Vulcanization of natural rubber modified with cashew n phosphorylated derivative—a comparative study

Polymer 39, 4033-4036 DOI: 10.1016/s0032-3861(97)00539-9

Citation Report

#	Article	IF	CITATIONS
1	Cure characteristics and physicomechanical properties of natural rubber modified with phosphorylated cashew nut shell liquid prepolymer?A comparison with aromatic oil. Journal of Applied Polymer Science, 1999, 73, 813-818.	1.3	20
2	Vulcanization characteristics of asphalt/SBS blends in the presence of sulfur. Journal of Applied Polymer Science, 2001, 82, 989-996.	1.3	65
3	EFFECT OF CNSL RESIN ON THE CRYSTALLINITY OF POLYPROPYLENE IN PP/NBR MIXTURES. Polymer-Plastics Technology and Engineering, 2001, 40, 265-273.	1.9	0
4	Processability characteristics and physico-mechanical properties of natural rubber modified with cashewnut shell liquid and cashewnut shell liquid–formaldehyde resin. European Polymer Journal, 2002, 38, 163-168.	2.6	30
5	The effect of mercapto- and thioacetate-modified EPDM on the curing parameters and mechanical properties of natural rubber/EPDM blends. European Polymer Journal, 2003, 39, 2283-2290.	2.6	32
6	Self crosslinkable blends of polychloroprene and phosphorylated cashew nut shell liquid prepolymer. Journal of Applied Polymer Science, 2004, 91, 1619-1625.	1.3	7
7	Effects of silane coupling agents on the vulcanization characteristics of natural rubber. Journal of Applied Polymer Science, 2004, 94, 1511-1518.	1.3	41
8	Improvement of mechanical properties of rubber compounds using waste rubber/virgin rubber. Polymer Engineering and Science, 2005, 45, 1239-1246.	1.5	38
9	Fatigue resistance of silica-filled natural rubber vulcanizates: comparative study of the effect of phosphorylated cardanol prepolymer and a silane coupling agent. Polymer International, 2005, 54, 629-635.	1.6	19
10	Studies on blends of natural rubber and ethylene propylene diene rubber modified with phosphorylated cardanol prepolymer: Processability, physico-mechanical properties, and morphology. Journal of Applied Polymer Science, 2006, 102, 5123-5130.	1.3	10
11	Studies on fly-ash-filled natural rubber modified with cardanol derivatives: Processability, mechanical properties, fracture morphology, and thermal decomposition characteristics. Journal of Applied Polymer Science, 2006, 102, 4801-4808.	1.3	14
12	Synthesis and characterization of cardanol-grafted natural rubber—The solution technique. Journal of Applied Polymer Science, 2007, 105, 1280-1288.	1.3	26
13	Effect of Grafted Carbon Black on Properties of Vulcanized Natural Rubber. Polymer Bulletin, 2007, 58, 951-962.	1.7	17
14	Challenges for Natural Monomers and Polymers: Novel Design Strategies and Engineering to Develop Advanced Polymers. Designed Monomers and Polymers, 2010, 13, 87-121.	0.7	78
15	Use of ground pistachio shell as alternative filler in natural rubber/styrene-butadiene rubber-based rubber compounds. Polymer Composites, 2014, 35, 245-252.	2.3	31
16	Functionalization of cardanol: towards biobased polymers and additives. Polymer Chemistry, 2014, 5, 3142-3162.	1.9	372
17	Curing characteristics, mechanical properties and morphology of butyl rubber filled with ground tire rubber (GTR). Iranian Polymer Journal (English Edition), 2014, 23, 185-194.	1.3	39
18	Naturally occurring phenolic sources: monomers and polymers. RSC Advances, 2014, 4, 21712-21752.	1.7	226

