Preliminary estimates of the potential for carbon mitiga noâ€țill farming

Global Change Biology 4, 679-685 DOI: 10.1046/j.1365-2486.1998.00185.x

Citation Report

#	Article	IF	CITATIONS
1	Agricultural soils as a sink to mitigate CO2emissions. Soil Use and Management, 1997, 13, 230-244.	4.9	719
2	CO2 Mitigation by Agriculture: An Overview. Climatic Change, 1998, 40, 135-162.	3.6	266
3	Regional estimates of carbon sequestration potential: linking the Rothamsted Carbon Model to GIS databases. Biology and Fertility of Soils, 1998, 27, 236-241.	4.3	107
4	A European network of long-term sites for studies on soil organic matter. Soil and Tillage Research, 1998, 47, 263-274.	5.6	70
5	The U.S. Carbon Budget: Contributions from Land-Use Change. Science, 1999, 285, 574-578.	12.6	934
6	Biosphere Responses to CO 2 Enrichment. , 2000, 10, 1590.		25
7	Transport carbon costs do not negate the benefits of agricultural carbon mitigation options. Ecology Letters, 2000, 3, 379-381.	6.4	18
8	Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology, 2000, 6, 525-539.	9.5	294
9	The net flux of carbon from agricultural soils in Canada 1970-2010. Global Change Biology, 2000, 6, 557-568.	9.5	94
10	Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry. Global Ecology and Biogeography, 2000, 9, 125-144.	5.8	153
11	Article 3.3 and 3.4 of the Kyoto Protocol: consequences for industrialised countries' commitment, the monitoring needs, and possible side effects. Environmental Science and Policy, 2000, 3, 123-134.	4.9	24
12	Including trace gas fluxes in estimates of the carbon mitigation potential of UK agricultural land. Soil Use and Management, 2000, 16, 251-259.	4.9	33
13	Soil respiration and the global carbon cycle. , 2000, 48, 7-20.		1,400
14	AGRICULTURAL CARBON MITIGATION OPTIONS IN EUROPE: IMPROVED ESTIMATES AND THE GLOBAL PERSPECTIVE. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2000, 48, 209-216.	0.2	1
15	BIOSPHERE RESPONSES TO CO2ENRICHMENT. , 2000, 10, 1590-1619.		130
16	An assessment of the total external costs of UK agriculture. Agricultural Systems, 2000, 65, 113-136.	6.1	378
17	Agricultural soil carbon accumulation in North America: considerations for climate policy. Global Environmental Change, 2000, 10, 185-195.	7.8	25
18	How important is inert organic matter for predictive soil carbon modelling using the Rothamsted carbon model?. Soil Biology and Biochemistry, 2000, 32, 433-436.	8.8	50

