Thermal adaptation in the built environment: a literatu

Energy and Buildings 27, 83-96 DOI: 10.1016/s0378-7788(97)00053-4

Citation Report

#	Article	IF	CITATIONS
1	Green buildings, organizational success and occupant productivity. Building Research and Information, 2000, 28, 353-367.	2.0	204
2	DESIGN AND TUNING OF A FUZZY CONTROLLER FOR INDOOR AIR QUALITY AND THERMAL COMFORT MANAGEMENT. International Journal of Solar Energy, 2001, 21, 81-109.	0.2	14
3	The adaptive model of thermal comfort and energy conservation in the built environment. International Journal of Biometeorology, 2001, 45, 100-108.	1.3	354
4	Human Thermal Comfort Model and Manikin. , 2002, , .		15
5	Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings, 2002, 34, 533-536.	3.1	571
6	Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, 2002, 34, 549-561.	3.1	958
7	Displacement ventilation environments with chilled ceilings: thermal comfort design within the context of the BS EN ISO7730 versus adaptive debate. Energy and Buildings, 2002, 34, 573-579.	3.1	47
8	Why Indoor Climates Change: A Case Study. Climatic Change, 2002, 55, 395-407.	1.7	20
9	Title is missing!. Environmental Modeling and Assessment, 2003, 8, 101-113.	1.2	4
10	Free-running building temperature and HVAC climatic suitability. Energy and Buildings, 2003, 35, 405-411.	3.1	23
11	Thermal comfort study of an air-conditioned lecture theatre in the tropics. Building and Environment, 2003, 38, 63-73.	3.0	93
12	Adaptive comfort temperature model of air-conditioned building in Hong Kong. Building and Environment, 2003, 38, 837-852.	3.0	116
13	Environmental and human factors influencing thermal comfort of office occupants in hot—humid and hot—arid climates. Ergonomics, 2003, 46, 616-628.	1.1	29
14	Adaptive behaviour and thermal comfort in Singapore's naturally ventilated housing. Building Research and Information, 2003, 31, 13-23.	2.0	33
16	Design and simulation of a fuzzy controller for naturally ventilated buildings. Building Services Engineering Research and Technology, 2004, 25, 33-53.	0.9	10
17	Thermal bioclimatic conditions and patterns of behaviour in an urban park in G�teborg, Sweden. International Journal of Biometeorology, 2004, 48, 149-156.	1.3	315
18	Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings, 2004, 36, 614-626.	3.1	268
19	Natural Ventilation Potential of Urban Buildings. International Journal of Ventilation, 2005, 4, 49-56.	0.2	3

#	Article	IF	CITATIONS
20	Thermal environment in Swedish hospitals. Energy and Buildings, 2005, 37, 872-877.	3.1	76
21	Post-occupancy evaluation and field studies of thermal comfort. Building Research and Information, 2005, 33, 338-346.	2.0	126
22	Field study of a thermal environment and adaptive model in Shanghai. Indoor Air, 2006, 16, 320-326.	2.0	99
23	Potential for free-cooling by ventilation. Solar Energy, 2006, 80, 402-413.	2.9	42
25	Predicting thermal comfort in Shanghai's non-air-conditioned buildings. Building Research and Information, 2006, 34, 507-514.	2.0	26
26	Thermal sensation responses in hot, humid climates: effects of humidity. Building Research and Information, 2006, 34, 496-506.	2.0	29
27	Post-occupancy Evaluation and Thermal Comfort: State of the Art and New Approaches. Advances in Building Energy Research, 2007, 1, 151-175.	1.1	42
28	Energy Cost and its Impact on Regulating Building Energy Behaviour. Advances in Building Energy Research, 2007, 1, 105-121.	1.1	23
29	Evaluation of the neutral criterion of indoor air quality for air-conditioned offices in subtropical climates. Building Services Engineering Research and Technology, 2007, 28, 23-33.	0.9	26
30	Increased Temperature and Intensification of the Urban Heat Island: Implications for Human Comfort and Urban Design. Built Environment, 2007, 33, 85-96.	0.4	99
31	Thermal Comfort: Climate Change and the Environmental Design of Buildings in the United Kingdom. Built Environment, 2007, 33, 97-114.	0.4	32
32	Human climates of Egypt. International Journal of Climatology, 2007, 27, 781-792.	1.5	6
33	Impact of control rules on the efficiency of shading devices and free cooling for office buildings. Building and Environment, 2007, 42, 784-793.	3.0	94
34	Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort. Building and Environment, 2007, 42, 951-959.	3.0	182
35	Long-term field survey on thermal adaptation in office buildings in Japan. Building and Environment, 2007, 42, 3944-3954.	3.0	72
36	Occupant comfort in UK offices—How adaptive comfort theories might influence future low energy office refurbishment strategies. Energy and Buildings, 2007, 39, 837-846.	3.1	116
37	Living in cold homes after heating improvements: Evidence from Warm-Front, England's Home Energy Efficiency Scheme. Applied Energy, 2007, 84, 147-158.	5.1	112
38	Temperatures and heating energy in New Zealand houses from a nationally representative study—HEEP. Energy and Buildings, 2007, 39, 770-782.	3.1	39

#	Article	IF	CITATIONS
39	The impact of glazing on energy consumption and comfort. Energy Conversion and Management, 2007, 48, 2844-2852.	4.4	64
40	Linguistic dimensions of weather and climate perception. International Journal of Biometeorology, 2007, 52, 57-67.	1.3	15
41	Neutral temperature in subtropical climates—A field survey in air-conditioned offices. Building and Environment, 2007, 42, 699-706.	3.0	63
42	Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Building and Environment, 2007, 42, 1594-1603.	3.0	324
43	A fuzzy neural network model for predicting clothing thermal comfort. Computers and Mathematics With Applications, 2007, 53, 1840-1846.	1.4	48
44	A comparison of occupant comfort and satisfaction between a green building and a conventional building. Building and Environment, 2008, 43, 1858-1870.	3.0	264
45	Energy impact of indoor environmental policy for air-conditioned offices of Hong Kong. Energy Policy, 2008, 36, 714-721.	4.2	26
46	Nutzerzufriedenheit und Komfort am Arbeitsplatz – Ergebnisse einer Feldstudie in Bürogebäden. Bauphysik, 2008, 30, 445-452.	1.2	8
47	Assessing the solar potential of low-density urban environments in Andean cities with desert climates: The case of the city of Mendoza, in Argentina. Renewable Energy, 2008, 33, 1733-1748.	4.3	34
48	Thermal comfort assessment and application of radiant cooling: A case study. Building and Environment, 2008, 43, 1185-1196.	3.0	104
49	Forty years of Fanger's model of thermal comfort: comfort for all?. Indoor Air, 2008, 18, 182-201.	2.0	511
50	Investigating and influencing how buildings affect health: Interdisciplinary endeavours Canadian Psychology, 2008, 49, 281-288.	1.4	21
51	Air-conditioning and the â€~homogenization' of people and built environments. Building Research and Information, 2008, 36, 312-322.	2.0	54
52	Space Planning and Energy Efficiency in Office Buildings: The Role of Spatial and Temporal Diversity. Architectural Science Review, 2008, 51, 133-145.	1.1	15
56	An energy performance assessment for indoor environmental quality (IEQ) acceptance in air-conditioned offices. Energy Conversion and Management, 2009, 50, 1362-1367.	4.4	30
57	Thermal comfort and use of thermostats in Finnish homes and offices. Building and Environment, 2009, 44, 1237-1245.	3.0	148
58	A field study of thermal comfort in low-income dwellings in England before and after energy efficient refurbishment. Building and Environment, 2009, 44, 1228-1236.	3.0	147
59	On natural ventilation and thermal comfort in compact urban environments – the Old Havana case. Building and Environment, 2009, 44, 1943-1958.	3.0	93

#	Article	IF	CITATIONS
60	A theoretical adaptive model of thermal comfort – Adaptive Predicted MeanÂVoteÂ(aPMV). Building and Environment, 2009, 44, 2089-2096.	3.0	496
61	Short-term airing by natural ventilation - modeling and control strategies. Indoor Air, 2009, 19, 357-380.	2.0	22
62	Thermal comfort study of hospital workers in Malaysia. Indoor Air, 2009, 19, 500-510.	2.0	53
63	An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy and Buildings, 2009, 41, 930-936.	3.1	211
64	A comparative analysis of urban and rural residential thermal comfort under natural ventilation environment. Energy and Buildings, 2009, 41, 139-145.	3.1	106
65	Improving comfort levels in a traditional high altitude Nepali house. Building and Environment, 2009, 44, 479-489.	3.0	28
66	Thermal comfort in Italian classrooms under free running conditions during mid seasons: Assessment through objective and subjective approaches. Building and Environment, 2009, 44, 785-792.	3.0	135
67	On the development of an urban passive thermal comfort system in Cairo, Egypt. Building and Environment, 2009, 44, 1907-1916.	3.0	116
68	Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 2009, 44, 2017-2026.	3.0	529
69	Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy, 2009, 86, 772-780.	5.1	281
70	Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles. International Journal of Biometeorology, 2010, 54, 221-230.	1.3	36
71	Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. International Journal of Biometeorology, 2010, 54, 319-334.	1.3	160
72	The effect of air-conditioning on worker productivity in office buildings: A case study in Thailand. Building Simulation, 2010, 3, 165-177.	3.0	8
73	Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Applied Energy, 2010, 87, 1015-1022.	5.1	168
74	Assessing the solar potential of low-density urban environments in Andean cities with desert climates: The case of the city of Mendoza, in Argentina. 2nd. Part. Renewable Energy, 2010, 35, 1551-1558.	4.3	9
75	Thermal monitoring and indoor temperature modeling in vernacular buildings of North-East India. Energy and Buildings, 2010, 42, 1610-1618.	3.1	33
76	Shading effect on long-term outdoor thermal comfort. Building and Environment, 2010, 45, 213-221.	3.0	486
77	Thermal performance study and evaluation of comfort temperatures in vernacular buildings of North-East India. Building and Environment, 2010, 45, 320-329.	3.0	146

#	Article	IF	CITATIONS
78	Thermal comfort in naturally ventilated buildings in hot-humid area of China. Building and Environment, 2010, 45, 2562-2570.	3.0	165
79	Thermal comfort for naturally ventilated residential buildings in Harbin. Energy and Buildings, 2010, 42, 2406-2415.	3.1	103
80	Impact of climate change on cooling energy consumption. Journal of the Energy Institute, 2010, 83, 171-177.	2.7	4
82	An adaptive Predicted Mean Vote (aPMV) model in office. , 2010, , .		2
83	A New Approach to Evaluate Various Thermal Environments. HVAC and R Research, 2010, 16, 435-452.	0.9	2
84	Outdoor thermal comfort of two public squares in temperate and dry region of Esfahan, Iran. , 2010, ,		11
85	Twentieth century standards for thermal comfort: promoting high energy buildings. Architectural Science Review, 2010, 53, 65-77.	1.1	64
86	Sensitivity of the Human Comfort Equation and of Free Convection in a Vertical Enclosure as Examples of the Use of Global Sensitivity to Evaluate Parameter Interactions. Journal of Heat Transfer, 2010, 132, .	1.2	1
87	Study of Thermal Comfort in Free-Running Buildings Based on Adaptive Predicted Mean Vote. , 2010, , .		4
88	Central heating thermostat settings and timing: building demographics. Building Research and Information, 2010, 38, 50-69.	2.0	164
89	Occupant comfort in naturally ventilated and mixed-mode spaces within air-conditioned offices. Architectural Science Review, 2010, 53, 297-306.	1.1	39
90	An Analytic Hierarchy Process Model for Assessing Occupants' Adaptations to Thermal Comfort in Offices. Smart Innovation, Systems and Technologies, 2011, , 25-34.	0.5	2
91	Sustainability in Energy and Buildings. Smart Innovation, Systems and Technologies, 2011, , .	0.5	5
92	Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy, 2011, 88, 2420-2428.	5.1	152
94	A Case Study of the Climate Factor on Thermal Comfort for Hostel Occupants in Universiti Sains Malaysia (USM), Penang, Malaysia. Journal of Sustainable Development, 2011, 4, .	0.1	4
95	Evaluation of enhanced conduction-corrected modified effective temperature ETFe as the outdoor thermal environment evaluation index. Energy and Buildings, 2011, 43, 2926-2938.	3.1	15
96	Impact of European standard EN15251 in the energy certification of services buildings—A Portuguese study case. Energy Policy, 2011, 39, 6390-6399.	4.2	5
97	How people use thermostats in homes: A review. Building and Environment, 2011, 46, 2529-2541.	3.0	254

#	Article	IF	CITATIONS
99	A new modelling methodology to control HVAC systems. Expert Systems With Applications, 2011, 38, 4505-4513.	4.4	28
100	Relationship between quality of building maintenance management services for indoor environmental quality and occupant satisfaction. Building and Environment, 2011, 46, 2179-2185.	3.0	41
101	Experimental research on thermal comfort in the university classroom of regular semesters in Korea. Journal of Mechanical Science and Technology, 2011, 25, 503-512.	0.7	39
102	Categories of indoor environmental quality and building energy demand for heating and cooling. Building Simulation, 2011, 4, 97-105.	3.0	9
103	Effect of thermal adaptation on seasonal outdoor thermal comfort. International Journal of Climatology, 2011, 31, 302-312.	1.5	181
104	Thermostat settings in English houses: No evidence of change between 1984 and 2007. Building and Environment, 2011, 46, 635-642.	3.0	44
105	Seasonal effects of urban street shading on long-term outdoor thermal comfort. Building and Environment, 2011, 46, 863-870.	3.0	249
106	Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 2011, 46, 922-937.	3.0	790
107	Indoor thermal environment evaluations and parametric analyses in naturally ventilated buildings in dry season using a field survey and PMVe-PPDe model. Building and Environment, 2011, 46, 1275-1283.	3.0	14
108	Thermal responses to different residential environments in Harbin. Building and Environment, 2011, 46, 2170-2178.	3.0	75
109	Impact of adaptive thermal comfort on climatic suitability of natural ventilation in office buildings. Energy and Buildings, 2011, 43, 2101-2107.	3.1	49
110	Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme. Energy and Buildings, 2011, 43, 2055-2067.	3.1	57
111	A new thermal comfort approach comparing adaptive and PMV models. Renewable Energy, 2011, 36, 951-956.	4.3	51
112	Thermal comfort of naturally ventilated houses in countryside of subtropical region. , 2011, , .		0
113	Impact of user habits in smart home control. , 2011, , .		4
114	Energy Efficient and Low-Cost Indoor Environment Monitoring System Based on the IEEE 1451 Standard. IEEE Sensors Journal, 2011, 11, 2598-2610.	2.4	55
115	Effect of balconies on thermal comfort in wind-induced, naturally ventilated low-rise buildings. Building Services Engineering Research and Technology, 2011, 32, 277-292.	0.9	19
116	A study on thermal parameters in residential buildings associated with hot humid environments. Architectural Science Review, 2011, 54, 23-38.	1.1	16

#	Article	IF	CITATIONS
117	Text mining for occupant perspectives on the physical workplace. Building Research and Information, 2011, 39, 169-182.	2.0	26
118	Perceived and Measured Adaptive Thermal Comfort at an Outdoor Shaded Recreational Area in Malaysia. Advanced Materials Research, 2012, 610-613, 1083-1086.	0.3	2
119	The Interior Experience of Daylighting Technologies: Histories and Potential Futures. Interiors: Design, Architecture, Culture, 2012, 3, 59-84.	0.0	0
120	The Potential Analysis of Natural Ventilation in Summer Climate Conditions in Five Typical Regions for Shandong Province. Applied Mechanics and Materials, 0, 170-173, 2634-2638.	0.2	0
121	Sick building syndrome in openâ€plan offices. Journal of Facilities Management, 2012, 10, 256-265.	1.0	25
122	Exploiting a Hybrid Environmental Design Strategy in the Continental Climate of Beijing. International Journal of Ventilation, 2012, 11, 105-130.	0.2	4
123	What do we know about indoor air quality in school classrooms? A critical review of the literature. Intelligent Buildings International, 2012, 4, 228-259.	1.3	107
124	Urban human thermal comfort in hot and humid Hong Kong. Energy and Buildings, 2012, 55, 51-65.	3.1	248
125	Subjective estimations of thermal environment in recreational urban spaces—Part 2: international comparison. International Journal of Biometeorology, 2012, 56, 1089-1101.	1.3	67
126	Impact of different building ventilation modes on occupant expectations ofÂtheÂmain IEQ factors. Building and Environment, 2012, 57, 184-193.	3.0	64
127	Experimental study of the thermal performance of a large institutional building with mixed-mode cooling and hybrid ventilation. Building and Environment, 2012, 57, 313-326.	3.0	53
128	Human health and thermal comfort of office workers in Singapore. Building and Environment, 2012, 58, 172-178.	3.0	64
129	Office Buildings Cooling Need in the Italian Climatic Context: Assessing the Performances of Typical Envelopes. Energy Procedia, 2012, 30, 1099-1109.	1.8	17
130	Exploring the influence of qualitative factors on the thermal comfort of office occupants. Architectural Science Review, 2012, 55, 169-175.	1.1	29
131	Challenges and future directions for energy and buildings research. Building Research and Information, 2012, 40, 391-400.	2.0	36
133	Comfort and Convenience: Temporality and Practice. , 0, , 288-306.		8
134	A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments. Indoor Air, 2012, 22, 110-118.	2.0	117
135	Development of a multivariate regression model for overall satisfaction in public buildings based on field studies in Beijing and Shanghai. Building and Environment, 2012, 47, 394-399.	3.0	142

