Signalling, 2012, 24, 1889-1898.	1.7	14
1132	Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radical Biology and Medicine, 2012, 52, 266-280.	1.3	98
1133	Molecular identification and tissue distribution of peroxisome proliferators activated receptor gamma transcript in cultured Thunnus orientalis. Aquaculture Research, 2012, 43, 1145-1158.	0.9	10
1134	Curcumin inhibits oxLDL-induced CD36 expression and foam cell formation through the inhibition of p38 MAPK phosphorylation. Food and Chemical Toxicology, 2013, 58, 77-85.	1.8	58
1135	Pro-inflammatory cytokines negatively regulate PPAR \hat{I}^3 mediated gene expression in both human and murine macrophages via multiple mechanisms. Immunobiology, 2013, 218, 1336-1344.	0.8	33
1136	Scavenger receptors in homeostasis and immunity. Nature Reviews Immunology, 2013, 13, 621-634.	10.6	670
1137	Peroxisome Proliferator-Activated Receptor γ Agonists Attenuate Hyperglycaemia-Induced Hyaluronan Secretion in Vascular Smooth Muscle Cells by Inhibiting PKCβ2. Cell Biochemistry and Biophysics, 2013, 67, 583-590.	0.9	5
1138	EP 80317, a CD36 selective ligand, promotes reverse cholesterol transport in apolipoprotein E-deficient mice. Atherosclerosis, 2013, 229, 408-414.	0.4	16
1139	The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. Journal of Allergy and Clinical Immunology, 2013, 132, 264-286.	1.5	136
1140	Lipidomic and metabolomic analyses reveal potential plasma biomarkers of early atheromatous plaque formation in hamsters. Cardiovascular Research, 2013, 97, 642-652.	1.8	60
1141	Modified lipoproteins provide lipids that modulate dendritic cell immune function. Biochimie, 2013, 95, 103-108.	1.3	28
1142	The role of NF-кB in SAA-induced peroxisome proliferator-activated receptor Î ³ activation. Atherosclerosis, 2013, 227, 72-78.	0.4	20
1143	Effects of mPGES-1 deletion on eicosanoid and fatty acid profiles in mice. Prostaglandins and Other Lipid Mediators, 2013, 107, 18-25.	1.0	30
1144	Development of a high-throughput ultra performance liquid chromatography–mass spectrometry assay to profile 18 eicosanoids as exploratory biomarkers for atherosclerotic diseases. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 936, 25-32.	1.2	34
1146	Regulation of Bone Resorption by PPARÎ ³ . , 2013, , 103-122.		0

#	Article	IF	CITATIONS
1147	Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature, 2013, 494, 105-110.	13.7	474
1148	Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Molecular and Cellular Endocrinology, 2013, 368, 85-98.	1.6	23
1149	Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity <i>in vivo</i> . Journal of Clinical Biochemistry and Nutrition, 2013, 52, 9-16.	0.6	161
1150	Effects of citrus flavonoids, 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone and 3,5,6,7,8,3′,4′-heptamethoxyflavone, on the activities of macrophage scavenger receptors and the hepatic LDL receptor. Food and Function, 2013, 4, 602.	2.1	19
1151	PPARÎ ³ signaling and metabolism: the good, the bad and the future. Nature Medicine, 2013, 19, 557-566.	15.2	1,526
1152	RNA sequencing and transcriptomal analysis of human monocyte to macrophage differentiation. Gene, 2013, 519, 279-287.	1.0	37
1153	Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages. Food Chemistry, 2013, 141, 3703-3713.	4.2	17
1154	Emerging roles of peroxisome proliferator-activated receptors in the pituitary gland in female reproduction. Biomarkers and Genomic Medicine, 2013, 5, 1-11.	0.2	5
1155	Lipin1 regulates PPARÎ ³ transcriptional activity. Biochemical Journal, 2013, 453, 49-60.	1.7	47
1156	Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ, The, 2013, 346, e8707-e8707.	3.0	405
1157	Interactions Between Vascular Wall and Perivascular Adipose Tissue Reveal Novel Roles for Adiponectin in the Regulation of Endothelial Nitric Oxide Synthase Function in Human Vessels. Circulation, 2013, 127, 2209-2221.	1.6	266
1158	Tamoxifen inhibits macrophage FABP4 expression through the combined effects of the GR and PPARÎ ³ pathways. Biochemical Journal, 2013, 454, 467-477.	1.7	18
1159	Dominant negative PPARÎ ³ promotes atherosclerosis, vascular dysfunction, and hypertension through distinct effects in endothelium and vascular muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R690-R701.	0.9	35
1160	Peroxisome Proliferator-Activated Receptor Targets for the Treatment of Metabolic Diseases. Mediators of Inflammation, 2013, 2013, 1-18.	1.4	257
1161	Overexpression of Angiopoietin-Like Protein 4 Protects Against Atherosclerosis Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1529-1537.	1.1	79
1162	Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer. PPAR Research, 2013, 2013, 1-11.	1.1	11
1163	Low-Density Lipoprotein Modified by Myeloperoxidase in Inflammatory Pathways and Clinical Studies. Mediators of Inflammation, 2013, 2013, 1-18.	1.4	70
1164	Electronegative LDL: A Circulating Modified LDL with a Role in Inflammation. Mediators of Inflammation, 2013, 2013, 1-13.	1.4	41

#	Article	IF	CITATIONS
1165	Pioglitazone Attenuates Valvular Calcification Induced by Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 523-532.	1.1	42
1166	Pruning of the Adipocyte Peroxisome Proliferator-Activated Receptor Î ³ Cistrome by Hematopoietic Master Regulator PU.1. Molecular and Cellular Biology, 2013, 33, 3354-3364.	1.1	21
1167	Potential Impact of Genetic Variants in Nrf2 Regulated Antioxidant Genes and Risk Prediction of Diabetes and Associated Cardiac Complications. Current Medicinal Chemistry, 2013, 20, 4680-4693.	1.2	31
1168	Nuclear Receptors in Bone Physiology and Diseases. Physiological Reviews, 2013, 93, 481-523.	13.1	67
1169	Myosin VI and Associated Proteins Are Expressed in Human Macrophages but Do Not Play a Role in Foam Cell Formation in THP-1 Cells. International Journal of Vascular Medicine, 2013, 2013, 1-17.	0.4	2
1170	Eicosanoids and Docosanoids in Plasma and Aorta of Healthy and Atherosclerotic Rabbits. Journal of Vascular Research, 2013, 50, 372-382.	0.6	20
1172	Oxidized metabolites of linoleic acid as biomarkers of liver injury in nonalcoholic steatohepatitis. Clinical Lipidology, 2013, 8, 411-418.	0.4	27
1173	Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis. International Journal of Molecular Medicine, 2013, 31, 232-242.	1.8	37
1174	Orp8 Deficiency in Bone Marrow-Derived Cells Reduces Atherosclerotic Lesion Progression in LDL Receptor Knockout Mice. PLoS ONE, 2014, 9, e109024.	1.1	8
1175	Inhibitory Effect on <i>In Vitro</i> LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of <i>Hericium erinaceus</i> (Bull.) Persoon (Lion's Mane Mushroom). BioMed Research International, 2014, 2014, 1-9.	0.9	23
1176	Revisiting PPARÎ ³ as a target for the treatment of metabolic disorders. BMB Reports, 2014, 47, 599-608.	1.1	85
1177	Serum lipids and oxidized low density lipoprotein levels in sickle cell disease: Assessment and pathobiological significance. African Journal of Biochemistry Research, 2014, 8, 39-42.	0.2	2
1178	Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors. Leukemia, 2014, 28, 749-760.	3.3	28
1179	Hydroxyoctadecadienoic Acids Regulate Apoptosis in Human THPâ€l Cells in a PPARγâ€Dependent Manner. Lipids, 2014, 49, 1181-1192.	0.7	25
1180	Kimchi Methanol Extract and the Kimchi Active Compound, 3′-(4′-Hydroxyl-3′,5′-Dimethoxyphenyl)Propionic Acid, Downregulate CD36 in THP-1 Macrophages Stimulated by oxLDL. Journal of Medicinal Food, 2014, 17, 886-893.	0.8	12
1181	Molecular biology of calcific aortic valve disease: towards new pharmacological therapies. Expert Review of Cardiovascular Therapy, 2014, 12, 851-862.	0.6	54
1182	The Mononuclear Phagocyte System in Homeostasis and Disease: A Role for Heme Oxygenase-1. Antioxidants and Redox Signaling, 2014, 20, 1770-1788.	2.5	59
1183	Anti-Angiogenic Therapy and Cardiovascular Diseases: Current Strategies and Future Perspectives. , 2014, , 268-308.		0

#	Article	IF	CITATIONS
1184	Genistein alleviates the development of nonalcoholic steatohepatitis in <i><scp>A</scp>po<scp>E</scp>^{―/―}</i> mice fed a highâ€fat diet. Molecular Nutrition and Food Research, 2014, 58, 830-841.	1.5	48
1185	Oleic Acid and Linoleic Acid from <i>Tenebrio molitor</i> Larvae Inhibit BACE1 Activity <i>in vitro</i> : Molecular Docking Studies. Journal of Medicinal Food, 2014, 17, 284-289.	0.8	42
1186	Effect of <i>Persea americana</i> (avocado) fruit extract on the level of expression of adiponectin and PPAR-γ in rats subjected to experimental hyperlipidemia and obesity. Journal of Complementary and Integrative Medicine, 2014, 11, 107-119.	0.4	22
1187	Stress Signaling from Human Mammary Epithelial Cells Contributes to Phenotypes of Mammographic Density. Cancer Research, 2014, 74, 5032-5044.	0.4	26
1188	Oxidized Low-Density Lipoprotein Suppresses Expression of Prostaglandin E Receptor Subtype EP3 in Human THP-1 Macrophages. PLoS ONE, 2014, 9, e110828.	1.1	5
1189	Peroxisome proliferator-activated receptor-gamma (PPARÎ ³) is down regulated in trophoblast cells of gestational diabetes mellitus (GDM) and in trophoblast tumour cells BeWo in vitro after stimulation with PPARÎ ³ agonists. Journal of Perinatal Medicine, 2014, 42, 179-87.	0.6	20
1190	Aberrant Soluble Epoxide Hydrolase and Oxylipin Levels in a Porcine Arteriovenous Graft Stenosis Model. Journal of Vascular Research, 2014, 51, 269-282.	0.6	1
1191	Oxidized Lipids and Lysophosphatidylcholine Induce the Chemotaxis, Up-Regulate the Expression of CCR9 and CXCR4 and Abrogate the Release of IL-6 in Human Monocytes. Toxins, 2014, 6, 2840-2856.	1.5	33
1192	The impact of dietary fatty acids on macrophage cholesterol homeostasis. Journal of Nutritional Biochemistry, 2014, 25, 95-103.	1.9	30
1193	Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis, 2014, 232, 40-51.	0.4	127
1194	Association between polyunsaturated fatty acid-derived oxylipid biosynthesis and leukocyte inflammatory marker expression in periparturient dairy cows. Journal of Dairy Science, 2014, 97, 3615-3625.	1.4	26
1195	The Therapeutic Potential of Nuclear Receptor Modulators for Treatment of Metabolic Disorders: PPARÎ ³ , RORs, and Rev-erbs. Cell Metabolism, 2014, 19, 193-208.	7.2	106
1196	Endoplasmic Reticulum Stress Promotes Macrophage-derived Foam Cell Formation by Up-regulating Cluster of Differentiation 36 (CD36) Expression. Journal of Biological Chemistry, 2014, 289, 4032-4042.	1.6	80
1197	Immunological Mechanisms and Therapies in Brain Injuries and Stroke. , 2014, , .		4
1198	Linoleic acid: Between doubts and certainties. Biochimie, 2014, 96, 14-21.	1.3	138
1199	Angiotensin II and Vascular Injury. Current Hypertension Reports, 2014, 16, 431.	1.5	308
1200	Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 97-107.	1.2	71
1201	The class A scavenger receptor SR-A/CD204 and the class B scavenger receptor CD36 regulate immune functions of macrophages differently. Innate Immunity, 2014, 20, 826-847.	1.1	16