ιτλτιώνι Ρερώ

#	Article	IF	CITATIONS
19	CO2 emissions and C sequestration by agriculture – perspectives and limitations. Nutrient Cycling in Agroecosystems, 2001, 60, 253-266.	2.2	133
20	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 60, 237-252.	2.2	156
21	The role of sustainable agriculture and renewable–resource management in reducing greenhouse–gas emissions and increasing sinks in China and India. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 1741-1761.	3.4	53
22	Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Science Society of America Journal, 2002, 66, 1930-1946.	2.2	1,729
23	The effects of cultivation method, fertilizer input and previous sward type on organic C and N storage and gaseous losses under spring and winter barley following long-term leys. Journal of Agricultural Science, 2002, 139, 231-243.	1.3	42
24	EuroSOMNET–Âa European database of long-term experiments on soil organic matter: the WWW metadatabase. Journal of Agricultural Science, 2002, 138, 123-134.	1.3	31
25	Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 1621-1639.	3.4	128
26	Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses. Environmental Pollution, 2002, 116, 439-444.	7.5	128
27	A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 2002, 91, 217-232.	5.3	1,026
28	Soil Carbon Sequestration and the CDM: Opportunities and Challenges for Africa. Climatic Change, 2002, 54, 471-495.	3.6	65
29	Reducing food poverty by increasing agricultural sustainability in developing countries. Agriculture, Ecosystems and Environment, 2003, 95, 217-234.	5.3	311
30	Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass and Bioenergy, 2003, 24, 97-116.	5.7	167
31	Effect of no-tillage on turnover of organic matter in a Rhodic Ferralsol. Soil Use and Management, 2003, 19, 250-256.	4.9	32
32	Crop Management for Soil Carbon Sequestration. Critical Reviews in Plant Sciences, 2003, 22, 471-502.	5.7	266
33	Influences of global change on carbon sequestration by agricultural and forest soils. Environmental Reviews, 2003, 11, 161-192.	4.5	14
34	Climate Change and Biotechnology: Moving Toward a Carbohydrate-Based Economy. Bulletin of Science, Technology and Society, 2003, 23, 102-105.	2.9	1
35	Comment on "Managing Soil Carbon" (I). Science, 2004, 305, 1567b-1567b.	12.6	55
36	The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems and Environment, 2004, 103, 1-25.	5.3	724

ARTICLE IF CITATIONS # Carbon sequestration potential of organic agriculture in northern Europe – a modelling approach. 37 2.2 67 Nutrient Cycling in Agroecosystems, 2004, 68, 13-24. Carbon sequestration in the agricultural soils of Europe. Geoderma, 2004, 122, 1-23. 5.1 732 39 Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22. 5.1 2,635 PHOTOCONVERSION AND ENERGY CROPS. Series on Photoconversion of Solar Energy, 2004, , 453-519. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory 41 1.2 37 monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540. Economic constraints to the adoption of carbon farming. Canadian Journal of Soil Science, 2005, 85, 1.2 541-547. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global 43 9.5 298 Change Biology, 2005, 11, 2141-2152. Limited Increase of Agricultural Soil Carbon and Nitrogen Stocks Due to Increased Atmospheric 44 1.7 CO2Concentrations. Journal of Crop Improvement, 2005, 13, 393-399. 45 Status of humus in soil under various long-term tillage systems. Geoderma, 2005, 127, 207-215. 5.1 37 The role of plants and land management in sequestering soil carbon in temperate arable and grassland 5.1 ecosystems. Geoderma, 2005, 128, 130-154. Soil carbon stocks of Jordan and projected changes upon improved management of croplands. 47 5.145 Geoderma, 2006, 132, 361-371. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model. Italian 1.0 Journal of Agronomy, 2006, 1, 677. After the Kyoto Protocol: Can soil scientists make a useful contribution?*. Soil Use and Management, 49 4.9 33 1999, 15, 71-75. Meeting the UK's climate change commitments: options for carbon mitigation on agricultural land. Soil Use and Management, 2000, 16, 1-11. Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use and 51 4.9 16 Management, 2004, 20, 248-254. Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management, 2004, 20, 38 255-263. Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol. Soil Use 53 4.9 11 and Management, 2004, 20, 264-270. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil 54 Use and Management, 2005, 21, 38-52.

