Pulse vaccination strategy in the SIR epidemic model

Bulletin of Mathematical Biology 60, 1123-1148 DOI: 10.1016/s0092-8240(98)90005-2

Citation Report

#	Article	IF	CITATIONS
1	Persistence, chaos and synchrony in ecology and epidemiology. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 7-10.	1.2	211
2	Population dynamic interference among childhood diseases. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2033-2041.	1.2	85
3	Opposite Patterns of Synchrony in Sympatric Disease Metapopulations. Science, 1999, 286, 968-971.	6.0	282
4	Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Mathematical and Computer Modelling, 2000, 31, 207-215.	2.0	215
5	THE PERIODIC PREDATOR-PREY LOTKA–VOLTERRA MODEL WITH IMPULSIVE EFFECT. Journal of Mechanics in Medicine and Biology, 2002, 02, 267-296.	0.3	34
6	Time-patterned drug administration: insights from a modeling approach. Chronobiology International, 2002, 19, 157-175.	0.9	24
7	Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences, 2002, 179, 57-72.	0.9	235
8	Pulse vaccination strategy in the sir epidemic model: Global asymptotic stable eradication in presence of vaccine failures. Mathematical and Computer Modelling, 2002, 36, 473-489.	2.0	100
9	The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Mathematical and Computer Modelling, 2002, 36, 1039-1057.	2.0	127
10	Recent progress on stage-structured population dynamics. Mathematical and Computer Modelling, 2002, 36, 1319-1360.	2.0	93
11	Modeling methods for facilitating decisions in pharmaceutical policy and population therapeutics. Pharmacoepidemiology and Drug Safety, 2002, 11, 165-168.	0.9	7
12	Impulsive control strategies in biological control of pesticide. Theoretical Population Biology, 2003, 64, 39-47.	0.5	70
13	Spatio-temporal synchronization of recurrent epidemics. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1519-1526.	1.2	55
14	Analysis of a Discrete-time Model for Periodic Diseases with Pulse Vaccination. Journal of Difference Equations and Applications, 2003, 9, 541-551.	0.7	3
15	Hybrid matrix models and their population dynamic consequences. ESAIM: Mathematical Modelling and Numerical Analysis, 2003, 37, 433-450.	0.8	0
16	Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times. Applied Mathematics and Computation, 2004, 151, 181-187.	1.4	55
17	Existence of Positive Periodic Solution of Periodic Time-Dependent Predator-Prey System with Impulsive Effects. Acta Mathematica Sinica, English Series, 2004, 20, 423-432.	0.2	6
18	Construction of a Discrete-time Model for Periodic Diseases with Integer-valued Populations. Journal of Difference Equations and Applications, 2004, 10, 897-904.	0.7	1

#	Article	IF	CITATIONS
19	The dynamical behaviors of a Lotka–Volterra predator–prey model concerning integrated pest management. Nonlinear Analysis: Real World Applications, 2005, 6, 227-243.	0.9	117
20	New modelling approach concerning integrated disease control and cost-effectivity. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63, 439-471.	0.6	47
21	Global stability and periodicity on SIS epidemic models with backward bifurcation. Computers and Mathematics With Applications, 2005, 50, 1271-1290.	1.4	25
22	Vaccination policies and nonlinear force of infection: generalization of an observation by Alexander and Moghadas (2004). Applied Mathematics and Computation, 2005, 168, 613-622.	1.4	32
23	The dynamics of a prey-dependent consumption model concerning impulsive control strategy. Applied Mathematics and Computation, 2005, 169, 305-320.	1.4	62
24	Biomathematical analysis and extension of the new class of epidemic models proposed by Satsuma et al. (2004). Applied Mathematics and Computation, 2005, 170, 125-134.	1.4	6
25	A Holling II functional response food chain model with impulsive perturbations. Chaos, Solitons and Fractals, 2005, 24, 1269-1278.	2.5	56
26	Dynamic complexity of a two-prey one-predator system with impulsive effect. Chaos, Solitons and Fractals, 2005, 26, 131-139.	2.5	40
27	The periodic n-species Gilpin–Ayala competition system with impulsive effect. Chaos, Solitons and Fractals, 2005, 26, 507-517.	2.5	14
28	Complexity of an SIR epidemic dynamics model with impulsive vaccination control. Chaos, Solitons and Fractals, 2005, 26, 495-505.	2.5	62
29	On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Applied Mathematics Letters, 2005, 18, 729-732.	1.5	152
30	Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control. Journal of Theoretical Biology, 2005, 235, 495-503.	0.8	60
31	A Single Species Model with Impulsive Diffusion. Acta Mathematicae Applicatae Sinica, 2005, 21, 43-48.	0.4	28
32	THRESHOLD AND STABILITY RESULTS FOR AN SIRS EPIDEMIC MODEL WITH A GENERAL PERIODIC VACCINATION STRATEGY. Journal of Biological Systems, 2005, 13, 131-150.	0.5	36
33	A second-order impact model for forest fire regimes. Theoretical Population Biology, 2006, 70, 174-182.	0.5	15
34	Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine, 2006, 24, 6037-6045.	1.7	251
35	Extinction and permanence of two-nutrient and one-microorganism chemostat model with pulsed input. Discrete Dynamics in Nature and Society, 2006, 2006, 1-14.	0.5	2
36	Analysis of a predator–prey model with Holling II functional response concerning impulsive control strategy. Journal of Computational and Applied Mathematics, 2006, 193, 347-362.	1.1	118

#	Article	IF	CITATIONS
37	Bifurcation and complexity of Monod type predator–prey system in a pulsed chemostat. Chaos, Solitons and Fractals, 2006, 27, 447-458.	2.5	24
38	Dynamic complexities of a food chain model with impulsive perturbations and Beddington–DeAngelis functional response. Chaos, Solitons and Fractals, 2006, 27, 768-777.	2.5	24
39	Chaos in periodically forced Holling type IV predator–prey system with impulsive perturbations. Chaos, Solitons and Fractals, 2006, 27, 980-990.	2.5	31
40	Global attractivity of positive periodic solutions for nonlinear impulsive systems. Nonlinear Analysis: Theory, Methods & Applications, 2006, 65, 1843-1857.	0.6	11
41	Dynamics of infectious diseases and pulse vaccination: Teasing apart the embedded resonance effects. Physica D: Nonlinear Phenomena, 2006, 223, 26-35.	1.3	82
42	Modelling the effect of a booster vaccination on disease epidemiology. Journal of Mathematical Biology, 2006, 52, 290-306.	0.8	57
43	A study of predator–prey models with the Beddington–DeAnglis functional response and impulsive effect. Chaos, Solitons and Fractals, 2006, 27, 237-248.	2.5	29
44	Chaotic behavior of a chemostat model with Beddington–DeAngelis functional response and periodically impulsive invasion. Chaos, Solitons and Fractals, 2006, 29, 474-482.	2.5	24
45	Global Asymptotic Stable Eradication for the Siv Epidemic Model with Impulsive Vaccination and Infection-Age. Journal of Systems Science and Complexity, 2006, 19, 393-402.	1.6	2
46	Ultimate behavior of predator-prey system with constant harvesting of the prey impulsively. Journal of Applied Mathematics and Computing, 2006, 22, 149-158.	1.2	1
47	Extinction and permanence of the predator-prey system with stocking of prey and harvesting of predator impulsively. Mathematical Methods in the Applied Sciences, 2006, 29, 415-425.	1.2	24
48	GLOBAL ASYMPTOTIC STABILITY FOR THE SIV EPIDEMIC MODEL WITH IMPULSIVE VACCINATION AND INFECTION AGE. Journal of Biological Systems, 2006, 14, 43-51.	0.5	4
49	A derivation of the discrete-time Anderson–May model for periodic diseases. Journal of Difference Equations and Applications, 2007, 13, 323-331.	0.7	0
50	THE DYNAMICS OF THE CONSTANT AND PULSE BIRTH IN AN SIR EPIDEMIC MODEL WITH CONSTANT RECRUITMENT. Journal of Biological Systems, 2007, 15, 203-218.	0.5	3
51	Impulsive Vaccination of an SEIRS Model with Time Delay and Varying Total Population Size. Bulletin of Mathematical Biology, 2007, 69, 731-745.	0.9	72
52	Geometric Design of Developable Bezier and B-spline Parametric Surfaces. , 2007, , .		1
53	Basic Knowledge and Developing Tendencies in Epidemic Dynamics. Biological and Medical Physics Series, 2007, , 5-49.	0.3	3
54	Analysis of an SIR Epidemic Model with Pulse Vaccination and Distributed Time Delay. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-10.	3.0	67