#	Article	IF	CITATIONS
136	A measurement procedure to assess indoor environment quality for hypermarket workers. Building and Environment, 2012, 47, 288-299.	3.0	22
137	Adaptive comfort: Analysis and application of the main indices. Building and Environment, 2012, 49, 25-32.	3.0	52
138	Effects of artificially induced heat acclimatization on subjects' thermal and air movement preferences. Building and Environment, 2012, 49, 251-258.	3.0	26
139	Student learning performance and indoor environmental quality (IEQ) in air-conditioned university teaching rooms. Building and Environment, 2012, 49, 238-244.	3.0	164
140	Application of a developed adaptive model in the evaluation of thermal comfort in ventilated kindergarten occupied spaces. Building and Environment, 2012, 50, 190-201.	3.0	41
141	Human thermal adaptive behaviour in naturally ventilated offices for different outdoor air temperatures: A case study in Changsha China. Building and Environment, 2012, 50, 76-89.	3.0	47
142	Factors influencing the occupants' window opening behaviour in a naturally ventilated office building. Building and Environment, 2012, 50, 125-134.	3.0	130
143	Enhancing natural ventilation, thermal comfort and energy savings in high-rise residential buildings in Bangkok through the use of ventilation shafts. Building and Environment, 2012, 50, 104-113.	3.0	95
144	Mixed-mode buildings: A double standard in occupants' comfort expectations. Building and Environment, 2012, 54, 53-60.	3.0	131
145	Thermal comfort in open plan offices in northern Italy: An adaptive approach. Building and Environment, 2012, 56, 314-320.	3.0	59
146	Two-stage regression model of thermal comfort in office buildings. Building and Environment, 2012, 57, 88-96.	3.0	19
147	Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Building and Environment, 2012, 57, 110-119.	3.0	119
148	Energy efficient model predictive building temperature control. Chemical Engineering Science, 2012, 69, 45-58.	1.9	59
149	Occupants' behavioural adaptation in workplaces with non-central heating and cooling systems. Applied Thermal Engineering, 2012, 35, 40-54.	3.0	69
150	A method to weight three categories of adaptive thermal comfort. Energy and Buildings, 2012, 47, 312-320.	3.1	70
151	The adaptive approach to thermal comfort: A critical overview. Energy and Buildings, 2012, 51, 101-110.	3.1	179
152	Energy efficient building services for tempering performance-oriented interior spaces – A literature review. Journal of Cleaner Production, 2012, 22, 1-10.	4.6	12
153	Seasonal and weather-related behavioral effects among urban Aboriginal, urban non-Aboriginal, and remote Aboriginal participants in Canada. Population and Environment, 2013, 35, 45-67.	1.3	13

#	Article	IF	Citations
154	Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable Energy, 2013, 55, 182-188.	4.3	129
155	Environmental Monitoring Systems: A Review. IEEE Sensors Journal, 2013, 13, 1329-1339.	2.4	126
156	A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. International Journal of Biometeorology, 2013, 57, 895-907.	1.3	117
157	Physiological and subjective thermal response from Indians. Building and Environment, 2013, 70, 306-317.	3.0	27
158	Climate preferences and expectations and their influence on comfort evaluations in an aircraft cabin. Building and Environment, 2013, 64, 146-151.	3.0	24
159	Thermal comfort evaluation in kindergarten: PMV and PPD measurement through datalogger and questionnaire. Building and Environment, 2013, 68, 202-214.	3.0	113
160	PMV–PPD and acceptability in naturally ventilated schools. Building and Environment, 2013, 67, 129-137.	3.0	119
161	Design and Management of Sustainable Built Environments. , 2013, , .		11
162	Personal control over temperature in winter in Dutch office buildings. HVAC and R Research, 2013, 19, 1033-1050.	0.9	12
163	Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot–humid climates using ASHRAE RP-884 database. Frontiers of Architectural Research, 2013, 2, 278-291.	1.3	140
164	Feedback from human adaptive behavior to neutral temperature in naturally ventilated buildings: Physical and psychological paths. Building and Environment, 2013, 67, 240-249.	3.0	29
165	Thermal comfort assessment of large-scale hospitals in tropical climates: A case study of University Kebangsaan Malaysia Medical Centre (UKMMC). Energy and Buildings, 2013, 64, 317-322.	3.1	61
166	Domestic energy consumption—What role do comfort, habit, and knowledge about the heating system play?. Energy and Buildings, 2013, 66, 626-636.	3.1	118
167	Field studies on human thermal comfort — An overview. Building and Environment, 2013, 64, 94-106.	3.0	240
168	Long-term field measurement on effects of wind speed and directional fluctuation on wind-driven cross ventilation in a mock-up building. Building and Environment, 2013, 62, 1-8.	3.0	27
170	Are green buildings more satisfactory and comfortable?. Habitat International, 2013, 39, 156-161.	2.3	123
171	Thermal comfort in naturally ventilated spaces and under indirect evaporative passive cooling conditions in hot–humid climate. Energy and Buildings, 2013, 63, 79-86.	3.1	27
172	Feasibility analysis of using humidex as an indoor thermal comfort predictor. Energy and Buildings, 2013, 64, 17-25.	3.1	85

#	Article	IF	CITATIONS
173	Should it be automatic or manual—The occupant's perspective on the design of domestic control systems. Energy and Buildings, 2013, 65, 119-126.	3.1	48
174	The use of a thermophysiological model in the built environment to predict thermal sensation. Building and Environment, 2013, 59, 10-22.	3.0	95
175	Thermal comfort in outdoor urban spaces in Singapore. Building and Environment, 2013, 59, 426-435.	3.0	246
176	Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Building and Environment, 2013, 59, 599-611.	3.0	164
177	A Field Study on Thermal Comfort of Occupants and Acceptable Neutral Temperature at the National Museum in Malaysia. Indoor and Built Environment, 2013, 22, 433-444.	1.5	31
178	Impact of sustainable office buildings on occupant's comfort and productivity. Journal of Corporate Real Estate, 2013, 15, 7-34.	1.2	113
179	Carrying My Environment with Me. , 2013, , .		21
180	Field Investigation of Indoor Thermal Environment and Thermal Adaption of Dalian Residences in Winter. Applied Mechanics and Materials, 0, 361-363, 458-463.	0.2	2
181	A Thermal Comfort Investigation of a Facility Department of a Hospital in Hot-Humid Climate: Correlation between Objective and Subjective Measurements. Indoor and Built Environment, 2013, 22, 836-845.	1.5	29
182	Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment. Journal of Environmental and Public Health, 2013, 2013, 1-10.	0.4	16
183	People who live in a cold climate: thermal adaptation differences based on availability of heating. Indoor Air, 2013, 23, 303-310.	2.0	62
184	Some aspects of physiologic climatology in Nigeria. Interdisciplinary Environmental Review, 2013, 14, 150.	0.1	4
185	Postâ€occupancy evaluation of the thermal environment in a green building. Facilities, 2013, 31, 357-371.	0.8	30
187	Thermal Comfort in Transition Spaces. Buildings, 2013, 3, 122-142.	1.4	29
188	Did the Little Ice Age Affect Indoor Climate and Comfort?: Re-theorizing Climate History and Architecture from the Early Modern Period. Journal for Early Modern Cultural Studies, 2013, 13, 24-42.	0.0	6
189	Regional Similarities in Seasonal Mortality across the United States: An Examination of 28 Metropolitan Statistical Areas. PLoS ONE, 2013, 8, e63971.	1.1	21
190	A Natural Ventilation Alternative to the Passivhaus Standard for a Mild Maritime Climate. Buildings, 2013, 3, 61-78.	1.4	16
191	Investigation of Comfort Temperature and Occupant Behavior in Japanese Houses during the Hot and Humid Season. Buildings, 2014, 4, 437-452.	1.4	38

# 192	ARTICLE Correlation Study on User Satisfaction from Adaptive Behavior and Energy Consumption in Office Buildings. Jurnal Teknologi (Sciences and Engineering), 2014, 70, .	IF 0.3	CITATIONS
193	Is it hot in here or is it just me? Validating the post-occupancy evaluation. Intelligent Buildings International, 2014, 6, 112-134.	1.3	53
194	A smart learning based control system for reducing energy wastage. , 2014, , .		7
195	Data-driven state-space modeling of indoor thermal sensation using occupant feedback. , 2014, , .		1
196	A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points. Energy and Buildings, 2014, 85, 536-548.	3.1	148
197	Elements of Discomfort in Vehicles. Procedia, Social and Behavioral Sciences, 2014, 143, 1120-1125.	0.5	9
198	Parameters contributing to occupants' satisfaction. Facilities, 2014, 32, 411-437.	0.8	30
199	A User-Centered Approach to User-Building Interactions. Proceedings of the Human Factors and Ergonomics Society, 2014, 58, 2008-2012.	0.2	7
200	Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort. Indoor Air, 2014, 24, 171-177.	2.0	50
201	Energy, Daylighting, and a Role for Interiors. Journal of Interior Design, 2014, 39, 37-56.	0.4	4
202	Smart-ECO Buildings towards 2020/2030. SpringerBriefs in Applied Sciences and Technology, 2014, , .	0.2	2
203	Innovative Technological Solutions. SpringerBriefs in Applied Sciences and Technology, 2014, , 37-71.	0.2	0
204	An investigation of thermal comfort adaptation behaviour in office buildings in the UK. Indoor and Built Environment, 2014, 23, 675-691.	1.5	42
205	Impacts of modern transitions on thermal comfort in vernacular dwellings in warm-humid climate of Sugganahalli (India). Indoor and Built Environment, 2014, 23, 543-564.	1.5	24
206	Assessing thermal comfort and energy efficiency in tropical African offices using the adaptive approach. Structural Survey, 2014, 32, 396-412.	1.0	12
207	Effect of building envelope on thermal environmental conditions of a naturally ventilated building block in tropical climate. Building Services Engineering Research and Technology, 2014, 35, 280-295.	0.9	13
208	Effects of types of ventilation system on indoor particle concentrations in residential buildings. Indoor Air, 2014, 24, 629-638.	2.0	91
209	Individual and district heating: A comparison of residential heating modes with an analysis of adaptive thermal comfort. Energy and Buildings, 2014, 78, 17-24.	3.1	66

#	Article	IF	CITATIONS
210	The influence of outdoor thermal environment on young Japanese females. International Journal of Biometeorology, 2014, 58, 963-974.	1.3	12
211	PMV model is insufficient to capture subjective thermal response from Indians. International Journal of Industrial Ergonomics, 2014, 44, 349-361.	1.5	52
212	High environmental temperature and preterm birth: A review of the evidence. Midwifery, 2014, 30, 50-59.	1.0	104
213	Natural cross ventilation in buildings on Mediterranean coastal zones. Energy and Buildings, 2014, 77, 206-218.	3.1	40
214	Thermal comfort and building energy consumption implications – A review. Applied Energy, 2014, 115, 164-173.	5.1	962
215	Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review. Energy and Buildings, 2014, 68, 547-557.	3.1	116
216	Evaluation of fenestration specifications in Egypt in terms of energy consumption and long term cost-effectiveness. Energy and Buildings, 2014, 69, 329-343.	3.1	26
217	Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy and Buildings, 2014, 72, 411-418.	3.1	120
218	A review on predicted mean vote and adaptive thermal comfort models. Building Services Engineering Research and Technology, 2014, 35, 23-35.	0.9	56
219	Visual alliesthesia: The gap between comfortable and stimulating illuminance settings. Building and Environment, 2014, 82, 42-49.	3.0	23
220	User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment. Renewable and Sustainable Energy Reviews, 2014, 39, 277-295.	8.2	66
221	Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria. International Journal of Climatology, 2014, 34, 2000-2018.	1.5	100
222	From indicators to strategies: Key Performance Strategies for sustainable energy use in Portuguese school buildings. Energy and Buildings, 2014, 85, 212-224.	3.1	43
223	Thermal adaptation and thermal environment in university classrooms and offices in Harbin. Energy and Buildings, 2014, 77, 192-196.	3.1	96
224	Development of surrogate models using artificial neural network for building shell energy labelling. Energy Policy, 2014, 69, 457-466.	4.2	62
225	Thermal comfort: Design and assessment for energy saving. Energy and Buildings, 2014, 81, 326-336.	3.1	129
226	Estimating the HVAC energy consumption of plug-in electric vehicles. Journal of Power Sources, 2014, 259, 117-124.	4.0	114
227	Bayesian thermal comfort model. Building and Environment, 2014, 82, 171-179.	3.0	20

#	Article	IF	CITATIONS
228	Feedback effect of human physical and psychological adaption on time period of thermal adaption in naturally ventilated building. Building and Environment, 2014, 76, 1-9.	3.0	28
229	Thermal comfort and occupant responses during summer in a low to middle income housing development in South Australia. Building and Environment, 2014, 75, 19-29.	3.0	68
230	Urban vegetation for reducing heat related mortality. Environmental Pollution, 2014, 192, 275-284.	3.7	94
231	PROSPECTS OF THERMAL COMFORT IN SEMI-OUTDOOR ENVIRONMENT. Journal of Environmental Engineering (Japan), 2014, 79, 597-606.	0.1	6
232	Barriers towards reducing domestic energy consumption - findings of a study among social housing tenants. International Journal of Environment and Sustainable Development, 2014, 13, 425.	0.2	2
233	Analysis on Human Adaptive Levels in Different Kinds of Indoor Thermal Environment. Procedia Engineering, 2015, 121, 151-157.	1.2	12
234	Variability Assessment of Thermal Comfort in a Retrofitted Social Housing Neighborhood Based on "In Situ―Measurements. Energy Procedia, 2015, 78, 2790-2795.	1.8	9
235	Thermal Comfort and Thermal Adaptation between Residential and Office Buildings in Severe Cold Area of China. Procedia Engineering, 2015, 121, 365-373.	1.2	13
236	Adaptive Thermal Comfort in Japanese Houses during the Summer Season: Behavioral Adaptation and the Effect of Humidity. Buildings, 2015, 5, 1037-1054.	1.4	60
237	Retrofitting Precincts for Heatwave Resilience: Challenges and Barriers in Australian Context. Challenges, 2015, 6, 3-25.	0.9	8
238	Thermal Adaptation Methods of Urban Plaza Users in Asia's Hot-Humid Regions: A Taiwan Case Study. International Journal of Environmental Research and Public Health, 2015, 12, 13560-13586.	1.2	13
239	ASHRAE 55 adaptive model application in hot and humid climates: the Brazilian case. Architectural Science Review, 2015, 58, 93-101.	1.1	22
240	Thermal comfort characteristics in naturally ventilated, residential apartments in a hot-dry climate of India. Indoor and Built Environment, 2015, 24, 101-115.	1.5	25
241	Living with low carbon technologies: An agenda for sharing and comparing qualitative energy research. Energy Policy, 2015, 84, 241-249.	4.2	16
242	Customized rating assessment of climate suitability (CRACS): climate satisfaction evaluation based on subjective perception. International Journal of Biometeorology, 2015, 59, 1825-1837.	1.3	20
243	Measurement of occupants' stress based on electroencephalograms (EEG) in twelve combined	۹ . 0	103
	environments. Building and Environment, 2015, 88, 65-72.	0.0	
244	Thermal comfort in the Fraschini theatre (Pavia, Italy): Correlation between data from questionnaires, measurements, and mathematical model. Energy and Buildings, 2015, 99, 243-252.	3.1	28