#	Article	IF	CITATIONS
55	Regional simulation of longâ€ŧerm organic carbon stock changes in cropland soils using the DNDC model: 2. Scenario analysis of management options. Soil Use and Management, 2006, 22, 352-361.	4.9	7
56	Fate of carbon in upland grassland subjected to liming using in situ 13CO2 pulse-labelling. Plant and Soil, 2006, 287, 301-311.	3.7	5
57	Does Soil Carbon Loss in Biomass Production Systems Negate the Greenhouse Benefits of Bioenergy?. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 979-1002.	2.1	65
58	CARBON SEQUESTRATION IN CALIFORNIA AGRICULTURE, 1980–2000. , 2006, 16, 1975-1985.		67
60	Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola, 2007, 64, 83-99.	1.2	150
61	Carbon and nitrogen stocks of an Arenosol under irrigated fruit orchards in semiarid Brazil. Scientia Agricola, 2007, 64, 169-175.	1.2	15
62	Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990?2070. Global Change Biology, 2007, 13, 342-356.	9.5	67
63	Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agriculture, Ecosystems and Environment, 2007, 121, 325-335.	5.3	110
64	Utilizing and conserving agrobiodiversity in agricultural landscapes. Agriculture, Ecosystems and Environment, 2007, 121, 196-210.	5.3	391
65	Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agriculture, Ecosystems and Environment, 2007, 122, 58-72.	5.3	115
66	The Role of Crop Residues in Improving Soil Fertility. , 2007, , 183-214.		39
67	Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 2007, 80, 25-41.	3.6	267
68	Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley. Soil and Tillage Research, 2007, 97, 5-18.	5.6	176
69	Sectoral approaches to improve regional carbon budgets. Climatic Change, 2008, 88, 209-249.	3.6	19
70	Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutrient Cycling in Agroecosystems, 2008, 81, 113-127.	2.2	118
71	Effects of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in Denmark. Agriculture, Ecosystems and Environment, 2008, 128, 117-126.	5.3	90
72	Nitrous oxide evolution from structurally intact soil as influenced by tillage and soil water content. Soil Biology and Biochemistry, 2008, 40, 967-977.	8.8	85
73	Comparing annual and perennial energy cropping systems with different management intensities. Agricultural Systems, 2008, 96, 224-236.	6.1	255

#	Article	IF	CITATIONS
74	Impact of Longâ€Term Noâ€Tillage and Cropping System Management on Soil Organic Carbon in an Oxisol: A Model for Sustainability. Agronomy Journal, 2008, 100, 1013-1019.	1.8	107
75	Estimating Regional Changes in Soil Carbon with High Spatial Resolution. Soil Science Society of America Journal, 2008, 72, 285-294.	2.2	40
76	Brazilian greenhouse gas emissions: the importance of agriculture and livestock. Scientia Agricola, 2009, 66, 831-843.	1.2	88
77	Biochemical cycling in the rhizosphere having an impact on global change. Plant and Soil, 2009, 321, 61-81.	3.7	196
78	A simplified modelling approach for quantifying tillage effects on soil carbon stocks. European Journal of Soil Science, 2009, 60, 924-934.	3.9	17
79	Soil carbon sequestrations by nitrogen fertilizer application, straw return and noâ€ŧillage in China's cropland. Clobal Change Biology, 2009, 15, 281-305.	9.5	352
80	Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province. Global Change Biology, 2009, 15, 861-875.	9.5	86
81	Single-event nitrous oxide losses under maize production as affected by soil type, tillage, rotation, and fertilization. Soil and Tillage Research, 2009, 102, 19-26.	5.6	40
82	Effect of tillage system and straw management on organic matter dynamics. Agronomy for Sustainable Development, 2009, 29, 525-533.	5.3	58
83	The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 2009, 7, 107-118.	3.5	224
84	Accumulation of soil carbon under zero tillage cropping and perennial vegetation on the Liverpool Plains, eastern Australia. Soil Research, 2009, 47, 273.	1.1	65
85	Effets des techniques culturales sans labour sur le stockage de carbone dans le sol en contexte climatique tempéré. Canadian Journal of Soil Science, 2009, 89, 623-634.	1.2	10
86	A Vineyard Agroecosystem: Disturbance and Precipitation Affect Soil Respiration under Mediterranean Conditions. Soil Science Society of America Journal, 2010, 74, 231-239.	2.2	48
87	An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring. Agriculture, Ecosystems and Environment, 2010, 136, 133-138.	5.3	152
88	Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems and Environment, 2010, 139, 302-315.	5.3	221
89	Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems and Environment, 2010, 139, 224-231.	5.3	554
90	Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain. Soil Use and Management, 2010, 26, 381-398.	4.9	31
91	Environmental life cycle assessment of lignocellulose-to-bioalcohol production. , 2010, , 365-390.		3