#	Article	IF	CITATIONS
55	A impulsive infective transmission SI model for pest control. Mathematical Methods in the Applied Sciences, 2007, 30, 1169-1184.	1.2	22
56	Pest management through continuous and impulsive control strategies. BioSystems, 2007, 90, 350-361.	0.9	48
57	Bifurcation and chaos in a Monod type food chain chemostat with pulsed input and washout. Chaos, Solitons and Fractals, 2007, 31, 826-839.	2.5	15
58	Bifurcation and chaos in a Monod–Haldene type food chain chemostat with pulsed input and washout. Chaos, Solitons and Fractals, 2007, 32, 181-194.	2.5	23
59	Impulsive diffusion in single species model. Chaos, Solitons and Fractals, 2007, 33, 1213-1219.	2.5	39
60	Environmental forcing, invasion and control of ecological and epidemiological systems. Journal of Theoretical Biology, 2007, 247, 492-506.	0.8	14
61	Optimal harvesting policy for inshore-offshore fishery model with impulsive diffusion*. Acta Mathematica Scientia, 2007, 27, 405-412.	0.5	13
62	Seasonal dynamics of recurrent epidemics. Nature, 2007, 446, 533-536.	13.7	233
63	Dynamics in a Beddington–DeAngelis prey–predator system with impulsive harvesting. Ecological Modelling, 2007, 206, 421-430.	1.2	45
64	Bifurcation analysis of piecewise smooth ecological models. Theoretical Population Biology, 2007, 72, 197-213.	0.5	70
65	Permanence of a general periodic single-species system with periodic impulsive perturbations. Japan Journal of Industrial and Applied Mathematics, 2007, 24, 57-65.	0.5	0
66	Bifurcation and complexity in a ratio-dependent predator-prey chemostat with pulsed input. Applied Mathematics, 2007, 22, 379-387.	0.6	2
67	Dynamic behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations. Chaos, Solitons and Fractals, 2007, 31, 356-370.	2.5	42
68	SVIR epidemic models with vaccination strategies. Journal of Theoretical Biology, 2008, 253, 1-11.	0.8	205
69	Dynamic analysis of a pest-epidemic model with impulsive control. Mathematics and Computers in Simulation, 2008, 79, 72-84.	2.4	16
70	Pulse vaccination of an SEIR epidemic model with time delay. Nonlinear Analysis: Real World Applications, 2008, 9, 599-607.	0.9	58
71	Pulse vaccination delayed SEIRS epidemic model with saturation incidence. Applied Mathematical Modelling, 2008, 32, 1403-1416.	2.2	37
72	Species extinction and permanence in a prey–predator model with two-type functional responses and impulsive biological control. Nonlinear Dynamics, 2008, 52, 71-81.	2.7	26

#	Article	IF	CITATIONS
73	Study of a Monod–Haldene type food chain chemostat with pulsed substrate. Journal of Mathematical Chemistry, 2008, 43, 210-226.	0.7	4
74	Analysis of a Monod–Haldene type food chain chemostat with seasonally variably pulsed input and washout. Journal of Mathematical Chemistry, 2008, 43, 601-619.	0.7	3
75	Analysis of Monod type food chain chemostat with k-times' periodically pulsed input. Journal of Mathematical Chemistry, 2008, 43, 1371-1388.	0.7	4
76	Analysis of a Tessiet type food chain chemostat with k-times' periodically pulsed input. Journal of Mathematical Chemistry, 2008, 43, 1470-1488.	0.7	1
77	Study of a chemostat model with Beddington–DeAngelis functional response and pulsed input and washout at different times. Journal of Mathematical Chemistry, 2008, 44, 217-227.	0.7	6
78	Mathematical Model of Pulsed Immunotherapy forÂSuperficial Bladder Cancer. Bulletin of Mathematical Biology, 2008, 70, 2055-2076.	0.9	76
79	Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate. Mathematics and Computers in Simulation, 2008, 79, 500-510.	2.4	41
80	An appropriate pest management SI model with biological and chemical control concern. Applied Mathematics and Computation, 2008, 196, 285-293.	1.4	35
81	The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Applied Mathematics and Computation, 2008, 197, 582-597.	1.4	91
82	The effects of pulse vaccination on SEIR model with two time delays. Applied Mathematics and Computation, 2008, 201, 282-292.	1.4	37
83	Dynamics of a predator-prey system with pulses. Applied Mathematics and Computation, 2008, 204, 269-280.	1.4	7
84	Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate. Chaos, Solitons and Fractals, 2008, 35, 626-638.	2.5	53
85	A delayed epidemic model with stage-structure and pulses for pest management strategy. Nonlinear Analysis: Real World Applications, 2008, 9, 1714-1726.	0.9	172
86	Competition in a chemostat with Beddington–DeAngelis growth rates and periodic pulsed nutrient. Journal of Mathematical Chemistry, 2008, 44, 691-710.	0.7	9
87	The dynamics of measles in sub-Saharan Africa. Nature, 2008, 451, 679-684.	13.7	305
88	Asymptotic behavior of discrete solutions to delayed neural networks with impulses. Neurocomputing, 2008, 71, 1032-1038.	3.5	26
89	Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Mathematical Biosciences, 2008, 215, 144-151.	0.9	66
90	Simulating bioterrorism through epidemiology approximation. , 2008, , .		0