~		~	
(REDU	DT
\sim	плп	NLFU	

#	Article	IF	CITATIONS
246	An MAS-based subjective model for indoor adaptive thermal comfort. Science and Technology for the Built Environment, 2015, 21, 114-125.	0.8	26
247	Indoor air quality and thermal comfort evaluation in a Spanish modern low-energy office with thermally activated building systems. Science and Technology for the Built Environment, 2015, 21, 1091-1099.	0.8	13
248	Thermal Comfort for Users According to the Brazilian Housing Buildings Performance Standards. Energy Procedia, 2015, 78, 2923-2928.	1.8	9
249	A new hybrid thermal comfort guideline for the Netherlands: background and development. Architectural Science Review, 2015, 58, 24-34.	1.1	39
250	The potential and challenges of inferring thermal comfort at home using commodity sensors. , 2015, , .		25
251	A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings. Energy and Buildings, 2015, 91, 187-198.	3.1	36
252	Energy performance and comfort in residential buildings: Sensitivity for building parameters and occupancy. Energy and Buildings, 2015, 92, 216-233.	3.1	133
253	Evaluating thermal comfort in mixed-mode buildings: A field study in a subtropical climate. Building and Environment, 2015, 88, 46-54.	3.0	142
254	Window operation and impacts on building energy consumption. Energy and Buildings, 2015, 92, 313-321.	3.1	114
255	Towards dynamic thermal performance benchmarks for naturally ventilated buildings in a hot-dry climate. Building and Environment, 2015, 88, 129-141.	3.0	9
256	Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India. Building and Environment, 2015, 86, 17-28.	3.0	93
257	Use of Earth Observation based indices for the monitoring of built-up area features and dynamics in support of urban energy studies. Energy and Buildings, 2015, 98, 92-99.	3.1	11
258	Occupant behaviour simulation for cellular offices in early design stages—Architectural and modelling considerations. Building Simulation, 2015, 8, 211-224.	3.0	21
259	Design criteria of built thermal environment for Hot Summer & Warm Winter zone of China. Building and Environment, 2015, 88, 97-105.	3.0	24
260	Indoor Climate and Thermal Comfort from a Long-Term Perspective. Home Cultures, 2015, 12, 29-53.	0.2	3
261	An analysis of occupants response to thermal discomfort in green and conventional buildings in New Zealand. Energy and Buildings, 2015, 104, 191-198.	3.1	33
262	Rational selection of heating temperature set points for China's hotÂsummer – Cold winter climatic region. Building and Environment, 2015, 93, 63-70.	3.0	39
263	Development of the adaptive PMV model for improving prediction performances. Energy and Buildings, 2015, 98, 100-105.	3.1	84

ARTICLE IF CITATIONS # Winter cold in a summer place: Perceived norms of seasonal adaptation and cultures of home heating 3.0 52 264 in Australia. Energy Research and Social Science, 2015, 8, 162-172. Parameters influencing the energy performance of residential buildings in different Chinese climate zones. Energy and Buildings, 2015, 96, 64-75. 3.1 Factors governing the development of moisture disorders for integration into building performance 266 1.6 40 simulation. Journal of Building Engineering, 2015, 3, 1-15. An online learning approach for quantifying personalized thermal comfort via adaptive stochastic 3.0 146 modeling. Building and Environment, 2015, 92, 86-96. Numerical investigation of the Castle of Zena energy needs and a feasibility study for the 268 3.1 20 implementation of electric and gas driven heat pump. Energy and Buildings, 2015, 95, 32-38. Behavioural responses to cold thermal discomfort. Building Research and Information, 2015, 43, 355-370. Perceived control in indoor environments: a conceptual approach. Building Research and 270 2.0 79 Information, 2015, 43, 302-315. Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Buildings, 2015, 107, 264-278. 271 3.1 611 Thermal performance of glazed balconies within heavy weight/thermal mass buildings in Beirut, 272 3.1 32 Lebanon's hot climate. Energy and Buildings, 2015, 108, 291-303. Investigation of indoor environment quality of Chinese large-hub airport terminal buildings through longitudinal field measurement and subjective survey. Building and Environment, 2015, 94, 593-605. Residential heating energy consumption modeling through a bottom-up approach for China's Hot 274 3.173 Summer–Cold Winter climatic region. Energy and Buildings, 2015, 109, 65-74. Thermal environment in the cotton textile workshop. Energy and Buildings, 2015, 102, 432-441. 3.1 Evaluation of thermal comfort in university classrooms through objective approach and subjective 276 1.7 68 preference analysis. Applied Ergonomics, 2015, 48, 111-120. An adaptive thermal comfort model for the tropical climatic regions of India (Köppen climate type A). Building and Environment, 2015, 85, 134-143. Adaptive model for outdoor thermal comfort assessment in an Oasis city of arid climate. Building and 278 3.0 81 Environment, 2015, 85, 40-51. A study of adaptive thermal comfort in a well-controlled climate chamber. Applied Thermal 279 3.0 Engineering, 2015, 76, 283-291. Geographical and temporal differences in electric vehicle range due to cabin conditioning energy 280 4.0 76 consumption. Journal of Power Sources, 2015, 275, 468-475. Development of thermal comfort models for various climatic zones of North-East India. Sustainable 5.1 Cities and Society, 2015, 14, 133-145.

#	Article	IF	CITATIONS
282	Bioclimatic comfort and the thermal perceptions and preferences of beach tourists. International Journal of Biometeorology, 2015, 59, 37-45.	1.3	130
283	Usability and Design of Personal Wearable and Portable Devices for Thermal Comfort in Shared Work Environments. , 2016, , .		7
284	Cognitive Appraisals Affect Both Embodiment of Thermal Sensation and Its Mapping to Thermal Evaluation. Frontiers in Psychology, 2016, 7, 800.	1.1	9
285	Indoor Thermal Comfort Assessment of Industrial Buildings in Singapore. Procedia Engineering, 2016, 169, 158-165.	1.2	8
286	The effect of real-time context-aware feedback on occupants' heating behaviour and thermal adaptation. Energy and Buildings, 2016, 123, 179-191.	3.1	32
287	Indoor comfort assessment of objective and subjective information by fusion and fuzzy inference decision. Intelligent Buildings International, 2016, 8, 234-245.	1.3	3
288	Simulating the impact of urban development pathways on the local climate: A scenario-based analysis in the greater Dublin region, Ireland. Landscape and Urban Planning, 2016, 152, 72-89.	3.4	50
289	Capturing the social value of buildings: The promise of Social Return on Investment (SROI). Building and Environment, 2016, 103, 289-301.	3.0	35
290	Investigating the probability of behavioural responses to cold thermal discomfort. Energy and Buildings, 2016, 124, 70-78.	3.1	15
291	Overall and local thermal sensation & comfort in air-conditioned dormitory with hot-humid climate. Building and Environment, 2016, 101, 102-109.	3.0	40
292	Epigenetic mechanisms as an archive of ancestral dietary history of populations: The premise, proposal and pilot. Journal of Archaeological Science: Reports, 2016, 5, 689-699.	0.2	2
293	Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy and Buildings, 2016, 130, 637-650.	3.1	235
294	Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?. Applied Energy, 2016, 183, 22-30.	5.1	77
295	Drivers and barriers to heat stress resilience. Science of the Total Environment, 2016, 571, 603-614.	3.9	47
296	Using social norm to promote energy conservation in a public building. Energy and Buildings, 2016, 133, 32-36.	3.1	16
297	Outdoor thermal comfort and activities in the urban residential community in a humid subtropical area of China. Energy and Buildings, 2016, 133, 498-511.	3.1	164
298	An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India. Building and Environment, 2016, 109, 135-153.	3.0	94
299	Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season. Building and Environment, 2016, 109, 208-223.	3.0	186

#	Article	IF	CITATIONS
300	Exploring the dynamic process of human thermal adaptation: A study in teaching building. Energy and Buildings, 2016, 127, 425-432.	3.1	23
301	Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design. Applied Energy, 2016, 182, 625-633.	5.1	120
302	Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort. Building and Environment, 2016, 109, 1-11.	3.0	175
303	A new insight into opaque envelopes in a passive solar house: Properties and roles. Applied Energy, 2016, 183, 685-699.	5.1	28
304	Assessing the applicability of passive cooling and heating techniques through climate factors: An overview. Renewable and Sustainable Energy Reviews, 2016, 65, 727-742.	8.2	68
305	Energy retrofit for a climate resilient child care centre. Energy and Buildings, 2016, 127, 1117-1132.	3.1	36
306	On the determination of the thermal comfort conditions of a metropolitan city underground railway. Science of the Total Environment, 2016, 566-567, 877-887.	3.9	49
307	Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Applied Energy, 2016, 179, 660-668.	5.1	225
308	Saving energy with light? Experimental studies assessing the impact of colour temperature on thermal comfort. Energy Research and Social Science, 2016, 15, 45-57.	3.0	66
309	Energy storage for residential dwellings. Methodology to improve energy efficiency and habitability. Journal of Energy Storage, 2016, 8, 99-110.	3.9	1
311	The relation between indoor environnemental quality (IEQ) and energy consumption in building based on occupant behavior - A review. MATEC Web of Conferences, 2016, 66, 00086.	0.1	1
312	Thermal comfort of people in the hot and humid area of China—impacts of season, climate, and thermal history. Indoor Air, 2016, 26, 820-830.	2.0	87
313	Analysis of behaviour patterns and thermal responses to a hot–arid climate in rural China. Journal of Thermal Biology, 2016, 59, 92-102.	1.1	32
314	Thermal comfort in twentieth-century architectural heritage: Two houses of Le Corbusier and André Wogenscky. Frontiers of Architectural Research, 2016, 5, 157-170.	1.3	14
315	Seasonal evaluation of adaptive use of controls in multi-storied apartments: A field study in composite climate of north India. International Journal of Sustainable Built Environment, 2016, 5, 83-98.	3.2	12
316	Children's well-being at schools: Impact of climatic conditions and air pollution. Environment International, 2016, 94, 196-210.	4.8	128
317	Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment, 2016, 105, 369-389.	3.0	497
318	The effect of individual and social environments on the users thermal perceptions of educational urban precincts. Sustainable Cities and Society, 2016, 26, 119-133.	5.1	82

#	Article	IF	CITATIONS
319	Thermal comfort in air-conditioned buildings in hot and humid climates - why are we not getting it right?. Indoor Air, 2016, 26, 138-152.	2.0	70
320	Thermal comfort in educational buildings: A review article. Renewable and Sustainable Energy Reviews, 2016, 59, 895-906.	8.2	276
321	Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment, 2016, 98, 55-70.	3.0	216
322	Toward a theory of environmental satisfaction and human comfort: A process-oriented and contextually sensitive theoretical framework. Journal of Environmental Psychology, 2016, 45, 11-21.	2.3	34
323	From sustainability to adaptation: Goldman Sachs' corporate real estate strategy. Building Research and Information, 2016, 44, 407-422.	2.0	14
324	Field study on adaptive comfort in air conditioned dormitories of university with hot-humid climate in summer. Energy and Buildings, 2016, 119, 1-12.	3.1	60
325	Effects of perceived indoor temperature on daylight glare perception. Building Research and Information, 2016, 44, 907-919.	2.0	28
326	Adaptive thermal comfort in university dormitories in the severe cold area of China. Building and Environment, 2016, 99, 161-169.	3.0	81
327	Thermal perception of outdoor urban spaces in the hot arid region of Cairo, Egypt. Sustainable Cities and Society, 2016, 22, 136-145.	5.1	96
328	Thermal comfort conditions in airport terminals: Indoor or transition spaces?. Building and Environment, 2016, 99, 184-199.	3.0	56
329	The underlying linkage between personal control and thermal comfort: Psychological or physical effects?. Energy and Buildings, 2016, 111, 56-63.	3.1	130
330	Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy and Buildings, 2016, 114, 27-37.	3.1	79
331	Investigation of winter indoor thermal environment and heating demand of urban residential buildings in China's hot summer – Cold winter climate region. Building and Environment, 2016, 101, 9-18.	3.0	92
332	Combining energy efficiency measure approaches and occupancy patterns in building modelling in the UK residential context. Energy and Buildings, 2016, 111, 98-108.	3.1	55
333	Indoor climate and thermal physiological adaptation: Evidences from migrants with different cold indoor exposures. Building and Environment, 2016, 98, 30-38.	3.0	92
334	Evaluating thermal comfort and building climatic response in warm-humid climates for vernacular dwellings in Suggenhalli (India). Architectural Science Review, 2016, 59, 12-26.	1.1	28
336	Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger. International Journal of Biometeorology, 2016, 60, 521-529.	1.3	9
337	The dynamics of thermal comfort expectations: The problem, challenge and impication. Building and Environment, 2016, 95, 322-329.	3.0	119

#	Article	IF	CITATIONS
338	Assessment of human thermal perception in the hot-humid climate of Dar es Salaam, Tanzania. International Journal of Biometeorology, 2017, 61, 69-85.	1.3	52
339	Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins. Indoor Air, 2017, 27, 94-103.	2.0	20
340	Complying with voluntary energy conservation agreements (I): Air conditioning in Hong Kong's shopping malls. Resources, Conservation and Recycling, 2017, 117, 213-224.	5.3	12
341	Correlation between health discomforts and temperature steps in winter of China. Building and Environment, 2017, 114, 387-396.	3.0	37
342	Adjustments of the adaptive thermal comfort model based on the running mean outdoor temperature for Chinese people: A case study in Changsha China. Building and Environment, 2017, 114, 357-365.	3.0	36
343	Life cycle assessment of energy conservation measures during early stage office building design: A case study in London, UK. Energy and Buildings, 2017, 139, 547-568.	3.1	66
344	Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy and Buildings, 2017, 157, 218-226.	3.1	93
345	Reflections on the history of indoor air science, focusing on the last 50Âyears. Indoor Air, 2017, 27, 708-724.	2.0	60
346	Numerical and experimental investigations of the impacts of window parameters on indoor natural ventilation in a residential building. Energy and Buildings, 2017, 141, 321-332.	3.1	65
347	An integrated comfort control with cooling, ventilation, and humidification systems for thermal comfort and low energy consumption. Science and Technology for the Built Environment, 2017, 23, 264-276.	0.8	6
348	Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China. Energy and Buildings, 2017, 140, 9-18.	3.1	196
349	Thermal comfort and indoor air quality in super-insulated housing with natural and decentralized ventilation systems in the south of the UK. Architectural Science Review, 2017, 60, 167-179.	1.1	2
350	A study of thermal comfort in residential buildings on the Tibetan Plateau, China. Building and Environment, 2017, 119, 71-86.	3.0	71
351	The role of lobbies: short-term thermal transitions. Building Research and Information, 2017, 45, 759-782.	2.0	15
352	Long-term perceptions of outdoor thermal environments in an elementary school in a hot-humid climate. International Journal of Biometeorology, 2017, 61, 1657-1666.	1.3	37
353	Thermal comfort of rural residents in a hot–humid area. Building Research and Information, 2017, 45, 209-221.	2.0	18
355	A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 2017, 79, 1353-1379.	8.2	221
356	Neo-Environmental Determinism. , 2017, , .		6

#	Article	IF	CITATIONS
357	Effect of thermal sensation on emotional responses as measured through brain waves. Building and Environment, 2017, 118, 32-39.	3.0	32
358	A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Building and Environment, 2017, 118, 323-343.	3.0	87
359	Adaptation-based indoor environment control in a hot-humid area. Building and Environment, 2017, 117, 238-247.	3.0	21
360	The Occupant Mobile Gateway: A participatory sensing and machine-learning approach for occupant-aware energy management. Building and Environment, 2017, 118, 1-13.	3.0	32
361	Retrofit strategies towards Net Zero Energy Educational Buildings: A case study at the University of the Basque Country. Energy and Buildings, 2017, 144, 387-400.	3.1	45
362	Understanding patterns of adaptive comfort behaviour in the Sydney mixed-mode residential context. Energy and Buildings, 2017, 141, 274-283.	3.1	86
363	Human responses to high humidity in elevated temperatures for people in hot-humid climates. Building and Environment, 2017, 114, 257-266.	3.0	99
364	The effect of physical and psychological environments on the users thermal perceptions of educational urban precincts. Building and Environment, 2017, 115, 182-198.	3.0	54
365	On the minimal thermal habitability conditions in low income dwellings in Spain for a new definition of fuel poverty. Building and Environment, 2017, 114, 344-356.	3.0	77
366	Machine learning approaches to predict thermal demands using skin temperatures: Steady-state conditions. Building and Environment, 2017, 114, 1-10.	3.0	117
367	Influence of short-term thermal experience on thermal comfort evaluations: A climate chamber experiment. Building and Environment, 2017, 114, 246-256.	3.0	78
368	Study on human skin temperature and thermal evaluation in step change conditions: From non-neutrality to neutrality. Energy and Buildings, 2017, 156, 29-39.	3.1	65
369	Analysing thermal comfort perception of students through the class hour, during heating season, in a university classroom. Building and Environment, 2017, 125, 464-474.	3.0	52
370	The Effect of Indoor Temperature and CO 2 Levels on Cognitive Performance of Adult Females in a University Building in Saudi Arabia. Energy Procedia, 2017, 122, 451-456.	1.8	31
371	Investigation of the impact of subjective and physical parameters on the indoor comfort of occupants: a case study in central Italy. Energy Procedia, 2017, 126, 131-138.	1.8	7
372	Thermal comfort evaluation in cruise terminals. Building and Environment, 2017, 126, 276-287.	3.0	13
373	Neural correlates of ambient thermal sensation: An fMRI study. Scientific Reports, 2017, 7, 11279.	1.6	23
374	The impact of window opening and other occupant behavior on simulated energy performance in residence halls. Building Simulation, 2017, 10, 963-976.	3.0	29

