Production and application of microbial cellulose

Polymer Degradation and Stability 59, 101-106

DOI: 10.1016/s0141-3910(97)00197-3

Citation Report

#	ARTICLE	IF	Citations
1	Optimization of the production of bacterial cellulose using multivariable linear regression analysis. Acta Biotechnologica, 1999, 19, 251-260.	1.0	20
2	What are Bacterial Extracellular Polymeric Substances?. , 1999, , 1-19.		250
3	Bacterial synthesized cellulose â€" artificial blood vessels for microsurgery. Progress in Polymer Science, 2001, 26, 1561-1603.	11.8	1,171
4	Improvement of bacterial cellulose production by addition of agar in a jar fermentor. Journal of Bioscience and Bioengineering, 2004, 97, 33-38.	1.1	127
5	Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 2004, 11, 403-411.	2.4	445
6	Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Composites Science and Technology, 2004, 64, 2407-2413.	3.8	145
7	Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Applied Microbiology and Biotechnology, 2004, 65, 315-22.	1.7	42
8	Insertion of anE. coli lacZgene inAcetobacter xylinusfor the production of cellulose in whey. FEMS Microbiology Letters, 2004, 231, 253-260.	0.7	42
9	Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technology and Engineering, 2004, 43, 797-820.	1.9	136
10	Role of Ethanol in Improvement of Bacterial Cellulose Production: Analysis Using 13C-Labeled Carbon Sources. Food Science and Technology Research, 2004, 10, 307-313.	0.3	35
11	Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme and Microbial Technology, 2005, 37, 347-354.	1.6	107
12	Influence of selected wound dressings on PMN elastase in chronic wound fluid and their antioxidative potential in vitro. Biomaterials, 2005, 26, 6664-6673.	5.7	101
13	Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie - International Edition, 2005, 44, 3358-3393.	7.2	5,818
15	Preparation of Arabinoxylan and its Sorption on Bacterial Cellulose During Cultivation. Macromolecular Symposia, 2005, 232, 74-84.	0.4	19
16	Cellulosic fibres and fabric processing. , 2005, , 111-156.		3
17	Microbial Exopolysaccharides. , 2006, , 766-776.		3
18	Microbial celluloseâ€"the natural power to heal wounds. Biomaterials, 2006, 27, 145-151.	5.7	1,010
19	A hybrid model combining hydrodynamic and biological effects for production of bacterial cellulose with a pilot scale airlift reactor. Biochemical Engineering Journal, 2006, 29, 81-90.	1.8	14

#	Article	IF	Citations
20	Permeability of bacterial cellulose membranes. Journal of Membrane Science, 2006, 272, 15-27.	4.1	103
21	The Family Acetobacteraceae: The Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia., 2006, , 163-200.		115
22	Production of Bacterial Cellulose by <i>Gluconacetobacter</i> sp. RKY5 Isolated From Persimmon Vinegar. Applied Biochemistry and Biotechnology, 2006, 131, 705-715.	1.4	45
23	Influence of protective agents for preservation of Gluconacetobacter xylinus on its cellulose production. Cellulose, 2006, 13, 485-492.	2.4	9
24	Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose, 2006, 13, 689-696.	2.4	74
25	Production of Bacterial Cellulose by Gluconacetobacter sp. RKY5 Isolated From Persimmon Vinegar. , 2006, , 705-715.		4
26	Effects of Different Drying Processes on the Material Properties of Bacterial Cellulose Membranes. Macromolecular Symposia, 2006, 244, 48-58.	0.4	72
27	Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid. Journal of Biomedical Materials Research - Part A, 2007, 81A, 124-134.	2.1	63
28	Bioengineering Bacterial Cellulose/Poly(ethylene oxide) Nanocomposites. Biomacromolecules, 2007, 8, 3074-3081.	2.6	171
29	Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean Journal of Chemical Engineering, 2007, 24, 816-826.	1.2	124
30	Bacterial cellulose–silica organic–inorganic hybrids. Journal of Sol-Gel Science and Technology, 2008, 46, 363-367.	1.1	116
31	Novel nanoporous membranes from regenerated bacterial cellulose. Journal of Applied Polymer Science, 2008, 107, 292-299.	1.3	47
32	Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. Reactive and Functional Polymers, 2008, 68, 376-383.	2.0	149
33	Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering C, 2008, 28, 515-518.	3.8	166
34	Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Materials Science and Engineering C, 2008, 28, 549-554.	3.8	117
35	Production of Bacterial Cellulose with Well Oriented Fibril on PDMS Substrate. Polymer Journal, 2008, 40, 137-142.	1.3	42
36	Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiology, 2008, 25, 471-478.	2.1	207
37	Application of bacterial cellulose pellets in enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 103-108.	1.8	102

#	Article	IF	CITATIONS
38	A novel thermotropic liquid crystalline – Benzoylated bacterial cellulose. Carbohydrate Polymers, 2008, 74, 875-879.	5.1	22
39	Investigation on the Lipid- and Cholesterol-Lowering Abilities of Biocellulose. Journal of Agricultural and Food Chemistry, 2008, 56, 2291-2295.	2.4	52
40	Performance Improvement for Biomedical Material - Bacterial Cellulose. , 2009, , .		1
41	Bacterial cellulose. , 2009, , 724-739.		24
42	Biofilms in the food and beverage industries: an introduction. , 2009, , 3-41.		9
43	Self-immobilized recombinant Acetobacter xylinum for biotransformation. Biochemical Engineering Journal, 2009, 43, 78-84.	1.8	21
44	Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose, 2009, 16, 877-885.	2.4	178
45	All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose, 2009, 16, 435-444.	2.4	161
46	Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose, 2009, 16, 1047-1055.	2.4	100
47	Performance of improved bacterial cellulose application in the production of functional paper. Journal of Applied Microbiology, 2009, 107, 2098-2107.	1.4	90
48	Carboxymethylated-bacterial cellulose for copper and lead ion removal. Journal of Hazardous Materials, 2009, 161, 1355-1359.	6.5	236
49	Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Materials Science and Engineering C, 2009, 29, 546-551.	3.8	112
50	Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning. Current Applied Physics, 2009, 9, e96-e99.	1.1	86
51	Potentiality of Bacterial Cellulose as the Scaffold of Tissue Engineering of Cornea. , 2009, , .		14
52	Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules, 2009, 14, 2535-2554.	1.7	859
53	BC nanofibres: In vitro study of genotoxicity and cell proliferation. Toxicology Letters, 2009, 189, 235-241.	0.4	123
54	Biosynthesis of Cellulose–Chitosan Composite. , 2010, , 53-65.		2
56	Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnology and Bioprocess Engineering, 2010, 15, 110-118.	1.4	48

#	Article	IF	CITATIONS
57	Modification and applications of bacterial celluloses in polymer science. Macromolecular Research, 2010, 18, 309-320.	1.0	93
58	Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose, 2010, 17, 93-101.	2.4	95
59	Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose, 2010, 17, 399-405.	2.4	36
60	Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose, 2010, 17, 349-363.	2.4	104
61	The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World Journal of Microbiology and Biotechnology, 2010, 26, 125-131.	1.7	130
62	Biotemplated Synthesis of Gold Nanoparticle–Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing. Advanced Functional Materials, 2010, 20, 1152-1160.	7.8	324
63	Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu ²⁺ and Pb ²⁺ . Journal of Applied Polymer Science, 2010, 117, 8-15.	1.3	24
64	Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by <i>Gluconacetobacter xylinus</i> Journal of Chemical Technology and Biotechnology, 2010, 85, 1346-1352.	1.6	54
65	Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010, 35, 403-440.	11.8	788
66	Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition. Sensors and Actuators B: Chemical, 2010, 146, 307-313.	4.0	88
67	BiossÃntese e recentes avanços na produção de celulose bacteriana. Ecletica Quimica, 2010, 35, 165-178.	0.2	53
68	Carboxymethylation of Bacterial Cellulose. Macromolecular Symposia, 2010, 294, 117-124.	0.4	12
69	Polymerâ€based Biomaterials as Dressings for Chronic Stagnating Wounds. Macromolecular Symposia, 2010, 294, 1-13.	0.4	34
70	Multiwalled Carbon Nanotubes-Embedded Electrospun Bacterial Cellulose Nanofibers. Molecular Crystals and Liquid Crystals, 2010, 519, 169-178.	0.4	34
71	Preparation and Characterization of Novel Bacterial Cellulose/Gelatin Scaffold for Tissue Regeneration Using Bacterial Cellulose Hydrogel. Journal of Nanotechnology in Engineering and Medicine, 2010, 1 , .	0.8	55
72	Comparative evaluation of bacterial cellulose (nata) as a cryoprotectant and carrier support during the freeze drying process of probiotic lactic acid bacteria. LWT - Food Science and Technology, 2010, 43, 1197-1203.	2.5	57
73	Biocompatibility and Growth of Human Keratinocytes and Fibroblasts on Biosynthesized Cellulose–Chitosan Film. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1009-1021.	1.9	18
74	Cross-Linked Bacterial Cellulose Networks Using Glyoxalization. ACS Applied Materials & Company (1975) Applied Materials	4.0	49