#	Article	IF	CITATIONS
91	A Delayed Epidemic Model with Pulse Vaccination. Discrete Dynamics in Nature and Society, 2008, 2008, 1-12.	0.5	40
92	PULSE VACCINATION IN THE PERIODIC INFECTION RATE SIR EPIDEMIC MODEL. International Journal of Biomathematics, 2008, 01, 409-432.	1.5	32
93	An impulsive delayed SEIRS epidemic model with saturation incidence. Journal of Biological Dynamics, 2008, 2, 64-84.	0.8	7
94	On a Periodic Time-Dependent Model of Population Dynamics with Stage Structure and Impulsive Effects. Discrete Dynamics in Nature and Society, 2008, 2008, 1-15.	0.5	5
95	TWO DIFFERENT VACCINATION STRATEGIES IN AN SIR EPIDEMIC MODEL WITH SATURATED INFECTIOUS FORCE. International Journal of Biomathematics, 2008, 01, 147-160.	1.5	17
96	A Replenishment Model for Emergency Rescue Systems. , 2008, , .		1
97	Dynamic Behavior of a Delayed Impulsive SEIRS Model In Epidemiology. Rocky Mountain Journal of Mathematics, 2008, 38, .	0.2	2
98	Global Stability in a General Impulsive Biological Control Model with Harvest. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 15517-15522.	0.4	0
99	The Effect of Partial Crop Harvest on Biological Pest Control. Rocky Mountain Journal of Mathematics, 2008, 38, .	0.2	12
100	GLOBAL DYNAMICAL BEHAVIORS FOR AN SIR EPIDEMIC MODEL WITH TIME DELAY AND PULSE VACCINATION. Taiwanese Journal of Mathematics, 2008, 12, .	0.2	12
101	A note on semi-discrete modelling in the life sciences. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 4779-4799.	1.6	88
102	SPATIAL PATTERN IN AN EPIDEMIC SYSTEM WITH CROSS-DIFFUSION OF THE SUSCEPTIBLE. Journal of Biological Systems, 2009, 17, 141-152.	0.5	37
103	On the basic reproduction number and the topological properties of the contact network: An epidemiological study in mainly locally connected cellular automata. Ecological Modelling, 2009, 220, 1034-1042.	1.2	58
104	Nonlinear incidence rate of a pest management <i>SI</i> model with impulsive control strategy. Mathematical Methods in the Applied Sciences, 2009, 33, n/a-n/a.	1.2	0
105	Modelling approach for biological control of insect pest by releasing infected pest. Chaos, Solitons and Fractals, 2009, 39, 304-315.	2.5	24
106	Bifurcation and chaos of a pest-control food chain model with impulsive effects. Chaos, Solitons and Fractals, 2009, 39, 1903-1914.	2.5	4
107	Dynamical analysis of a delayed predator-prey model with impulsive diffusion between two patches. Mathematics and Computers in Simulation, 2009, 80, 522-532.	2.4	29
108	Extinction and permanence in delayed stage-structure predator–prey system with impulsive effects. Chaos, Solitons and Fractals, 2009, 39, 2216-2224.	2.5	17

#	Article	IF	CITATIONS
109	Bifurcation and chaos in a ratio-dependent predator–prey system with time delay. Chaos, Solitons and Fractals, 2009, 39, 1883-1895.	2.5	29
110	Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model. Chaos, Solitons and Fractals, 2009, 39, 2411-2425.	2.5	10
111	Permanence in a food chain system with impulsive perturbations. Chaos, Solitons and Fractals, 2009, 40, 392-400.	2.5	8
112	Analysis of a delayed SIR epidemic model with pulse vaccination. Chaos, Solitons and Fractals, 2009, 40, 1004-1011.	2.5	22
113	Analysis of pulse vaccination strategy in SIRVS epidemic model. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2747-2756.	1.7	8
114	The effect of impulsive vaccination on an SIR epidemic model. Applied Mathematics and Computation, 2009, 212, 305-311.	1.4	30
115	Global attractivity and permanence of a delayed SVEIR epidemic model with pulse vaccination and saturation incidence. Applied Mathematics and Computation, 2009, 213, 312-321.	1.4	17
116	Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays. Applied Mathematics and Computation, 2009, 214, 381-390.	1.4	65
117	Species extinction and permanence of an impulsively controlled two-prey one-predator system with seasonal effects. BioSystems, 2009, 98, 7-18.	0.9	24
118	Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay. Journal of Computational and Applied Mathematics, 2009, 229, 302-312.	1.1	26
119	Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission. Applied Mathematical Modelling, 2009, 33, 1923-1932.	2.2	24
120	Collaborative Research between Epidemic Diffusion Network and Emergency Rescue Network in Anti-bioterrorism System. , 2009, , .		2
121	Global stability and optimisation of a general impulsive biological control model. Mathematical Biosciences, 2009, 221, 91-100.	0.9	42
122	Asymptotical behavior of SIR epidemic models with vertical transmission and impulsive vaccination. , 2010, , .		1
123	Stability and bifurcation analysis of a delayed predator–prey model of prey dispersal in two-patch environments. Applied Mathematics and Computation, 2010, 216, 2920-2936.	1.4	35
124	Dispersal permanence of periodic predator–prey model with Ivlev-type functional response and impulsive effects. Applied Mathematical Modelling, 2010, 34, 3713-3725.	2.2	12
125	The effects of population dispersal and pulse vaccination on disease control. Mathematical and Computer Modelling, 2010, 52, 1591-1604.	2.0	22
126	A delay SIR epidemic model with pulse vaccination and incubation times. Nonlinear Analysis: Real World Applications, 2010, 11, 88-98.	0.9	81

#	Article	IF	CITATIONS
127	Impulsive adult culling of a tropical pest with a stage-structured life cycle. Nonlinear Analysis: Real World Applications, 2010, 11, 645-664.	0.9	22
128	Two patterns of recruitment in an epidemic model with difference in immunity of individuals. Nonlinear Analysis: Real World Applications, 2010, 11, 2078-2090.	0.9	6
129	Dynamics of a stage-structured predator–prey model with prey impulsively diffusing between two patches. Nonlinear Analysis: Real World Applications, 2010, 11, 2748-2756.	0.9	33
130	Perverse Consequences of Infrequently Culling a Pest. Bulletin of Mathematical Biology, 2010, 72, 1666-1695.	0.9	19
131	Influence of Intrapredatory Interferences on Impulsive Biological Control Efficiency. Bulletin of Mathematical Biology, 2010, 72, 2113-2138.	0.9	13
132	The differential susceptibility SIR epidemic model withÂtime delay and pulse vaccination. Journal of Applied Mathematics and Computing, 2010, 34, 287-298.	1.2	10
133	Dynamics of a novel nonlinear SIR model with double epidemic hypothesis and impulsive effects. Nonlinear Dynamics, 2010, 59, 503-513.	2.7	28
134	Global stability of a delayed SEIRS epidemic model withÂsaturation incidence rate. Nonlinear Dynamics, 2010, 61, 229-239.	2.7	64
135	Population dynamics of live-attenuated virus vaccines. Theoretical Population Biology, 2010, 77, 79-94.	0.5	7
136	Global analysis for a general epidemiological model with vaccination and varying population. Journal of Mathematical Analysis and Applications, 2010, 372, 208-223.	0.5	40
137	The differential susceptibility SIR epidemic model with stage structure and pulse vaccination. Nonlinear Analysis: Real World Applications, 2010, 11, 2634-2646.	0.9	15
138	The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear Analysis: Real World Applications, 2010, 11, 1374-1386.	0.9	96
139	Existence and attractivity of a periodic solution for an -species Gilpin–Ayala impulsive competition system. Nonlinear Analysis: Real World Applications, 2010, 11, 2675-2685.	0.9	11
140	Common Asymptotic Behavior of Solutions and Almost Periodicity for Discontinuous, Delayed, and Impulsive Neural Networks. IEEE Transactions on Neural Networks, 2010, 21, 1110-1125.	4.8	71
141	Speeding up disease extinction with a limited amount of vaccine. Physical Review E, 2010, 81, 051925.	0.8	30
142	Enhanced vaccine control of epidemics in adaptive networks. Physical Review E, 2010, 81, 046120.	0.8	116
143	The Worm Propagation Model with Pulse Quarantine Strategy. , 2010, , .		1
144	Pulse Vaccination Strategy in the SFIR Enidemic Dynamics Model with Latent Period 2010		0 -