ARTICLE IF CITATIONS # The influence of personally controlled desk fan on comfort and energy consumption in hot and 375 3.0 38 humid environments. Building and Environment, 2017, 123, 378-389. Thermal Performance of 6 Star Rated Houses in the Hot and Humid Tropical Climate of Darwin. 376 1.2 Procedia Engineering, 2017, 180, 510-519. Adaptive thermal comfort in the offices of North-East India in autumn season. Building and 377 3.0 71 Environment, 2017, 124, 14-30. A tracked field study of thermal adaptation during a short-term migration between cold and hot-summer and warm-winter areas of China. Building and Environment, 2017, 124, 90-103. 378 3.0 Tackling the interplay of occupants' heating practices and building physics: Insights from a German 379 3.0 42 mixed methods study. Energy Research and Social Science, 2017, 32, 65-75. An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings. Applied Energy, 2017, 205, 440-452. 380 5.1 Research on the influence of piloti on residential block's outdoor thermal comfort by questionnaire 381 survey and coupled simulation method in Guangzhou, China. IOP Conference Series: Earth and 0.2 0 Environmental Science, 2017, 69, 012003. A review on indoor environmental quality (IEQ) and energy consumption in building based on 0.8 occupant behavior. Facilities, 2017, 35, 684-695. Differences in reported linguistic thermal sensation between Bangla and Japanese speakers. Journal of 383 1.0 7 Physiological Anthropology, 2017, 36, 23. International survey on current occupant modelling approaches in building performance simulation. 384 1.0 Journal of Building Performance Simulation, 2017, 10, 653-671. Thermal comfort in urban green spaces: a survey on a Dutch university campus. International Journal 385 1.3 74 of Biometeorology, 2017, 61, 87-101. Residential air-conditioner usage in China and efficiency standardization. Energy, 2017, 119, 1036-1046. 386 4.5 Study on the Influence of Piloti Ratio on Thermal Comfort of Residential Blocks by Local Thermal 387 1.8 3 Comfort Adaptation Survey and CFD Simulations. Energy Procedia, 2017, 134, 712-722. Indoor Air Quality and Thermal Comfort in School Buildings. IOP Conference Series: Earth and 0.2 Environmental Science, 2017, 95, 042068. Hygrothermal Performance of Gypsum Plaster Houses., 2017, 14, 128-157. 389 2 Heart rate variability as an indicator of thermal comfort state., 2017,,. Development of Adaptive Prediction Mean Vote (APMV) Model for the Elderly in Guiyang, China. Energy 391 1.8 7 Procedia, 2017, 142, 1848-1853. Improving Thermal Comfort of Low-Income Housing in Thailand through Passive Design Strategies. 1.6 Sustainability, 2017, 9, 1440.

ARTICLE IF CITATIONS Adaptation of Buildings to Climate Change., 2017, , 331-349. 393 5 A Co-Citation Analysis on Thermal Comfort and Productivity Aspects in Production and Office 394 1.4 Buildings. Buildings, 2017, 7, 36. Calculation of Appropriate Minimum Size of Isolation Rooms based on Questionnaire Survey of 395 Experts and Analysis on Conditions of Isolation Room Use. Journal of Physics: Conference Series, 2017, 0.30 870,012025. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. 396 193 Building and Environment, 2018, 134, 155-167. Effects of thermophysiological and non-thermal factors on outdoor thermal perceptions: The 397 3.0 51 Tomebamba Riverbanks case. Building and Environment, 2018, 138, 235-249. Building Performance and Post Occupancy Evaluation for an off-grid low carbon and solar PV plus-energy powered building. A case from the Western Desert in Egypt. Journal of Building 1.6 Engineering, 2018, 18, 418-428. Control behaviors and thermal comfort in a shared room with desk fans and adjustable thermostat. 399 3.0 42 Building and Environment, 2018, 136, 213-226. Indoor clothing insulation and thermal history: A clothing model based on logistic function and 400 running mean outdoor temperature. Building and Environment, 2018, 135, 142-152. Field study on acceptable indoor temperature in temporary shelters built in Nepal after massive 401 3.0 35 earthquake 2015. Building and Environment, 2018, 135, 330-343. Field study on adaptive thermal comfort in typical air conditioned classrooms. Building and 74 Environment, 2018, 133, 73-82. Investigating Occupancy-Driven Air-Conditioning Control Based on Thermal Comfort Level. Journal of 403 0.8 9 Architectural Engineering, 2018, 24, . Optimal Price Based Demand Response of HVAC Systems in Multizone Office Buildings Considering Thermal Preferences of Individual Occupants Buildings. IEEE Transactions on Industrial Informatics, 404 7.2 2018, 14, 5060-5073. Optimizing thermal comfort considerations with electrical demand response program 405 0.9 16 implementation. Building Services Engineering Research and Technology, 2018, 39, 219-231. A field study of thermal sensation and neutrality in free-running aged-care homes in Shanghai. Energy and Buildings, 2018, 158, 1523-1532. 406 3.1 Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental 407 3.0 308 control. Building and Environment, 2018, 132, 114-124. Surrogate human sensor for human skin surface temperature measurement in evaluating the impacts of thermal behaviour at outdoor environment. Measurement: Journal of the International 408 Measurement Confederation, 2018, 118, 61-72. Interdisciplinary perspectives on building thermal performance. Building Research and Information, 409 2.0 9 2018, 46, 552-565. A novel methodology to realistically monitor office occupant reactions and environmental conditions using a living lab. Building and Environment, 2018, 130, 190-199.

#	Article	IF	CITATIONS
411	Individual difference in thermal comfort: A literature review. Building and Environment, 2018, 138, 181-193.	3.0	377
412	Review of adaptive thermal comfort models in built environmental regulatory documents. Building and Environment, 2018, 137, 73-89.	3.0	175
413	Thermal comfort analysis of Indian subjects in multi-storeyed apartments: An adaptive approach in composite climate. Indoor and Built Environment, 2018, 27, 1216-1246.	1.5	11
414	Acclimation and the response of hourly electricity loads to meteorological variables. Energy, 2018, 142, 473-485.	4.5	47
415	Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review. Renewable and Sustainable Energy Reviews, 2018, 82, 2664-2679.	8.2	205
416	Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment, 2018, 127, 13-22.	3.0	114
417	A modified method of evaluating the impact of air humidity on human acceptable air temperatures in hot-humid environments. Energy and Buildings, 2018, 158, 393-405.	3.1	51
418	Indoor thermal environments in Chinese residential buildings responding to the diversity of climates. Applied Thermal Engineering, 2018, 129, 693-708.	3.0	106
419	Heart rate variability as a predictive biomarker of thermal comfort. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 1465-1477.	3.3	65
420	Comfort and the tourism accommodation sector: A central, yet under-studied issue. International Journal of Hospitality Management, 2018, 74, 224-226.	5.3	3
421	Turning green into gold: A review on the economics of green buildings. Journal of Cleaner Production, 2018, 172, 2234-2245.	4.6	147
422	A bioclimatic approach to develop spatial zoning maps for comfort, passive heating and cooling strategies within a composite zone of India. Building and Environment, 2018, 128, 190-215.	3.0	31
423	Thermal comfort in urban open spaces: Objective assessment and subjective perception study in tropical city of Bhopal, India. Urban Climate, 2018, 24, 954-967.	2.4	97
424	Thermal comfort in naturally ventilated office buildings in cold and cloudy climate of Darjeeling, India – An adaptive approach. Energy and Buildings, 2018, 160, 44-60.	3.1	30
425	Adaptive approach of thermal comfort and correlation between experimental data and mathematical model in some schools and traditional buildings of Madagascar under natural ventilation. Sustainable Cities and Society, 2018, 41, 666-678.	5.1	33
426	Towards unsupervised learning of thermal comfort using infrared thermography. Applied Energy, 2018, 211, 41-49.	5.1	125
427	Residential adaptive comfort in a humid subtropical climate—Sydney Australia. Energy and Buildings, 2018, 158, 1296-1305.	3.1	85
428	Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings. Bioinspiration and Biomimetics, 2018, 13, 011001.	1.5	27

#	ARTICLE	IF	CITATIONS
429	Weather Monitoring for Predicting Thermal Comfort and Energy Efficiency. , 2018, , .		2
430	High Level Modeling of Building Automation and Control Systems Based on Perceptual Knowledge. , 2018, , .		2
431	Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India. Applied Energy, 2018, 231, 433-445.	5.1	42
432	Exploring the "black box―of thermal adaptation using information entropy. Building and Environment, 2018, 146, 166-176.	3.0	26
433	Modeling Human-in-the-Loop Behavior and Interactions with HVAC Systems. , 2018, , .		4
434	How subjective and non-physical parameters affect occupants' environmental comfort perception. Energy and Buildings, 2018, 178, 107-129.	3.1	57
435	Thermal performance and comfort potential estimation in low-rise high thermal mass naturally ventilated office buildings in India: An experimental study. Journal of Building Engineering, 2018, 20, 569-584.	1.6	36
436	When do Indians feel hot? Internet searches indicate seasonality suppresses adaptation to heat. Environmental Research Letters, 2018, 13, 054009.	2.2	4
437	Indoor climate experience, migration, and thermal comfort expectation in buildings. Building and Environment, 2018, 141, 262-272.	3.0	85
438	The impact of increased cooling setpoint temperature during demand response events on occupant thermal comfort in commercial buildings: A review. Energy and Buildings, 2018, 173, 19-27.	3.1	97
439	The relationship between poverty and indoor temperatures in winter: Determinants of cold homes in social housing contexts from the 40s–80s in Northern Spain. Energy and Buildings, 2018, 173, 428-442.	3.1	31
440	Hygrothermal Performance Evaluation of Gypsum Plaster Houses in Brazil. Advanced Structured Materials, 2018, , 1-53.	0.3	0
441	Gender differences in physiological and psychological responses to the thermal environment with varying clothing ensembles. Building and Environment, 2018, 141, 45-54.	3.0	62
442	An in-situ study on occupants' behaviors for adaptive thermal comfort in a Japanese HEMS condominium. Journal of Building Engineering, 2018, 19, 402-411.	1.6	21
443	Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors' discomfort and artwork preservation risks. Applied Energy, 2018, 224, 147-159.	5.1	42
444	Influence of human thermal adaptation and its development on human thermal responses to warm environments. Building and Environment, 2018, 139, 134-145.	3.0	20
445	Hierarchical Bayesian modeling for predicting ordinal responses of personalized thermal sensation: Application to outdoor thermal sensation data. Building and Environment, 2018, 142, 414-426.	3.0	8
446	Passive hygrothermal behaviour and indoor comfort concerning the construction evolution of the traditional Basque architectural model. Lea valley case study. Building and Environment, 2018, 143, 496-512.	3.0	14

#	Article	IF	CITATIONS
447	Transport Phenomena in Multiphase Systems. Advanced Structured Materials, 2018, , .	0.3	42
448	Wind-driven Natural Ventilation Strategies of Green Buildings in Asian Megacities : Case studies in Singapore and Shanghai. , 2018, , .		3
449	Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018, 142, 502-512.	3.0	279
450	Modelling the long-term effect of climate change on a zero energy and carbon dioxide building through energy efficiency and renewables. Energy and Buildings, 2018, 174, 85-96.	3.1	52
451	Outdoor thermal comfort and adaptation in severe cold area: A longitudinal survey in Harbin, China. Building and Environment, 2018, 143, 548-560.	3.0	109
452	An Investigation of Thermal Comfort and Adaptive Behaviors in Naturally Ventilated Residential Buildings in Tropical Climates: A Pilot Study. Buildings, 2018, 8, 5.	1.4	43
453	Characteristics of Thermal Comfort Conditions in Cold Rural Areas of China: A Case study of Stone Dwellings in a Tibetan Village. Buildings, 2018, 8, 49.	1.4	25
454	Study on the rural residence heating temperature based on the residents behavior pattern in South Liaoning province. Energy and Buildings, 2018, 174, 179-189.	3.1	22
455	Sensing transient outdoor comfort: A georeferenced method to monitor and map microclimate. Journal of Building Engineering, 2018, 20, 94-104.	1.6	30
456	A longitudinal study of thermostat behaviors based on climate, seasonal, and energy price considerations using connected thermostat data. Building and Environment, 2018, 139, 199-210.	3.0	61
457	Global pattern of human thermal adaptation and limit of thermal neutrality: Systematic analysis of outdoor neutral temperature. International Journal of Climatology, 2018, 38, 5037-5049.	1.5	23
458	Thermal comfort in multi-unit social housing buildings. Building and Environment, 2018, 144, 230-237.	3.0	23
459	Learning occupants' workplace interactions from wearable and stationary ambient sensing systems. Applied Energy, 2018, 230, 42-51.	5.1	21
460	Using social dynamics to explain uptake in energy saving measures: Lessons from space conditioning interventions in Japan and California. Energy Research and Social Science, 2018, 45, 276-286.	3.0	20
461	A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustainable Cities and Society, 2018, 41, 647-665.	5.1	70
462	A satisfaction-range approach for achieving thermal comfort level in a shared office. Building and Environment, 2018, 142, 312-326.	3.0	30
463	Strategic Sustainable and Smart Development Based on User Behaviour. Innovative Renewable Energy, 2019, , 199-207.	0.2	0
464	Adaptive model and the adaptive mechanisms for thermal comfort in Japanese dwellings. Energy and Buildings, 2019, 202, 109371.	3.1	62

#	Article	IF	CITATIONS
465	Towards the Tradeoff Between Service Performance and Information Freshness. , 2019, , .		11
466	Thermal comfort in urban mountain parks in the hot summer and cold winter climate. Sustainable Cities and Society, 2019, 51, 101756.	5.1	44
467	Investigation into outdoor thermal comfort conditions by different seasonal field surveys in China, Guangzhou. International Journal of Biometeorology, 2019, 63, 1357-1368.	1.3	53
468	Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control. Applied Sciences (Switzerland), 2019, 9, 2391.	1.3	14
469	Impacts of demographic, contextual and interaction effects on thermal sensation—Evidence from a global database. Building and Environment, 2019, 162, 106286.	3.0	35
470	Predicting older people's thermal sensation in building environment through a machine learning approach: Modelling, interpretation, and application. Building and Environment, 2019, 161, 106231.	3.0	59
471	Indoor thermal comfort review: The tropics as the next frontier. Urban Climate, 2019, 29, 100488.	2.4	29
472	Assessment of Indoor Thermal Conditions in a Cinema Room Using CFD Simulation: A Case Study. Lecture Notes in Computer Science, 2019, , 40-51.	1.0	2
473	Effect of long-term indoor thermal history on human physiological and psychological responses: A pilot study in university dormitory buildings. Building and Environment, 2019, 166, 106425.	3.0	21
474	Development of Stochastic Models of Window State Changes in Educational Buildings. IOP Conference Series: Earth and Environmental Science, 2019, 304, 032065.	0.2	0
475	Patterns of thermal preference and Visual Thermal Landscaping model in the workplace. Applied Energy, 2019, 255, 113674.	5.1	16
476	Thermostat wars? The roles of gender and thermal comfort negotiations in household energy use behavior. PLoS ONE, 2019, 14, e0224198.	1.1	24
477	A Fully Integrated Flexible Heterogeneous Temperature and Humidity Sensorâ€Based Occupancy Detection Device for Smart Office Applications. Advanced Materials Technologies, 2019, 4, 1900619.	3.0	15
478	Difference in the thermal response of the occupants living in northern and southern China. Energy and Buildings, 2019, 204, 109475.	3.1	16
479	On the link between energy performance of building and thermal comfort: An example. AIP Conference Proceedings, 2019, , .	0.3	17
480	Prediction of indoor clothing insulation levels: A deep learning approach. Energy and Buildings, 2019, 202, 109402.	3.1	29
481	Understanding differences in thermal comfort between urban and rural residents in hot summer and cold winter climate. Building and Environment, 2019, 165, 106393.	3.0	56
482	Acceptable surface temperature of floor radiant heating system based on thermal comfort study in southern China. E3S Web of Conferences, 2019, 80, 03007.	0.2	1

