Bicontinuous sucrose ester microemulsion: a new vehic acid

International Journal of Pharmaceutics 176, 39-45 DOI: 10.1016/s0378-5173(98)00292-0

Citation Report

#	Article	IF	CITATIONS
1	Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 2000, 45, 89-121.	13.7	1,569
2	Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. International Journal of Pharmaceutics, 2001, 220, 63-75.	5.2	159
3	Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. International Journal of Pharmaceutics, 2001, 221, 23-34.	5.2	73
4	Sugar-Ester Nonionic Microemulsion: Structural Characterization. Journal of Colloid and Interface Science, 2001, 241, 215-225.	9.4	102
5	Evaluation of sucrose esters as alternative surfactants in microencapsulation of proteins by the solvent evaporation method. AAPS PharmSci, 2003, 5, 123-131.	1.3	45
6	Solution properties and PGSE-NMR self-diffusion study of C18:1E10/oil/water system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 216, 55-63.	4.7	21
7	Use of Microemulsions for Topical Drug Delivery. Drugs and the Pharmaceutical Sciences, 2005, , 701-718.	0.1	1
8	In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions. International Journal of Pharmaceutics, 2005, 296, 73-79.	5.2	74
9	Microemulsions as Colloidal Vehicle Systems for Dermal Drug Delivery. Part V: Microemulsions without and with Glycolipid as Penetration Enhancer. Journal of Pharmaceutical Sciences, 2005, 94, 821-827.	3.3	21
10	Microemulsions as transdermal drug delivery vehicles. Advances in Colloid and Interface Science, 2006, 123-126, 369-385.	14.7	549
11	Novel Drug Delivery Systems: Potential in Improving Topical Delivery of Antiacne Agents. Skin Pharmacology and Physiology, 2006, 19, 2-16.	2.5	86
12	Enhancement of the Skin Permeation of Clindamycin Phosphate by Aerosol OT/1-Butanol Microemulsions. Drug Development and Industrial Pharmacy, 2007, 33, 874-880.	2.0	19
13	Microemulsions: Applications in Transdermal and Dermal Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24, 547-596.	2.2	39
14	Analysis of Tween based microemulsion in the presence of TB drug rifampicin. Colloids and Surfaces B: Biointerfaces, 2007, 60, 95-104.	5.0	81
15	Incorporation of Antitubercular Drug Isoniazid in Pharmaceutically Accepted Microemulsion: Effect on Microstructure and Physical Parameters. Pharmaceutical Research, 2008, 25, 227-236.	3.5	49
16	Stability of Concentrated Olive Oilâ€inâ€water Emulsion. Chinese Journal of Chemistry, 2008, 26, 1963-1968.	4.9	5
17	Microemulsions—Modern Colloidal Carrier for Dermal and Transdermal Drug Delivery. Journal of Pharmaceutical Sciences, 2008, 97, 603-631.	3.3	218
18	Microemulsions as Drug Delivery Systems. , 0, , 769-792.		1