#	Article	IF	Citations
75	BACTERIAL CELLULOSE: A NATURAL NANOMATERIAL FOR BIOMEDICAL APPLICATIONS. Journal of Mechanics in Medicine and Biology, 2011, 11, 285-306.	0.3	43
76	Bacterial Cellulose as Biomaterial. , 2011, , 405-410.		4
77	Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40, 3941.	18.7	5,132
78	Crystalline Structure of Microbial Cellulose Compared with Native and Regenerated Cellulose. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 1178-1192.	1.8	24
79	Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Medical Devices: Evidence and Research, 2011, 4, 77.	0.4	28
80	Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydrate Polymers, 2011, 86, 1558-1564.	5.1	173
81	Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization. Cellulose, 2011, 18, 335-347.	2.4	67
82	In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose, 2011, 18, 1573-1583.	2.4	57
83	Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 2011, 106, 703-709.	2.0	42
84	Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World Journal of Microbiology and Biotechnology, 2011, 27, 2281-2285.	1.7	57
85	Gluconacetobacter hansenii subsp. nov., a High-Yield Bacterial Cellulose Producing Strain Induced by High Hydrostatic Pressure. Applied Biochemistry and Biotechnology, 2011, 165, 1519-1531.	1.4	14
86	Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Annals of Microbiology, 2011, 61, 781-787.	1.1	49
87	Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes. Korean Journal of Chemical Engineering, 2011, 28, 2306-2311.	1.2	28
88	Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism-a promising modification for vascular grafts. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 454-463.	1.3	50
89	Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. Journal of Chemical Technology and Biotechnology, 2011, 86, 675-680.	1.6	70
90	Properties of bacterial cellulose produced in grape medium by native isolate <i>Cluconacetobacter</i> sp. Journal of Applied Polymer Science, 2011, 120, 2835-2841.	1.3	41
91	Bacterial cellulose/collagen composite: Characterization and first evaluation of cytocompatibility. Journal of Applied Polymer Science, 2011, 120, 2938-2944.	1.3	125
92	Some properties of bacterial cellulose produced by new native strain <i>Cluconacetobacter sp</i> A06O2 obtained from Turkish vinegar. Journal of Applied Polymer Science, 2011, 121, 1823-1831.	1.3	13

#	Article	IF	CITATIONS
94	Nanocelluloses: A New Family of Natureâ€Based Materials. Angewandte Chemie - International Edition, 2011, 50, 5438-5466.	7.2	3,550
95	Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydrate Polymers, 2011, 83, 979-987.	5.1	45
96	Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydrate Polymers, 2011, 83, 1253-1256.	5.1	90
97	Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 2011, 84, 96-102.	5.1	343
98	Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydrate Polymers, 2011, 86, 1187-1191.	5.1	93
99	Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydrate Polymers, 2011, 85, 548-553.	5.1	134
100	Inactivation of Shiga Toxin-Producing Escherichia coli (STEC) and Degradation and Removal of Cellulose from STEC Surfaces by Using Selected Enzymatic and Chemical Treatments. Applied and Environmental Microbiology, 2011, 77, 8532-8537.	1.4	5
101	Bioengineered natural textile fibres. , 2012, , 291-313.		0
102	The Effect of UVâ€Irradiation on Poly(vinyl alcohol) Composites with Bacterial Cellulose. Macromolecular Symposia, 2012, 315, 198-204.	0.4	4
104	Films and Coatings Produced from Biopolymers and Composites. Contemporary Food Engineering, 2012, , 145-216.	0.2	3
105	Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2253-2266.	1.7	72
106	Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. IET Nanobiotechnology, 2012, 6, 52.	1.9	26
107	Bacterial Cellulose Aerogels: From Lightweight Dietary Food to Functional Materials. ACS Symposium Series, 2012, , 57-74.	0.5	24
108	A Novel Approach for the Utilization of Biocellulose Nanofibres in Polyurethane Nanocomposites for Potential Applications in Bone Tissue Implants. Designed Monomers and Polymers, 2012, 15, 1-29.	0.7	43
109	Bacterial Cellulose: Long-Term Biocompatibility Studies. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1339-1354.	1.9	113
110	Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Applied Microbiology and Biotechnology, 2012, 96, 1479-1487.	1.7	74
111	Cellulose Products from Solutions: Film, Fibres and Aerogels. , 2012, , 153-185.		3
112	Polysaccharides: Molecular and Supramolecular Structures. Terminology. , 2012, , 23-64.		8

#	Article	IF	Citations
113	Interactions Binding Mineral and Organic Phases in Nanocomposites Based on Bacterial Cellulose and Calcium Phosphates. Langmuir, 2012, 28, 13473-13484.	1.6	22
114	In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Advances, 2012, 2, 1040-1046.	1.7	157
115	High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose. ACS Applied Materials & Interfaces, 2012, 4, 4078-4086.	4.0	202
116	Production of Microbial Cellulose by a Bacterium Isolated from Fruit. Applied Biochemistry and Biotechnology, 2012, 167, 1157-1171.	1.4	51
117	Enhanced cellulose production by ultraviolet (UV) irradiation and N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis of an Acetobacter species isolate. African Journal of Biotechnology, 2012, 11, .	0.3	2
118	Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chemical Papers, 2012, 66, .	1.0	27
119	Bacterial cellulose–poly(vinyl alcohol) nanocomposite hydrogels prepared by chemical crosslinking. Journal of Applied Polymer Science, 2012, 126, E245.	1.3	29
120	Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnology Progress, 2012, 28, 526-532.	1.3	67
121	Responses to graded replacement of urea by maize steep liquor in diets for intensively fed lambs for meat production. Tropical Animal Health and Production, 2012, 44, 947-952.	0.5	2
122	Composition of lipophilic compounds and carbohydrates in the accumulated plant litter and soil organic matter in boreal forests. European Journal of Soil Science, 2012, 63, 65-74.	1.8	18
123	Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydrate Polymers, 2012, 87, 839-845.	5.1	190
124	Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 2012, 87, 951-962.	5.1	449
125	Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 2013, 38, 1415-1441.	11.8	224
126	The European Polysaccharide Network of Excellence (EPNOE). , 2012, , .		20
127	Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydrate Polymers, 2013, 93, 144-153.	5.1	42
128	Biosynthesis, production and applications of bacterial cellulose. Cellulose, 2013, 20, 2191-2219.	2.4	380
129	Biosynthesis and Characterization of Nanocellulose-Gelatin Films. Materials, 2013, 6, 782-794.	1.3	91
130	Enhanced Production of Bacterial Cellulose by Using Gluconacetobacter hansenii NCIM 2529 Strain Under Shaking Conditions. Applied Biochemistry and Biotechnology, 2013, 169, 1497-1511.	1.4	39

#	ARTICLE	IF	CITATIONS
132	Modification of cellulose as a promising direction in the design of new materials. Polymer Science - Series B, 2013, 55, 409-429.	0.3	31
133	Effect of \hat{l}^3 irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials. Radiation Physics and Chemistry, 2013, 84, 200-204.	1.4	23
134	The effect of deuteration on the structure of bacterial cellulose. Carbohydrate Research, 2013, 374, 82-88.	1.1	45
135	The Fixation Effect of a Silk Fibroin–Bacterial Cellulose Composite Plate in Segmental Defects of the Zygomatic Arch <subtitle>An Experimental Study</subtitle> <alt-title>Silk Fibroin–Bacterial Cellulose Composite Plate</alt-title> . JAMA Otolaryngology - Head and Neck Surgery. 2013. 139. 629.	1.2	32
136	Production of microbial polysaccharides for use in food., 2013,, 413-468.		34
137	The Biopolymer Bacterial Nanocellulose as Drug Delivery System: Investigation of Drug Loading and Release using the Model Protein Albumin. Journal of Pharmaceutical Sciences, 2013, 102, 579-592.	1.6	163
138	Cellulose Based Blends, Composites and Nanocomposites. Advanced Structured Materials, 2013, , 21-54.	0.3	10
139	Sorption and transport properties of 2-acrylamido-2-methyl-1-propanesulfonic acid-grafted bacterial cellulose membranes for fuel cell application. Journal of Power Sources, 2013, 232, 297-305.	4.0	43
140	Natural Polymers: Their Blends, Composites and Nanocomposites: State of Art, New Challenges and Opportunities. Advanced Structured Materials, 2013, , 1-20.	0.3	9
141	Bacterial cellulose–carbon nanotube composite as a biocompatible electrode for the direct electron transfer of glucose oxidase. Journal of Chemical Technology and Biotechnology, 2013, 88, 1067-1070.	1.6	34
142	Overview of bio nanofabric from bacterial cellulose. Journal of the Textile Institute, 2013, 104, 121-131.	1.0	54
143	Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose, 2013, 20, 771-783.	2.4	83
144	Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 2013, 1, 97-112.	3.3	225
145	A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions. Carbohydrate Polymers, 2013, 92, 421-428.	5.1	82
146	Preparation of Silver/Bacterial Cellulose Composite Membrane and Study on Its Antimicrobial Activity. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 907-913.	0.6	22
147	Raw Fermentation Media for Industrial Production of Bacterial Cellulose. Advanced Materials Research, 0, 821-822, 1093-1097.	0.3	0
148	Effect of Coconut Water on the Growth of <i>Gluconacetobacter xylinus</i> Y15. Advanced Materials Research, 0, 781-784, 1736-1740.	0.3	0
149	Biosynthesis and Characterization of Bacterial Cellulose Produced by a Wild Strain of Acetobacter spp Materials Research Society Symposia Proceedings, 2013, 1498, 109-114.	0.1	0