#	Article	IF	CITATIONS
483	Daylight affects human thermal perception. Scientific Reports, 2019, 9, 13690.	1.6	71
484	Review of thermal comfort infused with the latest big data and modeling progresses in public health. Building and Environment, 2019, 164, 106336.	3.0	32
485	Thermal adaptation of the elderly during summer in a hot humid area: Psychological, behavioral, and physiological responses. Energy and Buildings, 2019, 203, 109450.	3.1	63
486	A framework for adopting adaptive thermal comfort principles in design and operation of buildings. Energy and Buildings, 2019, 205, 109476.	3.1	31
487	Use of adaptive control and its effects on human comfort in a naturally ventilated office in Alameda, California. Energy and Buildings, 2019, 203, 109435.	3.1	9
488	Thermal comfort in a mixed-mode building: Are occupants more adaptive?. Energy and Buildings, 2019, 203, 109436.	3.1	50
489	Influence of indoor environmental quality on human health and productivity - A review. Journal of Cleaner Production, 2019, 217, 646-657.	4.6	193
490	Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha, China. Energy and Buildings, 2019, 186, 56-70.	3.1	59
491	The Squeaky wheel: Machine learning for anomaly detection in subjective thermal comfort votes. Building and Environment, 2019, 151, 219-227.	3.0	29
492	Progress in thermal comfort studies in classrooms over last 50 years and way forward. Energy and Buildings, 2019, 188-189, 149-174.	3.1	105
493	Thermoregulation and thermal sensation in response to wearing tight-fitting respirators and exercising in hot-and-humid indoor environment. Building and Environment, 2019, 160, 106158.	3.0	27
494	Field study on indoor thermal comfort of office buildings using evaporative cooling in the composite climate of India. Energy and Buildings, 2019, 199, 145-163.	3.1	52
495	Expanded comfort assessment in outdoor urban public spaces using Box-Cox transformation. Landscape and Urban Planning, 2019, 190, 103594.	3.4	14
496	Occupants' thermal comfort and perceived air quality in natural ventilated classrooms during cold days. Building and Environment, 2019, 158, 73-82.	3.0	50
497	Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka. Energy and Buildings, 2019, 198, 149-159.	3.1	70
498	A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review. Energies, 2019, 12, 1414.	1.6	77
499	Thermal comfort guidelines for production spaces within multi-storey garment factories located in Bangladesh. Building and Environment, 2019, 157, 319-345.	3.0	13
500	Indoor/Outdoor Environmental Parameters and Window-Opening Behavior: A Structural Equation Modeling Analysis. Buildings, 2019, 9, 94.	1.4	19

#	ARTICLE	IF	CITATIONS
502	BogotĂ _i . Building and Environment, 2019, 158, 237-247.	3.0	33
503	Nepal. International Journal of Environmental Research and Public Health, 2019, 16, 1578.	1.2	29
504	Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance. Renewable Energy, 2019, 142, 345-363.	4.3	52
505	A field survey on thermal comfort and energy consumption of traditional electric heating devices (Huo Xiang) for residents in regions without central heating systems in China. Energy and Buildings, 2019, 196, 134-144.	3.1	22
506	Bioclimatic Architecture in Warm Climates. , 2019, , .		12
507	Broadening human thermal comfort range based on short-term heat acclimation. Energy, 2019, 176, 418-428.	4.5	17
508	Analyzing the real-time indoor environmental quality factors considering the influence of the building occupants' behaviors and the ventilation. Building and Environment, 2019, 156, 99-109.	3.0	31
509	Implementation of a self-tuned HVAC controller to satisfy occupant thermal preferences and optimize energy use. Energy and Buildings, 2019, 194, 301-316.	3.1	50
510	The Spatial and Temporal Variability of the Indoor Environmental Quality during Three Simulated Office Studies at a Living Lab. Buildings, 2019, 9, 62.	1.4	26
511	Thermal comfort and physical activity in an office setting. , 2019, , .		5
512	Theoretical dimension of outdoor thermal comfort research. Sustainable Cities and Society, 2019, 47, 101495.	5.1	35
513	Optimal Dispatch for a Combined Cooling, Heating and Power Microgrid Considering Building Virtual Energy Storage. Journal of Electrical Engineering and Technology, 2019, 14, 581-594.	1.2	12
514	An Investigation of the Behavioral Characteristics of Higher- and Lower-Temperature Group Families in a Condominium Equipped with a HEMS System. Buildings, 2019, 9, 4.	1.4	10
515	Influence of recent and long-term exposure to air-conditioned environments on thermal perception in naturally-ventilated classrooms. Building and Environment, 2019, 156, 233-242.	3.0	23
516	Bioclimatic design strategies: A guideline to enhance human thermal comfort in Cfa climate zones. Journal of Building Engineering, 2019, 25, 100758.	1.6	25
517	Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2019, 153, 205-217.	3.0	277
518	The effect of air conditioners on occupants' thermal adaptive behaviours and wellbeing: advances and challenges. E3S Web of Conferences, 2019, 80, 03003.	0.2	2
519	A Comparative Study of Thermal Comfort in Public Spaces in the Cities of ConcepciÃ ³ n and ChillÃ _i n, Chile. , 2019, , 111-134.		Ο

#	Article	IF	CITATIONS
520	A data-driven approach to defining acceptable temperature ranges in buildings. Building and Environment, 2019, 153, 302-312.	3.0	29
521	Thermal comfort practices in non-domestic buildings within the organisational context. Facilities, 2019, 38, 114-131.	0.8	1
522	Dry Heat Among the Red Rocks: Risk Perceptions and Behavioral Responses to Extreme Heat Among Outdoor Recreationists in Southeastern Utah. Journal of Extreme Events, 2019, 06, 2050004.	1.2	0
523	Ventilation mode effect on thermal comfort in a mixed mode building. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042029.	0.3	2
524	On the temporal dimension of adaptive thermal comfort mechanisms in residential buildings. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042071.	0.3	2
525	Field Study on Nationality Differences in Thermal Comfort of University Students in Dormitories during Winter in Japan. Buildings, 2019, 9, 213.	1.4	8
526	Students Responses to Thermal Environments in University Classrooms in Zunyi, China. IOP Conference Series: Materials Science and Engineering, 2019, 592, 012168.	0.3	4
527	Towards Perceptual Computing in BACS: An Air Quality Assistant based on Fuzzy Logic and Perceptual Knowledge. , 2019, , .		1
528	The Maturing Interdisciplinary Relationship between Human Biometeorological Aspects and Local Adaptation Processes: An Encompassing Overview. Climate, 2019, 7, 134.	1.2	14
529	Development Adaptive Predicted Mean Vote (aPMV) Model for Naturally Ventilated Buildings in Zunyi, China. E3S Web of Conferences, 2019, 136, 03029.	0.2	0
530	Study on Environment Regulation of Residential in Severe Cold Area of China in Winter: Base on Outdoor Thermal Comfort of the Elderly. Sustainability, 2019, 11, 6509.	1.6	9
531	Affect-aware thermal comfort provision in intelligent buildings. , 2019, , .		4
532	Thermal comfort and thermal adaptive behaviours in office buildings: A case study in Chongqing, China. IOP Conference Series: Earth and Environmental Science, 2019, 371, 022002.	0.2	2
533	Feedback messaging, thermal comfort and usage of office-based personal comfort systems. Energy and Buildings, 2019, 205, 109514.	3.1	13
534	The effect of indoor thermal history on human thermal responses in cold environments of early winter. Journal of Thermal Biology, 2019, 86, 102448.	1.1	18
535	Development of a Data-Driven Predictive Model of Clothing Thermal Insulation Estimation by Using Advanced Computational Approaches. Sustainability, 2019, 11, 5702.	1.6	11
536	Analysis of the Impact of Selected Physical Environmental Factors on the Health of Employees: Creating a Classification Model Using a Decision Tree. International Journal of Environmental Research and Public Health, 2019, 16, 5080.	1.2	2
537	Thermal adaptations and logistic regression analysis of thermal comfort in severe cold area based on two case studies. Energy and Buildings, 2019, 205, 109560.	3.1	25

#	Article	IF	CITATIONS
538	Assessment of Indoor Environmental Quality for Retrofitting Classrooms with An Egg-Crate Shading Device in A Hot Climate. Sustainability, 2019, 11, 1078.	1.6	8
539	Advancing building bioclimatic design charts for the use of evaporative cooling in the composite climate of India. Energy and Buildings, 2019, 184, 177-192.	3.1	15
540	Effects of moderate thermal environments on cognitive performance: A multidisciplinary review. Applied Energy, 2019, 236, 760-777.	5.1	108
541	A path analysis of outdoor comfort in urban public spaces. Building and Environment, 2019, 148, 459-467.	3.0	53
542	Assessing IEQ Performance in Buildings. Design Science and Innovation, 2019, , 311-340.	0.1	0
543	Moisture in clothing and its transient influence on human thermal responses through clothing microenvironment in cold environments in winter. Building and Environment, 2019, 150, 1-12.	3.0	16
544	Holistic recommendations for future outdoor thermal comfort assessment in tropical Southeast Asia: A critical appraisal. Sustainable Cities and Society, 2019, 46, 101428.	5.1	39
545	Personal Climatization Systems—A Review on Existing and Upcoming Concepts. Applied Sciences (Switzerland), 2019, 9, 35.	1.3	23
546	Inference of thermal preference profiles for personalized thermal environments with actual building occupants. Building and Environment, 2019, 148, 714-729.	3.0	57
547	A Review about Thermal Comfort in Aircraft. Journal of Thermal Science, 2019, 28, 169-183.	0.9	18
548	Physiological and psychological reactions of subâ€ŧropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70%. Indoor Air, 2019, 29, 215-230.	2.0	63
549	A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus. Building and Environment, 2019, 148, 579-599.	3.0	51
550	Effects of microclimate and human parameters on outdoor thermal sensation in the high-density tropical context of Dhaka. International Journal of Biometeorology, 2020, 64, 187-203.	1.3	19
551	The Influence of Heat Acclimation and Hypohydration on Post-Weight-Loss Exercise Performance. International Journal of Sports Physiology and Performance, 2020, 15, 213-221.	1.1	5
552	Thermal Adaptation and Sustainable Housing in Cold Climates. , 2020, , 244-258.		1
553	Effect of seasonal adaptation on outdoor thermal comfort in a hot-summer and cold-winter city. Advances in Building Energy Research, 2020, 14, 202-217.	1.1	11
554	Comparative thermal comfort study in educational buildings in autumn and winter seasons. Science and Technology for the Built Environment, 2020, 26, 185-194.	0.8	11
555	Building in Hot and Humid Regions. , 2020, , .		3

#	Article	IF	CITATIONS
556	Effect of heat loads and furniture on the thermal comfort of an isolated family house under a naturally ventilated environment. International Journal of Ventilation, 2020, 19, 163-188.	0.2	2
557	Evaluation of Microclimatic Comfort Around Campus Buildings at the Pedestrian Level by Means of Field Measurements and Survey of Satisfaction. , 2020, , 75-106.		0
558	Framing holistic indoor environment: Definitions of comfort, health and well-being. Indoor and Built Environment, 2020, 29, 1118-1136.	1.5	37
559	Outdoor thermal comfort for pedestrians in movement: thermal walks in complex urban morphology. International Journal of Biometeorology, 2020, 64, 277-291.	1.3	52
560	Study on subjective sensation and physiological reaction with high physical activity influenced by air temperature of stadium. Indoor and Built Environment, 2020, 29, 1336-1345.	1.5	1
561	Inter-personal factors affecting building occupants' thermal tolerance at cold outdoor condition during an autumn–winter period. Indoor and Built Environment, 2020, 29, 987-1005.	1.5	6
562	The influence of thermal comfort conditions on user's exposure time in open spaces. International Journal of Biometeorology, 2020, 64, 243-252.	1.3	4
563	The Dynamics and Mechanism of Human Thermal Adaptation in Building Environment. Springer Theses, 2020, , .	0.0	4
564	Nudging the adaptive thermal comfort model. Energy and Buildings, 2020, 206, 109559.	3.1	124
565	Influence of long-term thermal history on thermal comfort and preference. Energy and Buildings, 2020, 210, 109685.	3.1	54
566	Thermal comfort of people in a super high-rise building with central air-conditioning system in the hot-humid area of China. Energy and Buildings, 2020, 209, 109727.	3.1	21
567	Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning. Journal of Building Engineering, 2020, 29, 101120.	1.6	39
568	Thermal seasonal variation and occupants' spatial behaviour in domestic spaces. Building Research and Information, 2020, 48, 364-378.	2.0	4
569	Optimization of electricity use in office buildings under occupant uncertainty. Journal of Building Performance Simulation, 2020, 13, 13-25.	1.0	5
570	On-site measurement of indoor environment quality in a Chinese healthcare facility with a semi-closed hospital street. Building and Environment, 2020, 173, 106637.	3.0	14
571	A case study to improve the winter thermal comfort of an existing bus station. Journal of Building Engineering, 2020, 29, 101123.	1.6	11
572	Bayesian updates for indoor thermal comfort models. Journal of Building Engineering, 2020, 29, 101117.	1.6	17
573	TrojanSense, a participatory sensing framework for occupant-aware management of thermal comfort in campus buildings. Building and Environment, 2020, 169, 106588.	3.0	16

	CITATION REF	PORT	
Article		IF	CITATIONS
Profiling outpatient staff based on their self-reported comfort and preferences of indoc environmental quality and social comfort in six hospitals. Building and Environment, 20 107220.)r)20, 184,	3.0	9
Testing smarter control and feedback with users: Time, temperature and space in hous preferences and practices in a Living Laboratory. Global Environmental Change, 2020, 6	ehold heating 55, 102185.	3.6	13
Thermal comfort in mixed-mode buildings: A field study in Tianjin, China. Building and E 2020, 185, 107244.	nvironment,	3.0	10
Development of integrated occupant-behavioural stochastic model including the fan us dwellings. Energy and Buildings, 2020, 226, 110326.	se in Japanese	3.1	15
Intelligent planning unit for the artificial intelligent based built environment focusing o human-building interaction. Journal of Asian Architecture and Building Engineering, 202	n 21, 20, 729-746.	1.2	3
Investigation of outdoor thermal sensation and comfort evaluation methods in severe Science of the Total Environment, 2020, 749, 141520.	cold area.	3.9	46
Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Sustainability, 2020, 12, 7961.	/ Investigation.	1.6	14
People's adaptation to thermal conditions inside buildings for religious practice. Bu Environment, 2020, 185, 107115.	iilding and	3.0	4
A smart and less intrusive feedback request algorithm towards human-centered HVAC Building and Environment, 2020, 184, 107190.	operation.	3.0	14
Supervised machine learning of thermal comfort under different indoor temperatures u measurements. Energy and Buildings, 2020, 225, 110305.	sing EEG	3.1	45
A survey of high school students' clothing in classroom. Journal of Building Engineering 101469.	<u>;</u> , 2020, 32,	1.6	4
A field investigation on the winter thermal comfort of residents in rural houses at differ latitudes of northeast severe cold regions, China. Journal of Building Engineering, 2020	ent , 32, 101476.	1.6	22
The adaptive thermal comfort review from the 1920s, the present, and the future. Deve Built Environment, 2020, 4, 100032.	elopments in the	2.0	30
Passive space design building environment and thermal comfort: A university building	under severe		

587	cold climate, China. Indoor and Built Environment, 2020, , 1420326X2093923.	1.5	12
588	Thermal Environment Perceptions from a Longitudinal Study of Indoor Temperature Profiles in Inpatient Wards. Buildings, 2020, 10, 136.	1.4	2
589	Investigation on adaptive thermal comfort considering the thermal history of local and migrant peoples living in sub-tropical climate of Nepal. Building and Environment, 2020, 185, 107237.	3.0	21
590	Analysis of Window-Opening Patterns and Air Conditioning Usage of Urban Residences in Tropical Southeast Asia. Sustainability, 2020, 12, 10650.	1.6	8
591	Evaluating the potential of adaptive comfort approach using historic data to reduce energy consumption in buildings in southern Spain. Building and Environment, 2020, 185, 107313.	3.0	6