#	Article	IF	CITATIONS
145	Two models of interfering predators in impulsive biological control. Journal of Biological Dynamics, 2010, 4, 102-114.	0.8	32
146	The Effect of Impulsive Diffusion on Dynamics of a Stage-Structured Predator-Prey System. Discrete Dynamics in Nature and Society, 2010, 2010, 1-17.	0.5	6
147	The SIRS infectious model with a general periodic vaccination strategy and birth pulse. , 2010, , .		0
148	Emergency materials dispatching considering reverse logistics in view of simulation optimization approach. , 2011, , .		1
149	Maintaining high rates of measles immunization in Africa. Epidemiology and Infection, 2011, 139, 1039-1049.	1.0	17
150	Dynamics of a multigroup epidemiological model with group-targeted vaccination strategies. Journal of Theoretical Biology, 2011, 291, 56-64.	0.8	23
151	A vaccination game based on public health actions and personal decisions. Ecological Modelling, 2011, 222, 1651-1655.	1.2	34
152	Control of rare events in reaction and population systems by deterministically imposed transitions. Physical Review E, 2011, 83, 031917.	0.8	8
153	A delayed SIR epidemic model with saturation incidence and a constant infectious period. Journal of Applied Mathematics and Computing, 2011, 35, 229-250.	1.2	15
154	Epidemic dynamics model with delay and impulsive vaccination control base on variable population. Mathematical Methods in the Applied Sciences, 2011, 34, 1822-1832.	1.2	2
155	Stability analysis and optimal control of an SIR epidemic model with vaccination. BioSystems, 2011, 104, 127-135.	0.9	140
156	Global analysis of a delayed epidemic dynamical system with pulse vaccination and nonlinear incidence rate. Applied Mathematical Modelling, 2011, 35, 4865-4876.	2.2	5
157	Estimation of the domain of attraction for a class of hybrid systems. Nonlinear Analysis: Hybrid Systems, 2011, 5, 573-582.	2.1	12
158	The effect of constant and pulse vaccination on an SIR epidemic model with infectious period. Applied Mathematical Modelling, 2011, 35, 3866-3878.	2.2	24
159	Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission. Mathematics and Computers in Simulation, 2011, 81, 1855-1868.	2.4	41
160	Pulse and constant control schemes for epidemic models with seasonality. Nonlinear Analysis: Real World Applications, 2011, 12, 931-946.	0.9	41
161	Exploring Internet-Based Crisis Communication Management in the Public Sector: A System Dynamics Approach. , 2011, , .		0
162	Multiobjective Dynamic Optimization of Vaccination Campaigns Using Convex Quadratic Approximation Local Search. Lecture Notes in Computer Science, 2011, , 404-417.	1.0	8

#	Article	IF	CITATIONS
163	A PULSE VACCINATION STRATEGY AT VARIABLE TIMES DEPENDING ON INCIDENCE. Journal of Biological Systems, 2011, 19, 329-344.	0.5	9
164	Stability Properties of Pulse Vaccination Strategy in the SIVS Epidemic Models with Nonlinear Incidence Rate. Applied Mechanics and Materials, 2012, 198-199, 819-823.	0.2	0
165	The Dynamics of a Predator-Prey System with State-Dependent Feedback Control. Abstract and Applied Analysis, 2012, 2012, 1-17.	0.3	6
166	Extinction and Permanence of a General Predator-Prey System with Impulsive Perturbations. Journal of Applied Mathematics, 2012, 2012, 1-19.	0.4	0
167	Dynamical Models for Infectious Diseases with Varying Population Size and Vaccinations. Journal of Applied Mathematics, 2012, 2012, 1-20.	0.4	5
168	Mobile phone based social relationship identification for target vaccination in mobile healthcare. , 2012, , .		3
169	Impulsive Biological Pest Control Strategies of the Sugarcane Borer. Mathematical Problems in Engineering, 2012, 2012, 1-14.	0.6	10
170	Global dynamics for a new high-dimensional SIR model with distributed delay. Applied Mathematics and Computation, 2012, 218, 11806-11819.	1.4	31
171	Pulse quarantine strategy of internet worm propagation: Modeling and analysis. Computers and Electrical Engineering, 2012, 38, 1047-1061.	3.0	44
172	Modeling pulse infectious events irrupting into a controlled context: A SIS disease with almost periodic parameters. Applied Mathematical Modelling, 2012, 36, 1323-1337.	2.2	14
173	Infectious disease models with time-varying parameters and general nonlinear incidence rate. Applied Mathematical Modelling, 2012, 36, 1974-1994.	2.2	54
174	Dynamic complexities of predator–prey system in a pulsed chemostat. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 2489-2500.	1.7	1
175	Threshold dynamics for periodically forced ecological systems: The control of population invasion and exclusion. Journal of Theoretical Biology, 2012, 295, 154-167.	0.8	4
176	A delay mathematical model for the spread and control of water borne diseases. Journal of Theoretical Biology, 2012, 301, 49-56.	0.8	48
177	Threshold dynamics for compartmental epidemic models with impulses. Nonlinear Analysis: Real World Applications, 2012, 13, 224-234.	0.9	39
178	Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination. Nonlinear Analysis: Real World Applications, 2012, 13, 1621-1629.	0.9	60
179	A State Dependent Pulse Control Strategy for a SIRS Epidemic System. Bulletin of Mathematical Biology, 2013, 75, 1697-1715.	0.9	22
180	Chaos in a seasonally perturbed SIR model: avian influenza in a seabird colony as a paradigm. Journal of Mathematical Biology, 2013, 67, 293-327.	0.8	13

#	Article	IF	Citations
181	On the definition and the computation of the type-reproduction number T for structured populations in heterogeneous environments. Journal of Mathematical Biology, 2013, 66, 1065-1097.	0.8	9
182	An SIR epidemic model with time-varying pulse control schemes and saturated infectious force. Applied Mathematical Modelling, 2013, 37, 8131-8140.	2.2	28
183	MODELING AND ANALYSIS OF AN SEIR MODEL WITH DIFFERENT TYPES OF NONLINEAR TREATMENT RATES. Journal of Biological Systems, 2013, 21, 1350023.	0.5	60
184	A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay. Chaos, Solitons and Fractals, 2013, 57, 41-53.	2.5	14
185	Impact of viral drift on vaccination dynamics and patterns of seasonal influenza. BMC Infectious Diseases, 2013, 13, 589.	1.3	13
186	A time-varying SIS epidemic model with incidence rate depending on the susceptible and infective populations with eventual impulsive effects. Applied Mathematics and Computation, 2013, 219, 5516-5536.	1.4	5
187	Mathematical analysis of a delayed stage-structured predator–prey model with impulsive diffusion between two predators territories. Ecological Complexity, 2013, 16, 59-67.	1.4	43
188	A delayed Lotka–Volterra model with birth pulse and impulsive effect at different moment on the prey. Applied Mathematics and Computation, 2013, 219, 10263-10270.	1.4	13
189	Pulse HIV Vaccination: Feasibility for Virus Eradication and Optimal Vaccination Schedule. Bulletin of Mathematical Biology, 2013, 75, 725-751.	0.9	26
190	An SIRS epidemic model with pulse vaccination and non-monotonic incidence rate. Nonlinear Analysis: Hybrid Systems, 2013, 8, 13-21.	2.1	19
191	Stabilization of impulsive quadratic systems over polytopic sets. Nonlinear Analysis: Hybrid Systems, 2013, 7, 16-27.	2.1	3
192	Transmission dynamics of a switched multi-city model with transport-related infections. Nonlinear Analysis: Real World Applications, 2013, 14, 264-279.	0.9	14
193	Nonlinear Pulse Vaccination in an SIR Epidemic Model with Resource Limitation. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.3	8
194	Dynamical Analysis of SIR Epidemic Models with Distributed Delay. Journal of Applied Mathematics, 2013, 2013, 1-15.	0.4	9
195	The globally attractivity of a SIV epidemic disease model with two delays and pulse vaccination. , 2013, ,		0
196	PERMANENCE IN GENERAL NON-AUTONOMOUS LOTKA–VOLTERRA PREDATOR–PREY SYSTEMS WITH DISTRIBUTED DELAYS AND IMPULSES. Journal of Biological Systems, 2013, 21, 1350012.	0.5	12
197	Evaluating Roles of Nodes in Optimal Allocation of Vaccines with Economic Considerations. PLoS ONE, 2013, 8, e70793.	1.1	1
198	Logistic Tumor Growth with Delay and Impulsive Treatment. Mathematical Population Studies, 2014, 21, 146-158.	0.8	4