#	Article	IF	CITATIONS
150	Synthesis and Characterization of Alkyl Bacterial Cellulose through Etherification with Alkyl Bromide in DMAc/LiCl. Applied Mechanics and Materials, 0, 320, 478-482.	0.2	6
151	Monitoring Initial Glucose Concentration for Optimum pH Control during Fermentation of Microbial Cellulose in Rotary Discs Reactor. Key Engineering Materials, 0, 594-595, 319-324.	0.4	3
153	Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water. Brazilian Journal of Microbiology, 2013, 44, 197-206.	0.8	10
154	The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnology, 2014, 14, 104.	1.7	44
155	Hierarchical structure in microbial cellulose: What happens during the drying process. European Physical Journal E, 2014, 37, 129.	0.7	6
156	A New Method for Developing Industrially Viable Nanocrystalline Cellulose-based Nanocomposites via Melt Compounding. Journal of Renewable Materials, 2014, 2, 107-117.	1.1	1
157	Advanced Bacterial Cellulose Composites. Materials and Energy, 2014, , 147-164.	2.5	1
160	Characteristics and anticancer properties of bacterial cellulose films containing ethanolic extract of mangosteen peel. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 907-922.	1.9	19
161	A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry, 2014, 61, 101-110.	1.4	172
162	Utilization of bacterial cellulose in food. Food Hydrocolloids, 2014, 35, 539-545.	5.6	453
163	More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites. Macromolecular Bioscience, 2014, 14, 10-32.	2.1	316
164	Recent advances in bacterial cellulose. Cellulose, 2014, 21, 1-30.	2.4	442
165	Synthesis and characterization of bacterial cellulose sulfates using a SO3/pyridine complex in DMAc/LiCl. Carbohydrate Polymers, 2014, 101, 947-953.	5.1	61
166	Study of the process of mineralization of nanofibrils of native bacterial cellulose in solutions of mineral ions: Modeling via the method of molecular dynamics. Polymer Science - Series A, 2014, 56, 545-557.	0.4	5
167	Affibody conjugation onto bacterial cellulose tubes and bioseparation of human serum albumin. RSC Advances, 2014, 4, 51440-51450.	1.7	38
168	High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. Journal of Power Sources, 2014, 272, 137-143.	4.0	142
169	Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride. European Polymer Journal, 2014, 60, 247-254.	2.6	58
170	Surface modification of cellulose nanocrystals. Nanoscale, 2014, 6, 7764-7779.	2.8	634

#	Article	IF	CITATIONS
171	Topological characterization of a bacterial cellulose–acrylic acid polymeric matrix. European Journal of Pharmaceutical Sciences, 2014, 62, 326-333.	1.9	15
172	Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: Development and characterisation. Carbohydrate Polymers, 2014, 113, 131-137.	5.1	42
173	Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnology and Bioprocess Engineering, 2014, 19, 534-544.	1.4	63
174	On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 2014, 105, 15-27.	3.8	669
175	Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose, 2014, 21, 2679-2693.	2.4	46
176	Direct sulfation of bacterial cellulose with a CISO ₃ H/DMF complex and structure characterization of the sulfates. Polymers for Advanced Technologies, 2014, 25, 168-172.	1.6	23
177	Effects of different fermentation methods on bacterial cellulose and acid production by <i>Gluconacetobacter xylinus</i> in Cantonese-style rice vinegar. Food Science and Technology International, 2014, 20, 321-331.	1.1	12
178	Do bacterial cellulose membranes have potential in drug-delivery systems?. Expert Opinion on Drug Delivery, 2014, 11, 1113-1124.	2.4	66
179	Effect of chemical crosslinking degree on mechanical properties of bacterial cellulose/poly(vinyl) Tj ETQq0 0 0 rg	BT /Overlo	ck 10 Tf 50 4
180	Effect of Incubation Temperature on Growth of <i>Acetobacter xylinum</i> 0416 and Bacterial Cellulose Production. Applied Mechanics and Materials, 0, 815, 3-8.	0.2	22
182	Natural Cellulose Fibers: Sources, Isolation, Properties and Applications. , 2015, , 25-59.		1
183	A Crafty Utilization of Intermediate-Angle Neutron Scattering and Contrast Variation by Water-Exchange to Study the Microstructure of Microbial Cellulose. , 2015, , .		0
184	Use of Bacterial Cellulose from Gluconacetobacter hansenii NOK21 as a Proton-permeable Membrane in Microbial Fuel Cells. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	1
185	Bacterial Cellulose Production from Industrial Waste and by-Product Streams. International Journal of Molecular Sciences, 2015, 16, 14832-14849.	1.8	235
186	The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. Journal of Advanced Prosthodontics, 2015, 7, 484.	1.1	46
187	Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis. BioMed Research International, 2015, 2015, 1-9.	0.9	33
188	Stabilization of Pickering Emulsions by Bacterial Cellulose Nanofibrils. Key Engineering Materials, 2015, 645-646, 1247-1254.	0.4	6
189	Combining small-angle and intermediate-angle neutron scattering to study the hierarchical structure in microbial cellulose. European Polymer Journal, 2015, 66, 437-443.	2.6	1

#	Article	IF	CITATIONS
190	Monitoring the Effect of pH on Bacterial Cellulose Production and Acetobacter xylinum 0416 Growth in a Rotary Discs Reactor. Arabian Journal for Science and Engineering, 2015, 40, 1881-1885.	1.1	35
191	The Potential of NanoCellulose in the Packaging Field: A Review. Packaging Technology and Science, 2015, 28, 475-508.	1.3	191
192	Evaluation of the Effect of the Structure of Bacterial Cellulose on Full Thickness Skin Wound Repair on a Microfluidic Chip. Biomacromolecules, 2015, 16, 780-789.	2.6	107
194	Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydrate Polymers, 2015, 132, 351-358.	5.1	130
195	Cellulase biocatalysis: key influencing factors and mode of action. Cellulose, 2015, 22, 2157-2182.	2.4	29
196	Cellulose Acetate Nanocomposites with Antimicrobial Properties. Advanced Structured Materials, 2015, , 367-398.	0.3	2
197	Water Soluble Polymer-Based Nanocomposites Containing Cellulose Nanocrystals. Advanced Structured Materials, 2015, , 259-293.	0.3	15
198	Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydrate Polymers, 2015, 128, 41-51.	5.1	185
199	Enhancing T-DNA Transfer Efficiency in Barley (Hordeum vulgare L.) Cells Using Extracellular Cellulose and Lectin. Applied Biochemistry and Biotechnology, 2015, 176, 1203-1216.	1.4	7
200	Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. Journal of Bioscience and Bioengineering, 2015, 120, 444-449.	1.1	47
201	Knock-out of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement. Biotechnology and Bioprocess Engineering, 2015, 20, 18-25.	1.4	50
202	Cellulosic Biomaterials. , 2015, , 289-328.		7
203	Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. Journal of Materials Science: Materials in Medicine, 2015, 26, 245.	1.7	70
204	Synthesis, Chemistry, and Medical Application of Bacterial Cellulose Nanocomposites. Advanced Structured Materials, 2015, , 399-437.	0.3	13
205	Cellulose: Structure and Properties. Advances in Polymer Science, 2015, , 1-52.	0.4	89
206	Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. Journal of Applied Polymer Science, 2015, 132, .	1.3	64
207	Protein adsorption behaviors of carboxymethylated bacterial cellulose membranes. International Journal of Biological Macromolecules, 2015, 73, 264-269.	3.6	43
208	Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydrate Polymers, 2015, 116, 173-181.	5.1	86

