Inheritance of parthenogenesis in Poa pratensis L.: auxi support monogenic control

Theoretical and Applied Genetics 97, 74-82 DOI: 10.1007/s001220050868

Citation Report

#	Article	IF	CITATIONS
1	AFLP fingerprinting in Medicago spp.: Its development and application in linkage mapping. Plant Breeding, 1999, 118, 335-340.	1.9	38
2	Inheritance and mapping of 2 <i>n</i> -egg production in diploid alfalfa. Genome, 2000, 43, 528-537.	2.0	36
3	Inheritance of Apomictic Seed Production in Kentucky Bluegrass (Poa pratensisL.). Journal of New Seeds, 2001, 2, 43-58.	0.3	8
4	Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sexual Plant Reproduction, 2001, 14, 213-217.	2.2	78
5	Genetic mapping of the dominant albino locus in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics, 2001, 265, 687-693.	2.1	46
6	Title is missing!. Molecular Breeding, 2001, 7, 293-300.	2.1	28
7	Development and Implementation of Molecular Markers for Forage Crop Improvement. Developments in Plant Breeding, 2001, , 101-133.	0.2	20
8	How to Avoid Sex. Plant Cell, 2001, 13, 1491-1498.	6.6	107
9	How to Avoid Sex: The Genetic Control of Gametophytic Apomixis. Plant Cell, 2001, 13, 1491.	6.6	14
11	Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theoretical and Applied Genetics, 2002, 104, 273-280.	3.6	65
12	Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Molecular Breeding, 2003, 12, 319-327.	2.1	83
13	Agrobacterium-mediated transformation of Arabis gunnisoniana. Plant Cell, Tissue and Organ Culture, 2003, 72, 173-180.	2.3	12
14	Molecular characterization of the genomic region linked with apomixis in Pennisetum/Cenchrus. Functional and Integrative Genomics, 2003, 3, 94-104.	3.5	66
15	Genomic DNA fingerprints as a tool for identifying cultivated types of radicchio (Cichorium intybus) Tj ETQq1 1 C	0.784314 r	gBT /Overloo
16	Linkage mapping in tetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba × Salix fragilis interspecific hybrids. Heredity, 2003, 90, 169-180.	2.6	53
17	Sexual and Apomictic Reproduction in Hieracium subgenus Pilosella Are Closely Interrelated Developmental Pathways. Plant Cell, 2003, 15, 1524-1537.	6.6	126
18	Microsatellite-AFLP for genetic mapping of complex polyploids. Genome, 2003, 46, 824-832.	2.0	34
19	Isolation of candidate genes for apomixis in Poa pratensis L Plant Molecular Biology, 2004, 56, 879-894.	3.9	101

CITATION REPORT

#	Article	IF	CITATIONS
20	Co-segregation of AFLP and RAPD markers to apospory in Guineagrass (Panicum maximum Jacq.). Grassland Science, 2005, 51, 71-78.	1.1	61
21	The Inheritance of Apomixis in Poa pratensis Confirms a Five Locus Model with Differences in Gene Expressivity and Penetrance. Plant Cell, 2005, 17, 13-24.	6.6	88
22	SERK and APOSTART. Candidate Genes for Apomixis in Poa pratensis. Plant Physiology, 2005, 138, 2185-2199.	4.8	148
23	Apomixis: Developmental Characteristics and Genetics. Critical Reviews in Plant Sciences, 2006, 25, 199-214.	5.7	97
24	Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L Heredity, 2006, 96, 322-334.	2.6	71
25	Mendelian Genetics of Apomixis in Plants. Annual Review of Genetics, 2007, 41, 509-537.	7.6	283
26	Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology. BMC Genomics, 2008, 9, 347.	2.8	22
27	The evolution of self-fertility in apomictic plants. Sexual Plant Reproduction, 2010, 23, 73-86.	2.2	94
28	Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene. BMC Plant Biology, 2010, 10, 154.	3.6	33
29	Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and Mâ€AFLP in order to assess the clonal selection of grapevine: the case study of Manto Negro, Callet and Moll, autochthonous cultivars of Majorca. Annals of Applied Biology, 2010, 157, 213-227.	2.5	25
30	Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L. Plant Journal, 2010, 62, 773-784.	5.7	92
31	Apomixis in the Era of Biotechnology. , 2010, , 405-436.		24
32	The cytohistological basis of apospory in Hypericum perforatum L Sexual Plant Reproduction, 2011, 24, 47-61.	2.2	26
33	Clones Identification and Genetic Characterization of Garnacha Grapevine by Means of Different PCR-Derived Marker Systems. Molecular Biotechnology, 2011, 48, 244-254.	2.4	20
34	Identification of apomixis in the Kentucky bluegrass (Poa pratensis L.) using auxin test. Acta Societatis Botanicorum Poloniae, 2012, 81, 217-221.	0.8	7
35	Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. Journal of Biotechnology, 2012, 159, 291-311.	3.8	67
36	Study of Intra-Varietal Genetic Variability in Grapevine Cultivars by PCR-Derived Molecular Markers and Correlations with the Geographic Origins. Molecular Biotechnology, 2012, 50, 72-85.	2.4	22
37	Inter- and Intra-Varietal Genetic Variability in Malvasia Cultivars. Molecular Biotechnology, 2012, 50, 189-199.	2.4	15