#	Article	IF	Citations
1202	Vitamin E Conditionally Inhibits Atherosclerosis in <i>ApoE</i> Knockout Mice by Antiâ€oxidation and Regulation of Vasculature Gene Expressions. Lipids, 2014, 49, 1215-1223.	0.7	33
1203	MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. Journal of Experimental Medicine, 2014, 211, 887-907.	4.2	70
1204	CD36, a scavenger receptor implicated in atherosclerosis. Experimental and Molecular Medicine, 2014, 46, e99-e99.	3.2	381
1205	Scavenger Receptor Function of Mouse FcÎ ³ Receptor III Contributes to Progression of Atherosclerosis in Apolipoprotein E Hyperlipidemic Mice. Journal of Immunology, 2014, 193, 2483-2495.	0.4	23
1206	Role of macrophage PPARÎ ³ in experimental hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H26-H32.	1.5	7
1207	Rosiglitazone-induced CD36 up-regulation resolves inflammation by PPARÎ ³ and 5-LO-dependent pathways. Journal of Leukocyte Biology, 2013, 95, 587-598.	1.5	66
1208	Differential roles of PPARÎ ³ vs TR4 in prostate cancer and metabolic diseases. Endocrine-Related Cancer, 2014, 21, R279-R300.	1.6	16
1209	Commentary on Myers et al.: Growing role of the innate immunity receptor CD36 in central nervous system diseases. Experimental Neurology, 2014, 261, 633-637.	2.0	16
1210	Implications of chemokines, chemokine receptors, and inflammatory lipids in atherosclerosis. Journal of Leukocyte Biology, 2014, 95, 575-585.	1.5	35
1211	7-Ketocholesteryl-9-carboxynonanoate enhances ATP binding cassette transporter A1 expression mediated by PPARÎ ³ in THP-1 macrophages. Atherosclerosis, 2014, 234, 461-468.	0.4	5
1212	Proatherogenic Conditions Promote Autoimmune T Helper 17 Cell Responses InÂVivo. Immunity, 2014, 40, 153-165.	6.6	103
1213	Scavenger receptor CD36 mediates inhibition of cholesterol synthesis via activation of the PPARγ/PGCâ€┨α pathway and Insig1/2 expression in hepatocytes. FASEB Journal, 2014, 28, 1910-1923.	0.2	39
1214	Breaking the chain at the membrane: paraoxonase 2 counteracts lipid peroxidation at the plasma membrane. FASEB Journal, 2014, 28, 1769-1779.	0.2	57
1215	Quantification of bovine oxylipids during intramammary Streptococcus uberis infection. Prostaglandins and Other Lipid Mediators, 2015, 121, 207-217.	1.0	23
1216	Genomewide effects of peroxisome proliferatorâ€activated receptor gamma in macrophages and dendritic cells – revealing complexity through systems biology. European Journal of Clinical Investigation, 2015, 45, 964-975.	1.7	11
1217	Characterization of fluorescent NBD-cholesterol efflux in THP-1-derived macrophages. Molecular Medicine Reports, 2015, 12, 5989-5996.	1.1	20
1218	LDL in patients with subclinical hypothyroidism shows increased lipid peroxidation. Lipids in Health and Disease, 2015, 14, 95.	1.2	18
1219	Activation of peroxisome proliferator–activated receptor gamma induces anti-inflammatory properties in the chicken free avian respiratory macrophages. Journal of Animal Science and Technology, 2015, 57, 40.	0.8	5

ARTICLE IF CITATIONS Role of Oxidized LDL in Atherosclerosis., 0,,. 1220 22 Integrative and Systemic Approaches for Evaluating PPARÎ²/Î² (PPARD) Function. Nuclear Receptor 1221 1.0 Signaling, 2015, 13, nrs.13001. 1222 Oxyradical Stress, Endocannabinoids, and Atherosclerosis. Toxics, 2015, 3, 481-498. 1.6 26 Mitochondrion-Targeted Peptide SS-31 Inhibited Oxidized Low-Density Lipoproteins-Induced Foam Cell Formation through both ROS Scavenging and Inhibition of Cholesterol Influx in RAW264.7 Cells. Molecules, 2015, 20, 21287-21297. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to 1224 492 1.8 Drought and Salinity Stresses. International Journal of Molecular Sciences, 2015, 16, 13561-13578. Elevated Atherosclerosis-Related Gene Expression, Monocyte Activation and Microparticle-Release Are Related to Increased Lipoprotein-Associated Oxidative Stress in Familial Hypercholesterolemia. PLoS ONE, 2015, 10, e0121516. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory 1226 1.1 27 Responses, while Reducing Cholesterol Efflux from Human Macrophages. PLoS ONE, 2015, 10, e0126839. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage 1.8 114 function. Thrombosis and Haemostasis, 2015, 113, 505-512. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARÎ³ and Fatty Acid 1228 1.1 18 Uptake. PLoS ONE, 2015, 10, e0130230. Expression of CD1a and Type-1 Polarization Are Dissociated in Human Monocyte-Derived Dendritic 1229 1.1 Cells. PLoS ONE, 2015, 10, e0140432. Ligands and Regulatory Modes of Peroxisome Proliferator-Activated Receptor Gamma (PPARÎ³) in Avians. 1230 0.4 6 Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 287-292. The PPAR- \hat{I}^3 antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-Î³ in human macrophage polarization. Journal of Inflammation, 2015, 1.5 12, 36. Metabolomic profiling in liver of adiponectin-knockout mice uncovers lysophospholipid metabolism 1232 1.7 20 as an important target of adiponectin action. Biochemical Journal, 2015, 469, 71-82. Effect-Directed Analysis of Human Peroxisome Proliferator-Activated Nuclear Receptors (PPAR³1) 4.6 Ligands in Indoor Dust. Environmental Science & amp; Technology, 2015, 49, 10065-10073. Effect of DHA-rich fish oil on PPARÎ³ target genes related to lipid metabolism in type 2 diabetes: A 1234 randomized, double-blind, placebo-controlled clinical trial. Journal of Clinical Lipidology, 2015, 9, 43 0.6 770-777. Reactive Oxygen Species (ROS) Mediate p300-dependent STAT1 Protein Interaction with Peroxisome Proliferator-activated Receptor (PPAR)-Î³ in CD36 Protein Expression and Foam Cell Formation. Journal of Biological Chemistry, 2015, 290, 30306-30320. The contributions of oxidative stress, oxidised lipoproteins and AMPK towards exercise-associated 1236 1.517 PPARÎ³ signalling within human monocytic cells. Free Radical Research, 2015, 49, 45-56. Lipids and Skin Health., 2015, , .

#	Article	IF	CITATIONS
1238	Molecular cloning, characterization and expression analysis of PPAR gamma in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge. Fish and Shellfish Immunology, 2015, 43, 310-324.	1.6	41
1239	The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, immunity, and cancer. Archives of Pharmacal Research, 2015, 38, 302-312.	2.7	52
1240	Hyper-Inflammation and Skin Destruction Mediated by Rosiglitazone Activation of Macrophages in IL-6 Deficiency. Journal of Investigative Dermatology, 2015, 135, 389-399.	0.3	12
1241	Swine PPAR-γ2 expression upregulated in skeletal muscle of transgenic mice via the swine Myozenin-1 gene promoter. Transgenic Research, 2015, 24, 409-420.	1.3	8
1242	Metabolic transformation of breast cancer in a MCF-7 xenograft mouse model and inhibitory effect of volatile oil from Saussurea lappa Decne treatment. Metabolomics, 2015, 11, 636-656.	1.4	37
1243	Redox implications in adipose tissue (dys)function—A new look at old acquaintances. Redox Biology, 2015, 6, 19-32.	3.9	72
1244	Adipokines enhance oleic acid-induced proliferation of vascular smooth muscle cells by inducing CD36 expression. Archives of Physiology and Biochemistry, 2015, 121, 81-87.	1.0	12
1245	Botanical oils enriched in n-6 and n-3 FADS2 products are equally effective in preventing atherosclerosis and fatty liver. Journal of Lipid Research, 2015, 56, 1191-1205.	2.0	19
1246	Increased Hepatic Fatty Acid Uptake and Esterification Contribute to Tetracycline-Induced Steatosis in Mice. Toxicological Sciences, 2015, 145, 273-282.	1.4	27
1247	Regulation of IL-17 in atherosclerosis and related autoimmunity. Cytokine, 2015, 74, 219-227.	1.4	25
1248	Conjugated linoleic acid induces an atheroprotective macrophage MΦ2 phenotype and limits foam cell formation. Journal of Inflammation, 2015, 12, 15.	1.5	23
1249	Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis. Archives of Biochemistry and Biophysics, 2015, 573, 40-51.	1.4	24
1250	MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nature Reviews Cardiology, 2015, 12, 361-374.	6.1	101
1251	Pathophysiology and Medical Treatment of Carotid Artery Stenosis. International Journal of Angiology, 2015, 24, 158-172.	0.2	33
1252	Lipid Oxidation. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 43-79.	0.4	2
1253	Inhibition of Glutathione Production Induces Macrophage CD36 Expression and Enhances Cellular-oxidized Low Density Lipoprotein (oxLDL) Uptake. Journal of Biological Chemistry, 2015, 290, 21788-21799.	1.6	50
1254	Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Advances in Nutrition, 2015, 6, 513-540.	2.9	524
1255	Pleiotropic Role of <scp>PPAR</scp> <i>γ</i> in Intracerebral Hemorrhage: An Intricate System Involving Nrf2, <scp>RXR</scp> , and <scp>NF</scp> â€ <i>κ</i> B. CNS Neuroscience and Therapeutics, 2015, 21, 357-366.	1.9	99