#	Article	IF	CITATIONS
19	Curing characteristics, mechanical and thermal properties of reclaimed ground tire rubber cured with various vulcanizing systems. Iranian Polymer Journal (English Edition), 2015, 24, 289-297.	1.3	58
20	Styreneâ€Butadiene Rubber/Modified Ground Tire Rubber Blends Coâ€Vulcanization: Effect of Accelerator Type. Macromolecular Symposia, 2016, 361, 64-72.	0.4	12
21	Cardanol grafted natural rubber: A green substitute to natural rubber for enhancing silica filler dispersion. Journal of Applied Polymer Science, 2016, 133, .	1.3	32
22	Processing and structure–property relationships of natural rubber/wheat bran biocomposites. Cellulose, 2016, 23, 3157-3175.	2.4	63
23	Investigating the combined impact of plasticizer and shear force on the efficiency of low temperature reclaiming of ground tire rubber (GTR). Polymer Degradation and Stability, 2016, 125, 1-11.	2.7	66
24	Novel organomodified kaolin/silica hybrid fillers in natural rubber and its blend with polybutadiene rubber. Polymer Bulletin, 2017, 74, 783-801.	1.7	19
25	Functionalization of styrene–butadiene rubber with metaâ€pentadecenyl phenol for better processing: A multifunctional additive and renewable resource. Journal of Applied Polymer Science, 2017, 134, 45150.	1.3	9
26	Valorization of Madagascar's CNSL via the synthesis of one advanced intermediate (3-Pentadecylcyclohexanone). Tetrahedron Letters, 2017, 58, 2284-2289.	0.7	11
27	Interrelationship between total volatile organic compounds emissions, structure and properties of natural rubber/polycaprolactone bio-blends cross-linked with peroxides. Polymer Testing, 2017, 60, 405-412.	2.3	19
28	Influence of reversion in compounds containing recycled natural rubber: In search of sustainable processing. Journal of Applied Polymer Science, 2017, 134, 45325.	1.3	25
29	Phosphorylated cardanol prepolymer grafted guayule natural rubber: an advantageous green natural rubber. Iranian Polymer Journal (English Edition), 2018, 27, 307-318.	1.3	8
30	In the Search for Sustainable Processing in Compounds Containing Recycled Natural Rubber: The Role of the Reversion Process. Recycling, 2018, 3, 47.	2.3	6
31	Production of Bioactive Compounds From Waste. , 2018, , 317-340.		5
32	Natural monomers: A mine for functional and sustainable materials – Occurrence, chemical modification and polymerization. Progress in Polymer Science, 2019, 92, 158-209.	11.8	124
33	Phosphorylated cardanol prepolymerâ€grafted carboxylated styrene–butadiene rubber for better processing with enhancing silica filler dispersion. Journal of Applied Polymer Science, 2019, 136, 47528.	1.3	3
34	Reactive Sintering of Ground Tire Rubber (GTR) Modified by a Trans-Polyoctenamer Rubber and Curing Additives. Polymers, 2020, 12, 3018.	2.0	20
35	A review of environmentally friendly rubber production using different vegetable oils. Polymer Engineering and Science, 2020, 60, 1097-1117.	1.5	30
36	GTR/NBR/Silica Composites Performance Properties as a Function of Curing System: Sulfur versus Peroxides. Materials, 2021, 14, 5345.	1.3	5

CITATION REPORT

		CHATION K	CHATION REPORT		
#	Article		IF	CITATIONS	
37	Phosphorus cardanol: chemical characterization and thermal stability. Scientia Plena, 2	2016, 12, .	0.1	1	
38	Effect of Lanthanum Cerium Cysteine on Cure Characteristics, Mechanical Properties, Thermooxidative Aging for Natural Rubber. Advances in Polymer Technology, 2021, 20	and 21, 1-13.	0.8	0	
39	Ground Tire Rubber Modified by Elastomers via Low-Temperature Extrusion Process: Physico-Mechanical Properties and Volatile Organic Emission Assessment. Polymers, 2	022, 14, 546.	2.0	6	
40	One facile route to prepare highâ€strength natural rubber through a green cardanol m technology. Polymers for Advanced Technologies, 2022, 33, 4186-4196.	odification	1.6	0	
41	Cross-Linking, Morphology, and Physico-Mechanical Properties of GTR/SBS Blends: Dic vs. Sulfur System. Materials, 2023, 16, 2807.	umyl Peroxide	1.3	2	
42	The future of cardanol as small giant for biobased aromatic polymers and additives. Eu Journal, 2023, 193, 112096.	ropean Polymer	2.6	8	
43	Curing characteristics and scorch behavior of nanocellulose elastomer composites. , 20	024, , 141-188.		0	