#	Article	IF	CITATIONS
209	Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 2015, 117, 518-523.	5.1	267
210	The use of biobased nanofibres in composites. , 2015, , 571-647.		21
211	Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application. Materials, 2016, 9, 183.	1.3	31
212	Design and Production Control of Biocellulose from <i>Acetobacter xylinum</i> Indian Journal of Science and Technology, 2016, 9, .	0.5	3
213	Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose. International Journal of Polymer Science, 2016, 2016, 1-13.	1.2	9
214	Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products – A Review. BioResources, 2016, 11, 5641-5655.	0.5	97
215	Bacterial Cellulose/Collagen Hydrogel for Wound Healing. Materials Research, 2016, 19, 106-116.	0.6	108
216	Bacterial Nanocelluloseâ€Based Flexible Surface Enhanced Raman Scattering Substrate. Advanced Materials Interfaces, 2016, 3, 1600214.	1.9	72
217	Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits. Letters in Applied Microbiology, 2016, 62, 428-433.	1.0	5
219	Preparation of bacterial cellulose/carbon nanotube nanocomposite for biological fuel cell. Fibers and Polymers, 2016, 17, 1858-1865.	1.1	14
220	Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 2016, 150, 330-352.	5.1	248
221	Activated pyrolysed bacterial cellulose as electrodes for supercapacitors. Science China Chemistry, 2016, 59, 713-718.	4.2	17
222	Wet and Dry Forms of Bacterial Cellulose Synthetized by Different Strains of Gluconacetobacter xylinus as Carriers for Yeast Immobilization. Applied Biochemistry and Biotechnology, 2016, 180, 805-816.	1.4	23
223	Mechanical and structural property analysis of bacterial cellulose composites. Carbohydrate Polymers, 2016, 144, 447-453.	5.1	126
224	All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale, 2016, 8, 9146-9150.	2.8	97
225	Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films. Journal of Materials Science, 2016, 51, 9562-9572.	1.7	14
226	Effect of cellulose crystallinity on bacterial cellulose assembly. Cellulose, 2016, 23, 3417-3427.	2.4	59
227	Copper nanoparticles-sputtered bacterial cellulose nanocomposites displaying enhanced electromagnetic shielding, thermal, conduction, and mechanical properties. Cellulose, 2016, 23, 3117-3127.	2.4	37

#	Article	IF	CITATIONS
228	Natural Polymers: Tissue Engineering. , 0, , 5619-5647.		0
229	Taxonomic Review and Microbial Ecology inÂBacterial NanoCellulose Fermentation. , 2016, , 1-17.		6
230	Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers, 2016, 151, 1068-1072.	5.1	130
231	High Temperature Proton Conduction in Nanocellulose Membranes: Paper Fuel Cells. Chemistry of Materials, 2016, 28, 4805-4814.	3.2	134
232	Pyrolyzed bacterial cellulose-supported SnO2 nanocomposites as high-capacity anode materials for sodium-ion batteries. Cellulose, 2016, 23, 2597-2607.	2.4	19
233	Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids, 2016, 53, 98-103.	5.6	81
234	Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. International Journal of Biological Macromolecules, 2016, 90, 2-10.	3.6	84
235	Preparation, antibacterial activity and pH-responsive release behavior of silver sulfadiazine loaded bacterial cellulose for wound dressing applications. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 404-410.	2.7	34
236	A new graft material for myringoplasty: bacterial cellulose. European Archives of Oto-Rhino-Laryngology, 2016, 273, 3561-3565.	0.8	20
237	Cellulose Nanofibrils and Mechanism of their Mineralization in Biomimetic Synthesis of Hydroxyapatite/Native Bacterial Cellulose Nanocomposites: Molecular Dynamics Simulations. Langmuir, 2016, 32, 125-134.	1.6	28
238	Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 2016, 18, 53-75.	4.6	522
239	Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose, 2016, 23, 57-91.	2.4	197
240	Use of bacterial cellulose in degraded paper restoration. Part I: application on model papers. Journal of Materials Science, 2016, 51, 1541-1552.	1.7	27
241	Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. Journal of Materials Science, 2016, 51, 1553-1561.	1.7	28
242	Gluconacetobacter sp. gel_SEA623-2, bacterial cellulose producing bacterium isolated from citrus fruit juice. Saudi Journal of Biological Sciences, 2017, 24, 314-319.	1.8	37
244	Bacterial cellulose synthesized by Gluconacetobacter hansenii for medical applications. Applied Biochemistry and Microbiology, 2017, 53, 60-67.	0.3	33
245	Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Materials Science and Engineering C, 2017, 75, 1034-1041.	3.8	64
246	Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere, 2017, 180, 396-411.	4.2	349

#	Article	IF	CITATIONS
247	Agriculturally important microbial biofilms: Present status and future prospects. Journal of Basic Microbiology, 2017, 57, 548-573.	1.8	114
248	Enhancement of fibroblast growing on the mannosylated surface of cellulose membranes. Materials Science and Engineering C, 2017, 77, 672-679.	3.8	12
249	Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics. Polymer Testing, 2017, 61, 150-161.	2.3	44
250	Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 2017, 138, 124-133.	3.8	88
251	Multiscale Modulation of Nanocrystalline Cellulose Hydrogel via Nanocarbon Hybridization for 3D Neuronal Bilayer Formation. Small, 2017, 13, 1700331.	5.2	24
252	Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose, 2017, 24, 3513-3523.	2.4	30
253	Cellulose Based Rubber Nanocomposites. Advanced Structured Materials, 2017, , 17-33.	0.3	3
254	Construction of Smallâ€Diameter Vascular Graft by Shapeâ€Memory and Selfâ€Rolling Bacterial Cellulose Membrane. Advanced Healthcare Materials, 2017, 6, 1601343.	3.9	79
255	Increased production of bacterial cellulose as starting point for scaled-up applications. Applied Microbiology and Biotechnology, 2017, 101, 8115-8127.	1.7	69
256	Bacterial Cellulose Ionogels as Chemosensory Supports. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38042-38051.	4.0	35
257	Multi-Purpose Cellulosic Ionogels. ACS Symposium Series, 2017, , 143-155.	0.5	3
258	2.22 Bacterial Cellulose as Biomaterial. , 2017, , 505-511.		1
259	The reinforcement mechanism of bacterial cellulose on paper made from woody and non-woody fiber sources. Cellulose, 2017, 24, 5147-5156.	2.4	24
260	Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 2017, 9, 14758-14781.	2.8	198
261	Response surface optimization for cellulose production from agro industrial waste by using new bacterial isolate Gluconacetobacter xylinus C18. Food Science and Biotechnology, 2017, 26, 1019-1028.	1.2	16
262	Statistical optimization of production conditions of \hat{l}^2 -glucosidase from Bacillus stratosphericus strain SG9. 3 Biotech, 2017, 7, 221.	1.1	7
263	Production of nanocellulose in miniature-bioreactor: Optimization and characterization. Preparative Biochemistry and Biotechnology, 2017, 47, 371-378.	1.0	7
264	Biopolymers for Biocomposites and Chemical Sensor Applications. , 2017, , 405-435.		44

#	Article	IF	CITATIONS
265	Biomass nanofibrillar cellulose in nanocomposites. , 2017, , 305-326.		1
266	Bacterial Nanocellulose Loaded with Bromelain: Assessment of Antimicrobial, Antioxidant and Physical-Chemical Properties. Scientific Reports, 2017, 7, 18031.	1.6	61
267	Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. Materials, 2017, 10, 977.	1.3	113
268	Raw Materials for Production of Nanocellulose. , 2017, , 15-25.		1
269	Natural bacterial biodegradable medical polymers. , 2017, , 295-319.		6
270	Biopolymer Composites in Fuel Cells., 2017, , 185-217.		13
271	Green hybrid composites from cellulose nanocrystal. , 2017, , 65-99.		3
272	Electronic and optical properties of chromophores from bacterial cellulose. Cellulose, 2018, 25, 2191-2203.	2.4	28
273	Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 2018, 22, 949-978.	2.4	243
274	Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Advanced Functional Materials, 2018, 28, 1800409.	7.8	192
275	Polysaccharide Based Wound Care Materials. Springer Briefs in Molecular Science, 2018, , 9-24.	0.1	3
276	Nanocellulose: Insight into Health and Medical Applications. , 2018, , 1-19.		1
277	Production and Characteristics of Cellulose from Different Sources. Springer Series on Polymer and Composite Materials, 2018, , 1-38.	0.5	24
278	Abditibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples. Systematic and Applied Microbiology, 2018, 41, 279-290.	1.2	58
279	Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydrate Polymers, 2018, 189, 379-398.	5.1	244
280	Novel Making of Bacterial Cellulose Blended Polymeric Fiber Bandages. Macromolecular Materials and Engineering, 2018, 303, 1700607.	1.7	40
281	Synthesis of Manganese Oxide Embedded Carbon Nanofibers as Effective Biomimetic Enzymes for Sensitive Detection of Superoxide Anions Released from Living Cells. Macromolecular Materials and Engineering, 2018, 303, 1800079.	1.7	14
282	Rheology and microstructure of dispersions of protein fibrils and cellulose microfibrils. Food Hydrocolloids, 2018, 82, 196-208.	5.6	28