#	Article	IF	CITATIONS
199	An Extended SISa Model for Sentiment Contagion. Discrete Dynamics in Nature and Society, 2014, 2014, 1-7.	0.5	6
200	Determination of optimal vaccination strategies using an orbital stability threshold from periodically driven systems. Journal of Mathematical Biology, 2014, 68, 763-784.	0.8	12
201	Pattern formation of a spatial epidemic model with standard incidence rate. Indian Journal of Physics, 2014, 88, 413-419.	0.9	2
202	Analytic and numerical exponential asymptotic stability of nonlinear impulsive differential equations. Applied Numerical Mathematics, 2014, 81, 40-49.	1.2	11
203	SIS models with switching and pulse control. Applied Mathematics and Computation, 2014, 232, 727-742.	1.4	5
204	Greater migratory propensity in hosts lowers pathogen transmission and impacts. Journal of Animal Ecology, 2014, 83, 1068-1077.	1.3	61
205	Biocontrol in an impulsive predator–prey model. Mathematical Biosciences, 2014, 256, 102-115.	0.9	14
206	Predicting the topic influence trends in social media with multiple models. Neurocomputing, 2014, 144, 463-470.	3.5	13
207	Hybrid approach for pest control with impulsive releasing of natural enemies and chemical pesticides: A plant–pest–natural enemy model. Nonlinear Analysis: Hybrid Systems, 2014, 12, 79-92.	2.1	21
208	Backward bifurcation for pulse vaccination. Nonlinear Analysis: Hybrid Systems, 2014, 14, 99-113.	2.1	2
209	Clobal dynamics of a state-dependent feedback control system. Advances in Difference Equations, 2015, 2015, .	3.5	43
210	The Dynamics of an Impulsive Predator-Prey System with Stage Structure and Holling Type III Functional Response. Abstract and Applied Analysis, 2015, 2015, 1-8.	0.3	1
211	Dynamical Analysis of SIR Epidemic Model with Nonlinear Pulse Vaccination and Lifelong Immunity. Discrete Dynamics in Nature and Society, 2015, 2015, 1-10.	0.5	12
212	The Effect of Pulse Vaccination and Treatment on SIR Epidemic Model with Media Impact. Discrete Dynamics in Nature and Society, 2015, 2015, 1-12.	0.5	6
213	Holling II predator–prey impulsive semi-dynamic model with complex Poincaré map. Nonlinear Dynamics, 2015, 81, 1575-1596.	2.7	78
214	Controlling measles using supplemental immunization activities: A mathematical model to inform optimal policy. Vaccine, 2015, 33, 1291-1296.	1.7	64
215	Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence. Mathematical Biosciences, 2015, 268, 1-8.	0.9	33
216	Stochastic dynamics of HIV models with switching parameters and pulse control. Journal of the Franklin Institute, 2015, 352, 2765-2782.	1.9	21

ARTICLE IF CITATIONS # The stabilizing role of the Sabbath in pre-monarchic Israel:a mathematical model. Journal of 217 0.7 4 Biological Physics, 2015, 41, 203-221. Impulsive state feedback control of a predatorâ€" prey system with group defense. Nonlinear Dynamics, 2.7 2015, 79, 2699-2714. A population model with birth pulses, age structure, and non-overlapping generations. Applied 219 2 1.4 Mathematics and Computation, 2015, 271, 400-417. Threshold dynamics of a time-delayed SEIRS model with pulse vaccination. Mathematical Biosciences, 0.9 2015, 269, 178-185. Stability analysis and optimal control of an epidemic model with vaccination. International Journal of 221 1.5 28 Biomathematics, 2015, 08, 1550030. Prediction-Prevention mathematic model of Ebola's spread and eradication., 2015, , . From regional pulse vaccination to global disease eradication: insights from a mathematical model of 223 0.8 22 poliomyelitis. Journal of Mathematical Biology, 2015, 71, 215-253. Application of control strategies to a seasonal model of chikungunya disease. Applied Mathematical 224 Modelling, 2015, 39, 3194-3220. Sentiment Contagion Based on the Modified SOSa-SPSa Model. Computational and Mathematical 225 0.7 7 Methods in Medicine, 2016, 2016, 1-7. Modelling the use of impulsive vaccination to control Rift Valley Fever virus transmission. Advances 3.5 in Difference Equations, 2016, 2016, . Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis. 227 1.5 43 Risk Analysis, 2016, 36, 1383-1403. An SIR Model with Nonlinear Incidence Rate and Holling Type III Treatment Rate. Springer Proceedings 0.1 in Mathematics and Statistics, 2016, , 63-81. A feedback vaccination law for an SIR epidemic model: A case study., 2016, , . 229 5 Dynamics of an SIR epidemic model with stage structure and pulse vaccination. Advances in Difference 3.5 Équations, 2016, 2016, . A Feedback Control Model of Comprehensive Therapy for Treating Immunogenic Tumours. 231 0.7 27 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650039. A prey-dependent consumption two-prey one predator eco-epidemic model concerning biological and chemical controls at different pulses. Journal of the Franklin Institute, 2016, 353, 3897-3919. PULSE HOSPITALIZATION TO CONTROL SIS DISEASES ON FARMS: ECONOMICS EFFECTS. Journal of 233 0.5 2 Biological Systems, 2016, 24, 311-331. 234 Optimization of protection of computer networks against malicious software., 2016,,.

#	Article	IF	CITATIONS
235	The cohort effect in childhood disease dynamics. Journal of the Royal Society Interface, 2016, 13, 20160156.	1.5	10
236	Information Diffusion of Topic Propagation in Social Media. IEEE Transactions on Signal and Information Processing Over Networks, 2016, , 1-1.	1.6	13
237	An Analytics Framework to Support Surge Capacity Planning for Emerging Epidemics. , 2016, , .		1
238	Spectral bounds for independent cascade model with sensitive edges. , 2016, , .		1
239	The daily computed weighted averaging basic reproduction numberR0,k,ï‰nfor MERS-CoV in South Korea. Physica A: Statistical Mechanics and Its Applications, 2016, 451, 190-197.	1.2	6
240	STABILITY ANALYSIS AND OPTIMAL VACCINATION OF A WATERBORNE DISEASE MODEL WITH MULTIPLE WATER SOURCES. Natural Resource Modelling, 2016, 29, 426-447.	0.8	15
241	Clobal stability and persistence of HIV models with switching parameters and pulse control. Mathematics and Computers in Simulation, 2016, 123, 53-67.	2.4	11
242	The case for periodic OPV routine vaccination campaigns. Journal of Theoretical Biology, 2016, 389, 20-27.	0.8	4
243	Modeling and simulation of the spread of H1N1 flu with periodic vaccination. International Journal of Biomathematics, 2016, 09, 1650003.	1.5	3
244	Dynamics of a system for migration from proliferative to dormant status. Computational and Applied Mathematics, 2017, 36, 23-43.	1.3	Ο
245	Basic Reproduction Number \$\$R_0\$\$. , 2017, , 443-501.		0
246	Dynamics of vaccination in a time-delayed epidemic model with awareness. Mathematical Biosciences, 2017, 294, 92-99.	0.9	35
247	Periodicity induced by state feedback controls and driven by disparate dynamics of a herbivore–plankton model with cannibalism. Nonlinear Dynamics, 2017, 90, 2657-2672.	2.7	10
248	The effects of heterogeneity on stochastic cycles in epidemics. Scientific Reports, 2017, 7, 13008.	1.6	2
249	SWITCHING VACCINATION SCHEMES FOR VECTOR-BORNE DISEASES WITH SEASONAL FLUCTUATIONS. Journal of Biological Systems, 2017, 25, 441-477.	0.5	2
250	Vaccination strategies of an SIR pair approximation model with demographics on complex networks. Chaos, Solitons and Fractals, 2017, 104, 282-290.	2.5	13
251	DRIMUX: Dynamic Rumor Influence Minimization with User Experience in Social Networks. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 2168-2181.	4.0	121
252	Global stability of an epidemic model with age-dependent vaccination, latent and relapse. Chaos, Solitons and Fractals, 2017, 105, 195-207.	2.5	16