#

574

576

578

579

580

582

584

#	Article	IF	CITATIONS
592	A Behavioural Analysis of Outdoor Thermal Comfort: A Comparative Analysis between Formal and Informal Shading Practices in Urban Sites. Sustainability, 2020, 12, 9032.	1.6	6
593	Artificial Intelligence for Efficient Thermal Comfort Systems: Requirements, Current Applications and Future Directions. Frontiers in Built Environment, 2020, 6, .	1.2	44
594	Effects of indoor thermal exposure on human dynamic thermal adaptation process. Building and Environment, 2020, 179, 106990.	3.0	14
595	Impact of short-term thermal experience on thermal sensation: A case study of Chongqing, China. Building and Environment, 2020, 179, 106921.	3.0	9
596	Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort. Energies, 2020, 13, 2079.	1.6	14
597	Contextualising adaptive comfort behaviour within low-income housing of Mumbai, India. Building and Environment, 2020, 177, 106877.	3.0	26
598	The Energy Cost of Cold Thermal Discomfort in the Global South. Buildings, 2020, 10, 93.	1.4	7
599	Effect of long-term thermal history on physiological acclimatization and prediction of thermal sensation in typical winter conditions. Building and Environment, 2020, 179, 106936.	3.0	18
600	Effect of thermal comfort on occupant productivity in office buildings: Response surface analysis. Building and Environment, 2020, 180, 107021.	3.0	96
601	A comprehensive review of thermal comfort studies in urban open spaces. Science of the Total Environment, 2020, 742, 140092.	3.9	128
602	Rethinking indoor thermal comfort in the era of rebound and preâ€bound effect for the developing world: A systematic review. Indoor Air, 2020, 30, 377-395.	2.0	13
603	Quantification of thermal environments and comfort expectations of residents in hostel dormitories during hot and humid days in Indian composite climate. Advances in Building Energy Research, 2020, , 1-35.	1.1	5
604	The colours of comfort: From thermal sensation to person-centric thermal zones for adaptive building strategies. Energy and Buildings, 2020, 216, 109936.	3.1	10
605	Urban Morphology and Outdoor Microclimate around the "Shophouse―Dwellings in Ho Chi Minh City, Vietnam. Buildings, 2020, 10, 40.	1.4	4
606	Analysis of Gaussian process to predict thermal sensor placement for controlling energy consumption on the educational building. AIP Conference Proceedings, 2020, , .	0.3	4
607	Influence of future climate changes scenarios on the feasibility of the adaptive comfort model in Japan. Sustainable Cities and Society, 2020, 61, 102303.	5.1	19
608	Improved long-term thermal comfort indices for continuous monitoring. Energy and Buildings, 2020, 224, 110270.	3.1	27
609	Review of practices for human thermal comfort in buildings: present and future perspectives. International Journal of Ambient Energy, 2022, 43, 2097-2123.	1.4	22

#	Article	IF	CITATIONS
610	Knowledge workers' stated preferences for important characteristics of activity-based workspaces. Building Research and Information, 2020, 48, 703-718.	2.0	13
611	A review of adaptive thermal comfort research since 1998. Energy and Buildings, 2020, 214, 109893.	3.1	113
612	A study of thermal comfort in naturally ventilated churches in a Mediterranean climate. Energy and Buildings, 2020, 213, 109843.	3.1	26
613	Quantifying householder tolerance of thermal discomfort before turning on air-conditioner. Energy and Buildings, 2020, 211, 109797.	3.1	13
614	Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II. Energy and Buildings, 2020, 210, 109776.	3.1	109
615	Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database. Energy and Buildings, 2020, 211, 109795.	3.1	62
616	Study on clothing insulation distribution between half-bodies and its effects on thermal comfort in cold environments. Energy and Buildings, 2020, 211, 109796.	3.1	27
617	Dynamic indoor comfort temperature settings based on the variation in clothing insulation and its energy-saving potential for an air-conditioning system. Energy and Buildings, 2020, 220, 110086.	3.1	28
618	Thermal Adaptation and Comfort Zones in Urban Semi-Outdoor Environments. Frontiers in Built Environment, 2020, 6, .	1.2	19
619	A field study of adaptive thermal comfort in primary and secondary school classrooms during winter season in Northwest China. Building and Environment, 2020, 175, 106802.	3.0	32
620	Clustering of office workers from the OFFICAIR study in The Netherlands based on their self-reported health and comfort. Building and Environment, 2020, 176, 106860.	3.0	15
621	Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates. Building and Environment, 2020, 176, 106868.	3.0	40
622	Investigation of thermal comfort and behavioral adjustments of older people in residential environments in Beijing. Energy and Buildings, 2020, 217, 110001.	3.1	31
623	Analysis of Hygrothermal Microclimatic (HTM) Parameters in Specific Food Storage Environments in Slovakia. International Journal of Environmental Research and Public Health, 2020, 17, 2092.	1.2	5
624	Outdoor thermal comfort assessment: A review on thermal comfort research in Australia. Building and Environment, 2020, 177, 106917.	3.0	60
625	Development of a multi-nodal thermal regulation and comfort model for the outdoor environment assessment. Building and Environment, 2020, 176, 106809.	3.0	26
626	Development of a health data-driven model for a thermal comfort study. Building and Environment, 2020, 177, 106874.	3.0	13
627	Assessing occupants' personal attributes in relation to human perception of environmental comfort: Measurement procedure and data analysis. Building and Environment, 2020, 177, 106901.	3.0	57

#	Article	IF	CITATIONS
628	Experimental Performance and Comfort Analyses of Photovoltaic Thermoelectric System in a Room Air-Conditioning Application. Heat Transfer Engineering, 2021, 42, 1172-1183.	1.2	3
629	Temperature–Color Interaction: Subjective Indoor Environmental Perception and Physiological Responses in Virtual Reality. Human Factors, 2021, 63, 474-502.	2.1	32
630	Physiological and subjective thermal responses to heat exposure in northern and southern Chinese people. Building Simulation, 2021, 14, 1619-1631.	3.0	14
631	Thermal performance and apparent temperature in school buildings: A case of cross-laminated timber (CLT) school development. Journal of Building Engineering, 2021, 33, 101731.	1.6	10
632	Cognitive response and how it is affected by changes in temperature. Building Research and Information, 2021, 49, 399-416.	2.0	10
633	Thermal adaptation of buildings and people for energy saving in extreme cold climate of Nepal. Energy and Buildings, 2021, 230, 110551.	3.1	38
634	Spatial interpolation-based analysis method targeting visualization of the indoor thermal environment. Building and Environment, 2021, 188, 107484.	3.0	18
635	Interactive effect between long-term and short-term thermal history on outdoor thermal comfort: Comparison between Guangzhou, Zhuhai and Melbourne. Science of the Total Environment, 2021, 760, 144141.	3.9	34
636	Correlations between thermal satisfaction and non-thermal conditions of indoor environmental quality: Bayesian inference of a field study of offices. Journal of Building Engineering, 2021, 35, 102051.	1.6	3
637	An investigation of indoor thermal environment in semi-cold region in Japan – Validity of thermal predictive indices in Nagano during the summer season. Journal of Building Engineering, 2021, 35, 101897.	1.6	11
638	Effect of pre-and post-exam stress levels on thermal sensation of students. Energy and Buildings, 2021, 231, 110595.	3.1	12
639	Thermal comfort of motion and stationary states for recreational spaces of colleges and universities in the cold regions of China. Indoor and Built Environment, 2021, 30, 334-346.	1.5	4
640	Passive Means to Improve the Indoor Thermal Comfort. PoliTO Springer Series, 2021, , 369-382.	0.3	1
641	TSVNet: Combining Time-Series and Opportunistic Sensing by Transfer Learning for Dynamic Thermal Sensation Estimation. IEEE Access, 2021, 9, 102835-102846.	2.6	4
642	Behaglichkeit. , 2021, , 41-70.		0
643	A Prediction Accuracy Weighted Voting Ensemble Method for Thermal Sensation Evaluation. Sustainable Development Goals Series, 2021, , 249-267.	0.2	0
644	Percepção térmica em um ambiente com painéis radiantes acoplados a um teto-reservatório. Ambiente ConstruÃdo, 2021, 21, 335-356.	0.2	0
645	Occupants' Habits and Natural Ventilation in a Hot Arid Climate. Impact of Meat Consumption on Health and Environmental Sustainability, 2021, , 146-168.	0.4	0

#	Article	IF	CITATIONS
646	Impact of climate change on future bioclimatic potential and residential building thermal and energy performance in India. Indoor and Built Environment, 2022, 31, 329-354.	1.5	7
647	Association between Building Characteristics and Indoor Environmental Quality through Post-Occupancy Evaluation. Energies, 2021, 14, 1659.	1.6	12
648	A review of research on dynamic thermal comfort. Building Services Engineering Research and Technology, 2021, 42, 435-448.	0.9	8
649	Prediction of human thermal sensation based on improved PMV model. IOP Conference Series: Earth and Environmental Science, 2021, 680, 012092.	0.2	4
650	Occupant behaviour in mixed-mode office buildings in a subtropical climate: Beyond typical models of adaptive actions. Building and Environment, 2021, 190, 107541.	3.0	16
651	Feasibility of adaptive thermal comfort for energy savings in cooling and heating: A study on Europe and the Mediterranean basin. Urban Climate, 2021, 36, 100807.	2.4	12
652	Resilience of vernacular and modernising dwellings in three climatic zones to climate change. Scientific Reports, 2021, 11, 9172.	1.6	13
653	Analysis of Climate-Oriented Researches in Building. Applied Sciences (Switzerland), 2021, 11, 3251.	1.3	10
654	Investigation on the thermal insulation regulating performance of a newly developed air inflatable garment. Journal of Cleaner Production, 2021, 293, 126110.	4.6	6
655	Place attachment in green buildings: Making the connections. Journal of Environmental Psychology, 2021, 74, 101558.	2.3	17
656	The distorted power of medical surgical masks for changing the human thermal psychology of indoor personnel in summer. Indoor Air, 2021, 31, 1645-1656.	2.0	17
657	Development of a systematic procedure to establish customized shading behavior identification model. Energy and Buildings, 2021, 239, 110793.	3.1	10
658	Exceedance Degreeâ€Hours: A new method for assessing longâ€ŧerm thermal conditions. Indoor Air, 2021, 31, 2296-2311.	2.0	7
659	Comparative study of the indoor apparent temperature of dwellings with different roofing in the Lower Papaloapan River Basin region. Indoor and Built Environment, 2022, 31, 537-551.	1.5	2
661	The Effect of Weather on Assault. Environment and Behavior, 0, , 001391652110146.	2.1	4
662	Estimación del confort térmico por variable fÃsica del entorno térmico: Un estudio en los espacios abiertos de la UABC-Sauzal, México. Revista De Ciencias TecnolÓgicas, 2021, 4, 58-80.	0.0	1
663	Comfort and technical installations in Danish low-energy homes: reconnecting design intention and domestic perceptions. Building Research and Information, 2022, 50, 308-324.	2.0	5
664	Indoor Thermal Environment of Various Semi-Enclosed Atrium Configurations of Institutional Building in Tropical Climate. Jurnal Alam Bina, 2021, 8, 35-48.	0.2	3

	Сітатіс	on Report	
# 665	ARTICLE A holistic approach to the evaluation of the indoor temperature based on thermal comfort and learning performance. Building and Environment, 2021, 196, 107803.	IF 3.0	Citations 26
666	Adaptive thermal comfort study of workers in a mini-industrial unit during summer and winter season in a tropical country, India. Building and Environment, 2021, 197, 107874.	3.0	10
667	An occupant-centric air-conditioning system for occupant thermal preference recognition control in personal micro-environment. Building and Environment, 2021, 196, 107749.	3.0	18
668	Developing an adapted UTCI (Universal Thermal Climate Index) for the elderly population in China's severe cold climate region. Sustainable Cities and Society, 2021, 69, 102813.	5.1	12
669	Thermal Comfort in Places of Worship within a Mediterranean Climate. Sustainability, 2021, 13, 7233.	1.6	4
670	Cooling strategies for thermal comfort in cities: a review of key methods in landscape design. Environmental Science and Pollution Research, 2021, 28, 62640-62650.	2.7	11
671	Present and Future Energy Poverty, a Holistic Approach: A Case Study in Seville, Spain. Sustainability, 2021, 13, 7866.	1.6	3
672	The impact of social norms on cross-state energy regime changes. Energy Policy, 2021, 154, 112257.	4.2	7
673	Evaluation of occupant's adaptive thermal comfort behaviour in naturally ventilated courtyard houses. Smart and Sustainable Built Environment, 2022, 11, 793-811.	2.2	11
674	Socially constructed or physiologically informed? Placing humans at the core of understanding cooling needs. Energy Research and Social Science, 2021, 77, 102088.	3.0	10
675	Effects of short-term physiological and psychological adaptation on summer thermal comfort of outdoor exercising people in China. Building and Environment, 2021, 198, 107877.	3.0	37
676	How Can We Adapt Thermal Comfort for Disabled Patients? A Case Study of French Healthcare Buildings in Summer. Energies, 2021, 14, 4530.	1.6	8
677	Influences of vernacular building spaces on human thermal comfort in China's arid climate areas. Energy and Buildings, 2021, 244, 110978.	3.1	19
678	Study on adaptive comfort behaviours in mixed-mode residential buildings in Tianjin, China. Indoor and Built Environment, 2022, 31, 777-787.	1.5	5
679	Physiological Characteristics and Operational Performance of Pilots in the High Temperature and Humidity Fighter Cockpit Environments. Sensors, 2021, 21, 5798.	2.1	7
680	Seasonal comfort temperature and occupant's adaptive behaviour in a naturally ventilated university workshop building under the composite climate of India. Journal of Building Engineering, 2021, 40, 102701.	1.6	6
681	Analysis of Human-Building Interactions in Office Environments: to What Extent Energy Saving Boundaries can be Displaced?. Frontiers in Energy Research, 2021, 9, .	1.2	4
682	Reassessing thermal comfort in modern architecture: E.1027 as a case study. Building Research and Information, 2022, 50, 230-254.	2.0	5

щ	Apticie	IF	CITATIONS
#	AKTICLE Regression forecasting of â€~neutral' adantive thermal comfort. A field study investigation in the	IF	CHATIONS
683	south-eastern Mediterranean climate of Cyprus. Building and Environment, 2021, 202, 108013.	3.0	29
684	Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability, 2021, 13, 10315.	1.6	33
685	Thermal comfort in naturally ventilated university classrooms: A seasonal field study in Xi'an, China. Energy and Buildings, 2021, 247, 111126.	3.1	31
686	Scientometric mapping of smart building research: Towards a framework of human-cyber-physical system (HCPS). Automation in Construction, 2021, 129, 103776.	4.8	33
687	Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm. Building and Environment, 2021, 202, 108026.	3.0	70
688	A novel methodological framework for the optimisation of post-war social housing developments in the South-eastern Mediterranean climate: Policy design and life-cycle cost impact analysis of retrofitting strategies. Solar Energy, 2021, 225, 517-560.	2.9	14
689	Heterogeneity in outdoor comfort assessment in urban public spaces. Science of the Total Environment, 2021, 790, 147941.	3.9	12
690	Long-term functionality of a passive phase-change materials building application after more than a decade of operation. Energy and Buildings, 2021, 249, 111213.	3.1	9
691	Investigation of indoor environment quality and factors affecting human comfort: A critical review. Building and Environment, 2021, 204, 108146.	3.0	61
692	Is mixed-mode ventilation a comfortable low-energy solution? A literature review. Building and Environment, 2021, 205, 108215.	3.0	27
693	Perceptions of human thermal comfort in an urban tourism destination – A case study of Porto (Portugal). Building and Environment, 2021, 205, 108246.	3.0	33
694	Field study on adaptive thermal comfort models for nursing homes in the Mediterranean climate. Energy and Buildings, 2021, 252, 111475.	3.1	20
695	Nudging and usage of thermal comfort-related systems. Energy and Buildings, 2021, 252, 111480.	3.1	5
696	Development of a personalized thermal comfort driven controller for HVAC systems. Energy, 2021, 237, 121568.	4.5	28
697	Thermal comfort studies for the naturally ventilated built environments in Indian subcontinent: A review. Journal of Building Engineering, 2021, 44, 103242.	1.6	13
698	Extensão do PMV para avaliação do conforto térmico de idosas em ambientes com ventilação natural. PARC: Pesquisa Em Arquitetura E Construção, 0, 12, e021002.	0.3	0
699	Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment. Energies, 2021, 14, 232.	1.6	23
700	Indoor Air Standards and Models. Green Energy and Technology, 2012, , 15-47.	0.4	2