#	Article	IF	CITATIONS
1256	Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 340-355.	1.2	234
1257	Patho-genetics of Clostridium chauvoei. Research in Microbiology, 2015, 166, 384-392.	1.0	37
1258	Nuclear Receptors in Immune Function. , 2016, , 146-156.		0
1259	Oxidized Lipoprotein Uptake Through the CD36 Receptor Activates the NLRP3 Inflammasome in Human Retinal Pigment Epithelial Cells. , 2016, 57, 4704.		54
1260	Isoliquiritigenin Attenuates Atherogenesis in Apolipoprotein E-Deficient Mice. International Journal of Molecular Sciences, 2016, 17, 1932.	1.8	22
1261	Protective Effect of PPAR <i>Ĵ³</i> Agonists on Cerebellar Tissues Oxidative Damage in Hypothyroid Rats. Neurology Research International, 2016, 2016, 1-9.	0.5	25
1262	Is the Mouse a Good Model of Human PPARÎ ³ -Related Metabolic Diseases?. International Journal of Molecular Sciences, 2016, 17, 1236.	1.8	14
1263	oxLDL and eLDL Induced Membrane Microdomains in Human Macrophages. PLoS ONE, 2016, 11, e0166798.	1.1	9
1264	PPARγ Represses Apolipoprotein Aâ€I Gene but Impedes TNFαâ€Mediated ApoAâ€I Downregulation in HepG2 Co Journal of Cellular Biochemistry, 2016, 117, 2010-2022.	ells. 1.2	14
1265	The contribution of arachidonate 15-lipoxygenase in tissue macrophages to adipose tissue remodeling. Cell Death and Disease, 2016, 7, e2285-e2285.	2.7	25
1266	Inhibition of Macrophage CD36 Expression and Cellular Oxidized Low Density Lipoprotein (oxLDL) Accumulation by Tamoxifen. Journal of Biological Chemistry, 2016, 291, 16977-16989.	1.6	53
1267	Trainingâ€induced antiâ€atherosclerotic effects are associated with increased vascular <scp>PPAR</scp> gamma expression in apolipoprotein Eâ€deficient mice. Acta Physiologica, 2016, 216, 221-230.	1.8	11
1268	Gender-specific differences in PPARÎ ³ regulation of follicular helper T cell responses with estrogen. Scientific Reports, 2016, 6, 28495.	1.6	32
1269	Biology of Preimplantation Conceptus at the Onset of Elongation in Dairy Cows1. Biology of Reproduction, 2016, 94, 97.	1.2	71
1271	Peroxisome proliferator-activated receptor gamma (PPARγ), a key regulatory gene of lipid metabolism in chicken. World's Poultry Science Journal, 2016, 72, 773-784.	1.4	11
1272	Role of lipids on elongation of the preimplantation conceptus in ruminants. Reproduction, 2016, 152, R115-R126.	1.1	45
1273	Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice. Journal of Biological Chemistry, 2016, 291, 23654-23661.	1.6	96
1274	In a Western Dietary Context Excess Oxidised Linoleic Acid of Dietary and Endogenous Origin by Over-Activation of PPAR Gamma so Immune and Inflammatory Pathways, and through Cardiolipin Damage, Increases Cardiovascular Risk. , 2016, , 385-412.		0

#	ARTICLE The Roles of Linoleic and Alpha-linolenic Acid, Their Oxylipins and the PPAR Alpha-, Delta- and	IF	Citations
1276	Gamma-Related Peroxisomal Pathways on Obesity in the Context of a 䀜Western䀕Diet. , 2016, , 429-449. Rice Koji Extract Enhances Lipid Metabolism through Peroxisome Proliferator-Activated Receptor Alpha (PPARα) Activation in Mouse Liver. Journal of Agricultural and Food Chemistry, 2016, 64, 8848-8856.	2.4	10
1277	Adipose tissue at the nexus of systemic and cellular immunometabolism. Seminars in Immunology, 2016, 28, 431-440.	2.7	55
1278	TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis. Nature Communications, 2016, 7, 13151.	5.8	76
1279	Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors. Molecular Nutrition and Food Research, 2016, 60, 175-184.	1.5	29
1280	Pomegranate peel polyphenols inhibit lipid accumulation and enhance cholesterol efflux in raw264.7 macrophages. Food and Function, 2016, 7, 3201-3210.	2.1	48
1281	Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Molecular Metabolism, 2016, 5, 506-526.	3.0	107
1282	Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascular Pharmacology, 2016, 84, 1-7.	1.0	194
1283	Oxidative DNA damage and oxidized low density lipoprotein in Type II diabetes mellitus among patients with Helicobacter pylori infection. Diabetology and Metabolic Syndrome, 2016, 8, 34.	1.2	31
1284	Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression. Journal of Biological Chemistry, 2016, 291, 15108-15118.	1.6	27
1285	PPARÎ ³ signaling and emerging opportunities for improved therapeutics. Pharmacological Research, 2016, 111, 76-85.	3.1	143
1286	Linoleic acid and the pathogenesis of obesity. Prostaglandins and Other Lipid Mediators, 2016, 125, 90-99.	1.0	100
1287	Increased uptake of oxidized LDL by macrophages from type 2 diabetics is inhibited by polyamines. Biomedicine and Pharmacotherapy, 2016, 77, 59-64.	2.5	5
1288	Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R55-R65.	0.9	77
1289	Dyslipidemia Part 1—Review of Lipid Metabolism and Vascular Cell Physiology. Vascular and Endovascular Surgery, 2016, 50, 107-118.	0.3	83
1290	Nigella sativa (black seed) effects on plasma lipid concentrations in humans: A systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacological Research, 2016, 106, 37-50.	3.1	66
1291	IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. American Journal of Pathology, 2016, 186, 1361-1374.	1.9	39
1292	The elusive endogenous adipogenic PPARÎ ³ agonists: Lining up the suspects. Progress in Lipid Research, 2016, 61, 149-162.	5.3	32

#	Article	IF	CITATIONS	
1293	Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer. European Journal of Pharmacology, 2016, 785, 70-76.	1.7	105	
1294	Supplementation of linoleic acid (C18:2n-6) or α-linolenic acid (C18:3n-3) changes microbial agonist-induced oxylipid biosynthesis. Journal of Dairy Science, 2017, 100, 1870-1887.	1.4	15	
1296	Serum polyunsaturated fatty acid metabolites as useful tool for screening potential biomarker of colorectal cancer. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 120, 25-31.	1.0	31	
1297	Cardiovascular Protective Effects and Clinical Applications of Resveratrol. Journal of Medicinal Food, 2017, 20, 323-334.	0.8	76	
1298	Effect of 7,8-dihydroneopterin mediated CD36 down regulation and oxidant scavenging on oxidised low-density lipoprotein induced cell death in human macrophages. International Journal of Biochemistry and Cell Biology, 2017, 87, 27-33.	1.2	14	
1299	Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie, 2017, 136, 3-11.	1.3	57	
1300	ROS via BTK-p300-STAT1-PPARÎ ³ signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation. Redox Biology, 2017, 11, 350-364.	3.9	61	
1301	Leonurine Prevents Atherosclerosis Via Promoting the Expression of ABCA1 and ABCG1 in a Pparγ/Lxrα Signaling Pathway-Dependent Manner. Cellular Physiology and Biochemistry, 2017, 43, 1703-1717.	1.1	60	
1302	miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovascular Research, 2017, 113, 1627-1638.	1.8	62	
1303	Maternal Pregravid Obesity Remodels the DNA Methylation Landscape of Cord Blood Monocytes Disrupting Their Inflammatory Program. Journal of Immunology, 2017, 199, 2729-2744.	0.4	55	
1304	Expression of CYP4V2 in human THP1 macrophages and its transcriptional regulation by peroxisome proliferator-activated receptor gamma. Toxicology and Applied Pharmacology, 2017, 330, 100-106.	1.3	16	
1305	Oxidized Low-Density Lipoprotein Loading of Macrophages Downregulates TLR-Induced Proinflammatory Responses in a Gene-Specific and Temporal Manner through Transcriptional Control. Journal of Immunology, 2017, 199, 2149-2157.	0.4	40	
1306	Reduced adiponectin expression after highâ€fat diet is associated with selective upâ€regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. FASEB Journal, 2017, 31, 203-211.	0.2	40	
1307	Characterization of alendronic- and undecylenic acid coated magnetic nanoparticles for the targeted delivery of rosiglitazone to subcutaneous adipose tissue. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 559-568.	1.7	12	
1308	Inflammation in Atherosclerosis. , 2017, , 1279-1300.		0	
1309	Peroxisome Proliferator Activated Receptor Gamma (PPARγ) Pro12Ala Gene Polymorphism and Oxidative Stress in Menopausal Women with Cardiovascular Disease from North Indian Population of Punjab. International Journal of Human Genetics, 2017, 17, 15-25.	0.1	2	
1310	High Consumption of Iron Exacerbates Hyperlipidemia, Atherosclerosis, and Female Sterility in Zebrafish via Acceleration of Glycation and Degradation of Serum Lipoproteins. Nutrients, 2017, 9, 690.	1.7	19	
1311	New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. International Journal of Molecular Sciences, 2017, 18, 2034.	1.8	277	
0			-	
----------	-------	------	------------	-----
C	ΙΤΑΤΙ	ION.	KED	ORT
<u> </u>	/		I CEI	

#	Article	IF	CITATIONS
1312	The Ability of Exercise-Associated Oxidative Stress to Trigger Redox-Sensitive Signalling Responses. Antioxidants, 2017, 6, 63.	2.2	43
1313	Fatty Acids of CLA-Enriched Egg Yolks Can Induce Transcriptional Activation of Peroxisome Proliferator-Activated Receptors in MCF-7 Breast Cancer Cells. PPAR Research, 2017, 2017, 1-12.	1.1	10
1314	PPAR <i>\hat{I}^3</i> and Its Role in Cardiovascular Diseases. PPAR Research, 2017, 2017, 1-10.	1.1	75
1315	Sinapinic and protocatechuic acids found in rapeseed: isolation, characterisation and potential benefits for human health as functional food ingredients. Irish Journal of Agricultural and Food Research, 2017, 56, 104-119.	0.2	17
1316	CD36 overexpression: a possible etiopathogenic mechanism of atherosclerosis in patients with prediabetes and diabetes. Diabetology and Metabolic Syndrome, 2017, 9, 55.	1.2	13
1317	The regulation of IMF deposition in pectoralis major of fast- and slow- growing chickens at hatching. Journal of Animal Science and Biotechnology, 2017, 8, 77.	2.1	47
1318	Preventive Effects of Exercise Timing and Exercise Duration on High-fat Diet-induced Fatty Liver in Mice. Nihon EiyŕShokuryŕGakkai Shi = Nippon EiyŕShokuryŕGakkaishi = Journal of Japanese Society of Nutrition and Food Science, 2017, 70, 69-75.	0.2	1
1319	Basal p53 expression is indispensable for mesenchymal stem cell integrity. Cell Death and Differentiation, 2018, 25, 679-692.	5.0	38
1320	Cancer, obesity and immunometabolism $\hat{a} \in \mathcal{C}$ Connecting the dots. Cancer Letters, 2018, 417, 11-20.	3.2	36
1321	Silencing carboxylesterase 1 in human THP-1 macrophages perturbs genes regulated by PPARγ/RXR and RAR/RXR: down-regulation of CYP27A1–LXRα signaling. Biochemical Journal, 2018, 475, 621-642.	1.7	19
1322	Spectrum evaluationâ€ e ssisted eicosanoid metabolomics for global eicosanoid profiling in human vascular endothelial cells. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 98-108.	0.9	5
1323	Rosuvastatin Reduces Aortic Sinus and Coronary Artery Atherosclerosis in SR-B1 (Scavenger Receptor) Tj ETQq1 I Lowering. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 26-39.	l 0.78431 1.1	4 rgBT /Ove 24
1324	Symposium review: Lipids as regulators of conceptus development: Implications for metabolic regulation of reproduction in dairy cattle. Journal of Dairy Science, 2018, 101, 3630-3641.	1.4	23
1325	Antiâ€obesity and antiâ€inflammatory effects of peroxisome proliferator activated receptorâ€î³ induced by bofutsushosan powder versus extract. Traditional & Kampo Medicine, 2018, 5, 26-32.	0.2	0
1326	Adipose tissue complement factor B promotes adipocyte maturation. Biochemical and Biophysical Research Communications, 2018, 495, 740-748.	1.0	22
1327	How Oxidized Low-Density Lipoprotein Activates Inflammatory Responses. Critical Reviews in Immunology, 2018, 38, 333-342.	1.0	116
1328	Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2. Liver Research, 2018, 2, 209-215.	0.5	103
1329	The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathologica Communications, 2018, 6, 124.	2.4	100