#	Article	IF	Citations
253	Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control. International Journal of Biomathematics, 2017, 10, 1750093.	1.5	14
254	Pulse vaccination of an epidemic model with two parallel infectious stages and time delays. Mathematics and Computers in Simulation, 2017, 142, 51-61.	2.4	3
255	Information diffusion in interconnected heterogeneous networks. , 2017, , .		0
256	Multiobjective synthesis of robust vaccination policies. Applied Soft Computing Journal, 2017, 50, 34-47.	4.1	8
257	Development and appplication of agent-bsed disease spread simulation model : The case of Suwon, Korea. , 2017, , .		2
258	Information cascades in complex networks. Journal of Complex Networks, 0, , .	1.1	78
259	Stability Analysis of Analytical and Numerical Solutions to Nonlinear Delay Differential Equations with Variable Impulses. Discrete Dynamics in Nature and Society, 2017, 2017, 1-8.	0.5	2
260	Analysis of the Dynamic Influence of Social Network Nodes. Scientific Programming, 2017, 2017, 1-6.	0.5	0
261	Dissipative control for an epidemic system with exponential incidence rate. , 2017, , .		1
262	Nonlinear state-dependent feedback control strategy in the SIR epidemic model with resource limitation. Advances in Difference Equations, 2017, 2017, .	3.5	5
263	Modelling leptospirosis in livestock. Theoretical Population Biology, 2018, 121, 26-32.	0.5	6
264	Extinction and periodic solutions for an impulsive SIR model with incidence rate stochastically perturbed. Physica A: Statistical Mechanics and Its Applications, 2018, 505, 385-397.	1.2	12
265	Impulsive Effect on Tri-Trophic Food Chain Model with Mixed Functional Responses under Seasonal Perturbations. Differential Equations and Dynamical Systems, 2018, 26, 157-176.	0.5	4
266	Stability and permanence of an eco-epidemiological SEIN model with impulsive biological control. Computational and Applied Mathematics, 2018, 37, 675-692.	1.3	9
267	Dynamic behavior analysis of SIVS epidemic models with state-dependent pulse vaccination. Nonlinear Analysis: Hybrid Systems, 2018, 27, 258-270.	2.1	19
268	Linear multistep methods for impulsive delay differential equations. Applied Mathematics and Computation, 2018, 321, 555-563.	1.4	7
269	Analysis of novel stochastic switchedSILIepidemic models with continuous and impulsive control. Physica A: Statistical Mechanics and Its Applications, 2018, 495, 162-171.	1.2	12
270	Stochastic simulation of multiscale complex systems with PISKaS: AÂrule-based approach. Biochemical and Biophysical Research Communications, 2018, 498, 342-351.	1.0	9

#	Article	IF	CITATIONS
271	How well do network models predict observations? On the importance of predictability in network models. Behavior Research Methods, 2018, 50, 853-861.	2.3	252
272	Basic reproductive number for a general hybrid epidemic model. Advances in Difference Equations, 2018, .	3.5	4
273	Conditional Gaussian Systems for Multiscale Nonlinear Stochastic Systems: Prediction, State Estimation and Uncertainty Quantification. Entropy, 2018, 20, 509.	1.1	36
274	Dynamic Behaviors of a Nonautonomous Impulsive Competitive System with the Effect of Toxic Substance. Discrete Dynamics in Nature and Society, 2018, 2018, 1-6.	0.5	1
275	On the Global Dynamics of a Vector-Borne Disease Model with Age of Vaccination. International Journal of Differential Equations, 2018, 2018, 1-11.	0.3	3
276	Top-down pulses reduce prey population sizes and persistence. Scientific Reports, 2018, 8, 9346.	1.6	0
277	Vaccination threshold size and backward bifurcation of SIR model with state-dependent pulse control. Journal of Theoretical Biology, 2018, 455, 75-85.	0.8	32
278	Information dissemination in dynamic hypernetwork. Physica A: Statistical Mechanics and Its Applications, 2019, 532, 121578.	1.2	15
279	Global dynamics of a nonlinear state-dependent feedback control ecological model with a multiple-hump discrete map. Communications in Nonlinear Science and Numerical Simulation, 2019, 79, 104900.	1.7	18
280	Dynamical Behavior and Bifurcation Analysis of the SIR Model with Continuous Treatment and State-Dependent Impulsive Control. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950131.	0.7	10
281	Routine and pulse vaccination for Lassa virus could reduce high levels of endemic disease: A mathematical modelling study. Vaccine, 2019, 37, 3451-3456.	1.7	13
282	Analytic and numerical stability of delay differential equations with variable impulses. Applied Mathematics and Computation, 2019, 358, 293-304.	1.4	6
283	Optimal Impulse Vaccination Approach for an SIR Control Model with Short-Term Immunity. Mathematics, 2019, 7, 420.	1.1	16
284	Threshold Dynamics of the Switched Multicity Epidemic Models with Pulse Control. Mathematical Problems in Engineering, 2019, 2019, 1-9.	0.6	0
285	Hâ^ž Filter Design for T–S Fuzzy Nonlinear Quadratic Systems with Time-Varying Delay. Circuits, Systems, and Signal Processing, 2019, 38, 4999-5017.	1.2	10
286	Threshold Dynamics and Bifurcation of a State-Dependent Feedback Nonlinear Control Susceptible–Infected–Recovered Model1. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	0.7	9
287	Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey. Applied Mathematical Modelling, 2019, 72, 385-402.	2.2	38
288	Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates. Nonlinear Dynamics, 2019, 96, 2351-2368.	2.7	61