#	Article	IF	CITATIONS
283	New proton conducting membrane based on bacterial cellulose/polyaniline nanocomposite film impregnated with guanidinium-based ionic liquid. Polymer, 2018, 142, 183-195.	1.8	36
284	A Review of Cellulose and Cellulose Blends for Preparation of Bio-derived and Conventional Membranes, Nanostructured Thin Films, and Composites. Polymer Reviews, 2018, 58, 102-163.	5.3	67
285	Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites. Journal of Polymer Engineering, 2018, 38, 137-146.	0.6	15
286	Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess and Biosystems Engineering, 2018, 41, 265-279.	1.7	50
287	Potentially Immunogenic Contaminants in Wood-Based and Bacterial Nanocellulose: Assessment of Endotoxin and (1,3)-β- <scp>d</scp> -Glucan Levels. Biomacromolecules, 2018, 19, 150-157.	2.6	20
288	Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology, 2018, 102, 1155-1165.	1.7	55
289	Formulating citizenship: The microbiopolitics of the malfunctioning functional beverage. BioSocieties, 2018, 13, 41-63.	0.8	10
290	Formation and characterization of BC and BC-paper pulp films for packaging application. Journal of Thermoplastic Composite Materials, 2018, 31, 500-513.	2.6	6
291	Enhancing the quality of nata de coco starter by channeling the oxygen into the bioreactor through agitation method. AIP Conference Proceedings, 2018 , , .	0.3	11
292	Efficient Microbial Decontamination of Translucent Liquids and Gases Using Optical Metamaterials. , 2018, , .		1
293	Toward Growable Robot : Exploring and Integrating Flexible $\hat{a} {\in} \text{``Biological Matter with Electronics.'}, 2018, , .$		18
294	EFFECT OF THE SOURCE OF CARBON AND VITAMIN C PRESENT IN TROPICAL FRUITS, ON THE PRODUCTION OF CELLULOSE BY. Indian Journal of Science and Technology, 2018, 11, 1-8.	0.5	1
295	Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein Journal of Nanotechnology, 2018, 9, 2479-2498.	1.5	202
296	Easy Preparation of Bacterial Cellulose/Triamcinolone Acetonide Composites and their Inhibition for Fibroblasts. Materials Science Forum, 2018, 913, 707-713.	0.3	O
297	Cellulose Nanomaterialsâ€"Binding Properties and Applications: A Review. Molecules, 2018, 23, 2684.	1.7	267
298	Bacterial cellulose-derived carbon nanofibers as anode for lithium-ion batteries. Emergent Materials, 2018, 1, 105-120.	3.2	40
299	Biopolymers for Food Design: Consumer-Friendly Natural Ingredients. , 2018, , 1-32.		13
300	Applications of cellulose nanofibrils in drug delivery. , 2018, , 75-95.		7

#	ARTICLE	IF	CITATIONS
301	Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Progress in Polymer Science, 2018, 85, 1-56.	11.8	312
302	Biopolymers. , 2018, , 753-770.		53
303	Production of Cellulose and Profile Metabolites by Fermentation of Glycerol by Gluconacetobacter Xylinus. Brazilian Archives of Biology and Technology, 2018, 61, .	0.5	1
305	Oxidative fermentations and exopolysaccharides production by acetic acid bacteria: a mini review. Biotechnology Letters, 2018, 40, 1289-1302.	1.1	45
306	Optical metamaterials for decontamination of translucent liquids and gases. Journal Physics D: Applied Physics, 2018, 51, 385101.	1.3	6
307	A novel colorimetric sensor based on rhodamine-B derivative and bacterial cellulose for the detection of Cu(II) ions in water. Materials Chemistry and Physics, 2018, 216, 325-331.	2.0	42
308	The Influence of Additives on the Interfacial Bonding Mechanisms Between Natural Fibre and Biopolymer Composites. Macromolecular Research, 2018, 26, 851-863.	1.0	29
309	Thermal Behavior of Bacterial Cellulose Based Hydrogels with Other Composites and Related Instrumental Analysis. Polymers and Polymeric Composites, 2018, , 1-25.	0.6	3
310	Current State and New Trends in the Use of Cellulose Nanomaterials for Wastewater Treatment. Biomacromolecules, 2019, 20, 573-597.	2.6	224
311	Scaffolds for 3D Cell Culture and Cellular Agriculture Applications Derived From Non-animal Sources. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	70
312	Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Materials Science and Engineering C, 2019, 104, 109963.	3.8	122
313	Nanocellulose Composite Biomaterials in Industry and Medicine. Biologically-inspired Systems, 2019, , 693-784.	0.4	5
314	Cellulose in Bacterial Biofilms. Biologically-inspired Systems, 2019, , 355-392.	0.4	17
315	Production of cellulose nano-crystals from bacterial fermentation. Materials Today: Proceedings, 2019, 7, 754-762.	0.9	3
316	Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, 2019, , .	0.7	12
317	Cellulose nanofibrils for biomaterial applications. Materials Today: Proceedings, 2019, 16, 1959-1968.	0.9	25
318	High Molecular Weight Mixed-Linkage Glucan as a Mechanical and Hydration Modulator of Bacterial Cellulose: Characterization by Advanced NMR Spectroscopy. Biomacromolecules, 2019, 20, 4180-4190.	2.6	10
319	Exploring K2G30 Genome: A High Bacterial Cellulose Producing Strain in Glucose and Mannitol Based Media. Frontiers in Microbiology, 2019, 10, 58.	1.5	49

#	Article	IF	Citations
320	Bionicomposites. Nanoscale, 2019, 11, 3102-3111.	2.8	15
321	Bacterial nanocellulose in papermaking. Cellulose, 2019, 26, 6477-6488.	2.4	60
322	"Smart―polymer enhances the efficacy of topical antimicrobial agents. Burns, 2019, 45, 1418-1429.	1.1	12
323	Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. Journal of Biological Engineering, 2019, 13, 55.	2.0	127
324	Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers, 2019, 219, 63-76.	5.1	444
325	A Brief Review of Nanocellulose Based Hybrid Membranes for CO2 Separation. Fibers, 2019, 7, 40.	1.8	47
326	Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications. Current Opinion in Chemical Engineering, 2019, 24, 122-130.	3.8	46
327	Bionic Superfibers., 2019, , 431-443.		1
328	The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Current Opinion in Chemical Engineering, 2019, 24, 98-106.	3.8	54
329	Composite Gels Containing Whey Protein Fibrils and Bacterial Cellulose Microfibrils. Journal of Food Science, 2019, 84, 1094-1103.	1.5	14
330	A review of nanocellulose in the drug-delivery system. , 2019, , 131-164.		18
331	Improved production of bacterial cellulose from waste glycerol through investigation of inhibitory effects of crude glycerol-derived compounds by Gluconacetobacter xylinus. Journal of Industrial and Engineering Chemistry, 2019, 75, 158-163.	2.9	50
333	Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation. Macromolecular Bioscience, 2019, 19, e1800395.	2.1	16
334	Improved Dispersion of Bacterial Cellulose Fibers for the Reinforcement of Paper Made from Recycled Fibers. Nanomaterials, 2019, 9, 58.	1.9	6
335	Bacterial Cellulose Nanocomposites. , 2019, , 87-105.		1
336	Genome sequence and characterization of the <i>bcs</i> clusters for the production of nanocellulose from the low <scp>pH</scp> resistant strain <i>Komagataeibacter medellinensis </i> <scp>ID</scp> 13488. Microbial Biotechnology, 2019, 12, 620-632.	2.0	21
337	Improving the Mechanical Properties of Natural Fiber Composites for Structural and Biomedical Applications. , 0, , .		21
338	Chemistry, Biology, and Surface Engineering of Sustainable Nanostructural Materials., 2019, , 25-52.		0