#	Article	IF	Citations
1330	Targeting PPARα for the Treatment and Understanding of Cardiovascular Diseases. Cellular Physiology and Biochemistry, 2018, 51, 2760-2775.	1.1	36
1331	Oxidants and Endothelial Dysfunction. , 2018, , 252-281.		2
1332	Peroxisome Proliferator-Activated Receptors: Biological and Toxicological Importance. , 2018, , 161-179.		0
1333	Overview of Alterations in Cell Signaling. , 2018, , 221-243.		Ο
1334	INDUCTION OF BROWN ADIPOSE TISSUE: A REVIEW. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 472.	0.3	0
1335	Sonodynamic therapy-induced foam cells apoptosis activates the phagocytic PPARÎ ³ -LXRα-ABCA1/ABCG1 pathway and promotes cholesterol efflux in advanced plaque. Theranostics, 2018, 8, 4969-4984.	4.6	66
1336	A novel antioxidant Mito-Tempol inhibits ox-LDL-induced foam cell formation through restoration of autophagy flux. Free Radical Biology and Medicine, 2018, 129, 463-472.	1.3	28
1337	9- and 13-HODE regulate fatty acid binding protein-4 in human macrophages, but does not involve HODE/CPR132 axis in PPAR-γ regulation of FABP4. Therapeutic Advances in Endocrinology and Metabolism, 2018, 9, 137-150.	1.4	18
1338	Atherothrombosis. , 2018, , 2122-2132.		0
1339	Peroxisome Proliferator-Activated Receptor-Ĵ³ Modulates the Response of Macrophages to Lipopolysaccharide and Glucocorticoids. Frontiers in Immunology, 2018, 9, 893.	2.2	105
1340	Lipid Droplet, a Key Player in Host-Parasite Interactions. Frontiers in Immunology, 2018, 9, 1022.	2.2	92
1341	PPARÎ ³ is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes and Development, 2018, 32, 1035-1044.	2.7	84
1342	KLF10 as a Tumor Suppressor Gene and Its TGF- $\hat{1}^2$ Signaling. Cancers, 2018, 10, 161.	1.7	58
1343	The CD36-PPARÎ ³ Pathway in Metabolic Disorders. International Journal of Molecular Sciences, 2018, 19, 1529.	1.8	105
1344	Alkyl-glycerophosphate-mediated C-C motif chemokine 2 secretion induces oxidative stress via increased PPARγ activation in human umbilical vein endothelial cells. Biomedicine and Pharmacotherapy, 2018, 106, 686-691.	2.5	3
1345	Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13–stimulated monocytes and A549 lung carcinoma cells. Journal of Biological Chemistry, 2018, 293, 14040-14064.	1.6	26
1346	MiRâ€181a inhibits vascular inflammation induced by oxâ€LDL via targeting TLR4 in human macrophages. Journal of Cellular Physiology, 2018, 233, 6996-7003.	2.0	31
1347	Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with Intrinsic Anti-inflammatory Activity. ACS Nano, 2018, 12, 8943-8960.	7.3	230

#	Article	IF	CITATIONS
1348	Advances on PPARÎ ³ Research in the Emerging Era of Precision Medicine. Current Drug Targets, 2018, 19, 663-673.	1.0	8
1349	Cortisol regulates immune and metabolic processes in murine adipocytes and macrophages through HTR2c and HTR5a serotonin receptors. European Journal of Cell Biology, 2018, 97, 483-492.	1.6	10
1350	Fatty Acid Metabolites as Novel Regulators of Non-shivering Thermogenesis. Handbook of Experimental Pharmacology, 2018, 251, 183-214.	0.9	10
1351	Hormonally active phytochemicals from macroalgae: A largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models. General and Comparative Endocrinology, 2018, 265, 41-45.	0.8	8
1352	Lanthionine synthetase C-like protein 2 (LanCL2) is important for adipogenic differentiation. Journal of Lipid Research, 2018, 59, 1433-1445.	2.0	4
1353	Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Current Hypertension Reports, 2018, 20, 62.	1.5	22
1354	Inhibition of the CD36 receptor reduces visceral fat accumulation and improves insulin resistance in obese mice carrying the BDNF-Val66Met variant. Journal of Biological Chemistry, 2018, 293, 13338-13348.	1.6	37
1355	Carnosine decreases retinal ganglion cell death in a mouse model of optic nerve crushing. Neuroscience Letters, 2019, 711, 134431.	1.0	4
1356	CD36 tango in cancer: signaling pathways and functions. Theranostics, 2019, 9, 4893-4908.	4.6	196
1357	Molecular modelling, synthesis, and biological evaluations of a 3,5-disubstituted isoxazole fatty acid analogue as a PPARI±-selective agonist. Bioorganic and Medicinal Chemistry, 2019, 27, 4059-4068.	1.4	9
1358	Telmisartan ameliorates dextran sodium sulfate-induced colitis in rats by modulating NF-κB signalling in the context of PPARγ agonistic activity. Archives of Biochemistry and Biophysics, 2019, 671, 185-195.	1.4	42
1359	Arachidonic Acid Metabolism and Kidney Inflammation. International Journal of Molecular Sciences, 2019, 20, 3683.	1.8	191
1360	Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Frontiers in Immunology, 2019, 10, 2265.	2.2	53
1361	Plasma Highâ€Resolution Metabolomics Differentiates Adults with Normal Weight Obesity from Lean Individuals. Obesity, 2019, 27, 1729-1737.	1.5	32
1362	Oxidized Lipids in Persistent Pain States. Frontiers in Pharmacology, 2019, 10, 1147.	1.6	45
1363	Type II diabetes mellitus and obesity: Common links, existing therapeutics and future developments. Journal of Biosciences, 2019, 44, 1.	0.5	13
1364	Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics, 2019, 20, 863.	1.2	61
1365	MicroRNAâ€ʿ217 is involved in the progression of atherosclerosis through regulating inflammatory responses by targeting sirtuin 1. Molecular Medicine Reports, 2019, 20, 3182-3190.	1.1	15

#	Article	IF	CITATIONS
1366	Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARÎ ³ signature. European Heart Journal, 2020, 41, 995-1005.	1.0	56
1367	Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacological Reviews, 2019, 71, 596-670.	7.1	118
1368	The Lipid and Glyceride Profiles of Infant Formula Differ by Manufacturer, Region and Date Sold. Nutrients, 2019, 11, 1122.	1.7	27
1369	Change of HDL by Food Ingredient. , 2019, , 287-383.		0
1370	Stereoisomer-Specific Induction of G2/M Phase Arrest and Apoptosis by 9-(<i>E</i> , <i>Z</i>)-Hydroxyoctadecadienoic Acid in Mouse Lymphoma Cells. Biological and Pharmaceutical Bulletin, 2019, 42, 937-943.	0.6	2
1372	Understanding Peroxisome Proliferator-Activated Receptors: From the Structure to the Regulatory Actions on Metabolism. Advances in Experimental Medicine and Biology, 2019, 1127, 39-57.	0.8	19
1373	Updates in understanding the hypocholesterolemia effect of probiotics on atherosclerosis. Applied Microbiology and Biotechnology, 2019, 103, 5993-6006.	1.7	31
1374	Role of Myeloid-Epithelial-Reproductive Tyrosine Kinase and Macrophage Polarization in the Progression of Atherosclerotic Lesions Associated With Nonalcoholic Fatty Liver Disease. Frontiers in Pharmacology, 2019, 10, 604.	1.6	16
1375	Uptake, depuration and sublethal effects of the neonicotinoid, imidacloprid, exposure in Sydney rock oysters. Chemosphere, 2019, 230, 1-13.	4.2	29
1376	The Type 2 Diabetes Susceptibility PROX1 Gene Variants Are Associated with Postprandial Plasma Metabolites Profile in Non-Diabetic Men. Nutrients, 2019, 11, 882.	1.7	15
1377	Long chain lipid hydroperoxides increase the glutathione redox potential through glutathione peroxidase 4. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 950-959.	1.1	13
1378	Diet Supplementation in ω3 Polyunsaturated Fatty Acid Favors an Anti-Inflammatory Basal Environment in Mouse Adipose Tissue. Nutrients, 2019, 11, 438.	1.7	18
1379	Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARÎ ³ mutants. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 715-732.	1.2	28
1380	Discovery of aspirin-triggered eicosanoid-like mediators in a <i>Drosophila</i> metainflammation blood tumor model. Journal of Cell Science, 2020, 133, .	1.2	11
1381	<i>N</i> â€Palmitoylglycine and other <i>N</i> â€acylamides activate the lipid receptor G2A/GPR132. Pharmacology Research and Perspectives, 2019, 7, e00542.	1.1	21
1382	Unwrapped and u <i>NCOR</i> ked: PPAR-γ repression in atherosclerosis. European Heart Journal, 2022, 43, e32-e34.	1.0	3
1383	Breast-Associated Adipocytes Secretome Induce Fatty Acid Uptake and Invasiveness in Breast Cancer Cells via CD36 Independently of Body Mass Index, Menopausal Status and Mammary Density. Cancers, 2019, 11, 2012.	1.7	35
1384	Effects of Propolis Extract and Propolis-Derived Compounds on Obesity and Diabetes: Knowledge from Cellular and Animal Models. Molecules, 2019, 24, 4394.	1.7	40

#	Article	IF	CITATIONS
1385	Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Progress in Lipid Research, 2019, 73, 28-45.	5.3	187
1386	Nutrients for Bone Health. , 2019, , 349-356.		2
1387	Genetic and epigenetic control of adipose development. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 3-12.	1.2	43
1388	Saponins as modulators of nuclear receptors. Critical Reviews in Food Science and Nutrition, 2020, 60, 94-107.	5.4	99
1389	Telmisartan Influences the Antiproliferative Activity of Linoleic Acid in Human Colon Cancer Cells. Nutrition and Cancer, 2020, 72, 98-109.	0.9	13
1390	Self-reported painful joint count and assessor-reported tender joint count as instruments to assess pain in hand osteoarthritis. Rheumatology, 2020, 59, 1094-1098.	0.9	4
1391	Linoleic acidâ€derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuronâ€glia coâ€cultures in a sexâ€dependent manner. Journal of Neurochemistry, 2020, 152, 195-207.	2.1	24
1392	Rosiglitazone alleviates intrahepatic cholestasis induced by αâ€naphthylisothiocyanate in mice: The role of circulating 15â€deoxyâ€l" ^{12,14} â€PGJ ₂ and Nogo. British Journal of Pharmacology, 2020, 177, 1041-1060.	2.7	16
1393	1-O-alkyl glycerophosphate-induced CD36 expression drives oxidative stress in microglial cells. Cellular Signalling, 2020, 65, 109459.	1.7	9
1394	Post mortem evaluation of inflammation, oxidative stress, and PPARÎ ³ activation in a nonhuman primate model of cardiac sympathetic neurodegeneration. PLoS ONE, 2020, 15, e0226999.	1.1	8
1395	Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present). Expert Opinion on Therapeutic Patents, 2020, 30, 1-13.	2.4	80
1396	Cellâ€permeable highâ€affinity tracers for G _q proteins provide structural insights, reveal distinct binding kinetics and identify small molecule inhibitors. British Journal of Pharmacology, 2020, 177, 1898-1916.	2.7	21
1397	Consequences of Maternal Essential Fatty Acid and Conjugated Linoleic Acid Supplementation on the Development of Calf Muscle and Adipose Tissue. Animals, 2020, 10, 1598.	1.0	5
1398	The effect of type 2 diabetes on CD36 expression and the uptake of oxLDL. Experimental Neurology, 2020, 334, 113461.	2.0	8
1399	Identification and visualization of oxidized lipids in atherosclerotic plaques by microscopic imaging mass spectrometry-based metabolomics. Atherosclerosis, 2020, 311, 1-12.	0.4	6
1400	The role of oxidized phospholipids in the development of disease. Molecular Aspects of Medicine, 2020, 76, 100909.	2.7	6
1401	Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients, 2020, 12, 3476.	1.7	15
1402	The role of CD36 in cardiovascular disease. Cardiovascular Research, 2022, 118, 115-129.	1.8	74