#	Article	IF	CITATIONS
92	Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis. Geoderma, 2010, 155, 211-223.	5.1	332
93	Modeling long-term soil carbon dynamics and sequestration potential in semi-arid agro-ecosystems. Agricultural and Forest Meteorology, 2011, 151, 1529-1544.	4.8	83
94	Effects of agricultural management on soil organic matter and carbon transformation - a review. Plant, Soil and Environment, 2006, 52, 531-543.	2.2	258
95	The Integration of Environmental Issues in The Agricultural Policy: The Role of Economic Evaluation. Italian Journal of Agronomy, 2011, 5, 1.	1.0	0
96	Long‶erm Influence of Tillage and Fertilization on Net Carbon Dioxide Exchange Rate on Two Soils with Different Textures. Journal of Environmental Quality, 2011, 40, 1787-1796.	2.0	24
97	Soil C storage as affected by tillage and straw management: An assessment using field measurements and model predictions. Agriculture, Ecosystems and Environment, 2011, 140, 218-225.	5.3	50
98	Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum vulgare L.). Plant and Soil, 2011, 339, 113-123.	3.7	42
99	Linking physical quality and CO2 emissions under long-term no-till and conventional-till in a subtropical soil in Brazil. Plant and Soil, 2011, 338, 5-15.	3.7	25
100	Soil carbon storage and stratification under different tillage systems in a semi-arid region. Soil and Tillage Research, 2011, 111, 224-230.	5.6	72
101	Energy crops in rotation. A review. Biomass and Bioenergy, 2011, 35, 12-25.	5.7	148
101 102		5.7	148 22
	Energy crops in rotation. A review. Biomass and Bioenergy, 2011, 35, 12-25. Cell-Free Biosystems for Biomanufacturing. Advances in Biochemical Engineering/Biotechnology, 2012,		
102	Energy crops in rotation. A review. Biomass and Bioenergy, 2011, 35, 12-25. Cell-Free Biosystems for Biomanufacturing. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 89-119. CO ₂ fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agriculturae	1.1	22
102 103	 Energy crops in rotation. A review. Biomass and Bioenergy, 2011, 35, 12-25. Cell-Free Biosystems for Biomanufacturing. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 89-119. CO₂fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 311-328. Bioindication potential of using molecular characterisation of the nematode community: Response to 	1.1 0.6	22 7
102 103 104	 Energy crops in rotation. A review. Biomass and Bioenergy, 2011, 35, 12-25. Cell-Free Biosystems for Biomanufacturing. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 89-119. CO₂fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 311-328. Bioindication potential of using molecular characterisation of the nematode community: Response to soil tillage. European Journal of Soil Biology, 2012, 49, 92-97. Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soilâ€specific predictions from integrated empirical models. Global Change 	1.1 0.6 3.2	22 7 30
102 103 104 105	 Energy crops in rotation. A review. Biomass and Bioenergy, 2011, 35, 12-25. Cell-Free Biosystems for Biomanufacturing. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 89-119. CO₂fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 311-328. Bioindication potential of using molecular characterisation of the nematode community: Response to soil tillage. European Journal of Soil Biology, 2012, 49, 92-97. Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soilä€specific predictions from integrated empirical models. Clobal Change Biology, 2012, 18, 1880-1894. Effect of Improved Management Practices on Soil Organic Carbon Sequestration in Wheat-maize 	1.1 0.6 3.2 9.5	22 7 30 44
102 103 104 105 106	 Energy crops in rotation. A review. Biomass and Bioenergy, 2011, 35, 12-25. Cell-Free Biosystems for Biomanufacturing. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 89-119. CO₂fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 311-328. Bioindication potential of using molecular characterisation of the nematode community: Response to soil tillage. European Journal of Soil Biology, 2012, 49, 92-97. Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soilâ&specific predictions from integrated empirical models. Global Change Biology, 2012, 18, 1880-1894. Effect of Improved Management Practices on Soil Organic Carbon Sequestration in Wheat-maize Double Cropping System in North China. Journal of Agricultural Science, 2012, 4, . 	1.1 0.6 3.2 9.5 0.2	22 7 30 44 1