#	Article	IF	CITATIONS
339	Preparation and Applications of the Cellulose Nanocrystal. International Journal of Polymer Science, 2019, 2019, 1-10.	1.2	31
340	Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials. Advanced Materials, 2019, 31, e1804826.	11.1	181
341	Mixed gels from whey protein isolate and cellulose microfibrils. International Journal of Biological Macromolecules, 2019, 124, 1094-1105.	3.6	34
342	Thermal Behavior of Bacterial Cellulose-Based Hydrogels with Other Composites and Related Instrumental Analysis. Polymers and Polymeric Composites, 2019, , 763-787.	0.6	0
343	Enhancing Localized Pesticide Action through Plant Foliage by Silver-Cellulose Hybrid Patches. ACS Biomaterials Science and Engineering, 2019, 5, 413-419.	2.6	20
344	Production of high crystallinity typeâ€l cellulose from <i>Komagataeibacter hansenii</i> JRâ€02 isolated from <i>Kombucha</i> tea. Biotechnology and Applied Biochemistry, 2019, 66, 108-118.	1.4	22
345	Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. International Journal of Biological Macromolecules, 2019, 122, 280-288.	3.6	113
346	Nanocellulose biosynthesis by Komagataeibacter hansenii in a defined minimal culture medium. Cellulose, 2019, 26, 1641-1655.	2.4	17
347	Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. New Biotechnology, 2019, 49, 19-27.	2.4	57
348	A celluloseâ€based material for vascularized adipose tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1431-1439.	1.6	12
349	Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste and Biomass Valorization, 2019, 10, 2165-2175.	1.8	69
350	Facile in-situ synthesis of PEI-Pt modified bacterial cellulose bio-adsorbent and its distinctly selective adsorption of anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124163.	2.3	34
351	Dynamic changes of total acid and bacterial communities during the traditional fermentation of Hong Qu glutinous rice wine. Electronic Journal of Biotechnology, 2020, 43, 23-31.	1.2	22
352	A Modified, Efficient and Sensitive pH Indicator Dye Method for the Screening of Acid-Producing Acetobacter Strains Having Potential Application in Bio-Cellulose Production. Applied Biochemistry and Biotechnology, 2020, 191, 631-636.	1.4	6
353	Engineered Multilayer Microcapsules Based on Polysaccharides Nanomaterials. Molecules, 2020, 25, 4420.	1.7	17
354	Supply Chain of Waste Cotton Recycling and Reuse: A Review. AATCC Journal of Research, 2020, 7, 19-31.	0.3	40
355	Formation of dialysis-free Kombucha-based bacterial nanocellulose embedded in a polypyrrole/PVA composite for bulk conductivity measurements. RSC Advances, 2020, 10, 27585-27597.	1.7	12
356	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	11.1	77

#	Article	IF	CITATIONS
357	Renewable Polysaccharides Micro/Nanostructures for Food and Cosmetic Applications. Molecules, 2020, 25, 4886.	1.7	13
358	A novel approach for isolation of nanofibers from sugarcane bagasse and its characterization for packaging applications. Polymer Composites, 2020, 41, 5216-5226.	2.3	20
359	Bacterial cellulose: a biomaterial with high potential in dental and oral applications. Cellulose, 2020, 27, 9737-9754.	2.4	21
360	Isolation of nanocellulose from hemp (<scp><i>Cannabis sativa</i></scp>) fibers by chemoâ€mechanical method and its characterization. Polymer Composites, 2020, 41, 5257-5268.	2.3	14
361	Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnology, 2020, 20, 46.	1.7	58
362	Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews, 2021, 121, 10908-10949.	23.0	216
363	Industrial-Scale Production and Applications of Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 2020, 8, 605374.	2.0	142
364	Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103884.	1.5	148
365	Erodible coatings based on HPMC and cellulase for oral time-controlled release of drugs. International Journal of Pharmaceutics, 2020, 585, 119425.	2.6	12
366	The optimization of bacterial cellulose production and its applications: a review. Cellulose, 2020, 27, 6747-6766.	2.4	101
367	Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. International Journal of Biological Macromolecules, 2020, 154, 1050-1073.	3.6	140
368	Functional activities of beta-glucans in the prevention or treatment of cervical cancer. Journal of Ovarian Research, 2020, 13, 24.	1.3	30
369	Bio-based composite hydrogels for biomedical applications. Multifunctional Materials, 2020, 3, 022001.	2.4	34
370	Antibacterial, Cytocompatible, Sustainably Sourced: Cellulose Membranes with Bifunctional Peptides for Advanced Wound Dressings. Advanced Healthcare Materials, 2020, 9, e1901850.	3.9	49
371	Microbial biofilms: Functional annotation and potential applications in agriculture and allied sectors., 2020,, 283-301.		22
372	BNC Biosynthesis with Increased Productivity in a Newly Designed Surface Air-Flow Bioreactor. Applied Sciences (Switzerland), 2020, 10, 3850.	1.3	10
373	Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material. Materials Today: Proceedings, 2020, 31, 83-88.	0.9	42
374	Fibre-based oleogels: effect of the structure of insoluble fibre on its physical properties. Food and Function, 2020, 11, 1349-1361.	2.1	17

#	Article	IF	CITATIONS
375	Bacterial cellulose coated ST-cut quartz surface acoustic wave humidity sensor with high sensitivity, fast response and recovery. Smart Materials and Structures, 2020, 29, 045037.	1.8	16
376	Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnology Advances, 2020, 41, 107549.	6.0	144
377	Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications. Polymer Bulletin, 2021, 78, 3705-3728.	1.7	17
378	Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydrate Polymers, 2021, 251, 117096.	5.1	50
379	Fresh oil palm frond juice as a novel and alternative fermentation medium for bacterial cellulose production. Materials Today: Proceedings, 2021, 42, 101-106.	0.9	12
380	Eco-friendly nanocellulose and its biomedical applications: current status and future prospect. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 112-149.	1.9	30
381	Bacterial Cellulose. Sustainable Textiles, 2021, , 19-60.	0.4	3
382	Overview of nanocellulose as additives in paper processing and paper products. Nanotechnology Reviews, 2021, 10, 264-281.	2.6	43
383	Bacterial Cellulose Production from Agro-Industrial and Food Wastes. Environmental and Microbial Biotechnology, 2021, , 169-186.	0.4	2
384	Nanocellulose for Sustainable Future Applications. , 2021, , 421-432.		0
385	Review of the Structure of Chitosan in the Context of Other Sugar-Based Polymers. Advances in Polymer Science, 2021, , 23-74.	0.4	2
386	Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered, 2021, 12, 6793-6807.	1.4	35
387	Overview of Cellulose Types and Applications. , 2021, , 220-236.		0
388	Microbial extraction of micro and nanofibers from plant fibers. , 2021, , 301-315.		0
389	Nanocellulose-Based Materials for Heavy Metal Removal from Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 1-34.	0.3	0
390	Improved production of bacterial cellulose through investigation of effects of inhibitory compounds from lignocellulosic hydrolysates. GCB Bioenergy, 2021, 13, 436-444.	2.5	16
391	A Review on Production, Characterization and Application of Bacterial Cellulose and Its Biocomposites. Journal of Polymers and the Environment, 2021, 29, 2738-2755.	2.4	32
392	Biopolymer Nanofibers for Nanogenerator Development. Research, 2021, 2021, 1843061.	2.8	22

#	Article	IF	CITATIONS
393	Molecular Structure, Molecular Docking and Absorption, Distribution, Metabolism, Excretion and Toxicity study of cellulose II. Journal of the Chinese Chemical Society, 2021, 68, 1250-1262.	0.8	1
394	Cellulose in Nature - Versatile sources for Novel Applications: A Literature Review. , 2021, 5, 1-9.		O
395	The use of cellulose in bio-derived formulations for 3D/4D printing: A review. Composites Part C: Open Access, 2021, 4, 100113.	1.5	47
396	The Effect of Bacterial Cellulose on The Thermo Hydro-Mechanical Treatment of Wood Veneer. Key Engineering Materials, 0, 880, 109-115.	0.4	1
397	Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 608826.	2.0	89
398	A review of functionalised bacterial cellulose for targeted biomedical fields. Journal of Biomaterials Applications, 2021, 36, 648-681.	1.2	15
399	Variations in the mechanical properties of bionanocomposites by water absorption. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1655-1664.	0.7	0
400	Electrospinning of cellulose using ionic liquids: An overview on processing and applications. European Polymer Journal, 2021, 147, 110283.	2.6	31
401	Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. Nano Select, 2021, 2, 1605-1628.	1.9	32
402	PRODUCTION AND CHARACTERIZATION OF BACTERIAL CELLULOSE FROM KOMAGATAEIBACTER XYLINUS ISOLATED FROM HOME-MADE TURKISH WINE VINEGAR. Cellulose Chemistry and Technology, 2021, 55, 243-254.	0.5	3
403	Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111590.	2.5	67
404	Computational characterizations of GDP-mannose 4,6-dehydratase (NoeL) Rhizobial proteins. Current Genetics, 2021, 67, 769-784.	0.8	2
406	Cellulose-based biogenic supports, remarkably friendly biomaterials for proteins and biomolecules. Biosensors and Bioelectronics, 2021, 182, 113170.	5.3	22
407	The Effect of Bacterial Cellulose in the Prevention of Leakage After Sleeve Gastrectomy—An Experimental Study. Bariatric Surgical Patient Care, 2022, 17, 40-46.	0.1	1
408	Application of nanocellulose composites in the environmental engineering: A review. Journal of Composites and Compounds, 2021, 3, 114-128.	0.4	18
409	Influence of Drying Method and Argon Plasma Modification of Bacterial Nanocellulose on Keratinocyte Adhesion and Growth. Nanomaterials, 2021, 11, 1916.	1.9	13
410	Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering Reports, 2021, 145, 100623.	14.8	120
411	Catalyst-Free Crosslinking Modification of Nata-de-Coco-Based Bacterial Cellulose Nanofibres Using Citric Acid for Biomedical Applications. Polymers, 2021, 13, 2966.	2.0	5