#	Article	IF	CITATIONS
1403	Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines, 2020, 8, 550.	1.4	17
1404	Differential Effects of Cancer-Associated Mutations Enriched in Helix H3 of PPARÎ ³ . Cancers, 2020, 12, 3580.	1.7	3
1405	Selective Uptake of Carboxylated Multi-Walled Carbon Nanotubes by Class A Type 1 Scavenger Receptors and Impaired Phagocytosis in Alveolar Macrophages. Nanomaterials, 2020, 10, 2417.	1.9	10
1406	AGE-RAGE Axis Stimulates Oxidized LDL Uptake into Macrophages through Cyclin-Dependent Kinase 5-CD36 Pathway via Oxidative Stress Generation. International Journal of Molecular Sciences, 2020, 21, 9263.	1.8	11
1407	A Novel Putative Role of TNK1 in Atherosclerotic Inflammation Implicating the Tyk2/STAT1 Pathway. Mediators of Inflammation, 2020, 2020, 1-9.	1.4	3
1408	Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity. Cells, 2020, 9, 1708.	1.8	39
1409	A novel plausible mechanism of NSAIDs-induced apoptosis in cancer cells: the implication of proline oxidase and peroxisome proliferator-activated receptor. Pharmacological Reports, 2020, 72, 1152-1160.	1.5	15
1410	Linoleic Acid–Rich Oil Supplementation Increases Total and High-Molecular-Weight Adiponectin and Alters Plasma Oxylipins in Postmenopausal Women with Metabolic Syndrome. Current Developments in Nutrition, 2020, 4, nzaa136.	0.1	6
1411	Inflammation in Dry Eye Syndrome: Identification and Targeting of Oxylipin-Mediated Mechanisms. Biomedicines, 2020, 8, 344.	1.4	8
1412	Reduced oxidized LDL in T2D plaques is associated with a greater statin usage but not with future cardiovascular events. Cardiovascular Diabetology, 2020, 19, 214.	2.7	7
1413	Oxylipin Profiles in Plasma of Patients with Wilson's Disease. Metabolites, 2020, 10, 222.	1.3	12
1414	Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Frontiers in Endocrinology, 2020, 11, 62.	1.5	79
1415	Black mulberry ethanol extract attenuates atherosclerosis-related inflammatory factors and downregulates PPARγ and CD36 genes in experimental atherosclerotic rats. Food and Function, 2020, 11, 2997-3005.	2.1	8
1416	Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation. Journal of Lipid Research, 2020, 61, 351-364.	2.0	29
1417	The Fungal Iron Chelator Desferricoprogen Inhibits Atherosclerotic Plaque Formation. International Journal of Molecular Sciences, 2020, 21, 4746.	1.8	7
1418	The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes and Development, 2020, 34, 321-340.	2.7	58
1419	Long Non-Coding RNAs Link Oxidized Low-Density Lipoprotein With the Inflammatory Response of Macrophages in Atherogenesis. Frontiers in Immunology, 2020, 11, 24.	2.2	24
1420	Fatty acid metabolism in the progression and resolution of CNS disorders. Advanced Drug Delivery Reviews, 2020, 159, 198-213.	6.6	81

C	- A	DEDODT
\sim		

#	Article	IF	CITATIONS
1421	Identification of Crucial Genetic Factors, Such as PPARγ, that Regulate the Pathogenesis of Fatty Liver Disease in Dairy Cows Is Imperative for the Sustainable Development of Dairy Industry. Animals, 2020, 10, 639.	1.0	16
1422	MiR-140-5p inhibits oxidized low-density lipoprotein-induced oxidative stress and cell apoptosis via targeting toll-like receptor 4. Gene Therapy, 2021, 28, 413-421.	2.3	18
1423	Protective Effect of Shenqi Maixintong Capsule against ox-LDL-Induced Injury in RAW264.7 Macrophages. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-12.	0.5	0
1424	Severe Fever with Thrombocytopenia Syndrome Virus NSs Interacts with TRIM21 To Activate the p62-Keap1-Nrf2 Pathway. Journal of Virology, 2020, 94, .	1.5	30
1425	A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis. Biomaterials, 2020, 250, 119963.	5.7	52
1426	Lysosomal Acid Lipase Deficiency Controls T- and B-Regulatory Cell Homeostasis in the Lymph Nodes of Mice with Human Cancer Xenotransplants. American Journal of Pathology, 2021, 191, 353-367.	1.9	12
1427	Utilizing systems biology to reveal cellular responses to peroxisome proliferator-activated receptor Î ³ ligand exposure. Current Research in Toxicology, 2021, 2, 169-178.	1.3	2
1428	Effects of fermented Yupingfeng on intramuscular fatty acids and ruminal microbiota in Qingyuan black goats. Animal Science Journal, 2021, 92, e13554.	0.6	4
1429	Immunologic Aspects of Dyslipidemia: a Critical Regulator of Adaptive Immunity and Immune Disorders. Journal of Lipid and Atherosclerosis, 2021, 10, 184.	1.1	9
1430	Vimentin Deficiency Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice. Diabetes and Metabolism Journal, 2021, 45, 97-108.	1.8	17
1431	PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Frontiers in Endocrinology, 2021, 12, 624112.	1.5	167
1432	CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro. BMC Cardiovascular Disorders, 2021, 21, 51.	0.7	23
1433	Targeting macrophage polarization for therapy of diabesity–the feasibility of early improvement of insulin sensitivity and insulin resistance-a comprehensive systematic review. Journal of Diabetes, Metabolic Disorders & Control, 2021, 8, 6-25.	0.2	1
1434	Tributyltin triggers lipogenesis in macrophages via modifying PPARÎ ³ pathway. Environmental Pollution, 2021, 271, 116331.	3.7	10
1435	Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density) Tj ETQq0 0 0 rgBT /C 2021, 41, e82-e96.	Verlock 10 1.1) Tf 50 187 T 18
1436	Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Frontiers in Immunology, 2021, 12, 630569.	2.2	24
1438	PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene, 2021, 40, 2355-2366.	2.6	41
1439	Foam cell formation but not oxLDL cytotoxicity is inhibited by CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin. International Journal of Biochemistry and Cell Biology, 2021, 133, 105918.	1.2	5

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1441	The role of PPARÎ ³ in chemotherapy-evoked pain. Neuroscience Letters, 2021, 753, 13	5845.	1.0	6
1442	SRSF1 promotes the inclusion of exon 3 of SRA1 and the invasion of hepatocellular can interacting with exon 3 of SRA1pre-mRNA. Cell Death Discovery, 2021, 7, 117.	rcinoma cells by	2.0	20
1443	Characterization of an Agarophyton chilense Oleoresin Containing PPARÎ ³ Natural Liga Insulin-Sensitizing Effects in a C57Bl/6J Mouse Model of Diet-Induced Obesity and Anti in Caenorhabditis elegans. Nutrients, 2021, 13, 1828.	nds with oxidant Activity	1.7	7
1444	Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods an considerations. Proteomics, 2021, 21, e2000118.	d	1.3	38
1445	Metabolic Control of Smoldering Neuroinflammation. Frontiers in Immunology, 2021,	12, 705920.	2.2	19
1446	Molecular Interactions between Dietary Lipids and Bone Tissue during Aging. Internation Molecular Sciences, 2021, 22, 6473.	onal Journal of	1.8	4
1447	Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate to Bacterial Infections. Infection and Immunity, 2021, 89, e0009521.	e Host Response	1.0	35
1448	Feedback regulation of coronary artery disease susceptibility gene ADTRP and LDL rece LDLR/CD36/LOX-1 in endothelia cell functions involved in atherosclerosis. Biochimica E Acta - Molecular Basis of Disease, 2021, 1867, 166130.	ptors t Biophysica	1.8	5
1449	Metagenomic, Metabolomic, and Functional Evaluation of Kimchi Broth Treated with L Diodes (LEDs). Metabolites, 2021, 11, 472.	ight-Emitting	1.3	3
1450	Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resu lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. M Clinical and Experimental, 2021, 120, 154800.	lting from letabolism:	1.5	13
1451	Oxidized LDLs as Signaling Molecules. Antioxidants, 2021, 10, 1184.		2.2	17
1452	Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pa Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 1589	athways. 164.	1.2	10
1453	Oxidized LDLâ€dependent pathway as new pathogenic trigger in arrhythmogenic card Molecular Medicine, 2021, 13, e14365.	iomyopathy. EMBO	3.3	16
1454	Innate and adaptive immunity: the understudied driving force of heart valve disease. C Research, 2021, 117, 2506-2524.	ardiovascular	1.8	30
1455	Myeloid-associated lipin-1 transcriptional co-regulatory activity is atheroprotective. Ath 2021, 330, 76-84.	1erosclerosis,	0.4	3
1456	In vitro evaluation of the involvement of Nrf2 in maslinic acid-mediated anti-inflammate atheroma pathogenesis. Life Sciences, 2021, 278, 119658.	ory effects in	2.0	2
1457	Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Oppoin Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells, 2021, 10, 2083.	osite Regulation	1.8	17
1458	Amentoflavone prevents ox-LDL-induced lipid accumulation by suppressing the PPARÎ ³ pathway. Toxicology and Applied Pharmacology, 2021, 431, 115733.	CD36 signal	1.3	21