CITATION	Report	
	IF	CITATIONS

#	ARTICLE	IF	CITATION
110	Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry, 2012, 47, 78-92.	8.8	173
111	No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil and Tillage Research, 2012, 118, 66-87.	5.6	553
112	Selecting land-based mitigation practices to reduce GHG emissions from the rural land use sector: A case study of North East Scotland. Journal of Environmental Management, 2013, 120, 93-104.	7.8	18
113	Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Global Change Biology, 2013, 19, 571-588.	9.5	78
114	Conservation Practices for Climate Change Adaptation. Advances in Agronomy, 2013, 121, 47-115.	5.2	54
115	Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use and Management, 2013, 29, 199-209.	4.9	124
116	Environmental Perspectives in Research Ethics. , 2013, , 209-226.		0
117	Metaâ€modeling soil organic carbon sequestration potential and its application at regional scale. Ecological Applications, 2013, 23, 408-420.	3.8	45
118	Long-term impacts of different tillage intensities on the C and N dynamics of a Haplic Luvisol. Archives of Agronomy and Soil Science, 2013, 59, 1517-1528.	2.6	5
119	Greenhouse Gas Emissions from Agricultural Soils: Sources and Mitigation Potential. Journal of Crop Improvement, 2013, 27, 752-772.	1.7	22
121	Tillage, Mulch and N Fertilizer Affect Emissions of CO2 under the Rain Fed Condition. PLoS ONE, 2013, 8, e72140.	2.5	26
122	Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives. Scientific World Journal, The, 2013, 2013, 1-13.	2.1	55
123	Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops. Frontiers in Energy Research, 2014, 2, .	2.3	18
124	Conservation Agriculture in Europe. International Soil and Water Conservation Research, 2014, 2, 91-96.	6.5	89
125	Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global Change Biology, 2014, 20, 3557-3567.	9.5	181
126	The response of soil organic carbon and nitrogen 10years after returning cultivated alpine steppe to grassland by abandonment or reseeding. Catena, 2014, 119, 28-35.	5.0	44
127	Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews, 2014, 30, 724-733.	16.4	126
128	Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agriculture, Ecosystems and Environment, 2014, 188, 134-146.	5.3	137

#	Article	IF	CITATIONS
129	Soil, Water, and Nutrient Management Options for Climate Change Adaptation in Southern Africa. Agronomy Journal, 2014, 106, 100-110.	1.8	8
130	Agricultural Nitrogen and Climate Change Mitigation. , 0, , .		0
131	Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes. Global Change Biology, 2015, 21, 3181-3192.	9.5	63
132	The Potential of Controlled Traffic Farming to Mitigate Greenhouse Gas Emissions and Enhance Carbon Sequestration in Arable Land: A Critical Review. Transactions of the ASABE, 2015, , 707-731.	1.1	20
133	Challenging Balance between Productivity and Environmental Quality: Tillage Impacts. , 0, , 13-37.		4
134	Soil organic carbon as affected by direct drilling and mulching in sugar beet – wheat rotations. Archives of Agronomy and Soil Science, 2015, 61, 1079-1087.	2.6	9
135	Effect of different fertilization modes on soil organic carbon sequestration in paddy fields in South China: A meta-analysis. Ecological Indicators, 2015, 53, 144-153.	6.3	55
136	Nitrogen and Climate Change. , 2015, , .		8
137	Carbon Capture and Sequestration: Biological Technologies. , 2015, , 65-111.		6
138	Carbon and macronutrient losses during accelerated erosion under different tillage and residue management. European Journal of Soil Science, 2015, 66, 218-225.	3.9	52
139	Energy analyses and greenhouse gas emissions assessment for saffron production cycle. Environmental Science and Pollution Research, 2015, 22, 16184-16201.	5.3	35
140	Conservation Agriculture and Climate Change. , 2015, , 579-620.		20
141	Impact of cropping system and soil tillage on environmental performance of cereal silage productions. Journal of Cleaner Production, 2015, 86, 49-59.	9.3	46
142	Nitrous oxide and methane emissions from a Chinese wheat–rice cropping system under different tillage practices during the wheat-growing season. Soil and Tillage Research, 2015, 146, 261-269.	5.6	31
143	Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia. Frontiers in Plant Science, 2016, 7, 661.	3.6	33
144	Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 2016, 22, 1315-1324.	9.5	577
145	Effects of nitrogen fertilizer and manure application on storage of carbon and nitrogen under continuous maize cropping in Arenosols and Luvisols of Zimbabwe. Journal of Agricultural Science, 2016, 154, 242-257.	1.3	5
146	Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. European Journal of Agronomy, 2016, 77, 156-165.	4.1	72