#	ARTICLE	IF	CITATIONS
412	The environmental impacts of citrus residue management in China: A case study in The Three Gorges Reservoir Region. Waste Management, 2021, 133, 80-88.	3.7	3
413	Double-layered bacterial cellulose mesh for hernia repair. Colloids and Interface Science Communications, 2021, 44, 100496.	2.0	2
414	Response surface methodology-based improvement of the yield and differentiation of properties of bacterial cellulose by metabolic enhancers. International Journal of Biological Macromolecules, 2021, 187, 584-593.	3.6	18
415	Alternative optimization routes for improving the performance of poly(3-hydroxybutyrate) (PHB) based plastics. Journal of Cleaner Production, 2021, 318, 128555.	4.6	38
416	Cellulose biosynthesis using simple sugars available in residual cacao mucilage exudate. Carbohydrate Polymers, 2021, 274, 118645.	5.1	9
417	Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydrate Polymers, 2021, 273, 118565.	5.1	67
418	Cellulose and its derivatives: towards biomedical applications. Cellulose, 2021, 28, 1893-1931.	2.4	386
419	Cellulose., 2021,, 53-73.		1
424	Cellulose Based Biomaterials: Benefits and Challenges. , 2020, , 229-246.		8
425	Nanocellulose: Insight into Health and Medical Applications. , 2019, , 1345-1363.		7
427	Nanopolysaccharides in Barrier Composites. Springer Series in Biomaterials Science and Engineering, 2019, , 321-366.	0.7	3
428	Tissue Engineering Applications of Bacterial Cellulose Based Nanofibers. Advanced Structured Materials, 2020, , 319-346.	0.3	7
430	Molecular Dynamics Simulation of Cellulose Synthase Subunit D Octamer with Cellulose Chains from Acetic Acid Bacteria: Insight into Dynamic Behaviors and Thermodynamics on Substrate Recognition. Journal of Chemical Theory and Computation, 2021, 17, 488-496.	2.3	8
432	Bacterial nanocellulose as a plastic material for closure of defects of the dura mater: literature review. Hirurgia Pozvonochnika, 2019, 16, 62-73.	0.1	3
434	Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión. IngenierÃa Y Ciencia, 2012, 8, 307-335.	0.3	9
435	THERMAL DEGRADATION OF PAPER: THE STRUCTURAL CHANGES OF FIBRES. Egyptian Journal of Archaeological and Restoration Studies, 2016, 6, 71-84.	0.0	2
436	Optimization of cellulase and chitinase enzymes production by plant growth promoting rhizobacteria. Novel Research in Microbiology Journal, 2020, 4, 641-652.	1.2	7
437	Papermaking properties of bacterial nanocellulose produced from mother of vinegar, a waste product after classical vinegar production. Tappi Journal, 2020, 19, 197-203.	0.2	5

#	Article	IF	CITATIONS
438	Effect of Ethanol on the Production of Cellulose and Acetic Acid by Gluconacetobacter persimmonensis KJ145. Journal of the Korean Society of Food Science and Nutrition, 2003, 32, 181-184.	0.2	4
439	l ² -Sitosterol Induced Growth Inhibition is Associated with Up-regulation of Cdk Inhibitor p21 ^{WAF1/CIP1} in Human Colon Cancer Cells. Journal of the Korean Society of Food Science and Nutrition, 2004, 33, 1-6.	0.2	7
440	Optimization of Culture Condition of Gluconacetobacter hansenii TF-2 for Cellulose Gel Production. Journal of the Korean Society of Food Science and Nutrition, 2004, 33, 176-181.	0.2	1
441	Quality Characteristics of Apple Vinegar by Agitated and Static Cultures. Journal of the Korean Society of Food Science and Nutrition, 2010, 39, 308-312.	0.2	16
442	Role of Plasmid in Production of Acetobacter Xylinum Biofilms. American Journal of Biochemistry and Biotechnology, 2005, 1, 121-124.	0.1	4
443	Removal of Mercury from chlor-alkali Industry Wastewater using Acetobacter xylinum Cellulose. American Journal of Environmental Sciences, 2005, 1, 102-105.	0.3	44
444	Optimization of Culture Conditions for Bacterial Cellulose Production by Acetobacter sp. 4B-2. Biotechnology, 2008, 8, 150-154.	0.5	61
445	Study of Nano-fiber Cellulose Production by Glucanacetobacter xylinum ATCC 10245. Pakistan Journal of Biological Sciences, 2011, 14, 780-784.	0.2	5
446	Adsorption of Mercury from Synthetic Solutions by an Acetobacter xylinum Biofilm. Research Journal of Environmental Sciences, 2008, 2, 401-407.	0.5	8
447	Statistical Optimization of Medium Composition for Bacterial Cellulose Production by Gluconacetobacter hansenii UAC09 Using Coffee Cherry Husk Extract – an Agro-Industry Waste. Journal of Microbiology and Biotechnology, 2011, 21, 739-745.	0.9	56
448	Bacterial Cellulose. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 255-283.	0.3	3
449	Cellulose Application in Food Industry. Advances in Chemical and Materials Engineering Book Series, 0, , 38-77.	0.2	7
450	The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications. Materials Sciences and Applications, 2016, 07, 257-294.	0.3	25
452	Static Culture Condition for Production of Bacterial Cellulose, Environment-Friendly Functional Material, by Acetic Acid Bacteria. Journal of Environmental Science International, 2014, 23, 895-902.	0.0	2
453	Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. African Journal of Microbiology Research, 2011, 5, .	0.4	8
454	Development and Evaluation of the Biomimetic Actuator based on Bacterial Cellulose. Journal of the Korean Society for Precision Engineering, 2012, 29, 302-306.	0.1	1
455	Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose. Korean Chemical Engineering Research, 2013, 51, 388-393.	0.2	3
456	Electrically controlled transdermal ibuprofen delivery consisting of pectin-bacterial cellulose/polypyrrole hydrogel composites. Cellulose, 2021, 28, 11451-11463.	2.4	16

#	Article	IF	CITATIONS
457	Culture Condition for the Production of Bacterial Cellulose with Gluconacetobacter persimmonus KJ145. Journal of the Korean Society of Food Science and Nutrition, 2002, 31, 572-577.	0.2	4
460	Cellulosic Biomaterials. , 2014, , 1-34.		0
461	Effect of Carbonized Saw Dust on the Mechanical Properties of Polyolefin Plastics. Journal of Scientific Research and Reports, 2015, 6, 461-467.	0.2	0
462	Bacterial Cellulose: Potential and Challenge. , 0, , 405-420.		0
463	Synthesis and Characterization of Bacterial Cellulose-Based Composites and Their Applications. , 2016, , 528-565.		0
464	Bionanocomposites: A Greener Alternative for Future Generation., 2016,, 527-551.		1
465	Chapter 5 Bacterial Cellulose as Secondary Metabolite: Production, Processing, and Applications. , 2016, , 169-200.		1
466	Microorganism Based Biopolymer Materials for Packaging Applications: A Review. Journal of Composites and Biodegradable Polymers, 2016, 4, 32-40.	0.3	1
467	Chapter 5 Bacterial Cellulose as Secondary Metabolite: Production, Processing, and Applications. , 2016, , 169-200.		0
468	Characterization of bacterial cellulose produced via fermentation of acetobacter xylinum 0416. International Journal of Advanced and Applied Sciences, 2017, 4, 19-24.	0.2	1
469	Natural Polymers: Tissue Engineering. , 2017, , 1206-1234.		0
471	Production and Properties Bacterial Celluloses and Their Use in Food and Non-Food Applications. Akademik Gıda, 2018, 16, 241-251.	0.5	4
472	ASSESSMENT OF XYLANOLYTIC AND CELLULOLYTIC ACTIVITIES OF ANAEROBIC BACTERIAL COMMUNITY IN THE RUMEN OF CAMEL USING DIFFERENT LIGNOCELLULOSIC SUBSTRATES. Menoufia Journal of Animal Poultry and Fish Production, 2019, 3, 69-82.	0.0	0
473	Pharmaceutical application of cellulose derivatives. , 2020, , 305-328.		0
474	Application of Bacterial Nano Cellulose as a Reinforcing Material in The Liner Test Paper. Jurnal Bahan Alam Terbarukan, 2020, 9, 126-134.	0.5	0
475	Chemical Modification of Polysaccharides and Applications in Strategic Areas. Engineering Materials, 2020, , 433-472.	0.3	2
476	Review of the industrial applications of bacterial cellulose. Annals of WULS Forestry and Wood Technology, 2020, 109, 6-15.	0.0	0
477	Uncovering the Polydisperse Characteristics of Modification Inhomogeneity for Starch during Oxidation by Sodium Periodate. Macromolecules, 2021, 54, 10537-10546.	2.2	1