#	Article	IF	CITATIONS
1459	Alisol B 23-acetate, a new promoter for cholesterol efflux from dendritic cells, alleviates dyslipidemia and inflammation in advanced atherosclerotic mice. International Immunopharmacology, 2021, 99, 107956.	1.7	14
1460	Antidiabetic drugs and oxidized low-density lipoprotein: A review of anti-atherosclerotic mechanisms. Pharmacological Research, 2021, 172, 105819.	3.1	14
1461	Design, synthesis, and biological evaluation of novel sulindac derivatives as partial agonists of PPARÎ ³ with potential anti-diabetic efficacy. European Journal of Medicinal Chemistry, 2021, 222, 113542.	2.6	4
1462	PARPs in lipid metabolism and related diseases. Progress in Lipid Research, 2021, 84, 101117.	5.3	52
1463	Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytotherapy Research, 2021, 35, 2854-2878.	2.8	41
1464	Theranostics of atherosclerosis by the indole molecule-templated self-assembly of probucol nanoparticles. Journal of Materials Chemistry B, 2021, 9, 4134-4142.	2.9	4
1465	Novel insights: Dynamic foam cells derivedÂfrom the macrophage in atherosclerosis. Journal of Cellular Physiology, 2021, 236, 6154-6167.	2.0	25
1466	Lipoproteins and Oxidation. , 2006, , 17-48.		3
1467	The Role of Scavenger Receptors in Signaling, Inflammation and Atherosclerosis. , 2006, , 70-91.		4
1468	Modulation of Macrophage Function and Metabolism. Handbook of Experimental Pharmacology, 2005, , 665-695.	0.9	5
1469	Lipids, Oxidation, and Cardiovascular Disease. , 2008, , 79-95.		3
1470	Stellate Cells. Molecular Pathology Library, 2011, , 53-79.	0.1	5
1471	Brain Fatty Acid Uptake. Advances in Neurobiology, 2012, , 793-817.	1.3	4
1472	The Role of PPARÎ ³ in Stroke. , 2014, , 301-320.		2
1473	Isoprostane Activation of the Nuclear Hormone Receptor Ppar. Advances in Experimental Medicine and Biology, 2002, 507, 351-355.	0.8	14
1474	Role of PPARs in Inflammation, Atherosclerosis, and Thrombosis. Medical Science Symposia Series, 2002, , 25-34.	0.0	1
1475	The Oxidative Modification Hypothesis of Atherogenesis. Developments in Cardiovascular Medicine, 2000, , 49-74.	0.1	22
1476	Oxidation-Sensitive Transcription and Gene Expression in Atherosclerosis. Developments in Cardiovascular Medicine. 2000 135-154.	0.1	3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1477	Eicosanoids: Generation and Detection in Mammalian Cells. Methods in Molecular Biolo	ıgy, 2009, , 1-19.	0.4	16
1478	Therapeutic role of peroxisome proliferator-activated receptors in obesity, diabetes and , 2003, 60, 93-132.	inflammation.		22
1479	Peroxisome proliferator activated receptor agonists. Exs, 2000, 89, 141-151.		1.4	65
1480	Sapienic Acid: Species-Specific Fatty Acid Metabolism of the Human Sebaceous Gland. ,	2015, , 139-157.		7
1481	Nuclear Receptors as Regulators of Macrophage Homeostasis and Function. Handbook Experimental Pharmacology, 2003, , 209-225.	of	0.9	1
1482	PPARs and Atherosclerosis. , 2000, , 88-95.			1
1483	Formation and Function of Lipid Droplets in Inflammation and Cancer. , 2013, , 139-165	5.		1
1484	Peroxisome proliferator-activated receptor gamma in osteoarthritis. Modern Rheumatol 1-9.	ogy, 2011, 21,	0.9	46
1485	Introduction and Overview of Alterations in Cell Signaling. , 2010, , 447-471.			3
1486	PPARadigms and PPARadoxes: expanding roles for PPARÎ ³ in the control of lipid metabo Lipid Research, 2002, 43, 177-186.	lism. Journal of	2.0	223
1487	Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosp and shortened life span. Journal of Lipid Research, 2001, 42, 489-500.	lenomegaly,	2.0	144
1488	α-Tocopherol decreases CD36 expression in human monocyte-derived macrophages. Jo Research, 2001, 42, 521-527.	urnal of Lipid	2.0	122
1489	Dietary oxidized fatty acids may enhance intestinal apolipoprotein A-I production. Journ Research, 2002, 43, 557-564.	al of Lipid	2.0	27
1490	A specific ligand for β2-glycoprotein I mediates autoantibody-dependent uptake of oxic lipoprotein by macrophages. Journal of Lipid Research, 2001, 42, 697-709.	lized low density	2.0	125
1491	Induction of acyl-coenzyme A:cholesterol acyltransferase-1 by 1,25-dihydroxyvitamin D: 9-cis-retinoic acid in undifferentiated THP-1 cells. Journal of Lipid Research, 2001, 42, 18	3 or 31-187.	2.0	27
1492	Family of human oxysterol binding protein (OSBP) homologues: a novel member implica sterol metabolism. Journal of Lipid Research, 1999, 40, 2204-2211.	ated in brain	2.0	41
1493	Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, Journal of Lipid Research, 1999, 40, 830-838.	CD36.	2.0	80
1494	13-(S)-Hydroxyoctadecadienoic acid (13-HODE) incorporation and conversion to novel endothelial cells. Journal of Lipid Research, 1999, 40, 699-707.	products by	2.0	26

#	Article	IF	CITATIONS
1495	Oxidized LDL induces the expression of ALBP/aP2 mRNA and protein in human THP-1 macrophages. Journal of Lipid Research, 2000, 41, 2017-2023.	2.0	119
1496	Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-Î ³ . Journal of Lipid Research, 2000, 41, 688-696.	2.0	221
1497	Lipid peroxides induce expression of catalase in cultured vascular cells. Journal of Lipid Research, 2000, 41, 1205-1213.	2.0	103
1498	Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochemical Journal, 2000, 352, 809-815.	1.7	294
1499	Is oxidized lowâ€density lipoprotein present in vivo?. Current Opinion in Lipidology, 1998, 9, 337-344.	1.2	91
1500	The atherosclerotic lesion: a dynamic landscape. Current Opinion in Lipidology, 1998, 9, 385-386.	1.2	4
1501	Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. Current Opinion in Lipidology, 1998, 9, 425-432.	1.2	96
1502	Nutrient regulation of gene and protein expression. Current Opinion in Clinical Nutrition and Metabolic Care, 1999, 2, 287-289.	1.3	11
1505	Expression of Peroxisome Proliferator-Activated Receptor-Î ³ in Vascular Smooth Muscle Cells Is Upregulated in Cystic Medial Degeneration of Annuloaortic Ectasia in Marfan Syndrome. Circulation, 2002–106	1.6	10
	2002, 100, 1		
1506	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104.	2.0	6
1506 1507	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104. Adipose Rex. Circulation Research, 2002, 90, 241-243.	2.0 2.0	6
1506 1507 1508	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104. Adipose Rex. Circulation Research, 2002, 90, 241-243. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator–activated receptor γ. Journal of Clinical Investigation, 2000, 106, 793-802.	2.0 2.0 3.9	6 6 159
1506 1507 1508 1509	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104. Adipose Rex. Circulation Research, 2002, 90, 241-243. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator–activated receptor î³. Journal of Clinical Investigation, 2000, 106, 793-802. Peroxisome proliferator–activated receptor î³ ligands inhibit development of atherosclerosis in LDL receptor–deficient mice. Journal of Clinical Investigation, 2000, 106, 523-531.	2.0 2.0 3.9 3.9	6 6 159 780
1506 1507 1508 1509	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104. Adipose Rex. Circulation Research, 2002, 90, 241-243. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator–activated receptor γ Jigands inhibit development of atherosclerosis in LDL receptor–deficient mice. Journal of Clinical Investigation, 2000, 106, 523-531. Peroxisome proliferator–activated receptor γ ligands and atherosclerosis: ending the heartache. Journal of Clinical Investigation, 2000, 106, 629-631.	2.0 2.0 3.9 3.9 3.9	6 6 159 780
1506 1507 1508 1509 1510	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104. Adipose Rex. Circulation Research, 2002, 90, 241-243. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator–activated receptor 1³. Journal of Clinical Investigation, 2000, 106, 793-802. Peroxisome proliferator–activated receptor 1³ ligands inhibit development of atherosclerosis in LDL receptor–deficient mice. Journal of Clinical Investigation, 2000, 106, 523-531. Peroxisome proliferator–activated receptor 1³ ligands and atherosclerosis: ending the heartache. Journal of Clinical Investigation, 2000, 106, 523-531. Peroxisome proliferator–activated receptor 1³ ligands and atherosclerosis: ending the heartache. Journal of Clinical Investigation, 2000, 106, 629-631. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. Journal of Clinical Investigation, 2001, 108, 785-791.	2.0 2.0 3.9 3.9 3.9 3.9	6 6 159 780 66 948
1506 1507 1508 1509 1510 1511	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104. Adipose Rex. Circulation Research, 2002, 90, 241-243. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator–activated receptor 1³. Journal of Clinical Investigation, 2000, 106, 793-802. Peroxisome proliferator–activated receptor 1³ ligands inhibit development of atherosclerosis in LDL receptor–deficient mice. Journal of Clinical Investigation, 2000, 106, 523-531. Peroxisome proliferator–activated receptor 1³ ligands and atherosclerosis: ending the heartache. Journal of Clinical Investigation, 2000, 106, 523-531. Peroxisome proliferator–activated receptor 1³ ligands and atherosclerosis; ending the heartache. Journal of Clinical Investigation, 2000, 106, 629-631. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. Journal of Clinical Investigation, 2001, 108, 785-791. HIV protease inhibitors promote atherosclerotic lesion formation independent of dyslipidemia by increasing CD36-dependent cholesteryl ester accumulation in macrophages. Journal of Clinical Investigation, 2003, 111, 389-397.	2.0 2.0 3.9 3.9 3.9 3.9 3.9	 6 6 780 66 948 68
1506 1507 1508 1509 1510 1511 1512	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104. Adipose Rex. Circulation Research, 2002, 90, 241-243. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferatorace activated receptor ¹³ . Journal of Clinical Investigation, 2000, 106, 793-802. Peroxisome proliferatorace activated receptor ¹³ ligands inhibit development of atherosclerosis in LDL receptorace deficient mice. Journal of Clinical Investigation, 2000, 106, 523-531. Peroxisome proliferatorace activated receptor ¹³ ligands and atherosclerosis: ending the heartache. Journal of Clinical Investigation, 2000, 106, 523-531. Peroxisome proliferatorace activated receptor ¹³ ligands and atherosclerosis: ending the heartache. Journal of Clinical Investigation, 2000, 106, 629-631. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. Journal of Clinical Investigation, 2001, 108, 785-791. HV protease inhibitors promote atherosclerotic lesion formation independent of dyslipidemia by increasing CD36-dependent cholesteryl ester accumulation in macrophages. Journal of Clinical Investigation, 2003, 111, 389-397. HV protease inhibitors promote atherosclerotic lesion formation independent of dyslipidemia by increasing CD36-dependent cholesteryl ester accumulation in macrophages. Journal of Clinical Investigation, 2003, 111, 389-397.	2.0 2.0 3.9 3.9 3.9 3.9 3.9 3.9	 6 6 159 780 66 948 68 136