#	Article	IF	Citations
19	Aerosol OT Microemulsions as Carriers for Transdermal Delivery of Hydrophobic and Hydrophilic Local Anesthetics. Drug Delivery, 2008, 15, 323-330.	5.7	27
21	Microemulsions Formation on Water/Nonionic Surfactant/Peppermint Oil Mixtures. Journal of Dispersion Science and Technology, 2009, 30, 399-405.	2.4	13
22	Nanocarrier for the Transdermal Delivery of an Antiparkinsonian Drug. AAPS PharmSciTech, 2009, 10, 1093-1103.	3.3	66
23	Microemulsions as a Surrogate Carrier for Dermal Drug Delivery. Drug Development and Industrial Pharmacy, 2009, 35, 525-547.	2.0	97
24	Microemulsions: Pharmaceutical Applications. , 0, , 259-301.		3
25	Microemulsions as Carriers for Therapeutic Molecules. Recent Patents on Drug Delivery and Formulation, 2010, 4, 35-48.	2.1	7
26	New Nanosized Technologies for Dermal and Transdermal Drug Delivery. A Review. Journal of Biomedical Nanotechnology, 2010, 6, 511-528.	1.1	61
27	Microemulsions as topical delivery vehicles for the anti-melanoma prodrug, temozolomide hexyl ester (TMZA-HE). Journal of Pharmacy and Pharmacology, 2010, 59, 787-794.	2.4	27
28	Surface tension and wettability in transdermal delivery: a study on the in-vitro permeation of haloperidol with cyclodextrin across human epidermis. Journal of Pharmacy and Pharmacology, 2010, 62, 770-778.	2.4	33
29	Nanotechnology and the transdermal routeA state of the art review and critical appraisal. Journal of Controlled Release, 2010, 141, 277-299.	9.9	480
31	Transdermal and Topical Delivery of Anti-inflammatory Agents Using Nanoemulsion/Microemulsion: An Updated Review. Current Nanoscience, 2010, 6, 184-198.	1.2	34
32	Microemulsion Microstructure Influences the Skin Delivery of an Hydrophilic Drug. Pharmaceutical Research, 2011, 28, 1683-1695.	3.5	49
34	Lipid-based colloidal systems (nanoparticles, microemulsions) for drug delivery to the skin: materials and end-product formulations. Journal of Drug Delivery Science and Technology, 2011, 21, 43-54.	3.0	38
35	Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 2012, 64, 175-193.	13.7	300
36	Ibuprofen penetration enhance by sucrose ester examined by ATR-FTIR in vivo. Pharmaceutical Development and Technology, 2012, 17, 125-128.	2.4	29
37	Sucrose esters as natural surfactants in drug delivery systems—A mini-review. International Journal of Pharmaceutics, 2012, 433, 1-9.	5.2	153
38	Apparent Solubility of Ibuprofen in Dimethyl Dodecyl Ammonium-Propane Sulfonate, DDAPS, Micelles, DDAPS/Butanol Mixtures and in Oil-in-Water Microemulsions Stabilized by DDAPS. Journal of Solution Chemistry, 2013, 42, 657-665.	1.2	5
39	New Perspectives on Antiacne Plant Drugs: Contribution to Modern Therapeutics. BioMed Research International, 2014, 2014, 1-19.	1.9	55

CITATION REPORT

#	Article	IF	Citations
40	Surfactants as Penetration Enhancers for Dermal and Transdermal Drug Delivery. , 2015, , 207-230.		7
41	Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. , 2015, , .		36
42	Sucrose Esters as Transdermal Permeation Enhancers. , 2015, , 273-290.		5
43	Drug Delivery Nanoparticles Formulation and Characterization. , 0, , .		40
45	Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharmaceutical Development and Technology, 2017, 22, 500-510.	2.4	34
46	Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 38-50.	4.3	53
47	Diversity and Functionality of Excipients for Micro/Nanosized Drug Carriers. , 2017, , 95-132.		4
48	Natural Surfactants-Based Micro/Nanoemulsion Systems for NSAIDs—Practical Formulation Approach, Physicochemical and Biopharmaceutical Characteristics/Performances. , 2017, , 179-217.		10
49	Cocrystals, Salts, and Supramolecular Gels of Nonsteroidal Anti-Inflammatory Drug Niflumic Acid. Crystal Growth and Design, 2019, 19, 219-230.	3.0	26
50	Trends in nanoformulations for atopic dermatitis treatment. Expert Opinion on Drug Delivery, 2020, 17, 1615-1630.	5.0	24
51	From water-rich to oil-rich gelled non-toxic microemulsions. Physical Chemistry Chemical Physics, 2021, 23, 16855-16867.	2.8	1
52	Gelled non-toxic bicontinuous microemulsions as promising transdermal drug carriers. Molecular Physics, 2021, 119, .	1.7	5
53	Monolaurin-Loaded Gel-Like Microemulsion for Oropharyngeal Candidiasis Treatment: Structural Characterisation and In Vitro Antifungal Property. AAPS PharmSciTech, 2022, 23, 87.	3.3	3
54	Biotechnological exploration of Carthamus tinctorius as apromising approach for cosmeceuticals: Phytochemical, biological, and micro-emulgel formulation development studies. South African Journal of Botany, 2022, 151, 735-742.	2.5	0

CITATION REPORT