		CITATION R	EPORT	
#	Article		IF	CITATIONS
147	Removing Bottlenecks in Fertilizing Salt-Affected Soils for Agricultural Production. , 20	16, , 145-160.		3
148	Disentangling the effects of conservation agriculture practices on the vertical distribut organic carbon. Evidence of poor carbon sequestration in North-Eastern Italy. Agricult Ecosystems and Environment, 2016, 230, 68-78.		5.3	64
149	Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, so carbon and nutrient distribution in the soil profile. Soil and Tillage Research, 2016, 163	oil organic 3, 141-151.	5.6	83
150	Potential and economic efficiency of using reduced tillage to mitigate climate effects in agriculture. Ecological Economics, 2016, 123, 14-22.	n Danish	5.7	19
151	Estimating Soil Carbon Sequestration Potential in Fine Particles of Top Soils in Hebei Po Springer Environmental Science and Engineering, 2016, , 233-246.	rovince, China.	0.1	1
152	Effect of different crop management systems on rainfed durum wheat greenhouse gas carbon footprint under Mediterranean conditions. Journal of Cleaner Production, 2017	emissions and , 140, 608-621.	9.3	65
153	The carbon balance of temperate grasslands part II: The impact of pasture renewal via o Agriculture, Ecosystems and Environment, 2017, 239, 132-142.	direct drilling.	5.3	29
154	How spatial scale shapes the generation and management of multiple ecosystem servi 2017, 8, e01741.	ces. Ecosphere,	2.2	60
155	Adopting soil organic carbon management practices in soils of varying quality: Implicat perspectives in Europe. Soil and Tillage Research, 2017, 165, 95-106.	tions and	5.6	57
156	A farm level approach to explore farm gross margin effects of soil organic carbon mana Agricultural Systems, 2017, 151, 33-46.	agement.	6.1	16
157	Conservation Agriculture Systems to Mitigate Climate Variability Effects on Soil Health	ı. , 2017, , 79-107.		12
158	Effects of irrigation and green manure on corn (Zea mays L.) biomass and grain yield. J Science and Plant Nutrition, 2018, , 0-0.	ournal of Soil	3.4	2
159	Tillage system change affects soil organic carbon storage and benefits land restoration in <scp>N</scp> orth <scp>C</scp> hina. Land Degradation and Development, 2018, 2	1 on loess soil 19, 2880-2887.	3.9	40
160	Stimulus of nitrogen fertilizers and soil characteristics on maize yield and nitrous oxide from Ferric Luvisol in the Guinea Savanna agro-ecological zone of Ghana. Scientific Afri e00141.	emission can, 2019, 6,	1.5	6
161	Storage of organic carbon in the soils of Mexican temperate forests. Forest Ecology an 2019, 446, 115-125.	d Management,	3.2	22
162	Soil respiration from winter wheat-based cropping systems in the US Southern Great P influenced by tillage managements. Acta Agriculturae Scandinavica - Section B Soil and 2019, 69, 377-385.	lains as I Plant Science,	0.6	4
163	Soil organic carbon dynamics: Impact of land use changes and management practices: Advances in Agronomy, 2019, , 1-107.	A review.	5.2	216
164	Role of Conservation Tillage as Climate Change Mitigation. , 2019, , .			0