#	Article	IF	CITATIONS
289	Multistate Dynamical Processes on Networks: Analysis through Degree-Based Approximation Frameworks. SIAM Review, 2019, 61, 92-118.	4.2	25
290	A stochastic differential equation SIS epidemic model with two independent Brownian motions. Journal of Mathematical Analysis and Applications, 2019, 474, 1536-1550.	0.5	34
291	Effect of pulse vaccination on dynamics of dengue with periodic transmission functions. Advances in Difference Equations, 2019, 2019, .	3.5	22
292	Global stability analysis for a generalized delayed SIR model with vaccination and treatment. Advances in Difference Equations, 2019, 2019, 532.	3.5	25
293	Intervening Coupling Diffusion of Competitive Information in Online Social Networks. IEEE Transactions on Knowledge and Data Engineering, 2021, 33, 2548-2559.	4.0	20
294	Toward epidemic thresholds on temporal networks: a review and open questions. Applied Network Science, 2019, 4, .	0.8	28
295	Optimal Impulsive Control With Application to Antiangiogenic Tumor Therapy. IEEE Transactions on Control Systems Technology, 2020, 28, 106-117.	3.2	33
296	Analysis of an epidemiological model driven by multiple noises: Ergodicity and convergence rate. Journal of the Franklin Institute, 2020, 357, 2203-2216.	1.9	3
297	A Differential Game Approach to Decentralized Virus-Resistant Weight Adaptation Policy Over Complex Networks. IEEE Transactions on Control of Network Systems, 2020, 7, 944-955.	2.4	30
298	Analysis of two discrete forms of the classic continuous SIR epidemiological model. Journal of Difference Equations and Applications, 2020, 26, 1-24.	0.7	5
299	Minimize Social Network Rumors Based on Rumor Path Tree. IEEE Access, 2020, 8, 167620-167630.	2.6	2
300	Existence of Periodic Solutions of Seasonally Forced SEIR Models with Pulse Vaccination. Discrete Dynamics in Nature and Society, 2020, 2020, 1-11.	0.5	1
301	On an SEIR Epidemic Model with Vaccination of Newborns and Periodic Impulsive Vaccination with Eventual On-Line Adapted Vaccination Strategies to the Varying Levels of the Susceptible Subpopulation. Applied Sciences (Switzerland), 2020, 10, 8296.	1.3	23
302	Fractional-Order SIR Epidemic Model for Transmission Prediction of COVID-19 Disease. Applied Sciences (Switzerland), 2020, 10, 8316.	1.3	26
303	Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science, 2020, 369, .	6.0	648
304	Effective Edge-Based Approach for Promoting the Spreading of Information. IEEE Access, 2020, 8, 83745-83753.	2.6	7
305	Optimal control of an SIQRS epidemic model with three measures on networks. Nonlinear Dynamics, 2021, 103, 2097-2107.	2.7	14
306	Slow decay of infection in the inhomogeneous susceptible-infected-recovered model. Physical Review E, 2021, 103, 012301.	0.8	5

#	Article	IF	Citations
307	Computational modeling of human papillomavirus with impulsive vaccination. Nonlinear Dynamics, 2021, 103, 925-946.	2.7	6
308	Analysing of Tuberculosis in Turkey through SIR, SEIR and BSEIR Mathematical Models. Mathematical and Computer Modelling of Dynamical Systems, 2021, 27, 179-202.	1.4	13
309	Modelling the effects of ozone concentration and pulse vaccination on seasonal influenza outbreaks in Gansu Province, China. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 1877.	0.5	4
310	A Modelization of the Propagation of COVID-19 in Regions of Spain and Italy with Evaluation of the Transmission Rates Related to the Intervention Measures. Biology, 2021, 10, 121.	1.3	6
311	Switching vaccination schemes for epidemic models with distributed time delay and two types of noise. Advances in Difference Equations, 2021, 2021, .	3.5	0
312	Connecting urban transportation systems with the spread of infectious diseases: A Trans-SEIR modeling approach. Transportation Research Part B: Methodological, 2021, 145, 185-211.	2.8	42
313	Stability analysis of fractional nabla difference COVID-19 model. Results in Physics, 2021, 22, 103888.	2.0	67
314	A statistical analysis of the novel coronavirus (COVID-19) in Italy and Spain. PLoS ONE, 2021, 16, e0249037.	1.1	48
315	Identifying influential nodes: A new method based on network efficiency of edge weight updating. Chaos, 2021, 31, 033120.	1.0	15
316	Investigation on dynamics of an impulsive predator–prey system with generalized Holling type IV functional response and anti-predator behavior. Advances in Difference Equations, 2021, 2021, .	3.5	2
317	A simple criterion to design optimal non-pharmaceutical interventions for mitigating epidemic outbreaks. Journal of the Royal Society Interface, 2021, 18, 20200803.	1.5	26
318	AN SEIR MODEL WITH INFECTIOUS LATENT AND A PERIODIC VACCINATION STRATEGY. Mathematical Modelling and Analysis, 2021, 26, 236-252.	0.7	5
319	Evolutionary Prediction of Nonstationary Event Popularity Dynamics of Weibo Social Network Using Time-Series Characteristics. Discrete Dynamics in Nature and Society, 2021, 2021, 1-19.	0.5	1
320	Dynamic behaviors of a modified SIR model with nonlinear incidence and recovery rates. AEJ - Alexandria Engineering Journal, 2021, 60, 2997-3005.	3.4	26
321	Scalable Estimation of Epidemic Thresholds via Node Sampling. Sankhya A, 2021, , 1-24.	0.4	1
322	A Study on COVID-19 Incidence in Europe through Two SEIR Epidemic Models Which Consider Mixed Contagions from Asymptomatic and Symptomatic Individuals. Applied Sciences (Switzerland), 2021, 11, 6266.	1.3	9
323	Predictive analysis of COVID-19 eradication with vaccination in India, Brazil, and U.S.A. Infection, Genetics and Evolution, 2021, 92, 104834.	1.0	16
324	First order strong convergence of an explicit scheme for the stochastic SIS epidemic model. Journal of Computational and Applied Mathematics, 2021, 392, 113482.	1.1	13

#	Article	IF	CITATIONS
325	Stay Home or Not? Modeling Individuals' Decisions During the COVID-19 Pandemic. Decision Analysis, 2022, 19, 319-336.	1.2	4
326	A data-driven model of the COVID-19 spread among interconnected populations: epidemiological and mobility aspects following the lockdown in Italy. Nonlinear Dynamics, 2021, 106, 1-28.	2.7	12
327	The propagation of sustainable fishery by Arctic shipping route stakeholders. Marine Policy, 2021, 131, 104619.	1.5	2
328	Optimal COVID-19 Vaccination Strategies with Limited Vaccine and Delivery Capabilities. ACM Transactions on Computing for Healthcare, 2021, 2, 1-16.	3.3	2
329	Predicting Oil Production Sites for Planning Road Infrastructure: Trip Generation Using SIR Epidemic Model. Infrastructures, 2021, 6, 15.	1.4	1
330	Optimal Release Policy for Prophylactic Biological Control. , 0, , 89-96.		12
331	Simple Compartmental Models for Disease Transmission. Texts in Applied Mathematics, 2019, , 21-61.	0.4	8
332	The Switched SIR Model. Advances in Dynamics, Patterns, Cognition, 2017, , 43-82.	0.2	3
334	Theoretical and semi-analytical results to a biological model under Atangana–Baleanu–Caputo fractional derivative. Advances in Difference Equations, 2020, 2020, .	3.5	7
335	Analysis of an SEIRS Epidemic Model with Time Delays And Pulse Vaccination. Rocky Mountain Journal of Mathematics, 2008, 38, .	0.2	5
336	Mathematical Modelling of the Transmission Dynamics of Contagious Bovine Pleuropneumonia Reveals Minimal Target Profiles for Improved Vaccines and Diagnostic Assays. PLoS ONE, 2015, 10, e0116730.	1.1	11
337	The local stability of a modified multi-strain SIR model for emerging viral strains. PLoS ONE, 2020, 15, e0243408.	1.1	50
338	Detectable sensation of a stochastic smoking model. Open Mathematics, 2020, 18, 1045-1055.	0.5	5
339	Analysis of an Epidemic Spreading Model with Exponential Decay Law. Mathematical Sciences and Applications E-Notes, 0, , .	0.5	22
340	Mixed vaccination strategy for the control of tuberculosis: A case study in China. Mathematical Biosciences and Engineering, 2017, 14, 695-708.	1.0	22
341	On the continuity of the function describing the times of meeting impulsive set and its application. Mathematical Biosciences and Engineering, 2017, 14, 1399-1406.	1.0	14
342	Efficiency of Different Vaccination Strategies for Childhood Diseases: A Simulation Study. Advances in Bioscience and Biotechnology (Print), 2013, 04, 193-205.	0.3	1
343	Optimal Vaccination Strategies in an SIR Epidemic Model with Time Scales. Applied Mathematics, 2013, 04, 1-14.	0.1	6