#	Article	IF	CITATIONS
701	Occupant Behavior and Building Performance. , 2013, , 279-304.		8
702	Vegetation and Environmental Comfort. , 2019, , 155-191.		2
703	Simulation of PMV and PPD Thermal Comfort Using EnergyPlus. Lecture Notes in Computer Science, 2019, , 52-65.	1.0	6
705	Literature Review: Thermal Comfort and Air-Conditioning. Springer Theses, 2013, , 17-52.	0.0	2
706	Indoor Environmental Quality. SpringerBriefs in Applied Sciences and Technology, 2015, , 5-17.	0.2	4
707	A Brief History of Thermal Comfort: From Effective Temperature to Adaptive Thermal Comfort. , 2015, , 7-23.		21
708	The Indices of Feeling—Predicted Mean Vote PMV and Percentage People Dissatisfied PPD. , 2015, , 75-125.		9
709	Thermal Comfort Approaches and Building Performance. SpringerBriefs in Applied Sciences and Technology, 2016, , 47-60.	0.2	4
710	Thermal Comfort. Green Energy and Technology, 2011, , 31-51.	0.4	1
711	Mapping Occupants Thermal Discomfort Responses in Households Using SenseCam. Smart Innovation, Systems and Technologies, 2012, , 437-445.	0.5	2
713	The degree of adaptive thermal comfort in office workers in a hot-summer Mediterranean climate. Energy and Buildings, 2020, 223, 110147.	3.1	14
715	Avaliação de modelos de Ãndices adaptativos para uso no projeto arquitetônico bioclimático. Ambiente ConstruÃdo, 2010, 10, 31-51.	0.2	13
716	Efeito de uma onda de calor na aclimatação no curto prazo durante experimentos suportados por câmara climática. Ambiente ConstruÃdo, 2018, 18, 491-501.	0.2	1
717	Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Sakarya University Journal of Science, 2018, 22, 784-798.	Örneği. 0.3	3
718	Adaptive Thermal Comfort for Occupants of Low-Cost Dwellings in a Hot Dry Climate. Journal of Civil Engineering and Architecture, 2012, 6, .	0.0	3
719	Thermal Comfort in a Naturally-Ventilated Educational Building. Enquiry, 2007, 4, .	0.3	2
720	Strategic Decision Making for Zero Energy Buildings in Hot Climates. , 2010, , .		4
721	Thermal Acceptability Assessment in Vernacular Buildings of Cold and Cloudy Regions of North-East India. , 2011, , .		1

#	Article	IF	CITATIONS
722	El enfoque adaptativo del confort térmico en Sevilla = The adaptive approach to thermal comfort in Seville Anales De Edificación, 2016, 2, 38.	0.1	5
723	AN APPROACH TOWARDS DEVELOPMENT OF PMV BASED THERMAL COMFORT SMART SENSOR. International Journal on Smart Sensing and Intelligent Systems, 2010, 3, 621-642.	0.4	15
724	DEVELOPMENT OF SMART DETACHABLE WIRELESS SENSING SYSTEM FOR ENVIRONMENTAL MONITORING. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1239-1253.	0.4	12
725	Occupant behavior and thermal comfort field analysis in typical educational research institution: A case study. Thermal Science, 2018, 22, 785-795.	0.5	12
726	A FIELD STUDY OF THERMAL ENVIRONMENT AND THERMAL COMFORT IN KANSAI REGION, JAPAN : Neutral temperature and acceptable range in summer. Journal of Environmental Engineering (Japan), 2005, 70, 51-56.	0.1	12
727	A FIELD SURVEY ON USAGE OF AIR-CONDITIONERS AND WINDOWS IN TERRACED HOUSE AREAS IN JOHOR BAHRU CITY. Journal of Environmental Engineering (Japan), 2006, 71, 81-87.	0.1	6
728	EXAMINATION ON THERMAL ADAPTIVE EFFECT OF POSTURAL ADJUSTMENT OF A SITTING HUMAN EXPOSED IN SPOT AIRFLOW. Journal of Environmental Engineering (Japan), 2007, 72, 25-31.	0.1	2
729	CALCULATION OF NEUTRAL TEMPERATURE AND ACCEPTABLE RANGE BY THE FIELD STUDY OF HOUSES IN KANSAI AREA, JAPAN, IN WINTER. Journal of Environmental Engineering (Japan), 2007, 72, 71-77.	0.1	8
730	Analytical Studies on Levels of Thermal Comfort in Typical Low-Income Houses Design. Journal of Civil Engineering Science and Technology, 2016, 5, 28-33.	0.5	7
732	Thermal Comfort Evaluation of the Enclosed Transitional Space in Tropical Buildings: Subjective Response and Computational Fluid Dynamics Simulation. Journal of Applied Sciences, 2009, 9, 3480-3490.	0.1	9
733	CaracterÃsticas relevantes de la simulación energética de viviendas unifamiliares. Informes De La Construccion, 2014, 66, e005.	0.1	12
734	A COMPARISON OF INDOOR ENVIRONMENTAL SATISFACTION BETWEEN TWO GREEN BUILDINGS AND A CONVENTIONAL BUILDING IN CHINA. Journal of Green Building, 2012, 7, 89-104.	0.4	46
735	Ethnic Differences in Thermal Responses between Thai and Japanese Females in Tropical Urban Climate. American Journal of Climate Change, 2016, 05, 52-68.	0.5	17
736	Seasonal Differences of Psychological and Physiological Responses in Tropical Urban Climate. Health, 2017, 09, 896-920.	0.1	7
737	Skin Temperature and Body Surface Section in Non-Uniform and Asymmetric Outdoor Thermal Environment. Health, 2018, 10, 1321-1341.	0.1	5
738	Exploring the Link between Thermal Experience and Adaptation to a New Climate. Future Cities and Environment, 2018, 4, .	0.6	5
739	Evaluation of Retrofit Approaches for Two Social Housing Tower Blocks in Portsmouth, UK. Future Cities and Environment, 2018, 4, .	0.6	8
740	Confort térmico adaptativo dependiente de la temperatura y la humedad. Architecture, City and Environment, 2012, 7, 27-46.	0.1	5

ARTICLE IF CITATIONS Effect of Orientation on Indoor Thermal Neutrality in Winter Season in Hot Arid Climates Case Study: 741 0.1 6 Residential Building in Greater Cairo. International Journal of Engineering and Technology, 0, , 712-716. INDOOR THERMAL COMFORT ASSESSMENT OF NATURALLY VENTILATED ATRIUMS IN SINGAPORE. Dimensi: 742 0.1 Journal of Architecture and Built Environment, 2017, 44, . Effect of Different HVAC Control Strategies on Thermal Comfort and Adaptive Behavior in High-Rise 743 0 1.6 Apartments. Sustainability, 2021, 13, 11767. INVESTIGATION OF THE RESIDENT'S CONSCIOUSNESS, LIFE AND ENERGY CONSUMPTION OF HOUSING COMPLEX IN KYOTO CITY(Environmental Engineering). All Journal of Technology and Design, 2006, 12, 744 241-244. A New HVAC Control System for Improving Perception of Indoor Ambiences., 0, , . 745 0 Supervisory Control of Indoor Environment Systems to Minimise the Carbon Footprint of Airport 746 Terminal Buildings – A Review. Smart Innovation, Systems and Technologies, 2012, , 413-424. THERMAL ADAPTATION, CAMPUS GREENING AND OUTDOOR USE IN LAUTECH CAMPUS, OGBOMOSO, 747 0.1 2 NIGERIA. Dimensi: Journal of Architecture and Built Environment, 2012, 38, . Energy Efficient Building Design., 2013, , 179-202. 748 749 Thermal Comfort in the Home. Springer Theses, 2013, , 307-327. 0.0 0 Research on Physiological Adjustments of Textile Workers., 0,,. THE WIND AND THE CITY: EVALUATING THE LIMITS TO APPLY NATURAL VENTILATION FOR THERMAL COMFORT 751 0 IN DENSE URBAN SETTLEMENTS USING A COMPUTATIONAL FLUID DYNAMICS TOOL.., 0, , . Methodology for analysis and decision making by sampling in buildings. Direccion Y Organizacion, 0.1 2014, , 65-74. An application to HVAC control system based on occupants' thermal response in office buildings. 753 0.1 1 KIEAE Journal, 2014, 14, 111-117. Legal Issues for Green Schools. Advances in Educational Marketing, Administration, and Leadership 754 0.1 Book Series, 2015, , 267-280. REVIEW OF SMART SENSOR NETWORKS FOR ENVIRONMENT MONITORING. International Journal of 755 0.1 1 Research in Engineering and Technology, 2015, 04, 766-769. Thermal comfort in Lebanese residential unit case studies: a coastal region in Lebanon. WIT Transactions on Ecology and the Environment, 2015, , . 757 Measuring building performance. Industrial Innovation Series, 2015, , 133-149. 0.2 0 Towards a Green Building: A Preliminary Study of Natural Ventilation on Thermal Comfort and its Impact on Residential Building in the City of New Borg El Arab. The Egyptian International Journal of 758 Engineering Sciences and Technology, 2016, 19, 319-325.

#	Article	IF	CITATIONS
760	The Contribution of Work Environment and Motoric Cognition on Work Readiness of Vocational High School Student. , 2017, , .		0
761	Augmenting Smart Buildings and Autonomous Vehicles with Wearable Thermal Technology. Lecture Notes in Computer Science, 2017, , 550-561.	1.0	3
762	Environment as Determinant vs. Environment as Irrelevant? A False Dichotomy and an Alternative. , 2017, , 29-37.		0
763	Thermo-adaptive-Psychological Thermal Comfort Index of PMVtapsem Development of a PMVtap Index Based on the SEM Approach. , 2018, , 237-249.		0
764	Triggers for Users' Behaviours. SpringerBriefs in Energy, 2018, , 19-29.	0.2	0
765	The Influence of the Solar Radiation Absorptivity up on the Outdoor Thermal Environment Evaluation Index and the Thermal Sensory Perceptions. American Journal of Climate Change, 2018, 07, 204-217.	0.5	2
766	Comportamento de modelos adaptativos de conforto térmico frente ao modelo de Fanger em intensivistas adaptados ao clima tropical. Ambiente ConstruÃdo, 2018, 18, 479-490.	0.2	1
767	An Ergonomic Approach of IEQ Assessment: A Case Study. Advances in Intelligent Systems and Computing, 2019, , 504-513.	0.5	2
768	Effects of Outdoor Thermal Environment upon the Human Responses. Engineering, 2019, 11, 475-503.	0.4	3
769	THE RELATION-SHIP BETWEEN COGNITIVE TEMPERATURE AND THERMAL ADAPTATION PROCESS OF JUNIOR HIGH SCHOOL STUDENTS IN SUMMER. Journal of Environmental Engineering (Japan), 2019, 84, 171-178.	0.1	2
770	Adaptive Heating Balance Comfort Model. Springer Theses, 2020, , 131-144.	0.0	0
773	A Study of the Impact of Interior Envelope Structure on Cold and Hot Load in Yangtze River Basin of China. Environmental Science and Engineering, 2020, , 503-511.	0.1	0
774	Seasonal Rhythm of Human Thermal Adaptation for Chinese Youth in Cold Climate Zone. International Journal of Structural and Civil Engineering Research, 2020, , 300-306.	0.1	0
775	Thermal comfort in the built environment: current solutions and future expectations. , 2020, , .		8
777	Defining local extreme heat thresholds and Indoor Cooling Degree Necessity for vulnerable residential dwellings during the 2020 summer in Ankara – Part I: Air temperature. Solar Energy, 2022, 242, 435-453.	2.9	6
778	Evaluation of Green Elements and Thermal Comfort Condition of Assyafaah Mosque, Singapore. Journal of Applied Science & Process Engineering, 2021, 8, 913-934.	0.0	0
779	The effects of a novel personal comfort system on thermal comfort, physiology and perceived indoor environmental quality, and its health implications ―Stimulating human thermoregulation without compromising thermal comfort. Indoor Air, 2022, 32, .	2.0	20
781	Study of thermal comfort in the residents of different climatic regions of India—Effect of the COVIDâ€19 lockdown. Indoor Air, 2021, 31, 899-917.	2.0	9

#	Article	IF	CITATIONS
782	On the Comparison of Thermal Comfort Performances in Dutch Style Churches with Low Ventilation in Hot-Humid Tropical Region. Civil Engineering and Architecture, 2020, 8, 1419-1435.	0.2	3
783	Study on the influence of climatic thermal exposure environment changed from cold to hot on human thermal preference. Building and Environment, 2022, 207, 108430.	3.0	11
784	Thermal comfort in hospital buildings – A literature review. Journal of Building Engineering, 2022, 45, 103463.	1.6	43
785	Passive ventilative cooling in residential buildings: a review. IOP Conference Series: Materials Science and Engineering, 0, 609, 032037.	0.3	0
786	A Central Air Conditioning Control Strategy to Enhance Thermal Comfort in Library Buildings. Environmental Science and Engineering, 2020, , 385-393.	0.1	0
788	Research on the Influence of Seasonal Behaviors on the Improvement of Person's Climate Adaptability. Environmental Science and Engineering, 2020, , 1363-1371.	0.1	0
789	The Influence of Environmental Stimuli upon the Human Body in Summer. Health, 2020, 12, 781-803.	0.1	1
790	Thermal comfort in residential buildings using bimetal radiator heating vs. floor heating terminals. Journal of Building Engineering, 2022, 45, 103501.	1.6	3
791	Comfortable and partial warm environment increases salivary S-IgE concentration in healthy adults. Energy and Buildings, 2022, 256, 111686.	3.1	8
792	Assessing the climate change adaptation over four European cities. Journal of Physics: Conference Series, 2021, 2069, 012069.	0.3	0
793	Bridging the energy performance gap of social housing stock in south-eastern Mediterranean Europe: Climate change and mitigation. Energy and Buildings, 2022, 258, 111687.	3.1	33
794	Thermal comfort modelling of older people living in care homes: An evaluation of heat balance, adaptive comfort, and thermographic methods. Building and Environment, 2022, 207, 108550.	3.0	12
796	Circadian winter thermal profiles and thermal comfort in historical housing — field study. Journal of Physics: Conference Series, 2021, 2069, 012081.	0.3	1
797	Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 2021, 11, 591.	1.4	36
798	A Field Study on Thermal Comfort in Multi-Storey Residential Buildings in the Karst Area of Guilin. Sustainability, 2021, 13, 12764.	1.6	8
799	Thermal State, Potential of Natural and Fan-Induced Ventilation in Enhancing Comfort of Nine Office Buildings in Southern Ghana. Journal of Architectural Engineering, 2022, 28, .	0.8	4
800	Comparison of residential thermal comfort in two different climates in Australia. Building and Environment, 2022, 211, 108706.	3.0	11
801	Improving habitability in social housing through passive cooling: a case study in MengÃbar (Jaén,) Tj ETQq1 1 	0.784314	rgBT /Overlo

#	Article	IF	CITATIONS
802	Development of a Probabilistic Behavioural Model Creating Diverse A/C Operation Patterns of Households. SSRN Electronic Journal, 0, , .	0.4	0
804	Occupants' tolerance of thermal discomfort before turning on air conditioning in summer and the effects of age and gender. Journal of Building Engineering, 2022, 50, 104099.	1.6	12
806	The influence of different functional areas on customers' thermal comfort – A Field study in shopping complexes of North China. Energy and Built Environment, 2023, 4, 297-307.	2.9	2
807	Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach. Indoor Air, 2022, 32, .	2.0	24
808	A Bayesian Deep Neural Network Approach to Seven-Point Thermal Sensation Perception. IEEE Access, 2022, 10, 5193-5206.	2.6	6
809	Investigation of thermal comfort and adaptation among the residents of cold climate in the lower Himalayan region of eastern India. Indoor and Built Environment, 2022, 31, 1613-1635.	1.5	6
810	Environmental Temperature in Thermal Comfort Under Different Virtual Tourism Activity Intensities: Based on Microclimate Simulation Experiment. Frontiers in Neuroscience, 2021, 15, 762322.	1.4	3
811	Perceptive and physiological adaptation of migrants with different thermal experiences: A long-term climate chamber experiment. Building and Environment, 2022, 211, 108727.	3.0	9
812	Psychological adaptation to thermal environments and its effects on thermal sensation. Physiology and Behavior, 2022, 247, 113724.	1.0	14
813	Derivation of spatially distributed thermal comfort levels in Jordan as investigated from remote sensing, GIS tools, and computational methods. Theoretical and Applied Climatology, 2022, 148, 569-583.	1.3	3
814	A Novel Building Performance Based Climate Zoning for Ethiopia. Frontiers in Sustainable Cities, 2022, 4, .	1.2	1
815	A Demand Response Implementation with Building Energy Management System. Energies, 2022, 15, 1220.	1.6	7
816	Ergonomics for indoor air environments: Problems, reflections and investigations. Chinese Science Bulletin, 2022, 67, 1729-1743.	0.4	6
818	Thermal discomfort assessment in schools buildings: Study based on short-term measurements. AIP Conference Proceedings, 2022, , .	0.3	2
819	Evaluation of Thermal Comfort by PMV-based Control Applying Dynamic Clothing Insulation. KIEAE Journal, 2022, 22, 53-60.	0.1	2
820	Effect of meteorological conditions on leisure walking: a time series analysis and the application of outdoor thermal comfort indexes. International Journal of Biometeorology, 2022, 66, 1109-1123.	1.3	8
821	Green building outdoor thermal comfort in hot-desert climatic region. Cogent Engineering, 2022, 9, .	1.1	2
822	STUDY ON THERMAL COMFORT AND COLD STRESS IN HOUSES. Journal of Environmental Engineering (Japan), 2022, 87, 211-221.	0.1	0