#	Article	IF	CITATIONS
478	Biosynthesis and recent advances in production of bacterial cellulose. Ecletica Quimica, 0, 35, 165.	0.2	2
479	Comparison of drug release behavior of bacterial cellulose loaded with ibuprofen and propranolol hydrochloride. RSC Advances, 2021, 11, 37354-37365.	1.7	13
480	Biofunctionalised bacterial cellulose scaffold supports the patterning and expansion of human embryonic stem cell-derived dopaminergic progenitor cells. Stem Cell Research and Therapy, 2021, 12, 574.	2.4	3
481	Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. International Journal of Molecular Sciences, 2021, 22, 12984.	1.8	75
482	A lightweight, mechanically strong, and shapeable copper-benzenedicarboxylate/cellulose aerogel for dye degradation and antibacterial applications. Separation and Purification Technology, 2022, 283, 120229.	3.9	25
483	Dual-charge bacterial cellulose as a potential 3D printable material for soft tissue engineering. Composites Part B: Engineering, 2022, 231, 109598.	5.9	19
484	The Trend of Bacterial Nanocellulose Research Published in the Science Citation Index Expanded From 2005 to 2020: A Bibliometric Analysis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 795341.	2.0	17
485	Nanofibers: promising wound-healing material with modifiable flexibility., 2022,, 95-134.		2
486	Production of Bacterial Cellulose by Acetobacter tropicalis Isolated from Decaying Apple Waste. Asian Journal of Chemistry, 2022, 34, 453-458.	0.1	0
487	Green nanotechnology in cardiovascular tissue engineering. , 2022, , 237-281.		7
488	Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal. Membranes, 2022, 12, 67.	1.4	11
489	Recovery of Energy and Materials From Small-Scale Tofu Processing Industries in Indonesia. Advances in Finance, Accounting, and Economics, 2022, , 231-256.	0.3	1
490	Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydrate Polymers, 2022, 283, 119171.	5.1	22
491	Emerging Biopolymerâ€Based Bioadhesives. Macromolecular Bioscience, 2022, 22, e2100340.	2.1	26
493	Preparation and characterization of intelligent packaging film for visual inspection of tilapia fillets freshness using cyanidin and bacterial cellulose. International Journal of Biological Macromolecules, 2022, 205, 357-365.	3.6	25
494	Production of bacterial cellulose films by Gluconoacetobacter xylinus for lipase immobilization., 2021,, 1-13.		1
495	Highly Stretchable Bacterial Cellulose Produced by Komagataeibacter hansenii SI1. Polymers, 2021, 13, 4455.	2.0	12
496	Extracellular Matrix and the Production of Cultured Meat. Foods, 2021, 10, 3116.	1.9	16

#	Article	IF	CITATIONS
498	Sustainable applications in nanocellulose-based sorbent composite: a technological monitoring. Biomass Conversion and Biorefinery, 2024, 14, 4539-4553.	2.9	O
499	Sustainable synthesis and characterization of Enset cellulose nanocrystals (E-CNp) from Enset ventricosum biomass and its application in the fabrication of Enset cellulose nanocomposite (E-CNc). Biomass Conversion and Biorefinery, 2024, 14, 5019-5034.	2.9	2
505	Cellulose-based bionanocomposites for food packaging applications. , 2022, , 217-246.		5
507	Tailor-Made Biosystems - Bacterial Cellulose-Based Films with Plant Cell Wall Polysaccharides. Polymer Reviews, 2023, 63, 40-66.	5.3	6
508	Celluloseâ€Based Biomaterials: Chemistry and Biomedical Applications. Starch/Staerke, 2022, 74, .	1.1	37
509	Bioconversion of lignocellulosic biomass into bacterial nanocellulose: challenges and perspectives. Green Chemical Engineering, 2023, 4, 160-172.	3.3	12
510	A review on the enhancement of composite's interface properties through biological treatment of natural fibre/lignocellulosic material. Polymers and Polymer Composites, 2022, 30, 096739112211036.	1.0	3
511	Bionanocomposite Synthesized from Nanocellulose Obtained from Agricultural Biomass as Raw Material. ACS Symposium Series, 0, , 47-74.	0.5	1
512	Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. Chemosphere, 2022, 305, 135291.	4.2	13
513	Liquid-crystalline ordering in bacterial cellulose produced by GluconacetobaÑŧer hansenii on glucose-containing media. Carbohydrate Polymers, 2022, 292, 119692.	5.1	3
515	Nanocellulose Membranes for Air Filtration. , 2022, , 777-808.		0
516	Recent advances in bacterial cellulose: a low-cost effective production media, optimization strategies and applications. Cellulose, 2022, 29, 7495-7533.	2.4	27
517	Draft Genome Sequence of Stenotrophomonas maltophilia KJ, a Clinical Isolate from Taiwan. Microbiology Resource Announcements, 0, , .	0.3	0
518	Developed applicability of a bacterial cellulose matrix as a gelling substitute for plant tissue culture media. Cellulose, 2022, 29, 7883-7900.	2.4	1
519	A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polymer Bulletin, 2023, 80, 7247-7312.	1.7	61
520	Improvement of bacterial cellulose fermentation by metabolic perturbation with mixed carbon sources. Process Biochemistry, 2022, 122, 95-102.	1.8	4
521	Bacterial cellulose: A promising biopolymer with interesting properties and applications. International Journal of Biological Macromolecules, 2022, 220, 435-461.	3.6	36
522	Value Addition in Coconut Water. , 2022, , 287-384.		1

#	Article	IF	Citations
523	Insights into the Role of Natural Polysaccharide-Based Hydrogel Wound Dressings in Biomedical Applications. Gels, 2022, 8, 646.	2.1	16
524	Bacterial Cellulose for Drug Delivery: Current Status and Opportunities. Indian Institute of Metals Series, 2023, , 137-157.	0.2	0
525	Biomolecule-Based Optical Metamaterials: Design and Applications. Biosensors, 2022, 12, 962.	2.3	2
526	Cultured meat and challenges ahead: A review on nutritional, technofunctional and sensorial properties, safety and legislation. Meat Science, 2023, 195, 109006.	2.7	19
527	Building a Cell House from Cellulose: The Case of the Soil Acidobacterium Acidisarcina polymorpha SBC82T. Microorganisms, 2022, 10, 2253.	1.6	1
528	Insights into the properties of bacterial cellulose produced by Acetobacter senegalensis MA1 and uncovering the novel bioactive metabolites of its spent medium. Biomass Conversion and Biorefinery, 0, , .	2.9	0
529	Low energy and solvent free technique for the development of nanocellulose based bioplastic from banana pseudostem juice. Carbohydrate Polymer Technologies and Applications, 2022, 4, 100261.	1.6	4
530	Recent Approaches Toward Bacterial Nanocellulose (BNC) Synthesis. , 2022, , 1-38.		0
531	Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. Journal of Drug Delivery Science and Technology, 2023, 79, 104018.	1.4	9
532	Complete genome of Nakamurella sp. PAMC28650: genomic insights into its environmental adaptation and biotechnological potential. Functional and Integrative Genomics, 2023, 23, .	1.4	1
533	Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers, 2022, 14, 5244.	2.0	6
534	Synthesis and Applications of Cellulose Nanomaterials Derived from Agricultural Waste and Byproducts., 2023,, 471-500.		0
535	Extraction of cellulose from agro-industrial wastes. , 2023, , 319-348.		1
536	Effective production of bacterial cellulose using acidic dairy industry by-products and agro wastes. Sustainable Chemistry and Pharmacy, 2023, 33, 101064.	1.6	2
538	Bacterial nanocellulose: A novel nanostructured bio-adsorbent for green remediation technology. Acta Ecologica Sinica, 2023, 43, 946-967.	0.9	1
539	Wastewater from the Arenga Starch Industry as a Potential Medium for Bacterial Cellulose and Cellulose Acetate Production. Polymers, 2023, 15, 870.	2.0	0
541	PLA based biocomposites for sustainable products: A review. Advanced Industrial and Engineering Polymer Research, 2023, 6, 382-395.	2.7	18
542	Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Applied Microbiology and Biotechnology, 2023, 107, 2169-2208.	1.7	4

#	Article	IF	CITATIONS
543	Nanocellulose Materials and Composites for Emerging Applications. Engineering Materials, 2023, , $105-144$.	0.3	O
545	Recent Approaches Toward Bacterial Nanocellulose (BNC) Synthesis. , 2023, , 57-94.		0
546	Current applications of biomolecules in biotechnology. , 2023, , 397-418.		0
555	Micro and nanoengineered structures and compounds: nanocellulose. Cellulose, 2023, 30, 10595-10632.	2.4	2
560	The Chemistry of Fermented and Pickled Food. Lecture Notes in Bioengineering, 2023, , 320-334.	0.3	0
561	Progress in sustainable applications of polymers and biopolymers. , 2023, , .		0
564	Vegan leather: a sustainable reality or a marketing gimmick?. Environmental Science and Pollution Research, 2024, 31, 3361-3375.	2.7	1
568	Polymer/nanocellulose composites for food packaging. , 2024, , 105-135.		0