#	Article	IF	CITATIONS
344	The SIR dynamic model of infectious disease transmission and its analogy with chemical kinetics. PeerJ Physical Chemistry, 0, 2, e14.	0.0	14
345	On the spread of influence in graphs. Information and Computation, 2021, 281, 104808.	0.5	1
346	Mathematical analysis of hepatitis B epidemic model with optimal control. Advances in Difference Equations, 2021, 2021, .	3.5	21
347	Optimizing Cancer Chemotherapy: From Mathematical Theories to Clinical Treatment. SIMAI Springer Series, 2012, , 285-299.	0.4	0
348	Epidemic Model with Vertical Transmission and Pulse Vaccination and Non-Monotonic Incidence Rate. Advances in Applied Mathematics, 2013, 02, 65-73.	0.0	0
349	Metering effects in population systems. Mathematical Biosciences and Engineering, 2013, 10, 1365-1379.	1.0	0
350	On the Stability of Critical Point for Positive Systems and Its Applications to Biological Systems. Journal of Electrical Engineering and Technology, 2013, 8, 1530-1541.	1.2	0
351	The Dynamic Behavior of a Discrete Vertical and Horizontal Transmitted Disease Model under Constant Vaccination. International Journal of Modern Nonlinear Theory and Application, 2016, 05, 171-184.	0.1	2
352	Pulse Control Strategies. Advances in Dynamics, Patterns, Cognition, 2017, , 179-226.	0.2	0
353	Switching Control Strategies. Advances in Dynamics, Patterns, Cognition, 2017, , 135-178.	0.2	0
355	Dual World Network Model Based Social Information Competitive Dissemination. Lecture Notes in Computer Science, 2019, , 256-266.	1.0	0
357	A statistical theory of the strength of epidemics: an application to the Italian COVID-19 case. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200394.	1.0	0
358	Dynamic Hybrid Model to Forecast the Spread of COVID-19 Using LSTM and Behavioral Models Under Uncertainty. IEEE Transactions on Cybernetics, 2022, 52, 11977-11989.	6.2	7
359	Using a Stochastic SIR Model to Design Optimal Vaccination Campaigns via Multiobjective Optimization. , 2020, , 245-258.		1
362	Epidemic Modelling with Parameters Updating based on Data-driven. , 2020, , .		0
363	A novel hybrid model of tumor control, combining pulse surveillance with tumor size-guided therapies. Applied Mathematical Modelling, 2022, 104, 259-278.	2.2	4
364	Estimation of COVID-19 Transmission and Advice on Public Health Interventions. Mathematics, 2021, 9, 2849.	1.1	1
365	FRACTIONAL MATHEMATICAL MODELING TO THE SPREAD OF POLIO WITH THE ROLE OF VACCINATION UNDER NON-SINGULAR KERNEL. Fractals, 2022, 30, .	1.8	7

#	Article	IF	CITATIONS
367	Mathematical models to study the biology of pathogens and the infectious diseases they cause. IScience, 2022, 25, 104079.	1.9	8
368	Analysis of Covid 19 disease with SIR model and Taylor matrix method. AIMS Mathematics, 2022, 7, 11188-11200.	0.7	3
369	Fuzzy drug addiction and abuse growth model. AIP Conference Proceedings, 2022, , .	0.3	1
370	Dynamical analysis of a stochastic delayed SIR epidemic model with vertical transmission and vaccination. , 2022, 2022, 35.		6
371	A Global Sharing Mechanism of Resources: Modeling a Crucial Step in the Fight against Pandemics. International Journal of Environmental Research and Public Health, 2022, 19, 5930.	1.2	2
372	Effective mathematical modelling of health passes during a pandemic. Scientific Reports, 2022, 12, 6989.	1.6	4
373	Dynamic analysis of a SIV Filippov system with media coverage and protective measures. AIMS Mathematics, 2022, 7, 13469-13492.	0.7	1
374	An Integrated Eco-Epidemiological Plant Pest Natural Enemy Differential Equation Model with Various Impulsive Strategies. Mathematical Problems in Engineering, 2022, 2022, 1-23.	0.6	4
375	Pattern mechanism in stochastic SIR networks with ER connectivity. Physica A: Statistical Mechanics and Its Applications, 2022, 603, 127765.	1.2	10
376	A vertically transmitted epidemic model with two state-dependent pulse controls. Mathematical Biosciences and Engineering, 2022, 19, 13967-13987.	1.0	1
377	Asymptotic analysis of a nonlinear stochastic eco-epidemiological system with feedback control. Applied Mathematics, 2022, 37, 317-339.	0.6	0
378	The Stability Analysis and Transmission Dynamics of the SIR Model with Nonlinear Recovery and Incidence Rates. Mathematical Problems in Engineering, 2022, 2022, 1-10.	0.6	1
379	Artificial neural network procedures for the waterborne spread and control of diseases. AIMS Mathematics, 2022, 8, 2435-2452.	0.7	6
380	Enhancement of Gravity Centrality Measure Based on Local Clustering Method by Identifying Influential Nodes in Social Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 614-627.	0.2	1
381	Optimal Control for Positive and Negative Information Diffusion Based on Game Theory in Online Social Networks. IEEE Transactions on Network Science and Engineering, 2023, 10, 426-440.	4.1	2
382	Joint Estimation of States and Parameters in Stochastic SIR Model. , 2022, , .		1
383	Machine learning prediction of network dynamics with privacy protection. Physical Review Research, 2022, 4, .	1.3	2
384	A Synthesis of Pulse Influenza Vaccination Policies Using an Efficient Controlled Elitism Non-Dominated Sorting Genetic Algorithm (CENSGA). Electronics (Switzerland), 2022, 11, 3711.	1.8	1

#		IE	CITATIONS
#	ARTICLE	IF	CHAILONS
385	Enhancement of Voting Scores with Multiple Attributes Based on VoteRank++ to Identify Influential Nodes in Social Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 242-257.	0.2	1
386	Studying Multi-Stage Diffusion Dynamics using Epidemic Modeling Framework. International Journal of Mathematical, Engineering and Management Sciences, 2023, 8, 105-119.	0.4	1
387	Optimal Capacity-Constrained COVID-19 Vaccination for Heterogeneous Populations. , 2022, , .		1
388	Global Dynamics of a Two-Strain Disease Model with Amplification, Nonlinear Incidence and Treatment. , 2023, 47, 259-274.		4
389	Modeling the control of infectious disease. , 2023, , 173-215.		0
390	The impact of traffic control measures on the spread of COVID-19 within urban agglomerations based on a modified epidemic model. Cities, 2023, 135, 104238.	2.7	2
391	Dynamics of a diffusive viral infection model with impulsive CTL immune response. Applicable Analysis, 2024, 103, 106-123.	0.6	0
393	Forecasting the Temporal Evolution of COVID-19. , 2022, , .		1
394	Effect of Transmission and Vaccination on Time to Dominance of Emerging Viral Strains: A Simulation-Based Study. Microorganisms, 2023, 11, 860.	1.6	0
395	Effects of Individual and Built Environmental Features on Commuting Mode Shifts before and after the COVID-19 Outbreak in Guangzhou, China. Journal of Advanced Transportation, 2023, 2023, 1-16.	0.9	3