\sim .	 .	D	PORT
			י גוראנ
\sim		IVEI	

#	Article	IF	CITATIONS
38	Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reproduction, 2013, 26, 159-179.	2.2	115
40	A Conserved Apomixis-Specific Polymorphism Is Correlated with Exclusive Exonuclease Expression in Premeiotic Ovules of Apomictic Boechera Species. Plant Physiology, 2013, 163, 1660-1672.	4.8	71
41	The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics Â. Plant Physiology, 2013, 161, 571-582.	4.8	75
42	Molecular markers linked to apomixis in Panicum maximum Jacq African Journal of Biotechnology, 2014, 13, 2198-2202.	0.6	14
43	Genetic Variability and Geographic Typicality of Italian Former Prosecco Grape Variety Using PCR-Derived Molecular Markers. Molecular Biotechnology, 2014, 56, 408-420.	2.4	3
44	Genetic and Genomic Approaches for Improving Turfgrass. , 2015, , 683-711.		2
45	Inheritance of Aposporous Apomixis in Interâ€specific Hybrids Derived from Sexual <i>Paspalum plicatulum</i> and Apomictic <i>Paspalum guenoarum</i> . Crop Science, 2015, 55, 1947-1956.	1.8	12
46	Valorization of Genetic Variability for the Qualitative Improvement of Autochthonous Grape Cultivars of Cirò's terroir Through the Self-Fertilization. Molecular Biotechnology, 2015, 57, 275-286.	2.4	1
47	Tightly clustered markers linked to an aposporyâ€related gene region and quantitative trait loci mapping for agronomic traits in <i>Brachiaria</i> hybrids. Grassland Science, 2016, 62, 69-80.	1.1	45
48	Harnessing Apomixis for Heterosis Breeding in Crop Improvement. Sustainable Development and Biodiversity, 2016, , 79-99.	1.7	4
49	Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants. Methods in Molecular Biology, 2017, 1669, 17-34.	0.9	26
50	Diplosporous development in Boehmeria tricuspis: Insights from de novo transcriptome assembly and comprehensive expression profiling. Scientific Reports, 2017, 7, 46043.	3.3	13
51	Marker-assisted screening of breeding populations of an apomictic grass Cenchrus ciliaris L. segregating for the mode of reproduction. Crop Breeding and Applied Biotechnology, 2017, 17, 10-17.	0.4	11
52	A Review of Unreduced Gametes and Neopolyploids in Alfalfa: How to Fill the Gap between Well-Established Meiotic Mutants and Next-Generation Genomic Resources. Plants, 2021, 10, 999.	3.5	5
53	Bluegrasses. , 2010, , 345-379.		16
54	Epigenetic Control of Apomixis: A New Perspective of an Old Enigma. Advances in Plants & Agriculture Research, 2017, 7, .	0.3	28
55	QTL Mapping of Forage Traits. , 2002, , 585-600.		0
56	Molecular Relationships and Genetic Diversity Analysis of Venetian Radicchio (Leaf Chicory,) Tj ETQq1 1 0.7843	14 rgBT /O	verlock 10 T

#	Article	IF	CITATIONS
57	ls apomixis occurring in walnut (Juglans regia L.)? New data from progeny molecular tests and cytological investigations shed light on its reproductive system. Frontiers in Plant Science, 0, 14, .	3.6	0

CITATION REPORT