#	Article	IF	CITATIONS
1515	Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. Journal of Clinical Investigation, 1999, 103, 1489-1498.	3.9	1,423
1516	Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. Journal of Clinical Investigation, 2000, 105, 1095-1108.	3.9	371
1517	Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. Journal of Clinical Investigation, 2000, 105, 1049-1056.	3.9	861
1518	Physical Interaction Between Retinoic Acid Receptor and Sp1: Mechanism for Induction of Urokinase by Retinoic Acid. Blood, 1999, 93, 4264-4276.	0.6	4
1519	The role of PPARs in inflammation and immunity. Journal of Leukocyte Biology, 2002, 71, 388-400.	1.5	278
1520	Conjugated Linoleic Acid and Weight Control. , 2007, , 383-399.		2
1521	Effect of Hexadecyl Azelaoyl Phosphatidylcholine on Cardiomyocyte Apoptosis in Myocardial Ischemia-Reperfusion Injury: A Hypothesis. Medical Science Monitor, 2018, 24, 2661-2667.	0.5	7
1522	Inhibition of Oxygen-Induced Ischemic Retinal Neovascularization with Adenoviral 15-Lipoxygenase-1 Gene Transfer via Up-Regulation of PPAR-γ and Down-Regulation of VEGFR-2 Expression. PLoS ONE, 2014, 9, e85824.	1.1	14
1523	Cytomegalovirus Infection Triggers the Secretion of the PPARÎ ³ Agonists 15-Hydroxyeicosatetraenoic Acid (15-HETE) and 13-Hydroxyoctadecadienoic Acid (13-HODE) in Human Cytotrophoblasts and Placental Cultures. PLoS ONE, 2015, 10, e0132627.	1.1	20
1524	The effect of statins on the organs: similar or contradictory?. Journal of Cardiovascular and Thoracic Research, 2017, 9, 64-70.	0.3	10
1525	CD36:A Multiligand Molecule. Laboratory Hematology: Official Publication of the International Society for Laboratory Hematology, 2005, 11, 31-37.	1.2	33
1526	Peroxisome Proliferator–Activated Receptors and The Metabolic Syndrome. Indonesian Biomedical Journal, 2009, 1, 4.	0.2	2
1527	Physiological and cellular requirements for successful elongation of the preimplantation conceptus and the implications for fertility in lactating dairy cows. Animal Reproduction, 2018, 15, 765-783.	0.4	4
1528	Metabolic syndrome: the danger signal in atherosclerosis. Vascular Health and Risk Management, 2006, 2, 285-302.	1.0	82
1529	Combined Treatment with PPAR-γ Agonists in Pancreatic Cancer: A Glimmer of Hope for Cancer Therapy?. Current Cancer Drug Targets, 2013, 13, 460-471.	0.8	19
1530	Current Progress on Peroxisome Proliferator-activated Receptor Gamma Agonist as an Emerging Therapeutic Approach for the Treatment of Alzheimer's Disease: An Update. Current Neuropharmacology, 2019, 17, 232-246.	1.4	57
1531	Targeting Peroxisome Proliferator-Activated Receptor Gamma for Generation of Antidiabetic Drug. Current Diabetes Reviews, 2013, 9, 275-285.	0.6	21
1532	Novel Role of Soluble Epoxide Hydrolase in Regulating Cholesterol in Mammalian Cells. The Open Drug Metabolism Journal, 2007, 1, 1-6.	0.5	10

#	Article	IF	CITATIONS
1533	ABC transporters and cholesterol metabolism. Frontiers in Bioscience - Landmark, 2001, 6, d505.	3.0	32
1534	Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners. Physiological Research, 2010, 59, 953-961.	0.4	51
1535	(+)-Catechin is a Potent Inhibitor of Intestinal Absorption of Cholesterol in Rats. Preventive Nutrition and Food Science, 2003, 8, 1-6.	0.7	10
1536	Difficulty with diagnosis of malignant pancreatic neoplasms coexisting with chronic pancreatitis. World Journal of Gastroenterology, 2005, 11, 5075.	1.4	52
1537	Eicosanoid pathway in colorectal cancer: Recent updates. World Journal of Gastroenterology, 2015, 21, 11748.	1.4	45
1538	Inflammation in acute coronary syndromes Cleveland Clinic Journal of Medicine, 2002, 69, SII130-SII130.	0.6	8
1539	Adenoviral 15-lipoxygenase-1 gene transfer inhibits hypoxia-induced proliferation of retinal microvascular endothelial cells in vitro. International Journal of Ophthalmology, 2012, 5, 562-9.	0.5	6
1540	Anti-inflammatory properties of blended edible oil with synergistic antioxidants. Indian Journal of Endocrinology and Metabolism, 2015, 19, 511.	0.2	15
1541	LIGHT is Expressed in Foam Cells and Involved in Destabilization of Atherosclerotic Plaques through Induction of Matrix Metalloproteinase-9 and IL-8. Immune Network, 2004, 4, 116.	1.6	17
1542	PPAR: A Pivotal Regulator in Metabolic Syndromes. Endocrinology & Metabolic Syndrome: Current Research, 2012, 01, .	0.3	3
1543	Autophagic cell death: A new frontier in cancer research. Advances in Bioscience and Biotechnology (Print), 2013, 04, 250-262.	0.3	10
1544	Insulin Sensitizers and Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 2002, 9, 276-279.	0.9	6
1545	Effects of the Combination of Glucose, Chromium Picolinate, and Vitamin C on Lipid Metabolism in Steers. Asian-Australasian Journal of Animal Sciences, 2011, 24, 1674-1680.	2.4	1
1546	The Effect of Unsaturated Fatty Acids on Molecular Markers of Cholesterol Homeostasis in THP-1 Macrophages. Iranian Red Crescent Medical Journal, 2013, 15, 554-559.	0.5	1
1547	Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARÎ ³ . ELife, 2018, 7, .	2.8	53
1548	Anti-inflammatory, Antiarthritic and Antinociceptive Activities of 3,5-Disubstituted Thiazolidine Derivatives. British Journal of Pharmaceutical Research, 2014, 4, 992-1003.	0.4	1
1549	Relationship Between Postprandial Triglyceride Level and Intima-Media Thickness of Carotid Artery after Troglitazone Treatment in Type 2 Diabetes. , 2000, , 154-156.		1
1551	Expression of CD36 in Cultured Human Aortic Smooth Muscle Cells (HASMCs). , 2000, , 272-274.		0

ARTICLE

ç³–å°¿ç−...ãëå†å‹•è"ˆç−¾æ,£∶1.代è¬ç•°å"ãëå†å‹•è"ˆç−¾æ,£∶何ã,ĩã©ãŰã³¾ã§ã,³ãf³ãfãfãf¼ãf«ã™ã,‹ã•(<ç‰!₺>Ħ>ç-Ѳ63å>žæ− 1552 Structures and Functions of the Nuclear Receptor Family, PPAR. Oleoscience, 2001, 1, 1049-1056,1046. Oxidized Autoantigens in Atherosclerosis., 2001, , 143-150. 0 1554 Caffeic Acid and Related Antioxidant Compounds., 2001,,. 1556 Regulation of the Cell Cycle by Peroxisome Proliferator â€" Activated Receptor Gamma (PPAR^{î3}). , 2002, , 1557 1 191-205. Regulation of CD36 by PPARÎ³: Pro- or Antiatherogenic?. Medical Science Symposia Series, 2002, , 89-94. PHARMACOLOGICAL APPROACHES TO INSULIN RESISTANCE IN THE ZUCKER DIABETIC FATITY RAT., 2002,, 1561 0 381-395. Peroxisome Proliferator Activator Receptor Gamma Agonists Inhibit the Development of Atherosclerosis in Low Density Lipoprotein Receptor-Deficient Male Mice. Medical Science Symposia Series, 2002, , 143-148. Long-chain polyunsaturated fatty acids., 2002, , 135-174. 0 1564 PPARs and Atherogenesis: Mediators or Modulators of the Inflammatory Response in the Vessel Wall?. Medical Science Symposia Series, 2002, , 17-24. æ,å†...ãf¬ã,»ãf−ã,;ãf¼ã°ç,Žç−‡æ€§ç−¾æ,£. Japanese Journal of Clinical Immunology, 2002, 25, 233-243. 1566 0.0 0 Dietary Fatty Acids and Macrophages. Handbook of Experimental Pharmacology, 2003, , 173-192. 1567 0.9 Macrophage Lipid Uptake and Foam Cell Formation. Handbook of Experimental Pharmacology, 2003, 1568 0.9 0 147-172. Thiazolidinediones in Cardiovascular Risk in Type 2 Diabetes Mellitus., 2003, 193-203. 1569 1570 æ,å†...å⊷å®1ä¼2"PPARãëè,,,質代è¬è³¿ç¯€. Journal of Lipid Nutrition, 2003, 12, 65-74. 0.1 0 Fat Cell Formation and Obesity-Related Diseases. Preventive Nutrition and Food Science, 2003, 8, 105-112. 1571 The Role of Peroxisome Proliferator–Activated Receptor γ in Colon Cancer and Inflammatory Bowel 1573 1.2 36 Disease. Archives of Pathology and Laboratory Medicine, 2003, 127, 1121-1123. Oxidized Low-density Lipoprotein Upregulates GM2 Activator Protein Gene Expression. American 0.1 Journal of Biochemistry and Biotechnology, 2005, 1, 90-94.

#	Article	IF	CITATIONS
1576	Dietary Polyunsaturated Fatty Acids, Eicosanoids, and Intestinal Tumorigenesis. Chemical and Functional Properties of Food Components Series, 2005, , .	0.1	0
1577	Insulin-Sensitizing and Insulin-Sparing Drugs: Thiazolidinediones and Metformin. , 2006, , 305-321.		1
1578	Lipid Peroxidation, Gene Expression, and Resveratrol. , 2006, , 61-81.		0
1579	Vascular Biology of the Metabolic Syndrome. , 2006, , 79-108.		1
1580	Pathophysiology of atherosclerosis. , 2006, , 17-36.		0
1582	Macular Degeneration: Ultrastructural Age-Related Changes. , 2008, , 273-286.		0
1583	Nuclear Receptors in the Control of Lipid Metabolism. , 2008, , 96-122.		0
1585	Effect of rosiglitazone on expression of CD36 in peripheral monocytes in patients with Type 2 diabetes. Academic Journal of Second Military Medical University, 2009, 29, 409-412.	0.0	0
1586	The Link Between Inflammation and Thrombosis. , 2010, , 39-61.		0
1587	Autoxidation of Plasma Lipids, Generation of Bioactive Products, and Their Biological Relevance. , 2015, , 277-348.		0
1589	Roles of Nutraceuticals and Functional Food in Prevention of Cardiovascular Disease. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2019, , 126-165.	0.1	2
1592	Oxygenated Lipid Products in COPD and Asthma: A Clinical Picture. , 2020, , 473-488.		0
1595	Calpain inhibitor prevents atherosclerosis in apolipoprotein E knockout mice by regulating mRNA expression of genes related to cholesterol uptake and efflux. Microvascular Research, 2022, 140, 104276.	1.1	2
1596	β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Frontiers in Immunology, 2021, 12, 775447.	2.2	11
1598	PPAR-Î ³ Ligands and Diabetic Nephropathy. , 2006, , 289-304.		0
1599	Restoration of Immunocompetence in Aging and Other Inflammatory Disease States by Dehydroepiandrosterone-3ÄŸ-Sulfate, an Activator of the Peroxisome Proliferator-Activated Receptor Alpha (PPARα). , 0, , .		0
1600	Peroxisome proliferator activated receptors and energy metabolism. , 2003, , 137-151.		0
1601	Role of endocytosis in the transactivation of nuclear factor-kappaB by oxidized low-density lipoprotein. Biochemical Journal, 2000, 350 Pt 3, 829-37.	1.7	9