#	Article	IF	CITATIONS
165	Conservation agriculture and climate resilience. Journal of Environmental Economics and Management, 2019, 93, 148-169.	4.7	111
166	Marginal cost to increase soil organic carbon using no-till on U.S. cropland. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 93-112.	2.1	4
167	Ecosystem Services in Life Cycle Assessment while Encouraging Technoâ€Ecological Synergies. Journal of Industrial Ecology, 2019, 23, 347-360.	5.5	35
168	Effect of tillage method on carbon-dioxide emission andsoil properties under two soil surface levels. Acta Ecologica Sinica, 2020, 40, 210-213.	1.9	3
169	Organic Carbon Stocks of Mexican Montane Habitats: Variation Among Vegetation Types and Land-Use. Frontiers in Environmental Science, 2020, 8, .	3.3	7
170	Full greenhouse gas balance of silage maize cultivation following grassland: Are no-tillage practices favourable under highly productive soil conditions?. Soil and Tillage Research, 2020, 200, 104615.	5.6	11
171	Revisiting no-till's impact on soil organic carbon storage in Canada. Soil and Tillage Research, 2020, 198, 104529.	5.6	34
172	Quantifying soil carbon change in a longâ€ŧerm tillage and crop rotation study across Iowa landscapes. Soil Science Society of America Journal, 2020, 84, 182-202.	2.2	12
173	No till soil organic carbon sequestration could be overestimated when slope effect is not considered. Science of the Total Environment, 2021, 757, 143758.	8.0	9
174	A global dataset for crop production under conventional tillage and no tillage systems. Scientific Data, 2021, 8, 33.	5.3	28
175	Tracking Changes on Soil Structure and Organic Carbon Sequestration after 30 Years of Different Tillage and Management Practices. Agronomy, 2021, 11, 291.	3.0	12
176	To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environmental Research Letters, 2021, 16, 054022.	5.2	23
177	The impact of climate change on the productivity of conservation agriculture. Nature Climate Change, 2021, 11, 628-633.	18.8	38
178	Modeling long-term attainable soil organic carbon sequestration across the highlands of Ethiopia. Environment, Development and Sustainability, 0, , 1.	5.0	3
179	Soil carbon dioxide emissions from maize (<scp><i>Zea mays</i></scp> L.) fields as influenced by tillage management and climate*. Irrigation and Drainage, 2022, 71, 228-240.	1.7	18
180	Achievable agricultural soil carbon sequestration across Europe from countryâ€specific estimates. Global Change Biology, 2021, 27, 6363-6380.	9.5	27
181	Sustainability of Soil Management Practices - a Global Perspective. , 2007, , 241-254.		5
182	Soil-Borne Gases and Their Influence on Environment and Human Health. , 2018, , 179-221.		2