#	Article	IF	CITATIONS
823	Analysis of human behavior in five healthcare centers for the development of new technologies and the improvement of life quality. Journal of Ambient Intelligence and Humanized Computing, 0, , 1.	3.3	0
824	Predicting annual illuminance and operative temperature in residential buildings using artificial neural networks. Building and Environment, 2022, 217, 109031.	3.0	8
825	A review of studies and modelling of solar radiation on human thermal comfort in outdoor environment. Building and Environment, 2022, 214, 108891.	3.0	30
826	Evolution and performance analysis of adaptive thermal comfort models – A comprehensive literature review. Building and Environment, 2022, 217, 109020.	3.0	61
827	Analysis of the long-term effects of solar radiation on the indoor thermal comfort in office buildings. Energy, 2022, 247, 123499.	4.5	28
828	Comparison of models for predicting winter individual thermal comfort based on machine learning algorithms. Building and Environment, 2022, 215, 108970.	3.0	27
829	Associating indoor air temperature with building spatial design and occupancy features: A statistical analysis on university classrooms. Building and Environment, 2022, 216, 109009.	3.0	9
830	Environmental satisfaction, mood and cognitive performance in semi-outdoor space in the tropics. Building and Environment, 2022, 216, 109051.	3.0	7
831	Design and optimization of a baffle-type phase-change heat storage electric heating device. Journal of Energy Storage, 2022, 51, 104389.	3.9	7
832	Study and Application of Industrial Thermal Comfort Parameters by Using Bayesian Inference Techniques. Applied Sciences (Switzerland), 2021, 11, 11979.	1.3	4
833	Climate Chamber Experiment Study on the Association of Turning off Air Conditioning with Human Thermal Sensation and Skin Temperature. Buildings, 2022, 12, 472.	1.4	2
834	Outdoor Wind Comfort and Adaptation in a Cold Region. Buildings, 2022, 12, 476.	1.4	4
835	Investigating User Experience of On-Body Heating Strategies in Indoor Environments. Ergonomics in Design, 2024, 32, 25-32.	0.4	0
842	Comfort limit for asymmetric thermal radiation from a cold wall in neutral to cool environments. Building and Environment, 2022, 218, 109112.	3.0	3
843	New paradigms in bioclimatic design toward climatic change in arid environments. Energy and Buildings, 2022, 266, 112100.	3.1	2
844	Temperature and indoor environments. Indoor Air, 2022, 32, .	2.0	9
845	Climate change and physical activity: ambient temperature and urban trail use in Texas. International Journal of Biometeorology, 2022, 66, 1575-1588.	1.3	10
846	Adaptive thermal comfort model based on field studies in five climate zones across India. Building and Environment, 2022, 219, 109187.	3.0	22

46

#	Article	IF	CITATIONS
847	Evaluation of thermal comfort in library buildings in the tropical climate of Kumasi, Ghana. Energy and Buildings, 2022, 268, 112210.	3.1	6
848	Investigating the Adaptive Thermal Comfort of the Elderly in Rural Mutual Aid Homes in Central Inner Mongolia. Sustainability, 2022, 14, 6802.	1.6	3
851	Thermal sensation and percentage of dissatisfied in thermal environments with positive and negative vertical air temperature differences. Energy and Built Environment, 2023, 4, 629-638.	2.9	6
852	Thermal response and thermal comfort evaluation of the split air conditioned residential buildings. Building and Environment, 2022, 221, 109326.	3.0	14
853	Urban climate walk: A stop-and-go assessment of the dynamic thermal sensation and perception in two waterfront districts in Rome, Italy. Building and Environment, 2022, 221, 109267.	3.0	10
854	Simple Solutions for Improving the Nighttime Operative Temperatures of Huts in the Highlands of Peru. SSRN Electronic Journal, 0, , .	0.4	0
855	Conforto térmico, eficiência energética e viabilidade econômica em HIS. PARC: Pesquisa Em Arquitetura E Construção, 0, 13, e022020.	0.3	2
856	Thermal Comfort in the Design Classroom for Architecture in the Cold Area of China. Sustainability, 2022, 14, 8307.	1.6	5
857	Non-uniform distribution of clothing insulation as a behavioral adaptation strategy and its effect on predicted thermal sensation in hot and humid environments. Energy and Buildings, 2022, 271, 112310.	3.1	3
858	Comparative analysis on indoor and outdoor thermal comfort in transitional seasons and summer based on multiple databases: Lessons learnt from the outdoors. Science of the Total Environment, 2022, 848, 157694.	3.9	17
859	Exploring locally-produced design solutions for thermal comfort: a socio-technical assessment. Open House International, 2022, 47, 549-570.	0.6	3
860	Effect of perceived control on human thermal comfort in heated environments. Journal of Central South University, 2022, 29, 2346-2356.	1.2	2
861	Una revisión sobre la isla de calor urbana y sus particularidades en zonas desérticas de México. Vivienda Y Comunidades Sustentables, 2022, , 9-25.	0.1	1
862	Infrared-Fused Vision-Based Thermoregulation Performance Estimation for Personal Thermal Comfort-Driven HVAC System Controls. Buildings, 2022, 12, 1241.	1.4	10
863	Study on indoor thermal comfort of different age groups in winter in a rural area of China's hot-summer and cold-winter region. Science and Technology for the Built Environment, 2022, 28, 1407-1419.	0.8	1
864	Integrated Assessment of Urban Overheating Impacts on Human Life. Earth's Future, 2022, 10, .	2.4	39
865	A method of predicting the dynamic thermal sensation under varying outdoor heat stress conditions in summer. Building and Environment, 2022, 223, 109454.	3.0	15
866	How green building rating systems affect indoor thermal comfort environments design. Building and Environment, 2022, 224, 109514.	3.0	11

#	Article	IF	CITATIONS
867	Thermal respite for pedestrians in overheated urban environments – Introduction of a dynamic analysis of outdoor thermal comfort. Sustainable Cities and Society, 2022, 86, 104149.	5.1	7
868	Low-cost Arduino-based temperature, relative humidity and CO2 sensors - An assessment of their suitability for indoor built environments. Journal of Building Engineering, 2022, 60, 105151.	1.6	8
869	Thermal adaptation of different set point temperature modes and energy saving potential in split air-conditioned office buildings during summer. Building and Environment, 2022, 225, 109565.	3.0	6
870	Understanding The Trade-offs Between Thermal Comfort And Energy Consumption In Air-conditioned Office Spaces In India. , 2013, , .		1
871	Sustainable Cooling in a Warming World: Technologies, Cultures, and Circularity. Annual Review of Environment and Resources, 2022, 47, 449-478.	5.6	11
872	Integration of GIS and remote sensing to derive spatially continuous thermal comfort and degree days across the populated areas in Jordan. International Journal of Biometeorology, 2022, 66, 2273-2285.	1.3	3
873	Application of the InTIME Methodology for the Transition of Office Buildings to Low Carbon—A Case Study. Sustainability, 2022, 14, 12053.	1.6	2
874	Modelling Residential Outdoor Thermal Sensation in Hot Summer Cities: A Case Study in Chongqing, China. Buildings, 2022, 12, 1564.	1.4	3
875	A Comparison Between Predicted and Actual Thermal Sensation in Non-air-conditioned Residential Buildings in a Tropical Climate: A Case Study. Lecture Notes in Civil Engineering, 2023, , 477-487.	0.3	0
876	Development of a probabilistic behavioural model creating diverse A/C operation patterns of households. Energy, 2023, 263, 125680.	4.5	3
877	Exploring the impact of perceived control on thermal comfort and indoor air quality perception in schools. Journal of Building Engineering, 2023, 63, 105419.	1.6	7
878	Thermal responses and skin temperature to moderate temperature ramps in winter: An office-lab study. Building and Environment, 2022, 225, 109682.	3.0	10
879	The effect of normative-based feedback messaging on room air conditioner usage in university dormitory rooms in winter season. Energy and Buildings, 2022, 277, 112587.	3.1	1
880	A Review Paper on Thermal Comfort and Ventilation Systems in Educational Buildings: Nano-Mechanical and Mathematical Aspects. Journal of Nanofluids, 2023, 12, 1-17.	1.4	3
881	A year-long field investigation on the spatio-temporal variations of occupant's thermal comfort in Chinese traditional courtyard dwellings. Building and Environment, 2023, 228, 109836.	3.0	12
882	Effect of latent heat storage on thermal comfort and energy consumption in lightweight earth-based housings. Building and Environment, 2023, 229, 109915.	3.0	5
883	Overcoming the incumbency and barriers to sustainable cooling. Buildings and Cities, 2022, 3, 1075-1097.	1.1	4
884	Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. Air Quality, Atmosphere and Health, 2023, 16, 477-533.	1.5	5

#	Article	IF	CITATIONS
885	Assessment of Occupant Adaptive Heating Behaviour in Office Buildings - A Pilot Field Study. IOP Conference Series: Earth and Environmental Science, 2022, 1101, 022036.	0.2	1
886	Effect of Window Openable Area and Shading on Indoor Thermal Comfort and Energy Efficiency in Residential Buildings with Various Operating Modes. Atmosphere, 2022, 13, 2020.	1.0	3
887	Passive Solar Systems for the Promotion of Thermal Comfort in African Countries: A Review. Energies, 2022, 15, 9167.	1.6	2
888	Occupant's preferred indoor air speed in hot-humid climate and its influence on thermal comfort. Building and Environment, 2023, 229, 109933.	3.0	12
889	Field Study on Indoor Thermal Environments of Monastic Houses and Thermal Comfort of Monks. International Journal of Environmental Research and Public Health, 2023, 20, 8.	1.2	2
890	Personalized local heating neutralizing individual, spatial, and temporal thermo-physiological variances in extreme cold environments. Building and Environment, 2023, 229, 109950.	3.0	4
891	Evaluating the performance of different thermal indices on quantifying outdoor thermal sensation in humid subtropical residential areas of China. Frontiers in Environmental Science, 0, 10, .	1.5	8
892	Thermal Comfort Survey II: A Field Study Investigation on the Regression Forecasting of Neutral Adaptive Thermal Comfort. , 2022, , 393-452.		0
893	History of Thermal Comfort Standards. SpringerBriefs in Architectural Design and Technology, 2022, , 9-46.	0.3	0
894	Climate Parameters, Heat Islands, and the Role of Vegetation in the City. Urban Book Series, 2023, , 149-170.	0.3	2
895	Experimental study on the influence of virtual tourism spatial situation on the tourists' temperature comfort in the context of metaverse. Frontiers in Psychology, 0, 13, .	1.1	4
896	Study of the thermal comfort and the energy required to achieve it for housing modules in the environment of a high Andean rural area in Peru. Energy and Buildings, 2023, 281, 112757.	3.1	1
897	Analysis of thermal comfort experience using peak-end rule with air conditioner in heating season. Building and Environment, 2023, 229, 109965.	3.0	4
898	Outdoor thermal comfort of urban river landscape belt in China's cold region: A case study of Xi'an. Urban Climate, 2023, 48, 101406.	2.4	3
899	Effects of Microclimate and Public Perceptions on Outdoor Thermal Sensation in the Dense Area of Jakarta. Lecture Notes in Civil Engineering, 2023, , 473-480.	0.3	1
900	Analyzing the effect of view factors on surface heat flux, surface temperature, and vegetation cover. Environmental Science and Pollution Research, 2023, 30, 43843-43859.	2.7	5
901	Occupants' Perceptions of Comfort, Control, and Adaptation in Colonial Revival Style Residences. Sustainability, 2023, 15, 1932.	1.6	1
902	Optimization of Air Conditioning Energy Consumption Based on Indoor Comfort Degree. , 2022, , .		2

#	Article	IF	Citations
903	The impact of personal preference-based thermal control on energy use and thermal comfort: Field implementation. Energy and Buildings, 2023, 284, 112848.	3.1	11
904	A comprehensive understanding of adaptive thermal comfort in dynamic environments – An interaction matrix-based path analysis modeling framework. Energy and Buildings, 2023, 284, 112834.	3.1	5
905	Multi-criteria assessment model on environmental ergonomics for decision-making in schoolyards based on remote-sensing and GIS resources. Sustainable Cities and Society, 2023, 92, 104481.	5.1	1
906	Thermal comfort investigation of rural houses in China: A review. Building and Environment, 2023, 235, 110208.	3.0	11
907	The effects of indoor temperature and exercise behavior on thermal comfort in cold region: A field study on Xi'an, China. Energy, 2023, 273, 127258.	4.5	4
908	State-of-the-Art II: Bibliometric Review of the Last 30 Years Energy Policy in Europe. , 2022, , 93-156.		Ο
909	Thermal Comfort Survey I: A Field Study Investigation to Assess on Households' Thermal Discomfort and Overheating Risk of European Buildings. , 2022, , 313-392.		0
910	A novel index for assessing the climate potential of free-running buildings based on the acceptable upper limits of thermal comfort models across China. Energy Conversion and Management, 2023, 278, 116692.	4.4	1
911	A Review on Adaptive Thermal Comfort of Office Building for Energy-Saving Building Design. Energies, 2023, 16, 1524.	1.6	19
912	A holistic assessment of indoor environmental quality perception in Australian high-rise social housing. Energy and Buildings, 2023, 284, 112859.	3.1	3
913	Trabalhar em casa é mais confortável? Avaliação do conforto térmico de ocupantes em trabalho remoto. , 0, , .		0
914	A multi-factor optimization method based on thermal comfort for building energy performance with natural ventilation. Energy and Buildings, 2023, 285, 112893.	3.1	12
915	Climate chamber investigation of the effect of indoor thermal histories on thermal adaptation in different seasons. Energy and Built Environment, 2024, 5, 455-463.	2.9	5
916	Confort térmico en edificios educativos naturalmente ventilados: un estudio en bioclima templado-seco. Revista De Arquitectura, 2023, 25, .	0.1	0
917	Cold Housing in Central Mexico: Environmental Dissatisfaction and Underheating Lowers Self-Perceived Health in Central Mexico. Buildings, 2023, 13, 814.	1.4	0
918	A quantitative evaluation model of outdoor dynamic thermal comfort and adaptation: A year-long longitudinal field study. Building and Environment, 2023, 237, 110308.	3.0	7
919	Thermal comfort and adaptive capacities: Differences among students at various school stages. Building and Environment, 2023, 237, 110340.	3.0	10
923	Exploring the Potential of Adaptive Behavior as a Tool Intended for Comfort and Saving Energy. Green Energy and Technology, 2023, , 133-143.	0.4	0

#	Article	IF	CITATIONS
926	Adaptive Thermal Comfort. , 2023, , 25-40.		0
943	Indoor Thermal Comfort from the Estimation Thermal Environment's Physical Variables in Temperate-Dry Bioclimate. , 0, , .		0
950	Well-being in the Built Environment. , 2023, , 77-107.		0
952	Adaptive control measures and thermal comfort : Input parameters for IoT devices. , 2023, , .		0
969	Relationship between architectural design and thermal comfort in modern small lecture hall. AIP Conference Proceedings, 2023, , .	0.3	0
978	Can We Learn from London's Energy and Environmental Issues to Make Indian Cities Pollution-Free and Liveable?. Journal of the Institution of Engineers (India): Series B, 2023, 104, 1343-1351.	1.3	0
989	A Review of Earth to Air Heat Exchangers in Region Warms Since 2000: Influence of Earth's Temperature. , 2023, , .		0
996	Case study: Relation between room temperature and WCPU control temperature for office building at Kemaman. AIP Conference Proceedings, 2023, , .	0.3	0
997	Pre-heating Characterization of Semiconductor Gas Sensors for Pollution Monitoring. Studies in Autonomic, Data-driven and Industrial Computing, 2024, , 401-413.	0.4	0
999	Revisiting thermal comfort and thermal sensation. Building Simulation, 2024, 17, 185-188.	3.0	2
1002	CFD Analysis of Thermal Comfort Condition Inside Malaysian Traditional House. Lecture Notes in Civil Engineering, 2024, , 498-510.	0.3	0
1007	The air velocity's comparation of different low ventilation heights in model buildings. AIP Conference Proceedings, 2024, , .	0.3	0
1015	A Brief History of Thermal Comfort: From Effective Temperature to Adaptive Thermal Comfort. , 2024, , 9-29.		0
1016	The Indoor Thermal Comfort Indexes PMV and PPD. , 2024, , 83-135.		0