#	Article	IF	CITATIONS
1602	Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochemical Journal, 2000, 352 Pt 3, 809-15.	1.7	144
1603	Peroxisome proliferator activated receptor gamma: a potential therapeutic target in the management of ischaemic heart disease. Heart, 2001, 86, 255-8.	1.2	8
1604	A two-stage differential hydrogen deuterium exchange method for the rapid characterization of protein/ligand interactions. Journal of Biomolecular Techniques, 2007, 18, 194-204.	0.8	44
1605	The possible role of peroxisome proliferator-activated receptor gamma in heart failure. Experimental and Clinical Cardiology, 2004, 9, 169-73.	1.3	2
1608	Cellular and molecular effects of thiazolidinediones on bone cells: a review. International Journal of Biochemistry and Molecular Biology, 2011, 2, 240-6.	0.1	5
1613	Linking Chronic Inflammation with Cardiovascular Disease: From Normal Aging to the Metabolic Syndrome. Journal of Nature and Science, 2017, 3, .	1.1	57
1614	Chamomile as a potential remedy for obesity and metabolic syndrome. EXCLI Journal, 2021, 20, 1261-1286.	0.5	2
1615	The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Experimental and Molecular Pathology, 2022, 124, 104723.	0.9	10
1616	The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites, 2021, 11, 807.	1.3	17
1617	A non-classical monocyte-derived macrophage subset provides a splenic replication niche for intracellular Salmonella. Immunity, 2021, 54, 2712-2723.e6.	6.6	21
1618	Profiling oxylipins released from human platelets activated through the GPVI collagen receptor. Prostaglandins and Other Lipid Mediators, 2022, 158, 106607.	1.0	5
1619	Roles of Nutraceuticals and Functional Food in Prevention of Cardiovascular Disease. , 2022, , 810-839.		0
1620	New rhodamines with changeable ï€-conjugation for lengthening fluorescence wavelengths and imaging peroxynitrite. CheM, 2022, 8, 287-295.	5.8	29
1621	An open chat with… Laszlo Nagy. FEBS Open Bio, 2022, , .	1.0	0
1622	Oxidative Stress in Non-Alcoholic Fatty Liver Disease. Livers, 2022, 2, 30-76.	0.8	21
1623	Perivascular adipose-derived exosomes reduce macrophage foam cell formation through miR-382-5p and the BMP4-PPARÎ ³ -ABCA1/ABCG1 pathways. Vascular Pharmacology, 2022, 143, 106968.	1.0	23
1624	Targeting the KCa3.1 channel suppresses diabetes-associated atherosclerosis via the STAT3/CD36 axis. Diabetes Research and Clinical Practice, 2022, , 109776.	1.1	5
1625	Type II diabetes mellitus and obesity: Common links, existing therapeutics and future developments. Journal of Biosciences, 2019, 44, .	0.5	5

#	Article	IF	CITATIONS
1626	Adipose Dysfunction in Adulthood Insulin Resistance of Low-Birth Weight Mice: A Proteomics Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 849-862.	1.1	2
1627	Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARI3 pathway. Autoimmunity, 2022, , 1-10.	1.2	6
1629	Peter Tontonoz honored with the 2022 ASCI/Stanley J. Korsmeyer Award. Journal of Clinical Investigation, 2022, 132, .	3.9	1
1630	Influence of Hydroxytyrosol Acetate Enrichment of an Oil Rich in Omega-6 Groups on the Evolution of Its Oxidation and Oxylipin Formation When Subjected to Accelerated Storage. A Global Study by Proton Nuclear Magnetic Resonance. Antioxidants, 2022, 11, 722.	2.2	1
1631	Fatty acids and their lipid mediators in the induction of cellular apoptosis in cancer cells. Prostaglandins and Other Lipid Mediators, 2022, 160, 106637.	1.0	14
1632	Loss of myeloid cell-specific SIRPα, but not CD47, attenuates inflammation and suppresses atherosclerosis. Cardiovascular Research, 2022, 118, 3097-3111.	1.8	18
1633	Multiâ€Pathway Microenvironment Regulation for Atherosclerosis Therapy Based on Betaâ€Cyclodextrin/Lâ€Arginine/Au Nanomotors with Dualâ€Mode Propulsion. Small, 2022, 18, e2104120.	5.2	25
1635	CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. Journal of Experimental Medicine, 2022, 219, .	4.2	105
1640	PPARs in Atherosclerosis. , 0, , 337-349.		0
1641	PPAR-Based Therapies for the Management of Atherosclerosis. , 0, , 105-135.		0
1643	MicroRNA miR-34a-5p inhibition restrains oxidative stress injury of macrophages by targeting MDM4. Vascular, 2023, 31, 608-618.	0.4	1
1644	Lysosomal acid lipase: Roles in rare deficiency diseases, myeloid cell biology, innate immunity, and common neutral lipid diseases. , 2022, , 639-673.		0
1645	Non-coding RNA-Associated Therapeutic Strategies in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2022, 9, 889743.	1.1	1
1646	Genetic analyses of circulating PUFA-derived mediators identifies heritable dihydroxyeicosatrienoic acid species. Prostaglandins and Other Lipid Mediators, 2022, 160, 106638.	1.0	1
1647	OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183951.	1.4	6
1648	Peroxisome Proliferator-Activated Receptor Î ³ Ligands Improve the Antitumor Efficacy of Thrombospondin Peptide ABT510. Molecular Cancer Research, 2004, 2, 541-550.	1.5	55
1649	Baseline Elevations of Leukotriene Metabolites and Altered Plasmalogens Are Prognostic Biomarkers of Plaque Progression in Systemic Lupus Erythematosus. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	3
1650	Plasma Membrane Localization of CD36 Requires Vimentin Phosphorylation; A Mechanism by Which Macrophage Vimentin Promotes Atherosclerosis. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	2

#	Article	IF	CITATIONS
1651	2,2′,4,4′-Tetrabromodiphenyl Ether (PBDE 47) Selectively Stimulates Proatherogenic PPARγ Signatures in Human THP-1 Macrophages to Contribute to Foam Cell Formation. Chemical Research in Toxicology, 2022, 35, 1023-1035.	1.7	2
1652	Cyclodextrin boostered-high density lipoprotein for antiatherosclerosis by regulating cholesterol efflux and efferocytosis. Carbohydrate Polymers, 2022, 292, 119632.	5.1	8
1653	Halogenated bisphenol a analogues induce PPARÎ ³ -independent toxicity within human hepatocellular carcinoma cells. Current Research in Toxicology, 2022, 3, 100079.	1.3	1
1654	Consumption of oils and anthocyanins may positively modulate PPAR-Î ³ expression in chronic noncommunicable diseases: A systematic review. Nutrition Research, 2022, 105, 66-76.	1.3	3
1655	Flattening of circadian glucocorticoid oscillations drives acute hyperinsulinemia and adipocyte hypertrophy. Cell Reports, 2022, 39, 111018.	2.9	5
1656	Identifying potential biomarkers and therapeutic targets for dogs with sepsis using metabolomics and lipidomics analyses. PLoS ONE, 2022, 17, e0271137.	1.1	7
1657	Peroxisome proliferator-activated receptor \hat{I}^3 and retinoid X receptor ligands are potent inducers of differentiation and apoptosis in leukemias. Molecular Cancer Therapeutics, 2004, 3, 1249-1262.	1.9	78
1658	Norepinephrine Inhibits Lipopolysaccharide-Stimulated TNF-α but Not Oxylipin Induction in n-3/n-6 PUFA-Enriched Cultures of Circumventricular Organs. International Journal of Molecular Sciences, 2022, 23, 8745.	1.8	1
1659	Genetic and Epigenetic Regulation of Lipoxygenase Pathways and Reverse Cholesterol Transport in Atherogenesis. Genes, 2022, 13, 1474.	1.0	2
1660	CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin through modulation of PPAR-Î ³ activity. Free Radical Research, 2022, 56, 366-377.	1.5	3
1661	Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	9
1662	Maresin 1 enhances osteogenic potential of mesenchymal stem cells by modulating macrophage peroxisome proliferator-activated receptor-1 ³ -mediated inflammation resolution. , 2022, 141, 213116.		4
1663	Inhibition of macrophage-derived foam cells by Adipsin attenuates progression of atherosclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166533.	1.8	13
1664	Modeling OxLDL Epigenetic Innate Immune Training of Monocytes in Early Atherosclerotic Plaques. Journal of Student Research, 2022, 11, .	0.0	0
1665	Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Frontiers in Oncology, 0, 12, .	1.3	1
1667	New cell-membrane-anchored near-infrared fluorescent probes for viscosity monitoring. Chemical Communications, 2022, 58, 12815-12818.	2.2	11
1668	The Plasma Oxylipin Signature Provides a Deep Phenotyping of Metabolic Syndrome Complementary to the Clinical Criteria. International Journal of Molecular Sciences, 2022, 23, 11688.	1.8	4
1669	Metabolic regulation of immune responses to cancer. Cancer Biology and Medicine, 0, , 1-15.	1.4	1

#	Article	IF	CITATIONS
1670	Dietary trans fatty acids and risk of colorectal cancer: a systematic review and meta-analysis of observational studies. European Journal of Nutrition, 0, , .	1.8	2
1671	Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Frontiers in Pharmacology, 0, 13, .	1.6	9
1673	The octadecanoids: an emerging class of lipid mediators. Biochemical Society Transactions, 2022, 50, 1569-1582.	1.6	6
1674	Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses. Frontiers in Immunology, 0, 13, .	2.2	2
1675	Effects of oxidative stress caused by iron overload on arachidonic acid metabolites in MES23.5 cells. Journal of Biosciences, 2022, 47, .	0.5	1
1676	Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Developmental Cell, 2022, 57, 2623-2637.e8.	3.1	7
1677	15-Deoxy-Δ12,1412,14-prostaglandin J2 Inhibits the β2 Integrin-Dependent Oxidative Burst: Involvement of a Mechanism Distinct from Peroxisome Proliferator-Activated Receptor γ Ligation. Journal of Immunology, 1999, 163, 6187-6192.	0.4	57
1678	TREM2 Regulates the Removal of Apoptotic Cells and Inflammatory Processes during the Progression of NAFLD. Cells, 2023, 12, 341.	1.8	5
1679	Detoxification Cytochrome P450s (CYPs) in Families 1–3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells, 2023, 12, 82.	1.8	4
1680	The Role of PPARs in Breast Cancer. Cells, 2023, 12, 130.	1.8	16
1681	Ghrelin Alleviates Experimental Ulcerative Colitis in Old Mice and Modulates Colonocyte Metabolism via PPARÎ ³ Pathway. International Journal of Molecular Sciences, 2023, 24, 565.	1.8	1
1682	Constructing Malâ€Efferocytic Macrophage Model and Its Atherosclerotic Spheroids and Rat Model for Therapeutic Evaluation. Advanced Biology, 2023, 7, .	1.4	2
1683	Fecal metabolomics analysis for deciphering the lipid-lowering effect of Qizhi capsule on high-fat feed induced hyperlipidemia. Journal of Ethnopharmacology, 2023, 308, 116270.	2.0	4
1684	Oxidized linoleic acid metabolites regulate neuronal morphogenesis in vitro. Neurochemistry International, 2023, 164, 105506.	1.9	4
1685	The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer—Challenges and opportunities. Frontiers in Molecular Biosciences, 0, 10, .	1.6	4
1686	Mechanism of oxidized phospholipid-related inflammatory response in vascular ageing. Ageing Research Reviews, 2023, 86, 101888.	5.0	2
1687	Prenylcysteine Oxidase 1 Is a Key Regulator of Adipogenesis. Antioxidants, 2023, 12, 542.	2.2	0

#	Article	IF	CITATIONS
1690	Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Frontiers in Physiology, 0, 14, .	1.3	2
1692	Construction of nicotinic acid curcumin nanoparticles and its Anti-atherosclerosis effect via PCSK9/LDL-R, ABCA1/Caveolin-1/LXR pathway. Materials and Design, 2023, 229, 111931.	3.3	1
1695	PPARs and Their Emerging Role in Vascular Biology, Inflammation and Atherosclerosis. Contemporary Cardiology, 2023, , 81-97.	0.0	0
1704	Characterization of lysosomal acid lipase in Ly6G+ and CD11c+ myeloid-derived suppressor cells. Methods in Cell Biology, 2023, , .	0.5	0