# 183	ARTICLE Soil Carbon Sequestration in Crop Production. , 2020, , 1-39.	IF	CITATIONS
184	A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 2020, 268, 110319.	7.8	87
185	Soil carbon sequestration and density distribution in a Vertosol under different farming practices. Soil Research, 2004, 42, 875.	1.1	38
186	Modelling soil organic matter dynamics - global challenges , 2001, , 43-95.		4
187	Considering Manure and Carbon Sequestration. Science, 2000, 287, 427e-427.	12.6	27
188	Comparing Estimates of Regional Carbon Sequestration Potential Using Geographical Information Systems, Dynamic Soil Organic Matter Models, and Simple Relationships. , 2002, , .		1
189	Effects of Fertilization and Clipping on Carbon, Nitrogen Storage, and Soil Microbial Activity in a Natural Grassland in Southern China. PLoS ONE, 2014, 9, e99385.	2.5	13
190	Conservation Tillage and Residue Management towards Low Greenhouse Gas Emission; Storage and Turnover of Natural Organic Matter in Soil under Sub-tropical Ecosystems: A Review. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2211-2231.	0.1	3
191	The Importance of Determining Carbon Sequestration and Greenhouse Gas Mitigation Potential in Ornamental Horticulture. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 240-244.	1.0	24
192	Effects of Fertilizer Placement on Trace Gas Emissions from Nursery Container Production. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1056-1062.	1.0	15
193	Determining Trace Gas Efflux from Container Production of Woody Nursery Crops. Journal of Environmental Horticulture, 2012, 30, 118-124.	0.5	7
194	Conservation Agriculture and its contribution to the achievement of agri-environmental and economic challenges in Europe. AIMS Agriculture and Food, 2016, 1, 387-408.	1.6	22
195	Short communication. Potential to mitigate anthropogenic CO2 emissions by tillage reduction in dryland soils of Spain. Spanish Journal of Agricultural Research, 2010, 8, 1271.	0.6	16
196	Carbon Dioxide Emission from Ferric Luvisols: The Role of Mineral Nitrogen Fertilizers and Soil Temperature in the Guinea Savanna Agro-ecological Zone of Ghana. Journal of Agriculture and Ecology Research International, 2016, 7, 1-17.	0.1	1
197	Reduced environmental emissions and carbon sequestration , 2006, , 257-267.		2
198	Incorporating CO2 net flux in multipurpose reservoir water allocation optimization. WIT Transactions on Ecology and the Environment, 2007, , .	0.0	0
199	Soil Carbon Sequestration by Cropland Management and Mitigation of Climate Change. Journal of Life Cycle Assessment Japan, 2011, 7, 11-16.	0.0	0
200	Agricultural Nitrogen and Climate Change Mitigation. , 2015, , 145-157.		Ο

#	Article	IF	CITATIONS
201	Spatial Analysis of the Soil Carbon Sequestration Potential of Crop-Residue Return in China Based on Model Simulation. Journal of Resources and Ecology, 2019, 10, 184.	0.4	4
202	How Does Tillage Accelerate Soil Production and Enhance Soil Organic Carbon Stocks in Mudstone and Shale Outcrop Regions?. Innovations in Landscape Research, 2022, , 245-255.	0.4	0
206	Modelling soil carbon stocks following reduced tillage intensity: A framework to estimate decomposition rate constant modifiers for RothC-26.3, demonstrated in north-west Europe. Soil and Tillage Research, 2022, 222, 105428.	5.6	4
207	Effect of no-tillage on turnover of organic matter in a Rhodic Ferralsol. Soil Use and Management, 2003, 19, 250-256.	4.9	3
208	The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe. Plants, 2022, 11, 1747.	3.5	9
209	Application of Smart Agricultural Practices in Wheat Crop to Increase Yield and Mitigate Emission of Greenhouse Gases for Sustainable Ecofriendly Environment. Sustainability, 2022, 14, 10453.	3.2	2
210	Temperate Regenerative Agriculture practices increase soil carbon but not crop yield—a meta-analysis. Environmental Research Letters, 2022, 17, 093001.	5.2	1
211	Seed yield and weed infestation of pea (Pisum sativum L.), and soil properties in the systems of conventional and conservation agriculture. Acta Scientiarum Polonorum, Hortorum Cultus, 2022, 21, 139-151.	0.6	0
212	Ecosystem services of wheat (Triticum aestivum) production with conventional and conservation agricultural practices in the Indo-Gangetic Plains. , 2017, 87, .		6
213	Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria. Environmental Science and Pollution Research, 2023, 30, 56016-56036.	5.3	0